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Abstract—The requirement for flexible operation is becoming
increasingly important in modern industrial systems. This require-
ment has to be supported at all system levels, including the field
level in process industry, as well as the cell and machine control
levels in manufacturing industry, where fieldbus-based communi-
cation systems are commonly found. Furthermore, typical applica-
tions at these levels require both time- and event-triggered commu-
nication services, in most cases under stringent timing constraints,
to convey state data in the former case and alarms and manage-
ment data in the latter. However, neither the requirement for flex-
ible operation under guaranteed timeliness nor for joint support of
time and event-triggered traffic are efficiently fulfilled by most of
existing fieldbus systems.

This paper presents a new protocol, Flexible Time-Triggered
communication on Controller Area Network, which fulfills both
requirements: it supports time-triggered communication in a
flexible way as well as being an efficient combination of both time-
and event-triggered traffic with temporal isolation. These types
of traffic are handled by two complementary subsystems, the
Synchronous and the Asynchronous Messaging Systems, respec-
tively. The paper includes a justification for the new protocol as
well as its description and worst case temporal analysis for both
subsystems. This analysis shows the capability of the protocol to
convey real-time traffic of either type.

Index Terms—Distributed computer control systems, fieldbus
systems, flexible real-time communication, real-time distributed
systems, real-time scheduling.

I. INTRODUCTION

T HE requirement for flexibility is becoming increasingly
important in industrial systems motivated by the need to

reduce the costs of setup, configuration changes, and main-
tenance [22], [24]. This requirement naturally extends to all
system levels including the field level in process industries and
the cell and machine control levels in manufacturing industries,
where fieldbus-based distributed computer control systems
can be found. Particularly concerning the fieldbus system,
flexibility implies dynamic communication requirements
meaning that the online addition, removal, and adaptation of
message streams must be supported. On the other hand, most of
the data exchanges handled by the fieldbus are also subject to
stringent timing constraints arising from control and monitoring
requirements. Unfortunately, flexibility and timeliness have
typically been considered separately and most of the fieldbuses
available today favor either one aspect or the other [24], i.e.,
either time-constrained services are guaranteed sacrificing
flexibility or such guarantees are sacrificed in exchange for
higher flexibility.
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Another requirement typically found in fieldbus systems is
the capacity to deliver both time- and event-triggered commu-
nication services under timing constraints. The former ones are
well suited to convey periodic updates of state data whilst the
latter ones are more adapted to convey alarms and management
data. Again, existing fieldbus systems privilege either one or
the other type of services. In systems eminently time-triggered,
event-triggered services are either nonexisting or handled in-
efficiently in terms of either response time or network utiliza-
tion. On the other hand, in systems eminently event-triggered,
interesting properties of time-triggered services such as com-
posability with respect to the temporal behavior are normally
lost [13].

Therefore, adequate choices of communication paradigms
and protocols are required to achieve the desired combination
of both time and event-triggered services in an efficient, flex-
ible, and timely way. This paper will start by discussing related
communication paradigms to show that existing fieldbus sys-
tems do not generally support such combination in an efficient
and flexible way. This fact is used to justify the development
of a new protocol, Flexible Time-Triggered communication on
Controller Area Network (FTT-CAN), which is presented in
the remainder of the paper. A worst case response time analysis
for communication requests is also carried out, showing the
protocol ability to deliver real-time communication services.

II. COMMUNICATION PARADIGMS

During the past several years, the fieldbus research com-
munity has known several debates which opposed different
concepts and paradigms [25], e.g., static versus dynamic,
synchronous versus asynchronous, deterministic versus non-
deterministic, time-triggered versus event-triggered, etc. This
section will revisit two particular debates, which clearly relate
to the requirements of flexibility, timeliness and efficiency.

A. Static versus Dynamic Traffic Scheduling

The underlying traffic scheduling paradigm used in a fieldbus
system has a direct impact both on the guarantees for timely
behavior as well as on the fieldbus operational flexibility.
Two main paradigms can be identified: static scheduling,
where the communication requirements are fixed throughout
all system operation, and release and transmission times are
known at pre-run time; and dynamic scheduling in which case
the communication requirements may change at run time.
While the former paradigm is particularly adapted to support
timeliness, because it allows complex offline schedulability
analysis to be carried out, its level of flexibility is very low (at
most, only changes between a limited number of predefined
operational modes are allowed). On the other side, dynamic
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scheduling supports the desired level of flexibility but, to
support timeliness guarantees, an online admission control
based on an adequate schedulability analysis must be used.
Otherwise, the system may do its best to meet the timing
constraints associated to the communication requirements but
with no timeliness guarantees.

Concerning task scheduling, each of these two paradigms
can be further divided in two categories [20]: static table-based
and static priorities preemptive scheduling on one hand,
dynamic best-effort and dynamic planning-based scheduling
on the other. These paradigms can also be found concerning
message scheduling in fieldbuses, except that preemption is
normally not considered. Examples of fieldbuses relying on
static table-based scheduling are: WorldFIP [7], [8] concerning
periodic exchanges of identified variables, as well as TTP [12]
and TT-CAN [9] that use distributed tables. In these cases,
the communication requirements are fixed at pre-run time and
an explicit schedule is built that is used at run time to timely
initiate the data exchanges. Notice that the communication
requirements cannot be changed by the application at run time.
However, in the majority of the existing fieldbus systems,
the communication requirements can be modified by the
application at run time without any admission control and
thus without timeliness guarantees, i.e., dynamic best-effort
scheduling. As examples, consider ProfiBus, P-Net [7], [8],
WorldFIP concerning aperiodic communication services, and
most CAN-based systems. Nevertheless, it is still possible to
obtain timeliness guarantees for the traffic in these fieldbus
systems by using adequate analyzes, e.g., [23] for CAN, [26]
for ProfiBus, and [27] for P-Net. Notice, however, that those
analyzes are normally executed offline, only. At run time the
fieldbus handles the data exchanges in a highest priority first
fashion, i.e., static priorities online scheduling. Therefore, time-
liness guarantees remain valid as long as the communication
requirements are kept unchanged by the application at run time.

