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THE FUGLEDE COMMUTATIVITY THEOREM
MODULO THE HILBERT-SCHMIDT CLASS AND

GENERATING FUNCTIONS FOR MATRIX OPERATORS. I
BY

GARY WEISS1

Abstract. We prove the following statements about bounded linear opera-
tors on a separable, complex Hilbert space: (1) Every normal operator N
that is similar to a Hilbert-Schmidt perturbation of a diagonal operator D is
unitarily equivalent to a Hilbert-Schmidt perturbation of D; (2) For every
normal operator A', diagonal operator D and bounded operator X, the
Hilbert-Schmidt norms (finite or infinite) of NX - XD and N*X - XD*
are equal; (3) If NX - XN and N*X - XN* are Hilbert-Schmidt operators,
then their Hilbert-Schmidt norms are equal; (4) If X is a Hilbert-Schmidt
operator and A is a normal operator so that NX — XN is a trace class
operator, then Trace(NX - XN) = 0; (5) For every normal operator N that
is a Hilbert-Schmidt perturbation of a diagonal operator, and every boun-
ded operator X, the Hilbert-Schmidt norms (finite or infinite) of NX — XN
and N*X — XN* are equal. The main technique employs the use of a new
concept which we call 'generating functions for matrices'.

Let H denote a separable, complex Hilbert space and let L(H) denote the
class of all bounded linear operators acting on H. Let K(H) denote the class
of compact operators in L(H) and let Cp denote the Schatten /7-class
(0 < p < oo) with || • \\p (1 < p < oo) denoting the associatedp-norm. Hence
C2 is the Hilbert-Schmidt class and C, is the trace class.

Consider the following statements:
(1) For every normal operator N and e > 0, there exist a diagonal operator

D and a Hilbert-Schmidt operator Ke with \\Ke\\2 < e for which N st D + Ke
(» denotes unitary equivalence).

(2) For every normal operator N, there exist a diagonal operator D and a
K E C2 for which N = D + K.

(3) For every normal operator A^ and bounded operator X, \\NX — XN\\2
= \\N*X - XN*\U.
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194 GARY WEISS

(4) For every normal operator N and bounded operator X, NX - XN E
C2 implies N*X - XN* E C2.

(5) For every normal operator TV and bounded operator X, if NX — XN E
C2 and TV** - XN* E C2, then \\NX - XN\\2 = \\N*X - XN*\\2.

(6) If N is normal, X E C2, and TV* - XN E C„ then Trace(/VZ - XN)
= 0.

In [11] Weyl proved that every selfadjoint operator is a compact
perturbation of a diagonalizable operator, and that the perturbation may be
chosen with an arbitrarily small operator norm. In [8], von Neumann proved
that the perturbation could be chosen to be in the Hilbert-Schmidt class and
with arbitrarily small Hilbert-Schmidt norm. In [1], I. D. Berg generalized
Weyl's result to normal operators, and proved that if the spectrum of the
normal operator is 'thin enough', then the compact perturbation can also be
chosen to be a Hilbert-Schmidt operator with an arbitrarily small Hilbert-
Schmidt norm. He asked whether or not the von Neumann result generalizes
to all normal operators (that is, statements (1) and (2)). These questions
remain open. He conjectured that the full generalization fails and that he
believes a barrier preventing a normal operator from having the repre-
sentation (1) or (2) is that its absolutely continuous part have a spectrum of
positive 2-dimensional Lebesgue measure. At present, not a single such
normal operator is known which can be represented as in (1) or (2).

The 1970s has seen a flurry of deep results on the perturbation theory of
operators and the theory of commutators. Besides Berg's paper [1], some of
the well-known papers relating perturbation theory to commutators are
Berger and Shaw [2], Brown, Douglas and Fillmore [3], Carey and Pincus [4],
and Helton and Howe [7].

The connection between (3)-(6) and the Berg problem (2) is clear from the
next remarks.

The following implications hold true.

^(6)

Their proofs are elementary and fairly well known so we omit them (see [10]
or [9, pp. 154-162]).

We shall prove that (5) and (6) are true ((6) settles a question in the
negative in [9, p. 162]), and we shall obtain as corollaries that (3)<-»(4) and
(2) —» (3). We shall also obtain related results. The above diagram is made
current in the summary at the end of this paper.

Definition. A Laurent operator is an operator of the form M^ acting on
L2(T), where <|>(z) E Lœ(T) and Tdenotes the unit circle.
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THE FUGLEDE COMMUTATIVTTY THEOREM 195

Definition. If TV is a normal operator and <J>(z) G L°°(r), then Mf is
called a Laurent part of TV provided M^ has no eigenvectors and there exists a
diagonal operator D such that TV = M^ © D.

Lemma 1. Every normal operator is the direct sum of a diagonalizable
operator and a Laurent part.

