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Abstract Fe-based superconductors (FeSC) exhibit all the properties of systems that
allow the formation of a superconducting phase with oscillating order parameter,
called the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase. By the analysis of the
Cooper pair susceptibility in two-band FeSC, such systems are shown to support the
existence of a FFLO phase, regardless of the exhibited order parameter symmetry. We
also show the state with nonzero Cooper pair momentum, in superconducting FeSC
with ∼ cos(kx) · cos(ky) symmetry, to be the ground state of the system in a certain
parameter range.

Keywords FFLO · Pnictides

1 Introduction

At low temperatures the orbital pair breaking effects are smaller in magnitude than
the Pauli paramagnetic effect, so that superconductivity survives up to the Pauli
limit—a phase with oscillating order parameter (called the Fulde–Ferrell–Larkin–
Ovchinnikov phase or FFLO in short) [1–3] can be more stable than a phase with a
constant order parameter (the Bardeen–Cooper–Schrieffer phase, or BCS in short).
In this case, Cooper pairs may be formed with non-zero total momentum between
Zeeman-split parts of the Fermi surface.

Properties of this phase have been usually evaluated in tight-binding models of
one-band systems [4–10]. However the latest experimental [11–13] and theoreti-
cal [14, 15] works suggest we can expect the existence of the FFLO phase in multi-
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band Fe-based superconductors (FeSC). It follows from the fact that they possess
properties close to heavy fermions systems [16], for which strong experimental evi-
dence suggest the existence of said phase [17–22]. Both kinds of systems are multi-
layered, clean and have a relatively high Maki parameter.

In this paper, making use of the Cooper pair susceptibility and the minimization
of free energy of the system, we discuss the possible appearance of the FFLO phase
in pnictides. In Sect. 2 we describe the selected model of FeSC, in Sect. 3 we present
our methods. In Sect. 4 we illustrate and discuss our numerical results. We summarize
the results in Sect. 5.

2 Theoretical Model

The FeSC system is described using a two-orbital per site model, with hybridization
between the dxz and dyz orbitals. We adopt the band structure proposed in Ref. [23]
and assume that the external magnetic field is parallel to the plane. The Hamiltonian
of the system in momentum space takes the following form:

H0 =
∑

kσ

∑

αβ

(
T

αβ

k − (μ + σh)δαβ

)
c

†
αkσ

cβkσ (1)

T 11
k = −2

(
t1 cos(kx) + t2 cos(ky)

) − 4t3 cos(kx) cos(ky),

T 22
k = −2

(
t2 cos(kx) + t1 cos(ky)

) − 4t3 cos(kx) cos(ky),

T 12
k = T 21

k = −4t4 sin(kx) sin(ky),

where c
†
αkσ

(cαkσ ) is the creation (annihilation) operator of a particle with momen-

tum k and spin σ in the orbital α. T
αβ

kσ
is the kinetic energy term of a particle

with momentum k changing the orbital from β to α, μ is the chemical potential
and h is the external magnetic field. The hoppings have magnitudes: (t1, t2, t3, t4) =
(−1.0,1.3,−0.85,−0.85), in units of |t1|. At half-filling, a configurations with two
electrons per site requires μ = 1.54|t1|. Our choice of the parameter set is motivated
by the fact that it reproduces the same Fermi surface structure as the local-density
approximation calculations of band structure [24–28].

By diagonalizing the above Hamiltonian, one obtains

H ′
0 =

∑

εkσ

Eεkσ d
†
εkσ

dεkσ (2)

with eigenvalues Eεkσ = Eεk − (μ + σh), where:

E±,k = T 11
k + T 22

k

2
±

√(
T 11

k − T 22
k

2

)2

+ (
T 12

k

)2
, (3)
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Fig. 1 The vector δ defines the pairing between sites i and i + δ for different symmetries of the order
parameter. Colors and symbols correspond to the sign of the order parameter for a given direction in real
space. For s-wave symmetry the pairing is between two electrons on the same site of the lattice, while for
other symmetries it is between two other sites (nearest neighbors or next nearest neighbors). In contrast to
d type symmetries, s type symmetries do not change sign depending on the direction (Color figure online)

d
†
εkσ

is a new fermion quasi-particle operator in the band ε = ±. In this case we have
two Fermi surfaces (Fig. 4a)—giving an electron-like band (ε = +) and hole-like
band (ε = −).