Finally, the dynamic planning-based scheduling paradigm al-
lows combining flexibility and timeliness guarantees by the use
of online admission control. In the case of a fieldbus, any sub-
mitted change to the current communication requirements is
subject to the admission control before it is accepted. Such con-
trol consists on verifying, online, whether the timeliness of the
resulting traffic can be guaranteed, for example by using the ana-
lyzes referred above. The change is accepted, only, if such guar-
antee is given, otherwise it is rejected. One example is the pro-
posal done by Rössler and Geppert [21] for inclusion in CAL
[5], a CAN-based communication system. Their proposal was
to modify the DBT (distributor) protocol, through which identi-
fiers are allocated to messages, so that new message streams can
be added online if the timeliness of the communication system
is not jeopardized.

One fieldbus specification that already considers the dy-
namic planning-based scheduling paradigm is the Foundation
Fieldbus-H1 [7], [8]. In this case, a particular node called the
Link Active Scheduler (LAS), controls the communication
in each link by making use of a schedule table and tokens.
When the LAS uses one of the specified scheduling profiles
known asdynamic, then it can accept change requests to the
scheduling table, which are accepted only if the resulting

schedule is feasible. However, the standard does not specify
how to implement such dynamic profile.

B. Event- versus Time-Triggered Communication

Another debate concerns the paradigm used for application
architectures with event-triggered ones being opposed to
those based on time triggering [11]. One of the main aspects
of this debate concerns the communication infrastructure in
distributed applications. This discussion has been fostered by
the appearance of the Time-Triggered Protocol—TTP [12]
that highlighted the advantages of that paradigm in real-time
communication systems. More recently, such paradigm
has also been addressed by the ISO Technical Committee
TC22/SC3/WG1 that, in 1999, set up a task force (TF6) to work
on the definition of a new CAN-based standard, TT-CAN,
which is a time-triggered profile for CAN.

Event-triggered communication does seem more ergonomic
and even more resource efficient. However, when worst case re-
quirements are considered, that efficiency is not verified. Since
events are asynchronous by nature, a typical worst case assump-
tion is that all events that must be handled by the system will
occur simultaneously. In order to cope with such situation in
a timely fashion the required amount of resources (e.g., net-
work bandwidth) is very high. On the contrary, the time-trig-
gered approach forces the communication activity to occur at
predefined instants in time at a rate determined by the dynamics
of the environment under control. One of the features of this ap-
proach is that it allows relative phase control among the streams
of messages to be transmitted over the communication system.
By using this feature, messages of different streams can be set
out of phase allowing a reduction on the number of messages
that become ready for transmission simultaneously. This fea-
ture is responsible for one of the most important properties of
time-triggered communication as stressed by Kopetz [13], i.e.,
the support for composability with respect to the temporal be-
havior. This property assures that, when two subsystems are in-
tegrated to form a new system, the temporal behavior of each of
them will not be affected. This does not hold true for event-trig-
gered communication. In this case, the level of contention at the
network access that each subsystemfeelsbefore integration is
always increased upon integration due to the traffic generated
by the other subsystems.

Furthermore, the relative phase control allowed by the
time-triggered approach may lead to two other positive effects.
Firstly, it improves the control over the transmission jitter felt
by periodic message streams. Secondly, it supports higher
network utilization with timeliness guarantees.

Therefore, when considering worst-case requirements the
time-triggered approach is more resource efficient than the
event-triggered one. However, when considering average-case
requirements, time-triggered communication is considerably
greedy when compared to event-triggered one. Consequently,
by dimensioning a system according to its worst case require-
ments, as typical in hard real-time systems, the time-triggered
approach tends to be less expensive than the event-triggered
one. Nevertheless, since the average network utilization of
event-triggered systems is normally lower, such systems can
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easily support other types of communication with less stringent
or no timing constraints (e.g., traffic associated with the
management of either remote nodes or network) without any
additional cost. This fact can have a positive impact on the
overall efficiency of the communication system utilization,
reducing its exploitation costs.

Apart from the above considerations on network utilization,
it is commonly accepted [25], [18] that time-triggered commu-
nication is well adapted to control applications that typically re-
quire regular transmission of state data with low, or bounded,
jitter (e.g., motion control, engine control, temperature control,
position control). On the other hand, event-triggered communi-
cation is well adapted to the monitoring of alarm conditions that
are supposed to occur sporadically and seldom, and also to sup-
port asynchronous nonreal-time traffic, e.g., for global system
management.

C. Combining Event- and Time-Triggered Traffic

Despite their different characteristics, many applications do
require joint support for both event- and time-triggered traffic
and, thus, a combination of both paradigms in order to share
their advantages is desirable. An important aspect is that tem-
poral isolation of both types of traffic must be enforced or, oth-
erwise, the asynchrony of event-triggered traffic can spoil the
properties of the time-triggered one. This isolation is achieved
by allocating bandwidth exclusively to each type of traffic. A
typical implementation makes use of bus-time slots called ele-
mentary cycles, or microcycles (e.g., [19]), containing two con-
secutive phases dedicated to one type of traffic each. The bus
time becomes, then, an alternate sequence of time-triggered and
event-triggered phases. The maximum duration of each phase
can be tailored to suit the needs of a particular application. If
each type of traffic is forced to remain within the respective
phase then temporal isolation is guaranteed. This concept is
used, for example, in the WorldFIP fieldbus. However, since this
fieldbus uses a centralized MAC protocol (master–slave), the
handling of event-triggered (aperiodic) traffic is relatively inef-
ficient requiring a considerable amount of bandwidth to allow
the master node (arbitrator) to become aware of, and process,
aperiodic requests. First, the master has to poll the nodes for
the existence of aperiodic requests to be served, which is nor-
mally carried out using the periodic traffic coming from each
node. Then, when a node signals that it has pending aperiodic
requests, the master has to poll the node for the identification of
the individual requests and finally process them one at a time.

In the Foundation Fieldbus-H1, a somewhat similar scheme
is used. The LAS contains the schedule for the time-triggered
traffic but not necessarily organized in elementary cycles. This
node grants the other nodes, Link Masters (LMs), the permis-
sion to control the bus and transmit event-triggered messages
during precise time windows, only, that do not overlap with the
time used by the time-triggered messages. The LAS implements
a virtual token ring to control the order by which LMs access the
network. The sequence in the ring can be any, in order to control
the distribution among the several LMs of the bandwidth avail-
able for aperiodic communication. This token-based method is
also relatively inefficient for two reasons. Firstly, the tokens still

consume bandwidth, and secondly, nodes with pending aperi-
odic communication requests have to wait for the token even
when the remaining nodes in the ring list have no requests.