Proof. Let TV be any normal operator and let 91L denote the closed linear
span of the set of its eigenvectors. Then 9ÎL reduces TV and TV^ = D is a
diagonal operator with the same set of eigenvectors as TV. Let TV, = TV^x.
Then TV = D © TV, and TV, has no eigenvectors. Using the spectral theorem,
we obtain TV, s M^ acting on L2(/i), with \p E L°°(n), where ju acts on a
finite measure space (this may be accomplished since H is separable).
Because TV, has no eigenvectors, it is clear that the underlying measure space
can have no atoms. However, it is well known [6] that every finite nonatomic
probability measure space can be realized as 1-dimensional Lebesgue measure
on [0, 1] or equivalently, on the unit circle T. In other words, without loss of
generality, we can insure that TV, s M^ acting on L2(T), with <¡> E L°°(T).
Let Dl denote D under this unitary transformation. Then TV ss £), © Af
Q.E.D.

This lemma provides us with a crucial canonical form for the commutator
TV* - XN. Letting X be any operator in L(H), relative to H = <9H © <Dt±,
we obtain

A computation then shows that

DXX - X{D       DX2 - X2Mç
(<,X3-X3D    M^XA-X,M^nx-xn = \m^-x,d   m.x.-xm} O

and

D*Xl - XXD*    D*X2 - *2m;
\m}X,-X,D-     HiX.-X¿\- <">M.V

\NX - XN\\l - \\DX, - X,D\\l + \\DX2 - X2MJ>

Clearly then

-XN\\l=\\DXl-XlD\\22 +

+ \\M„X3 - X3D\\22 + ||M^4 - *4MJ2; (I')
and

||TV** - *TV*||2 = \\D*XX - X2D*\\\ + \\D*X2 - X2M*\\22

+ \\M*X3 - X3D*\\\ + \\M;X4 - X4M*\\22.     (IF)
The following theorem relates (I'), (IF) and (I) to statements (3)-(6).
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196 GARY WEISS

Theorem 2. (a) For every diagonalizable operator D, and X E L(H),
\\DX - XD\\2 = \\D*X - XD*\\2.

(b) For every normal operator TV, diagonalizable operator D, and X E L{H),
\\DX - XN\\2 = \\D*X - XN*\\2and \\XD - TV*||2 = \\XD* - N*X\\2.

(c) To prove any of the statements (l)-(6), it is necessary and sufficient to
prove the corresponding statement for the special case when TV = M^, where
<í>(z) E Lx{T)andH = L2(T).

Proof. A simple computation proves part (a). It may also be found in [9, p.
147] or [10]. To prove part (c), consider separately each of the statements
(l)-(6). To obtain (l)-(2), use the Laurent decomposition for a normal
operator. To obtain (3)-(5) consider (I') and (IF) and to obtain (6) consider
(I). The proof of part (b) is not so easy. We give the proof next. First of all, it
clearly suffices to prove the first equality, since the second equality follows
from the first one by using adjoints.

In the basis which diagonalizes D, let <*/„>"„, denote the diagonal entries
of D, and let TV = (ify) be the matrix for TV and X = (x,-,) be the matrix for X.
Then

and

\\DX

\\D*X

XNf2=  £
tJ-\

14*., 2
k

Xiknkj\

XN*\\22=  2 d¡Xy 2 *lfc»,
k

where n^ =njk are the matrix entries of TV*. To show that these quantities are
equal, it suffices to show that for every fixed i, we can obtain

2y=i djXjj     ¿j xjknkjd¡Xij       2j  xiknkj    ~   2j
k j=\

To prove this, let x(i) = (xn, xi2, xi3, . . .) denote the ith row vector of
(^•)r=.-Let

'xnxi2 '" W /dJ      °N
0   0

andTV('') =
0

A-W =
0 0 \0 N/

Then straightforward computations show that 2°iiKx(/ — ̂ kx¡knkj\2 equals
the square of the /2-norm of the row vector d¡x(í) — x(,)TV, and this equals the
square_ of the Hilbert-Schmidt norm of N(i)X(i) - X{I>N{I). Similarly,
Sylil^ - 2kxikn*\2 = \\NmX® - X®Nm\\l In this case, however, X®
is a rank 1 matrix with its only nonzero row equal to x(,) E I2 (since
X E L(H)). Therefore *<0 E C2. Also TV(,) is clearly normal. In [9, p. 147,
Theorem 8e] and in [10] we showed that under these circumstances, we have
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THE FUGLEDE COMMUTATIVITY THEOREM 197

\\NU)XU) - X{0NU)\\2 = IITV0'***0 - *(/)TV(/)*||2.
Briefly, this is true since TV w is a normal operator and therefore it must be the
uniform limit of diagonalizable operators. The latter equality is true replacing
TVW by a diagonalizable operator, by part (a) of this theorem. Then we can
take the /2-norm limit of these replacement commutators due to the fact that
if A„ -* A uniformly and Y E C2 then An Y -* A Y and YA„ -> Y A in the
Hilbert-Schmidt norm. This proves that the necessary sums are equal, and
thus proves the theorem.    Q.E.D.

Before developing the main technique, we are able to obtain a corollary to
Theorem 2 that bears directly on the problem of I. D. Berg (statement (2)).
Recall that s denotes unitary equivalance and ~ denotes similarity. Berg's
problem asks if for every normal operator TV, there exists a diagonalizable
operator £>, and K E C2 such that TV s D + K. The next corollary shows
that Berg's problem is equivalent to the corresponding problem relative to
similarity.

Corollary 3. If TV is a normal operator and D is a diagonalizable operator,
then N sé D + K for some K E C2 if and only if TV — D + Kx for some
Kx E C2.