3 Methods

We introduce a superconducting pairing between the long-lived quasi-particles in
bands ε = ± [29]. To determine the possibility of formation of the FFLO phase, we
turn our attention to the static Cooper pairs susceptibility:

χ�
ε (q) ≡ lim

ω→0

−1

N

∑

ij

exp
(
iq · (i − j)

)〈〈
�̂εi |�̂†

εj

〉〉r
, (4)

where 〈〈. . .〉〉r is the retarded Green’s function and �̂εi = ∑
j ϑ(j − i)dεi↑dεj↓ is

the OP in band ε. The operator dεiσ in real space corresponds to the operator dεkσ

in momentum space. The Factor ϑ(j − i) defines the OP symmetries (Fig. 1)—for
example for dx2−y2 -wave pairing, ϑ(δ) is equal to 1 (−1) for δ = ±x̂ (±ŷ) and zero
otherwise. In momentum space:

χ�
ε (q) = lim

ω→0

−1

N

∑

kl

η(−k − q)η(l)Gε(k, l,q,ω), (5)

Gε(k, l,q,ω) = 〈〈
dεk↑dε,−k−q↓|d†

ε,−l−q↓d
†
εl↑

〉〉r = δkl
f (−Eεk↑) − f (Eε,−k−q↓)

ω − Eεk↑ − Eε,−k−q↓
,

(6)
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where η(k) is the structure factor:

η(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for s-wave
2(cos(kx) + cos(ky)) for sx2+y2 -wave,
4 cos(kx) cos(ky) for sx2y2(s±)-wave,
2(cos(kx) − cos(ky)) for dx2−y2 -wave,
4 sin(kx) sin(ky) for dx2y2 -wave,

(7)

corresponding to the type of symmetry of the OP.
We investigate the tendency to form the FFLO phase in the system, using the static

Cooper pairs susceptibility χ�
ε (q). In magnetic fields of the order of the Pauli limit,

when the critical FFLO field (hFFLO
c ) is bigger than the corresponding BCS field

(hBCS
c ), the FFLO phase is favored. In such case, the divergence of this function for

some q 
= 0 may imply a second-order transition to the FFLO state of corresponding
symmetry from the normal phase [30]. The location of the maximum of the response
function χ�

ε (q) matches the preferred momentum of the Cooper pairs in the system
described by the Hamiltonian (2) in magnetic field h. This method allows to establish
the propensity to form the superconducting phase (with non-zero momentum of the
Cooper pairs) without specifying the mechanisms responsible for the ordered phases
with given symmetry. Additionally we obtain the change in the pair susceptibilities
δχ�

ε (q) = χ�
ε (q) − χ̄�

ε (q) due to the external magnetic field (χ�
ε (q) with the field,

χ̄�
ε (q) without respectively).

It should be noted that the divergence of the Cooper-pair susceptibility is nei-
ther a sufficient condition nor evidence for the transition to the FFLO state. In order
for this to happen the system energy Ω(q) should attain its minimum at a nonzero
Cooper pair momentum q in a magnetic field h > hBCS

c , equivalent to the condition
hFFLO

c > hBCS
c . To check this, we effectively describe superconductivity in the FFLO

phase by the Hamiltonian:

HSC =
∑

εk

(�εkdεk↑dε,−k+qε↓ + H.c.), (8)

where �εk = �εη(k) is the amplitude of the OP for Cooper pairs with total momen-
tum qε (in band ε with symmetry described by η(k)). As we see, in the operator basis
dεkσ the total Hamiltonian H = H ′

0 + HSC formally describes a system with two in-
dependent bands. Using the Bogoliubov transformation we can find the eigenvalues
of H :

λ±
εk = Eεk↑ − Eε,−k+q↓

2
±

√(
Eεk↑ + Eε,−k+q↓

2

)2

+ |�εk|2. (9)

The free energy is given by:

Ω = −kT
∑

α∈±

∑

εk

ln
(
1 + exp

(−βλα
εk

)) +
∑

εk

(
Eεk↓ − 2|�ε|2

Vε

)
, (10)

where Vε is the interaction intensity in band ε. The global ground state for fixed h

and T is found by minimizing the free energy w.r.t. the OPs and q .
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4 Numerical Results and Discussion

Numerical calculations were carried out for a square lattice Nx × Ny = 600 × 600
with periodic boundary conditions, for kT = 10−5|t1|. As a first step the static Cooper
pairs susceptibility χ�

ε (q) was calculated in magnetic field h = 0.25|t1|. Then the free
energy Ω(q) of the superconducting system was evaluated for magnetic fields near
the Pauli limit hP � 0.25|t1|.
The Static Cooper Pairs Susceptibility Assuming different symmetries η(k) of the
superconducting OP in bands ε = ±, we characterized the Cooper pair susceptibility
(Fig. 2). For every OP symmetry, in the band ε = − the static Cooper pairs suscep-
tibility χ�− (q) takes its maximum for q 
= 0. Conversely in the band ε = +, with
sx2+y2 and dx2y2 symmetry of the OP, there is a strong tendency to form a BCS phase
(maximum χ�+ (q) for q = 0). When hFFLO

c > hBCS
c this can be a sign of the existence

of the FFLO phase in the band ε = −, while the band ε = + is in the normal state.
Numerical data for both d-wave type symmetries in band ε = − is less clear cut, as
the maximum χ(q) is only slightly greater than χ(0).

There is a clear preference in case of ε = − for much smaller momenta than in
band ε = +, due to the relative width of the bands. Cooper pair momenta depend on
the split in the Fermi surface, caused by the external magnetic field, which is larger
for the broader band ε = +. Additionally the presence of a magnetic field causes
a dampening in each case of the response function near zero momentum (Fig. 3,
in blue). Nonetheless larger momenta are unaffected and increasing (in red).

Fig. 2 The static Cooper pairs susceptibility χ�
ε (q) in the presence of the external magnetic field

h = 0.25|t1| and kT = 10−5|t1| for different symmetries (Color figure online)

Fig. 3 Change in the static Cooper pairs susceptibility δχ�
ε (q) (for data presented in Fig. 2 (Color figure

online))
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Fig. 4 Detailed study of the minimal two-band model describing iron-base superconductors with
s
x2y2 (s±)-wave symmetry proposed by Ref. [23]. (a) Fermi surfaces (solid line) for μ = 1.54|t1|. The

background color describes the sign of the OP (red for η(k) > 0 and blue for η(k) < 0). (b) The free
energy Ω(q) in the two bands ε = ±, for different values of the Cooper pair momentum q , showing
the location of the minima and indicating the existence of different phases. Results for h = 0.25|t1| and
temperature kT = 10−5|t1| (Color figure online)

The behavior of the response function χ�
ε (q) shows that multi-band systems have

the characteristics typical of one-band systems—Cooper pairs in the FFLO phase
possessing momentum along the principal directions of the system are preferred
[31–36], for example in directions [±1,0] and [±1,1] for s-wave and dx2−y2 -wave
symmetry respectively in band ε = + (Fig. 2).

Minimization of Free Energy Theoretical results indicate the presence of sx2y2 ∼
cos(kx) · cos(ky) (also called s±) pairing symmetry in FeSC [37–43]. In this case the
OP exhibits a sign reversal between the hole pockets and electron pockets (Fig. 4a).
Taking this into account, in this paragraph only consider sx2y2 symmetry. Vε was
taken such that the Pauli limit was of the order hP � 0.25|t1| (V+ = −0.74|t1| and
V− = −1.56|t1|).

The study of the free energy Ω(q) for the BCS state (q = 0) w.r.t. magnetic fields
h � hP , showed that phase transitions in both bands are first-order for all symmetries,
except for sx2+y2 and dx2y2 which are second-order. Only the minimization of Ω(q)

w.r.t. q , allows to check whether the system exhibits a FFLO phase. Varying q ∈ FBZ
in case of sx2y2 pairing showed that the band ε = + undergoes a transition from
BCS to the normal state and the band ε = − from BCS to FFLO state (Fig. 4b).
Further increasing the magnetic field, the FFLO phase persists in ε = −. It should
be pointed out that in this band exist four equivalent Cooper pair momenta (±q,0)

and (0,±q), in agreement with the static Cooper pairs susceptibility results, and also
with previous works [31–36]. Moreover, it is reasonable to expect that the phase
with an OP given by the superposition of plane waves with said momenta would be
energetically favored by the system [44–46].

5 Summary

FeSC exhibit many characteristic features of systems in which we can expect the exis-
tence of the FFLO phase. Using a minimal two-band model for FeSC, we conducted a
numerical study of FFLO phase in multi-band systems. The static Cooper pair suscep-
tibility suggests that we can expect the system to prefer the state with nonzero Cooper
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pair momenta (the FFLO phase) regardless of the OP symmetry, when hFFLO
c > hBCS

c .
Moreover, the ground state of the system with sx2y2 ∼ cos(kx) · cos(ky) symmetry
OP, can be the state with nonzero Cooper pair momentum for magnetic fields near
the Pauli limit.
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