In the case of TT-CAN, a time-division multiple-access
(TDMA)-based technique is followed, similar to the one
proposed in [28]. In this case, a static cyclic table organized
as a matrix is used, containing a sequence of well-determined
windows. These can either be exclusive or arbitration windows
and their sequence in the cycle (TDMA round) can be any.
However, there are several practical constraints that must be
observed when building the table. For example, all the windows
in the same column must be of equal width and type, and the
number of lines must be a power of 2. The exclusive windows
are dedicated to the transmission of a single time-triggered
message, each. There is no bus contention in these windows.
On the other hand, arbitration windows can be shared by
several event-triggered messages and potential collisions are
sorted out by the original MAC protocol of CAN, based on the
carrier-sense multiple-access (CSMA) technique with bit-wise
nondestructive collision resolution. The network controllers
execute a further access control to prevent the transmission
of event-triggered messages to extend beyond the respective
window thus assuring temporal isolation. The fact that there
is a CSMA-based MAC protocol that resolves collisions at
bus access during the arbitration windows greatly simplifies
the handling of event-triggered traffic, resulting in a higher
efficiency. Notice that there is no need for token-passing or
master requests as in the previous cases.

On the other hand, a pure TDMA approach is used in TTP/C,
with exclusive slots, only, to transmit each message within
the TDMA round. The schedule is static and each message
transmission is guaranteed to fit within the respective slot. The
support of time-triggered traffic is obvious. On the contrary,
event-triggered traffic can only be supported by pre-allocating
a number of slots for the transmission of eventually pending
event-triggered messages. However, these slots are also dedi-
cated and thus, at a given instance, if no transmission request
for the respective message is pending the slot is wasted, i.e.,
unused. This time-based polling mechanism for each event-trig-
gered message causes these ones to be undifferentiated from
the time-triggered traffic inheriting the properties referred in
the previous section, particularly high efficiency under worst
case requirements and low efficiency under average-case
requirements whenever these are substantially lower than the
former ones. Therefore, for the purpose of this paper, it will be
considered that TTP/C supports time-triggered traffic, only.

In many other fieldbus systems, it is possible to specify
cyclic time-triggered data exchanges but with no temporal
isolation from the event-triggered traffic, e.g., ProfiBus, P-Net,
DeviceNet [6]. This means that the properties of time-triggered
traffic are lost, particularly the relative phase control among
periodic data streams and, consequently, jitter control as well
as composability with respect to the temporal behavior. In fact,
from the network point of view, in such systems all the traffic
is handled as event-triggered. Nevertheless, this does not mean
that these systems handle such traffic efficiently. This strongly
depends on the MAC protocol used by the fieldbus system. For
example, CSMA-based protocols are efficient with respect to
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TABLE I
PROPERTIES OFSOME FIELDBUS SYSTEMS

handling event-triggered traffic since nodes try to initiate trans-
mission as soon as the respective request is received from the
application (e.g., DeviceNet and other CAN-based systems).
On the other hand, token-based MAC protocols are not so
efficient because a node always has to wait for the token despite
having pending transmission requests and also because of the
bandwidth used by the tokens (e.g., ProfiBus and P-Net, among
masters). The situation is worse with master–slave-based MAC
protocols since all slaves have to be polled by the master so that
it becomes aware of slaves transmission requests and grants
them the necessary right to transmit (e.g., ProfiBus and P-Net,
between each master and slave node).

D. Why a New Protocol?

From the above discussions, it can be seen that the joint sup-
port for both time- and event-triggered traffic is advantageous
for many applications. However, existing fieldbus protocols
either do not support both types of traffic (e.g., TTP/C), or
both types are supported but without temporal isolation (e.g.,
ProfiBus, P-Net, DeviceNet). In the cases where temporal
isolation is enforced, the event-triggered traffic is handled in-
efficiently (e.g., WorldFIP, Foundation Fieldbus-H1) and/or the
time-triggered traffic is specified statically, thus not supporting
operational flexibility (e.g., TT-CAN).

The FTT-CAN protocol herein presented addresses these
issues and fulfills the requirements for flexibility, timeliness
and efficient combination of time and event-triggered traffic.
Recently, another communication system meant for distributed
embedded systems has been proposed, FlexRay [10], that
aims at fulfilling similar requirements. However, as the current
specification states, its time-triggered traffic must still be
defined statically. Due to lack of complete knowledge about
this protocol at the time of writing this paper, it has not been
further considered. Table I summarizes the properties of several
fieldbus systems as discussed above, along this section. It
already includes the FTT-CAN protocol in order to allow a fast

comparison with existing fieldbuses. In the remainder of the
paper, this protocol will be presented, supporting the properties
claimed in Table I.

III. I NTRODUCTION TOFTT-CAN

The basis for the FTT-CAN protocol was first presented in
[1]. Basically, the protocol makes use of the dual-phase elemen-
tary cycle concept in order to combine time- and event-triggered
communication with temporal isolation. Moreover, the time-
triggered traffic is scheduled online and centrally in a particular
node called master. This feature facilitates the online admis-
sion control of dynamic requests for periodic communication
because the respective requirements are held centrally in just
one local table. With online admission control, the protocol sup-
ports the time-triggered traffic in a flexible way, under guaran-
teed timeliness (dynamic planning-based scheduling paradigm).

Furthermore, there is another feature that clearly dis-
tinguishes this protocol from other proposals concerning
time-triggered communication on CAN [18], [9] that is the
exploitation of its native distributed arbitration mechanism. In
those proposals, there are specific mechanisms to avoid colli-
sions in the time-triggered traffic, either through master–slave
transmission control [18] or through control of transmis-
sion instants [9] using a strictly periodic reference message
(TT-CAN level 1) or with clock synchronization (TT-CAN
level 2). In both cases, the original MAC of CAN is made
useless, contributing to a low efficiency in the former case, due
to the bandwidth taken by the master messages, and to a low
flexibility in the latter case, due to the static nature of thea
priori knowledge of all transmission instants. On the contrary,
FTT-CAN takes advantage of the native MAC of CAN to
reduce communication overhead and support a high efficiency
and flexibility in the time-triggered traffic. The protocol relies
on a relaxed master–slave transmission control in which the
same master message triggers the transmission of messages in
several slaves simultaneously (master/multislave). The eventual
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Fig. 1. Elementary cycle in FTT-CAN.

collisions between slaves’ messages are handled by the native
distributed arbitration of CAN. Moreover, the protocol also
takes advantage of the CAN arbitration to handle event-trig-
gered traffic in the same way as the original protocol does.
Particularly, there is no need for the master to poll the slaves for
pending event-triggered requests. Slaves with pending requests
may try to transmit immediately, as in normal CAN, but just
within the respective phase of each elementary cycle. This
scheme, similar to the arbitration windows in TT-CAN, allows
a very efficient combination of time and event-triggered traffic,
resulting in low communication overhead and shorter response
times.