Proof. One implication is trivial. For the other implication, assume TV — D
+ Kx, with Kx E C2. Then there exists an invertible operator S so that
TV = S*-\D + KX)S*, equivalents

DS* - S*N E C2. (f)
Applying Theorem 2(b), we obtain D*S* — S*N* E C2, or equivalently

TVS - SD E C2. (ft)
By (t)> we obtain

DS*S - S*NS = D|S|2 - S*NS E C2. (ttf)
Applying (ft) to this, we get D\S\2 - S*SD = D\S\2 - \S\2D E C2.

We claim D\S\2 - \S\2D E C2 implies D\S\ - \S\D £ C2, assuming S is
invertible. (The proof of this fact works even if D is an arbitrary operator in
L{H).) Apply the Weyl-von Neumann Theorem [8] to the positive operator
\S\ to obtain \S\ s D{\) + Ke, where 0 < \ < \\S\\ and ö(\,) denotes the
diagonal matrix with the nonnegative diagonal sequence (\„)™=x, and Ke E
C2 with ||a:e||2 < e (e remains to be chosen). Hence |5|2 » D(\2) + K',
where K' E C2. Because S is invertible, \S\ is invertible, and so, bounded
below. Choose e > 0 so that \S\ is bounded below by 2e. Then since
\S\ s D{\) + Kc, we obtain D(X„) a \S\ - /Ç with ||A;'||C2 < e and

A, = || \S\e„ - K;en\\H > || |S|e„||„ - \\K¡e*\\B
>2e- \\K;\\LiH) >2e - \\K¿\\2 > e.

Let D = (Dy) denote the matrix for D with respect to that basis which
diagonalizes   Z)(AJ.   Then   D\S\2 - \S\2D = DD(Á¿) - D(X2)D + DK' -
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198 GARY WEISS

K'D, and so D\S\2 - \S\2D E C2 and Ä" E C2 imply DD(X2) - D(X2)D E
C2. Therefore,

00

oo > \\DD(X2) - D(\l)D\\l =  2    l(V - A/)D,|2
'V=i

00 00

-2   (X,+A,)2|(A,-A/)Ö,|2> S   (26)2|(X,-Xy)Z>i/|2
«'</'■■ l 'V=1

= 4£2||/>Z)(A„)-Z>(An)Z)||2,

Therefore D\S\ - \S\D - (£>*/ - K^D) = DD(\,) - D(X„)D E C2. Since
AT/ E C2, we get D\S\ - \S\D E C2, which proves the claim.

Let S = í/|5| be the polar decomposition for S. The invertibility of S
guarantees that \S\ is invertible and U is unitary. Substituting this in (f) we
obtain D\S\U* - \S\U*N E C2. But we now also have that D\S\ - \S\D E
C2. Therefore \S\DU* - \S\U*N E C2. Multiplying by |S|_1, we obtain
DU* - U*N E C2 or equivalently, TV - [/£>{/* E C2, with t/ a unitary
operator.   Q.E.D.

The main construction. In this construction, we use the notation that was
introduced earlier.

By virtue of Theorem 2(c) we devote our attention to M^X — XM^, where
<t> E LX{T) and X E L(L2(T)). In addition, if NX - XN is a trace class
operator and X E C2, then from the matrix computation I, it is easy to see
that (for TV = D © M^) M^X^ — X4M^ must be a trace class operator with
X4 = P^XP^ E C2, and Trace(TV* - XN) = Trace^A^ - X4M¿
(since Trace(Z)X, -*,£>) = 0).

What is the matrix for M^? Let <f>(z) = 2^=_00<i)„z" denote the Fourier
series for <j>. Then (A^)lV- = (A^z7, z') = /r ^>(z)z^-' = ^_,.. The A:th
diagonal (k = 0, ± 1, ± 2, . . . ) in this 2-way infinite matrix is described by
the set of all entries (i,j) for which y — / = k. In other words, the matrix for
Mq is a Laurent matrix. Its entries are constant on the diagonals, and those
constants are the Fourier coefficients of 4>.

Let us now introduce generating functions for matrix operators. They are
related to Schwartz kernels in distribution theory.

Definition. Let X = (xv) E L(L2(T)). The generating function for X is
defined as the formal Fourier series given by F(z, w) = "2°°i=_xXjjZ'wJ.

It is well known in the theory of distribution that since \x¡j\ < 11*11, the
uniform boundedness of x0 allows us to view F as a distribution on C°°(T),
where T2 denotes the torus. In particular, <F, z'm^) = x¡,. It is also well-
known that if 0(z) E C°°(T), then <£(z)F(z, w) (the formal power series
product) is also a distribution on C°°(T2). We need to extend this definition
to include all functions <|>(z) or <¡>(w) in the larger class L°°(T). By way of
motivation, suppose F could be thought of as a function. For example,
suppose F E L\T2) (equivalently * E C2). Then formal computations hold

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FUGLEDE COMMTJTATIVITY THEOREM 199

true and yield

<t>(z)F(z, w) = (| ^|2¥V)

= 2 ( 2   &%*"**W-2 Í2 **-*W
and, similarly, <j>(w)F(z, w) = 2/t,-(2„^„*/i/_„)z'w/'. Since <<£„> and the
columns of (x¡j) are sequences in /2 (whether or not * E C2), the expression
2„</>„x,v_„ is a well-defined absolutely convergent series. In other words, the
following operation is well defined.