The nomenclature used in the protocol follows. In FTT-CAN
the bus time is slotted in consecutiveElementary Cycles(ECs)
with fixed duration ( time units). All nodes are synchronized
at the start of each EC by the reception of a particular message
known asEC trigger message(TM), which is sent by a particular
node calledmaster. The transmission of this message, including
stuff bits, takesLTM (constant) time units.

Within each EC the protocol defines two consecutive win-
dows, asynchronous and synchronous, that correspond to two
separate phases (Fig. 1). The former one is used to convey
event-triggered traffic, herein calledasynchronousbecause the
respective transmission requests can be issued at any instant.
The latter one is used to convey time-triggered traffic, herein
called synchronousbecause it is transmitted synchronously
with the ECs. The synchronous window of theth EC has a
duration that is set according to the traffic scheduled
for it. Such schedule is conveyed in the respective EC trigger
message. Moreover, since this window is placed at the end
of the EC [16], the trigger message also conveys its relative
starting instant. The asynchronous window has a duration

equal to the remaining time between the EC trigger
message and the synchronous window. The protocol allows
establishing a maximum duration for the synchronous windows
(LSW) and correspondingly a maximum bandwidth for that
type of traffic. Consequently, a minimum bandwidth can be
guaranteed for the asynchronous traffic.

The reason why the asynchronous window precedes the syn-
chronous one is related with the need to decode the EC trigger
message in each node [16] since it specifies which synchronous
messages must be transmitted in the respective EC. This de-
coding takes an amount of time that strongly depends on the
node processor capacity, being as large as the transmission time
of one or more messages when simple 8-b microcontrollers are
used, or just an insignificant fraction of time with 32-b micro-
processors. Thus, if the synchronous window was defined right

Fig. 2. EC trigger message data contents.

after the EC trigger message, the gap between this message
and the first synchronous message would be hardware depen-
dent and the corresponding bus time would be wasted. On the
other hand, by defining the asynchronous window before the
synchronous one, the decoding of the EC trigger message can
be carried out in parallel with the transmission of asynchronous
traffic, resulting in a more efficient bus utilization. Moreover,
as long as an adequate minimum duration is guaranteed for the
asynchronous windows, the hardware dependency is substan-
tially reduced.

In order to maintain the temporal properties of the syn-
chronous traffic, such as composability with respect to the
temporal behavior, it must be protected from the interference
of asynchronous requests. Thus, a strict temporal isolation
between both phases is enforced by preventing the start of
transmissions that could not complete within the respective
window. This is achieved by removing from the network
controller transmission buffer any pending request that cannot
be served up to completion within that interval, keeping it in
the transmission queue. Consequently, a short amount of idle
time may appear at the end of the asynchronous window (in
Fig. 1). At the end of the synchronous window, another short
amount of idle time may appear but due to variations in the
stuff bits used in the physical encoding of CAN messages.
However, in the remainder of the paper, the maximum number
of stuff bits will always be considered.

The communication services of FTT-CAN are delivered to
the application by means of two subsystems, the Synchronous
Messaging System (SMS) and the Asynchronous Messaging
System (AMS), that manage the respective type of traffic. The
SMS offers services based on the producer–consumer model
[25] while the AMS offers send and receive basic services, only.
A more detailed description of both subsystems follows.

IV. SMS

The SMS conveys the time-triggered traffic herein called syn-
chronous because it is synchronized with the ECs. In fact, the
EC duration is the basic time unit used to describe the tem-
poral attributes of the time-triggered traffic. Moreover, it is the
EC trigger message that sets the pace of time progression, in
a sparse time base with unit increments, specifying in its data
field the synchronous messages scheduled for that EC (Fig. 2).
All nodes that produce synchronous messages have to decode
the EC trigger message and check whether they are producers
of any of the specified messages. This checking is carried out by
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TABLE II
COMMUNICATION OVERHEAD IMPOSEDBY THE EC TRIGGERMESSAGE

scanning a local table containing the identification of the mes-
sages to be produced/consumed by this node. Upon transmis-
sion of synchronous messages, eventual collisions on bus ac-
cess within the synchronous window are resolved by the native
distributed MAC protocol of CAN. This mechanism allows real-
izing centralized scheduling with low communication overhead,
i.e., one additional message per EC, only. Table II indicates the
bandwidth used by the EC trigger message in four typical sce-
narios. For each transmission rate, the overhead can be further
reduced by increasing the EC duration (), or by reducing the
data length of the EC trigger message whenever the applica-
tion needs fewer synchronous messages (1 bit per message is
required).

A. Synchronous Requirements Table

The temporal attributes of the synchronous messages are ex-
pressed in the Synchronous Requirements Table (SRT) that re-
sides in the master node. Each entry describes one synchronous
message stream, i.e., a sequence of messages carrying succes-
sive instances of the same entity such as readings of a temper-
ature sensor or actuating values for an actuator (unless noted
otherwise, a message stream will be referred to simply as a mes-
sage). The SRT is organized as follows:

(1)

DLC is data length in bytes (from 0 to 8), is the respective
maximum transmission time (including stuff bits), stands
for the relative phasing, for period, for deadline, and for
fixed priority. Both and are expressed as integer mul-
tiples of , the EC duration. is the number of synchronous
messages (SRT entries). The CAN identifier of each message
is formed by adding the indexto a pre-configured offset. The
relationship between identifier and the priority can be any.
This relationship has an impact at the intra EC level, only, e.g., it
influences the transmission order of the synchronous messages
scheduled for the same EC. In a larger timescale, that relation-
ship has no impact on the temporal behavior of the synchronous
traffic, which is controlled essentially by the scheduling policy
and specified priorities.

B. Flexible Scheduling of Synchronous Messages

Based on the SRT, an online scheduler builds the synchronous
schedules for each EC. These schedules are then inserted in the
data area of the respective EC trigger message and broadcast
with it. Due to the online nature of the scheduling function,

Fig. 3. Schedulability versus bus utilization under RM and EDF.

changes performed in the SRT at run time will be reflected in
the bus traffic within a bounded delay, resulting in a flexible
behavior.

From an operational point of view, two different solutions
have been used to implement the scheduler. One is the planning
scheduler [2], a software-based implementation that allows re-
ducing the processing overhead of online scheduling. This tech-
nique consists on building a static schedule table for a given pe-
riod of time into the future calledplanand rebuilding that table
online at the end of each plan. The plan duration is not correlated
with the messages periods and thus the memory requirements to
hold a plan table are bounded and knowna priori. The planning
scheduler is particularly well suited to systems with low com-
putational capacity nodes (e.g., based on simple 8-b microcon-
trollers). A negative feature of this technique is its lower respon-
siveness to changes in the communication requirements, when
compared to normal online scheduling, arising from the static
nature of each plan table. Notice that changes in the SRT, which
holds those requirements, are taken into account from plan to
plan, only. However, when the planning scheduler is used in the
scope of FTT-CAN, the limitation on system responsiveness can
be substantially reduced by using asynchronous messages to en-
force the changes in communication requirements, temporarily,
until they are handled by the planning scheduler [17].

The second solution that has been developed to implement
the scheduling function in FTT-CAN makes use of FPGA-based
scheduling co-processors. This solution provides, at a higher
hardware cost, the extra computational capacity required to
execute both the scheduling policy online as well as an ade-
quate schedulability analysis. For example, the co-processor
described in [14] scans the SRT and creates a new EC schedule
every EC. Moreover, it is also capable of executing several
schedulability tests in that interval. The result of this solution is
a high degree of flexibility and responsiveness, plus a residual
computational overhead, only, in the master processor.

Apart from the flexibility inherent to the use of online
scheduling, as referred to above, the FTT-CAN protocol
exhibits another level of flexibility related with the scheduling
policy. In fact, the scheduling is carried out based on the SRT
independently of the message identifiers. Thus, any scheduling
policy can be easily implemented, e.g., Rate-Monotonic (RM),
Deadline-Monotonic (DM), Earliest-Deadline First (EDF),
Least-Laxity First (LLF), overriding the identifier-based traffic
scheduling embedded in the MAC of CAN. Fig. 3 illustrates
the use of FTT-CAN with RM and EDF, using 80% of the
bus bandwidth allocated to the SMS ( ). In
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particular, it shows the percentage of random message sets
schedulable by both policies as a function of bus utilization and
it illustrates the superior schedulability capacity of EDF over
RM, as expected. With EDF, practically the whole bandwidth
allocated to the SMS could be used with guaranteed schedu-
lability. The fact that EDF does not achieve 100% utilization
of the allocated bandwidth is explained by the interference of
nonpreemptive message transmission.

The flexibility of using any scheduling policy is a valuable
feature of FTT-CAN. For example, in [29] and [30] two
techniques to implement EDF over CAN are presented, based
on dynamic manipulation of message identifiers in order to
obtain the desired dynamic priority scheduling at the bus access
level. Furthermore, both require explicit clock synchronization
among nodes. The respective implementations are fully dis-
tributed but are also relatively inefficient and computationally
demanding in all nodes. The main drawbacks are a reduced
number of bits to encode the dynamic priority and the need to
cyclically de-queue messages to update their identifiers. Both
aspects lead to a degradation of EDF performance. On the
other hand, the EDF implementation based on FTT-CAN is
straightforward. It requires no explicit clock synchronization,
there is no need to update message identifiers and there is no
extra computational demand in any node with one exception,
the master, where the EDF scheduler is executed.

C. Schedulability of Synchronous Traffic

The scheduling model used for the synchronous traffic does
not allow the transmission of messages to cross the boundary of
the synchronous window. This is avoided by using inserted idle
time, i.e., whenever a message does not fit completely within
the synchronous window of a given EC it is delayed to the
next. Consequently, the EC trigger message is always trans-
mitted without any blocking. However, the use of inserted idle
time has also a negative impact on the traffic schedulability.

In [4] a scheduling model is presented, based on fixed prior-
ities, in which a set of periodic nonpreemptive tasks is sched-
uled with inserted idle time. The model, named blocking-free
nonpreemptive scheduling, is very similar to the one used to
schedule the synchronous traffic in FTT-CAN. Tasks periods
and deadlines are integer multiples of a basic cycle duration (call
it ), the execution times are always shorter thanand task ac-
tivations are always synchronous with the start of a cycle. The
only difference is that, in [4], the whole cycle is available to
execute tasks, while in FTT-CAN the synchronous traffic is re-
stricted to the synchronous window within each EC, with max-
imum length .

In order to transform the FTT-CAN model into the one used
in [4], so that the analysis therein presented can be used, it suf-
fices to inflate all execution times by a factor equal to .
This is equivalent to expanding the synchronous window up
to the whole EC (Fig. 4) and carries no consequence in terms
of schedulability since messages scheduled for a given syn-
chronous window will remain within the same cycle. Applying
this transformation to the original set of messages (1) re-
sults in a new virtual set that can be expressed as (2) in

Fig. 4. Expanding the synchronous window to allow using the blocking-free
nonpreemptive model.

which all the remaining parameters but the execution times are
kept unchanged

(2)

The results in [4] are now directly applicable over ,
particularly the theorem stating that any existing analysis for
fixed priorities preemptive scheduling can be used in this model
if the execution times are replaced by as in (3), where

is the cycle duration and the maximum inserted idle time

(3)

Expanding (3) with the transformation in (2) and noting that
, yields the final transformation (4) that has

to be carried out over the original message transmission times,
i.e., those in the SRT, so that any existing analysis for fixed
priorities preemptive scheduling can be used

(4)