Definition. Let «f>, $ E L°°(T) where «2) = 2„</>„z" and t|/(z) = 1n^nzn,
and let * E L(L2(T)) so that F(z, w) = S^x^V is the generating function
for *. Define the binary operation * as follows

[<Kz) + <Kw)] * f(z, w) -2 (Sfa,*.--,,,- + *„**-„)W-
V  v « '

It is helpful to recognize that * simply denotes the formal product of these
power series and that this same symbol is used to denote formal products in
some computer languages.

Also the reader should take care not to confuse this symbol with the
symbol for operator adjoints.

Note. It is clear that (<f>(z) + \¡/(w)) * F = <í>(z) * F + \¡,(w) * F, where the
sums in this equation are well-defined formal sums.

Let us now compute the generating function for M^X — XM^.

(M*X)iJ - ((t-.)(*!/)), , " 2   4>k-iXkj = 2   *nxi + nj     and
k "

(.XM4>)iJ = 2  xik<t>j~k = 2  4>n*iJ-n-
k "

Also, M* = M+„ where <|>*(z) = 2„^_„z", and (Af*)/V = $,_,.. This gives us
the following information about M*X - XM*.

(Mtx)tj = ((*-,)(**)).. = S *•-***, = 2 ^*,-„,   and

k

So

(A/,* - *AfJ    = 2 *„(*,+„., - **,/-„)   and
n

(M*X - XMt)¡r 2 Uxi-nJ - xiJ + n)-
n

Now regard F(z, w) = SxyzW as a distribution on CX(T2). Then a
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200 GARY WEISS

computation shows

xt+nj = (z"F, *V>,       xtJ,„ = <w"F, z V>,

x,_nJ = <z"F, z V>,       x,v+„ = <w"F, zW).

An additional computation shows

(M+X - XM+)   - 2 *„<(*" - w")F, iV) = <(</>(*) - <¡>(»0) * F, z V>,

and

(A/** - XM* )   - 2 *„<(¿" - *")£ ïV) = <(*(*)-#*)) * F, z W>.

This says that í/¡e generating function for M^X — XM^ is (<i>(z) -
(¡>(w)) * F(z, w) and the generating function for A/*,* — XM* is
(<í>(z) - <j>(w)) * F{z, w). (Note, the equalities above are best proven by
computing the last expressions first, in terms of <¡>„ and Xy.)

This completes the construction of the generating function for the
commutators. We now apply them in two settings, namely with regard to
statements (5) and (6). First we prove statement (5).

Fuglede's theorem modulo C2.

Theorem 4. // TV is normal, X 6 L(H), and NX - XN E C2 and N*X -
XN* E C2, then \\NX - XN\\2 = ||TV** - *TV*||2

Proof. By Theorem 2(c) it suffices to prove Theorem 4 when TV = M^
acting on L2(T), with </> E L°°(T), and such that M^ has no eigenvalues. By
the main construction, the assumption on M^ and * is equivalent to the
assumptions that (<i>(z) — <KW)) * F(z, w) E L2{T2) and
(<í>(z) - $(w)) * F(z, w) E L2(T2). Of course, here we are treating those
formal Fourier series in z, w which have square summable coefficients as
functions in L2{T2). Therefore the entries of M^X — XM^ are the
coefficients of (<¡>(z) — <¡>(w)) * F(z, w), and by Bessel's equality, satisfy

\\M+X - XM^W2 = 2 \{M^X - XM^)Jij

= ffT2\(<Kï)-4>M)*F(z>»)\2-

Similarly,

\\M*X - XM*\\2 = Jf^ | (<¡>(¿) - 4>(w)) * F{z, w)\2.
Now the assumption that M^ has no eigenvectors is needed. It guarantees

that <#>(z) ^ <j>(w) almost everywhere with respect to 2-dimensional Lebesgue
measure on T2. To see this, let E = {(z, w) E T2: $(z) = <i>(w)}. If, on the
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THE FUGLEDE COMMUTATIVITY THEOREM 201

contrary, m X m(E) =£ 0, then ¡Ti Xe(z> w) ^ 0- Fubini's Theorem
guarantees that there exists w0 E T such that 0 =£ ÍXe(z> wo) = m^w0 — m{z
E T: (z, w0) E E). But then x^ (z) is an eigenvector for M^ since M+Xe, =
<¡>(z)xew (z) = <Kwo)Xe„ > which is a contradiction. Therefore we know that
<b(z~) — <¡>(w) ¥= 0 almost everywhere in T2, and thus
(<í>(z) - <p(w))/(<j>(z) — <b(w)) is a measurable function in T2 with modulus 1
almost everywhere in T2.