However, any schedulability assessment obtained via that the-
orem is just sufficient, only. The reason is the pessimism in-
troduced when using an upper bound for. Except for a few
particular situations, the exact value cannot
be determined. Nevertheless, an upper bound is easy to ob-
tain, e.g., the transmission time of the longest message among
those that can cause inserted idle time. This can be obtained as

through expression (5), considering that the
message set is ordered by decreasing priorities

(5)

An important corollary of the theorem referred above is that
Liu and Layland’s utilization bound for RM [31] can be used
with just a small adaptation as part of a simple online admission
control for changes in the SRT incurring in very low run-time
overhead. This is expressed in condition (C1)
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SRT is schedulable
with RM under any

phasing.
(C1)

A similar line of reasoning can be followed to adapt the Liu
and Layland’s utilization bound for EDF. In this case, the max-
imum inserted idle time ( ) plus the remaining amount of time
in the EC outside the synchronous window ( ) can be
considered as the worst case transmission time of a virtual mes-
sage ( ) that is added to the original set
and transmitted every EC ( ). This virtual message will
be the highest priority one in every EC and will fill in the part of
the EC that cannot be used by the synchronous messages. As-
sume, now, that the resulting extended set, i.e., the original SRT
plus the virtual message, can be scheduled preemptively. In this
situation, the Liu and Layland’s bound can be used (6)

(6)

However, due to the extra load imposed by the virtual mes-
sage, all other messages will finish transmission either in the
same EC or later in this schedule than in the original one with the
traffic confined to the synchronous window and with inserted
idle time. Thus, if the extended set is schedulable the SRT will
also be. This results in the sufficient schedulability condition
(C2)

SRT is schedulable with
EDF under any phasing.

(C2)

Another important result presented in [4] is a new analysis
based on a traffic timeline, which allows obtaining a more ac-
curate schedulability assessment for fixed priorities scheduling,
e.g., RM, DM, or other. This assessment is necessary and suffi-
cient if both of the following conditions are verified.

1) All messages must be considered in phase, i.e., ready for
transmission at a hypothetical instant called critical
instant (worst case phasing).

2) No lower priority message can be scheduled before a
higher priority one. Otherwise, one could not guarantee
that the first message instance after the critical instant suf-
fers the worst case response time.

This analysis does not have a closed formula but instead re-
quires the execution of a simple algorithm (Fig. 5) to obtain
the worst case response times to transmission requests (,

), considered as the maximum time lapse from mes-
sage exact periodic activation to complete transmission. The al-
gorithm consists in determining, for all messages, the EC where
they are first transmitted after the critical instant (line 9). This
is carried out EC by EC (line 2), taking into account the effec-
tive message sequence in the schedule imposed by the respective
priorities (line 4). This way, the inserted idle time in each EC is
accounted for with exactitude (lines 6 and 7), consequently re-
sulting in exact worst case response times. The algorithm herein
presented differs from the one in [4] in that it accumulates the
load of each EC ( ) up to the maximum length of the syn-

Fig. 5. Pseudocode for the timeline analysis.

Fig. 6. Support for temporal accuracy.

chronous window ( ), only, and calculates the worst case
response time with a resolution of one EC. At the end of each
complete run of the inner for loop in line 4, contains the
effective duration of the synchronous window in theth EC.
The vector indicates the messages with transmis-
sion requests pending in theth EC.

After having determined the worst case response times for
all messages, a trivial schedulability test can be carried out by
comparing this time with the respective deadline. As long as
both conditions referred above hold, the test supports a neces-
sary and sufficient condition (C3)

SRT is schedulable with
worst case phasing.

(C3)

In case either condition 1) or 2) do not hold, the values of
obtained from the algorithm in Fig. 6 may not be exact

but upper bounds to the effective worst case values and, thus,
the schedulability test results in a sufficient but not necessary
condition.

D. Further Comments on Temporal Behavior

Apart from the scheduling-related issues there are also other
aspects that have impact on the temporal behavior of the syn-
chronous traffic in FTT-CAN. Firstly, the SMS handles the syn-
chronous traffic with autonomous control, i.e., the transmission
and reception of messages is carried out exclusively by the net-
work interface without any intervention from the application
software. The message data is passed to and from the network by
means of shared buffers. This means that the network interface,
in what concerns the SMS, behaves as a temporal firewall be-
tween the application and the network, since it isolates the tem-
poral behavior of both parts, increasing the system robustness.
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Secondly, the protocol supports information on the temporal
accuracy of the data that is conveyed in synchronous messages.
Two Boolean status variables are delivered to the application
whenever the data is read from the network interface (Fig. 6).
The refreshness status indicates that the delay between the
data being written in the network interface and the respective
message transmission is less than the refreshness window. The
refreshness bit is generated at the producer side and it is coded
in the message identifier so that it is transmitted together with
it. On the receiver side, the promptness status indicates that
the delay between the message reception and the respective
data being read by the application is less than the promptness
window. Whenever one of these status variables is false, it
means that the respective data has either waited too long to be
transmitted (false refreshness) or to be read (false promptness).

Thirdly, the SMS services available to the application
software follow the producer–consumer model and are, basi-
cally, theSMS_produceservice, i.e., writing a message in the
appropriate buffer in the network interface, and theSMS_con-
sumeservice, i.e., reading from a message buffer in the network
interface. For both services there is an option to synchronize
with the network traffic. This option allows controlling the
cyclic execution of application software within remote nodes
simply by adjusting the periodicity of the respective messages.
This is the basis for a particular global system management
policy named network-centric [3]. Moreover, the SMS also
delivers the services required to manage theSRT such as
SRT_add, SRT_removeand SRT_changemessage. These
services automatically invoke an on-line admission control
to assure a continued timely communication. However, for
particular applications where such feature is not required, e.g.,
when changes in theSRTat run time are not required, then the
online admission control can be disabled, saving unnecessary
overhead.

V. AMS

The FTT-CAN protocol also supports asynchronous traffic
for event-triggered communication, which is handled by the
AMS. This subsystem works very similarly to the original CAN
protocol using its native priority-based distributed arbitration
mechanism and inheriting its efficiency in handling event-trig-
gered traffic. However, on top of the CAN arbitration, the AMS
contains another level of access control that allows confining
this type of traffic to the asynchronous window in each EC. This
is required to prevent asynchronous messages from interfering
with the SMS or the EC trigger message, enforcing a strict tem-
poral isolation between the two subsystems. The access control
that establishes the beginning and end of each asynchronous
window is based on time, relative to the EC trigger message.
It does not require any form of control based on message ex-
changes, e.g., tokens, being, thus, bandwidth efficient.