Using this function we obtain

(•^/.LjW2")-«»))•'(*• «if

'ffr.
-ff,

<¡>(¿) - <¡,(w)

<f>(z) - <í»(w)

1

((<t>(z-)-<t>(w))*F(z,w))

(<t>(F) - <>(w)) ((</>(z~) - <*>(")) * F(z, w))
<¡>(¿) - <¡>(w)

In addition, for every normal operator TV, the derivations 5^ and SN.
commute (the proof is simple algebra). Hence, M*{M^X — XM^) — (M^X
- XMJM* = M+(M*X - XM*) - (M*X - XM*)Mf. The generating
function for the left-hand side of this equality is given by
(4>(z) — <t>(w)) * ((«j>(z) — <¡>(w)) * F(z, w)), which is the same formal Fourier
series as (<P(z) — <p(w))((<b(z) — <j>(w)) * F(z, w)) because of the assumption
that (<¡>(z) - (j>(w)) * F(z, w) is a function in L2(T2). Similarly, the generating
function for the right-hand side of the equality is given by

($(!) - <f>(w)) * ( ($(!) - <¡>(w)) * F(z, w))

= (<¡>(I) - 4>(w))( (Ht) - <t>M) * F{z, w)).
This last equality follows from the assumption that (<t>(z) - <i>(w)) * F(z, w)
is also a function in L2(T2). Hence (<j>(z) - <fr(w))((<ft(z) - <b(w)) * F(z, w)) is
a power series identical to (<i>(z) - <¡>(w))((<j>(z) - <b(w)) * F(z, w)). Thus

o-/ 1
*(I) - <t>(w)

(<i,(f) - <i»(w))( (<i»(f) - <t>(w)) * F(z, w))

= fT2\(<t>(z-) - <b(w)) *F(z,w)\2.

Q.E.D.
statement (3). Also statement (3) *-» statement

:nce HM,* - *MJ|2 = ||M** - XM*\\22.

Corollary 5. Statement (2)
(4).

Proof. (2) -» (3): Since (2) -+ (4), then TV* - *TV C2 implies TV**
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202 GARY WEISS

*TV* E C2. Therefore, in the case TV* - *TV E C2, we have TV** - XN* E
C2 and Theorem 4 applies to give \\NX - XN\\2 = ||TV** - */V*||2. In the
case TV* - *TV £ C2, assuming statement (2) gives TV** - *TV* £ C2,
hence ||TV* - *TV||2 = oo = ||TV** - *TV*||2.

(3)«-» (4): It clearly suffices to prove (4)->(3). If TV is normal and * E
L(H) so that TV* — *TV E C2, then assuming statement (4) gives TV** —
*TV* E C2 and Theorem 4 gives equality of their Hilbert-Schmidt norms.
Q.E.D.

Remark. It is hoped that distribution theory techniques might be used to
show that if (<K¿) - <Kw)) * F(z, w) E L\T2), then (</>(z) - </>(w)) * F{z, w)
may be viewed in some way as a function. This could lead to proofs of
statements (3) and (4).

We next prove statement (6).

The trace of TV* — *TV. Here we assume TV is a normal operator and X is a
Hilbert-Schmidt operator for which TV* — *TV is a trace class operator. We
shall prove that trace(TV* - *TV) = 0. Applying Theorem 2(c) we see that to
prove statement (6), it suffices to prove it for the special case when TV =
Mç (<f> E L°°(T)) acting on H = L2{T). To reiterate, this is because TV* -
*TV E C, implies M^X4 - X4M^ E C, and trace(TV* - *TV) = trace^*,
— *4Af(j)), where M^ is a Laurent part of TV from Lemma 1 and *4 is as
described earlier in equation (I), with *4 £ C2 when * E C2.

If * E C2, the generating function for *, namely F(z, w), is contained in
L2(T2). Therefore the generating function for M^X — *A/(j> is (<p{z) —
<b(w)) * F(z, w) = (<#>(z) — <p(w))F(z, w) (the ordinary product of functions in
LX(T2) and L\T2), respectively).

We   have   M^X - XM^ = K = (Kg) E C,.   This   implies   (<K¿) -
4>(w))F(z, w) = K(z, w) almost everywhere in T2, where K(z, w) denotes the
generating function for * (since * £ C, c C2, we see that K(z, w) E L2{T2)
and so it is indeed a function having the same Fourier coefficients as
(<X^) — <i>(w))F(z, w)). Then, as before, <f>(z) — <^w) ^ 0 almost everywhere
in T2, and for almost all (z, w) E T2,

K(z, w)
F(z,w) =-'— £L2(T2).

V       ^      tfz) - t(w) K     >
Our program is as follows. We shall assume trace * =£ 0. This will imply

certain facts about K(z, w), whose form we shall have to choose carefully to
be able to relate it to the trace condition on K. We shall then apply a function
theoretic result (which we shall give next) to conclude that * (z, w)/(<f>(I) —
<j>(w)) £ L\T2) in order to obtain a contradiction.

Theorem 6. If<Kx) e L°°[0, 1] then

io,i]x[o,i] |</>(x) - <t>(y)\2
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Note. The author first found a proof in the real case (by applying the
Weyl-von Neumann Theorem to generating functions). Then Hugh Mont-
gomery gave a somewhat involved proof of the theorem for <j> complex-
valued. Then Larry Brown suggested an easy and direct proof when <f> is
real-valued. Finally, the author found a relatively easy proof for the general
complex case.