Furthermore, nodes with pending asynchronous transmission
requests try to transmit immediately during the asynchronous
window. Outside this window such requests are kept on hold
until the next window, then reentering arbitration. On average,
this technique results in short response times to asynchronous
requests. In the worst case, it is necessary to account for the

potential blocking caused by the periods of bus exclusion, i.e.,
the periods of time outside the asynchronous windows.

A. AMS Communication Services

The communication activity in the AMS follows the external
control paradigm, i.e., the transmission of messages takes place
upon explicit requests from the application software. Such re-
quests are issued by means of a basic service calledAMS_send,
which is a nonblocking send function with queuing. The queue
is ordered first by priority, according to the message identifiers,
and second by request instant (FCFS). The length of the queue
within each node is set at configuration time according to the
number of asynchronous message streams it may transmit and
to the number of messages of the same stream that can be queued
at the same time [32]. This is particularly relevant when the
minimum inter-arrival time of transmission requests in a given
stream is shorter that the worst case time to process a single re-
quest of that stream.

The delivery of messages to the application software is ac-
complished by means of a complementary basic service called
AMS_receive, a blocking receive function that allows waiting
for a specified, or unspecified message. At the receiving node,
the AMS also queues the messages arriving from the network
until they are retrieved with theAMS_receiveservice. The
length of the queue is also set up at configuration time, similarly
to the queue in the sender side. In this case, the important
aspects are the number of asynchronous message streams
that a node may receive as well as the number of messages
of the same stream that may arrive between two consecutive
retrieves. More complex and reliable exchanges, e.g., requiring
acknowledge or requesting data, must be implemented at the
application level, using the two basic services referred to above.

B. Asynchronous Traffic Scheduling

From a traffic-scheduling point of view, the AMS follows a
dynamic best-effort paradigm. In fact, its current version does
not include an embedded mechanism to perform online admis-
sion control of this type of traffic. However, for a given set of
communication requirements, it can be shown that the worst
case response time to asynchronous requests is upper bounded
[16], [32], thus supporting the use of asynchronous messages to
convey real-time data, e.g., alarms. The basic scheduling policy
is directly inherited from the original CAN protocol, i.e., pri-
ority driven, with fixed priorities expressed as message identi-
fiers. Furthermore, the scheduling uses inserted idle time (in
Fig. 1) to enforce a strict temporal isolation between the two
types of traffic, and exclusions to represent the periods of the
ECs outside the asynchronous windows, where asynchronous
messages cannot be transmitted.

The bandwidth available to the AMS is the one left unused
by the SMS (synchronous messages) and the EC trigger mes-
sages. Thus, the heavier the synchronous load is, the shorter be-
comes the AMS communication capacity. There is, however, as
referred to in Section III, the possibility to guarantee a minimum
bandwidth available to the AMS by establishing a maximum du-
ration for the synchronous windows (LSW). The duration of the
asynchronous window in theth EC ( ) can be computed
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Fig. 7. Avoiding chained blocking in the start of asynchronous windows.

within the algorithm in Fig. 5 by inserting expression (7) in be-
tween lines 11 and 12

(7)

The lower expression in (7) allows accounting for possible idle
time insertion (upper bounded by ) in the construction of the
synchronous schedule for the respective EC. The value ofis
the one given by expression (5). This correction is important for
the schedulability analysis of the asynchronous traffic because
it allows considering the critical instant for the response time
to asynchronous requests as the EC in which all synchronous
messages are released simultaneously.

A particular aspect that has a considerable impact on the tem-
poral behavior of the AMS is the synchronization among all
nodes in the start of each asynchronous window. Without such
synchronization, a possible blocking could occur in the start of
every window degrading the response time to higher priority
asynchronous requests. In order to avoid this type of chained
blocking, the transmission of pending asynchronous messages is
enabled during the transmission of the EC trigger message that
immediately precedes the next asynchronous window (Fig. 7).
This detail ensures that pending asynchronous messages from
different nodes will enter arbitration simultaneously after the EC
trigger message, respecting the messages priorities and avoiding
blocking. Consequently, an asynchronous message may suffer
blocking from another lower priority message once, at most,
when the send command is issued. Then, the message enters
arbitration and there will be no further blocking even if the ar-
bitration process lasts for several asynchronous windows until
the message is effectively transmitted. This aspect is not com-
monly dealt with in other protocols that use shared windows for
event-triggered traffic, such as TT-CAN, in which there may
exist one blocking within each arbitration window.

C. Schedulability of Asynchronous Traffic

The schedulability of the asynchronous traffic in FTT-CAN
has been studied in [16] and further improved in [32]. The anal-
ysis therein presented is based on the determination of worst
case response times. It follows closely the one in [23] for the
original CAN protocol but introduces a few modifications to
allow coping with inserted idle time and exclusions.

The set of real-time asynchronous communication require-
ments is held in a table named ART—Asynchronous Require-
ments Table (8)

(8)
Each entry in this table describes one asynchronous message

stream, which must always be of a sporadic nature, i.e. there is a
minimum interarrival time ( ) that must elapse between con-
secutive messages of the same stream. The parameters,
and are equivalent to those of the synchronous messages (1)
except that this deadline is not an integer multiple of. The pa-
rameter is the message priority, which is directly expressed
as a CAN identifier. stands for the number of real-time
asynchronous message streams.

Notice that there may exist more nonreal-time asynchronous
messages, which, for the sake of flexibility, are not constrained
except by the use of an adequate identifier with lower priority.
These messages will generically be referred to as .