Proof. By way of motivation, and to illustrate a connection between the
real phenomenon and the planar phenomenon, we present Larry Brown's
proof for the case when <¡> is real-valued. By replacing <|> by a<¡> + b (for some
real numbers a, b), we may assume range <j> c [0, 1). Fix a positive integer n.
Let Ek - {x S [0, 1]: (k - \)/n < <&x) < k/n), for 1 < k < n. Then U Ek
= [0, 1) (the symbol U denotes a disjoint union) and so *Z"k¡mXmEk = 1.
Holder's inequality yields 1 = (2nk=xmEk)2 < ?Tk_x(mEkf ■ 2*_,1, that is
S^.^w^)2 > \/n. Also if (x,y) £ Ek X Ek, then |<M» - <K>0| < !/«•
Hence

[f-—dxdy>[(-Tzdxdy
•Mo,i]x[o,n |<K*) - «Ky)\ JJUEtxEk |<>(x) - <í>( v)|2

= ¿    (Í -!-¿dxdy>ït    tí —^—rdxdy
*t\ JhkxEk  \<¡>(x) - <¡>(y)\2 *-i J->EkxEk  (l/n)2

= n22   (mEk)2>n2± = n.
k=l "

Since n is arbitrary, we have that

J Jin dx dy = oo.
'[o,ilx[o,il  |$(x) - «X^)!2

The case when <j> is complex-valued is somewhat involved. By replacing <¡>
by a<¡> + b (for some complex numbers a, b), we may assume range c [0, 1)
x [0, 1) (where Q denotes [0, 1) x [0, 1) viewed as imbedded in C). Let
Qt= [(' - l)/2"> '72") x [0' - l)/2",y/2") for 1 < i,j < 2". Define F>>
= </>_l(Ö!/n))- Hence, for each n, Q = \a,jQ¡tt) and [0, 1) = U,^". There-
fore S,i/w£j") = 1 for each n. In addition, for each n, {Q¡jn)} is a partition of
Ö, and the collection of these partitions is a nested sequence. Therefore for
each n, {E^n)} is a partition of [0, 1) and also the collection of these partitions
is a nested sequence.

The following identities are easily verified: D„ U ijiQa"* x Q!f) =
{(z, w) £ C X C: z = w}. Also, and following from this, n„ U ijVtyH) X
^n)) = {(x,y) £ [0, 1] X [0, 1]: tfx) = <K>0} (call this set F).

If F has positive measure, then clearly

I I -r dx dy > \ \- dx dy = oo.
•Mo,l]x[0,l]    \<b(x) - </>(v)|2 •'•V   |<#>(X) - <|>(.y)|2

Hence, we may assume m X m(F) = 0.
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As before, Holder's inequality yields a useful fact, namely that

.    teumEP)2      ,
2(^">)2>V       l-*-ij ^1<(V<2"1 ^

Note also that (x, y) E E¡jn) X E¡jn) implies <¡>(x), <¡>(y) E Q¡¡"\ and so |<f>(x)
</>(>»)| < diameter Q¡jn) = V2 /2". If we now assume to the contrary that

I I- dx dy < oo,
■Mo, i]x[o, i]   |<í>(jc) - <}>(y)\2

and if for convenience we set F(n) = U «¿s^ X Fjfl), then we have

oo > ff-ï <*e^
•Mo,i]x[o,i]   \4>(x) - <p(y)\2

>ff-z dxdy
•>V>   \<S,{x) - ${y)\2

=     2       ff -"-;dxdy
1 < U < 2"  J JEi,"> - eí"   |<í>(x) - ^( V) |2

> 2   f f —5— ¿* *
W-i JJ*P*4fi (V2/2")

4"     V   /      p(«)\2^  4"        1 1= T 2(^4n))>y^ = 2-

That is

ff XEin)(X'y)      dxdy=ff      _!_ dxdy>X-
■> Ao, i]x[o, i]   |<f>(x) - ci>(.y)|2 •'•'£(-)  |4»(jc) - <t>(y)\2dx 2

for every n. On the other hand,

Xe(")(*,J')      <-!- £L'([0, 1] Xf0, 11)

and

Xe<">(*»>0 Xf(*>>0
W*) - <H>0I2 ~* !</»(*) - *O0l2 "

almost everywhere in [0, 1] X [0, 1] (since m X m{F) = 0). Therefore, by the
Lebesgue dominating convergence theorem,

r XE<">(x>y)     ,   ,    .
I- ox dy —» 0,    as « —» oo,

•% i)x[o,i)   \<b(x) - <b(y)\2

and this is a contradiction, as we showed that these integrals are all bounded
below by 1/2.   Q.E.D.
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Remark. If we view <p as <i>: [0, 1] -» R" (n = 1 in the real case, and n = 2
in the complex case), then Hugh Montgomery has shown that if <j> E
Lj£(0, 1), then it is possible to have, for n > 3,

1
// dx dy < oo.

II<K*) - «KjOIIr-
Also, it is interesting to note that if we replace the power 2 by the power p

in the integral of the theorem, then Larry Brown's proof for the real case
works for al\p > 1, but the proof for the complex case works only forp > 2.
In addition, by modifying slightly the proof of the complex case, we obtain
the real case for/? = 1.

Corollary 7. If E is any measurable subset of[0, 1] of positive measure and
|<í>| is essentially bounded on E, then

1
//, exe \<¡>(x) - <Ky)\2

dx dy = oo.

Proof. Use the proof of Theorem 6 and in it, replace the domain [0, 1] of $
byF.

Theorem 8. If TV is a normal operator, X E C2 and NX - XN E C,, then
trace(TV* - *TV) = 0.

Proof. Set TV* - *TV = K E C,. Then K has a Schmidt expansion [5].
That is, there exist orthonormal sequences {/„}, {gn) in H and a nonnegative,
real-valued sequence <a„> E /} such that * = 2a„(/„ <8> g„), where the series
converges in the trace norm and /„ <8> g„ denotes the rank one operator
h -* (h, gn)f„. Note that the matrix of /„ ® g„ is (f„(i)ljj)) if </„(0>,°°=i and
(,8„(')}r=\ denote the sequences for/„ andg„ respectively.

The Schmidt expansion provides us with a useful form for the generating
function for *. Since the Schmidt expansion converges in the trace norm to
*, it must also converge in the Hilbert-Schmidt norm. Therefore the generat-
ing function for 2™_iiin(/n ® g„) converges to K(z, w) in L2{T2), as m -> oo.

The generating function for/„ ® gn, the matrix with entries (/„(/)g„(j)), is
VJMJtJÜ)*^ = (S^iOz'X^iXÖ h>>). Define /„(z) = S/»' and
g„(w) = '2jgn{j)wj. Hence the generating function for/„ ® gn is f„(z)g„(w)
and {/„(z)} and {g„(z)} are orthonormal sequences inL2(F). Clearly then
the generating function for ll^=xajn ® gn is ?.™=xaJ„(z)g„(w). Also it is
clear that ^=xaJn(z)gn(w) converges to 2naJn{z)g„(w), in L2(T2). There-
fore, the generating function for * can be written as K(z, w) =
2aJ„(z)gn(w). That is, the Fourier coefficients of 1aJn(z)gn{w) in L\T2)
are the matrix entries of *.

To see the connection between trace * and K(z, w), recall that 2™= \d„Un
<8> g„) —> * in the trace norm as m -» oo, and hence
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trace * = Jim   trace  2  an(fn ® g„)
n=l

= Jim    2  an trace(/„ ® g„).
n=l

Using the fact that the matrix for/„ ® g„ is (/„(/)g„(j)), a simple calculation
using Lebesgue integration on T shows that

trace(/„ <S> g„) = f /„ (¿) g„(z) dm.
•It

Therefore

Also

trace * = lim    Í
m—»oo   ./j. 2 <U,00&,(¿)

n = \
dm.

2   <y/„00&,(f)llz.'(r) <2 aJI/JI^(r)llg„ll^(n

= 2  an < 00
by Holder's inequality, and so 2naJn(z)gn{z) converges in L\T). Therefore
trace * = JY[2na„/„(z)g,,(z)] dm. In other words,

trace K = Í K(z, z) dm.
Jt

If we now assume trace * = fTK(z,z)dm=£0, we can conclude that
jT\K(z, z)\ dm > \fT K(z, z) dm\ > 0. From elementary measure theory, it
follows that there exist e > 0 and a measurable set A c T of strictly positive
Lebesgue measure such that \K{z, z)\ > e on A.

Our next objective is show that there exists a measurable set F c T of
strictly positive Lebesgue measure such that \K(z, w)\ > e/4 on F X F. The
proof of this requires several steps, including the use of Egoroffs theorem,
Lusin's theorem and convergence in measure.

Define *m(z, w) = Zmn=xaJn(z)gn{w), Fm{z) = 2?=m+,a„|/„(z)|2, and
Gm(z) = 2?=m+1a„|g„(z)|2 (recall that (a„) E ll+). Clearly then

\K{I,w)-Km(z,w)\ = 2     aj„(z)gn(w)

oo

< 2     an\fn(z-)\\gn(w)\
n = m+ 1

< 2     a„[\fn(¿)\2 + \g„(w)\2]
n = m+ 1

= Fm{z) + Gn(w).
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Now Fm, Gm > 0 and \Fm{z)dm = 2~+,fl„ = }Gm(w)dm^0 as m -* oo,
since/„(z-), g„(w) E (F2(F)), and <a„> E /|. Therefore Fm(z), Gm(w)^0 in
measure. Therefore there exists some subsequence mk such that F^(z)-»0
almost everywhere in T. Clearly Fm{z) > Fm+X(z) > 0 for all m and all
z E T. The two facts imply that Fm{z) ->0 almost everywhere in 7\ Likewise
^miw) ~*0 almost everywhere in T. If we now apply Egoroffs theorem, we
obtain a measurable set F, and a positive integer m, where m(F \ F,) <
mA/4 and Fm(z) < e/16 for every m > m, and z E F,. Similarly we obtain
a measurable set F2 and a positive integer m2 where m(T\ E^ < mA/4 and
Gm(w) < e/16 for every m > m2 and w E F2. Let m0 = max(m,, m^ and
F0 = F, n F2. Then m{T \ F0) < m{T \ F,) + m(F \ F^ < m/1/2 and
Fm(z) + Gm(w) < e/8 on F0 X F0 for every m > m0. Hence |AT(z, w) -
Km(z, w)\ < Fm(z) + Gm{w) < e/8 on F0 X F0 for every m > m0. In
particular, |AT(z, w) - Kmo(z, w)\ < e/8 on F0 X F0.