The following analysis does not consider message queuing, at
the sender, neither de-queuing at the receiver. The response time
to a transmission request for message is defined as the time
lapse from the request instant until complete transmission and
it is considered as composed of three parts (9). The parameter

is calleddead intervaland corresponds to the first exclusion
period, between the request and the instant in which the mes-
sage effectively enters arbitration. The parameter, known as
level- busy window, allows accounting for exclusions as well
as for the interference caused by higher priority messages in the
arbitration process until message starts transmission

(9)

An upper bound to the worst case response time for asyn-
chronous message ( is obtained by using upper
bounds for both and (Fig. 8). The first one ( ) can be ob-
tained with expression (10) considering that represents the
transmission time of the longest asynchronous message. Notice
that both the transmission time of and the inserted idle
time last for no longer than

(10)

The upper bound for the level-busy window ( ) is ob-
tained considering that, when message enters arbitration,
it suffers the maximum interference from the synchronous and
all higher priority asynchronous messages. It can be determined
via an iterative process similar to the one in [23] using a cumu-
lative bus demand function of the asynchronous traffic
with higher priority than ( ) (11)

(11)

However, in this case [32], a bus availability function for the
asynchronous traffic is also defined (12) to account for
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Fig. 8. Maximumdead interval(� ) andlevel-i busy window(w ).

Fig. 9. Calculating the level-i busy window.

both inserted idle time, upper bounded by , and exclusion
periods

with (12)

The upper bound for is then obtained as the first instant
in time, counted from the start of the arbitration process (end of
thedead interval), that causes (13)

(13)

This equation can be solved iteratively by using
and (Fig. 9) where stands for
the inverse of . The process stops when (and

) or (deadline cannot be
guaranteed).

An upper bound to the worst case response time for message
( ) can be obtained through expression (9), replacing

by obtained from (13), and by obtained from
(10). Knowing the worst case response time upper bounds for
all asynchronous messages, a straightforward sufficient schedu-

lability condition can be derived (C4), consisting of comparing
these upper bounds with the respective deadlines

ART is schedulable (C4)

VI. I MPACT OF ERRORS INFTT-CAN

In real-world distributed systems, the presence of communi-
cation errors is inevitable. Hence, it is important to understand
how the communication protocol is affected by errors in order to
determine the consequent degradation in the quality of its com-
munication services. In what concerns errors, the CAN protocol
includes a feature known as automatic retransmission. As soon
as an error is detected all nodes transmit error frames in order
to resynchronize. Then, the bus is again available to the trans-
mission of messages and the node that was transmitting when
the error occurred automatically retransmits the same message.
This feature is desirable from the point of view of reliable com-
munication. However, from a timeliness point of view, this fea-
ture is not so interesting because the automatic retransmission
takes place independently of the temporal validity of the respec-
tive message. Furthermore, this feature is also incompatible with
a distributed time-triggered approach (e.g., TT-CAN) since it
may cause an extension of message transmission times beyond
the duration of the respective pre-allocated time slots. Thus,
TT-CAN requires the use ofsingle-shot transmission, a feature
available in most current CAN controllers that corresponds to
disabling the automatic retransmission.

On the other hand, FTT-CAN does not require the disabling
of the automatic retransmission since the protocol limits its
maximum extent to the duration of the window where the
error took place. This is achieved implicitly through the same
mechanism used to enforce temporal isolation between SMS
and AMS, i.e., all transmission activity is suspended at the end
of each window. This characteristic of FTT-CAN leads to a
desirable error confinement within both subsystems, i.e., any
error in SMS does not affect the AMS and vice-versa. Within
each subsystem, extra time can be allocated in order to cope
with the delays caused by errors as forecasted by an appropriate
error model (e.g., [15] and [33]).

Apart from the errors that may occur during the synchronous
and asynchronous windows, the EC trigger message is also sub-
ject to errors. In this case, the protocol defines a window during
which the trigger message can be retransmitted upon error. Since
the whole distributed system is synchronized by the reception of
the trigger message, any delay that affects this message is car-
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ried on to the whole system. When the trigger message is not
successfully transmitted up to the end of that window a backup
master takes control of the bus and tries to transmit it. This re-
dundancy of masters is required in order to cope with possible
master failures. However, the description of the mechanisms
used to assure the necessary synchronization between active and
backup masters is beyond the scope of this paper.

VII. SUMMARY OF PROTOCOLPROPERTIES

Summarizing, the previous sections have shown that the
FTT-CAN protocol includes an ensemble of features that grant
it interesting properties for use in flexible distributed computer
control systems. These are as follows.

Temporal Isolation Between Synchronous and Asynchronous
Traffic:

• implies a global time-triggered model;
• allows exploiting the advantages of time-triggered com-

munication;
• suitable to distributed applications that involve control,

monitoring and management traffic;
• supports error confinement within each type of traffic.

Relative Phase Control for Synchronous Traffic:

• improves traffic schedulability;
• improves jitter control;
• supports composability with respect to the temporal be-

havior.
Centralized Scheduling for Synchronous Traffic:

• high flexibility in terms of scheduling (any policy can be
easily implemented);

• facilitates online admission control (communication re-
quirements are centralized).

Autonomous Communication Control for Synchronous
Traffic:

• high robustness with respect to the temporal behavior (en-
forces specified temporal behavior for the application).

These properties confirm the claims stated in Table I, con-
cerning FTT-CAN. In fact, it should now be clear that, among
the fieldbus systems referred to in the table, FTT-CAN is the
only one that combines the following features: dynamic plan-
ning-based scheduling paradigm, i.e., dynamic communication
requirements with guaranteed timeliness; time- and event-trig-
gered traffic with temporal isolation; and bandwidth-efficient
handling of the event-triggered traffic.

VIII. C ONCLUSION

This paper discussed the advantages and disadvantages
of operational flexibility as well as event and time triggered
paradigms in fieldbus communication systems. A brief compar-
ison among several existing fieldbus systems was carried out
which stressed the absence of systems capable of combining
both paradigms in a flexible and efficient way. This fact led
to the development of a new protocol, FTT-CAN, which
fulfills those requirements. The distinguishing feature of this
protocol is that it supports time-triggered communication in a
flexible way as well as an efficient combination of event and

time-triggered traffic with temporal isolation, maintaining the
desired properties of both types of traffic.

The communication services are delivered by two sub-
systems, the SMS and the AMS that handle time-triggered
and event-triggered communication, respectively. The paper
described these subsystems and showed a temporal analysis
of both, showing their ability to convey real-time traffic of the
respective type.

Finally, a summary of properties has shown that the design
goals for flexibility, timeliness, and efficiency have been
achieved. Moreover, the protocol is light in terms of both
computational and communication overhead. Experimental
setups with nodes based on the simple 80C592 8-b microcon-
troller clocked at 11 MHz have been successfully built, using a
transmission rate of 125 kbit/s.
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