We next apply Lusin's theorem to obtain information about AT (z, w). The
functions /,(*), . . . ,/mo(i), g,(w), . . . , gmo(w) E L2(F). If we apply Lusin's
theorem to each one of these functions we see that for each such function,
there is a set in T on which the function is continuous and whose complement
has arbitrarily small measure. Hence we can insure the existence of a
measurable set B c T on which/,(z), . . . ,fm (z) are continuous for all z £ B
and gx(w), . . . ,gm (w) are continuous for all w E B and furthermore m(T\
B) < mA/2. Therefore 2™L,aft/„(z)g„(w) = ATmo(z, w) is continuous on F X
B.

Now we have m(T \ (F0 n B)) < m(T \ E0) + m(T \ B) < mA/2 +
mA/2 = mA. From this it follows that m{A n F0 n B) > 0. From
elementary measure theory we can obtain a closed set F c ^4 n F0 n F of
strictly positive measure. Hence |AT(z, w) — Km{J, w)\ < e/8 on F X F,
ATmo(z, w) is continuous on F X F, and |AT(z, z)| > e on F, with F closed and
mF > 0. Therefore for every z E F, lA^z, z)\ > \K(z, z)\ - e/8 > e - e/8
= 7e/8. That is, \Km¡¡(z~, z)\ > e/2 on F. °

We now employ the continuity of ATmo(z, w) on F X F. For every z0 E F,
|ATmo(z0, z0)| > e/2 and the continuity of ATmo(z, w) on F X F implies that
there exists an open interval TV(z0) containing z0 such that |ATm(z, w) —
A"mo(*o> ¿o)! < «/8 on [TV(z0) n F] X [TV(z0) n F]. The collection (TV(z): z
£ F} forms an open cover of F. Since F is closed and contained in T, it is
compact. Therefore, we can extract a finite subcover TV(z,), . . . , N(zk). But
mF = w(UÍ_,(TV(z„) n F)) < 2*_,/w(TV(z„) n F). Since mF > 0, there is
some n0 such that m(N{zn) n F) > 0. Set F = N(z„) n F

We claim that F accomplishes our objective, namely that |A"(z, w)\ > e/4
on F X F and mE > 0. To see this we apply the last remarks. Since F c F,
we have that |AT(z, w) - ATmo(z, w)\ < e/8 on F X F. Also, |ATmo(z, w) -
ATmo(zno, zno)| < e/8   on  E X E,   by   the  construction  of  TV(zno)   and   F.
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Furthermore, since zn<¡ £ F c F, we have that |ATmo(z„o, zn)\ > e/2. The last
three   inequalities   imply   that   for   every   (z, w) E F X F,   |AT(z, w)| >
|A-mo(z-, w)| - e/8 > \Kmo(z-„o, zj - e/8 - e/8 > e/2 - e/8 - e/8 = e/4.
That is, we have |AT(z, w)\ > e/4 on F X F and mE > 0.

The rest of the proof is straightforward. By Theorem 2c, it suffices to prove
Theorem 8 for the case TV = M^ (<i> E L°°(T)) where M^ has no eigenvectors,
and * is any Hilbert-Schmidt operator contained in L(L2(T)). Suppose
M^X - XMç = K E C,. Let F(z, w) denote the generating function for *
and let AT(z, w) denote the special generating function of AT, namely
lLaJn(z)gn{w) considered earlier in this proof. Then by earlier remarks, the
generating function for M^X — *Af<¡), which is (<i>(z) — <j>(w))F(z, w), is the
same as the generating function for K, which is A^z, w). That is, (<#>(z) —
$(w))F(z, w) = K(z, w) almost everywhere in T2. Also we have seen that
since Mq has no eigenvectors, <f>(z) — </>(w) ̂ 0 almost everywhere in T2.
Hence F(z, w) = AT(z, w)/(<#»(z) - <|>(w)) E L\T2). Substituting z for z, we
obtain K(z, w)/(<¡>(z) - </>(w)) E L\T2).

We now prove Theorem 8 by contradiction. If we assume to the contrary
that trace * j= 0, we can apply the previous result that there exists a
measurable set F with mE > 0 and e > 0 such that |A"(z, w)\ > e on F X F.
Finally, if we identify T with [0, 1] in the usual way, then we can apply
Corollary 7 to obtain

|A-(z-,w)|2
00  >

"   /T2

K(z>w)
J JT2    ó(z) — <b(w)        J ifEXE    \$(Z) - 4>(W)\2

>e2f( -—-r = oo,
J Jexe  |cf>(z) - <i>(>v)|2

which is a contradiction.   Q.E.D.
Addendum. The author has recently proved that statement (3) (equiva-

lent^ (4)) is true. That is, the Fuglede Commutativity Theorem Modulo the
Hilbert-Schmidt class holds true. In fact, for every normal operator TV and
* E L(H), || TV* - *TV||2 = ||TV** - *TV*||2.

In summary, statements (3)-(6) are true. In this paper, the following
implications were proven to hold true.

(l)t^       Î
^(2)

~   (6)
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