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ABSTRACT

The downward spiral frequently experienced by transit companies when
they increase fares to make up for declining demand is well known. It is
characteristic of an increasing-returns-to-scale industry where consumer
inputs are essential to the production process. This paper formally incor-
porates both agéncy and consumer inputs in a cost framework and explores the

short- and long-run costs of bus service. In so doing it is possible to

trade off both consumer and agency costs, to arrive at optimal service levels.

It is these service levels, with the mode '"performing at its best," that form
the basis of cost comparisons between transportation alternatives.

We find that off-peak frequencies should be considerably shorter
than those typically prevailing on bus transit systems, and that
marginal cost pricing would require a zero fare in the off-peak and a fare
of up to 20¢ in the peak. This suggests that current rates might be con-
tinued in the peak and abolished in the off-peak. A subsidy to maintain
this scheme would be about 10% of the average cost of service when operation
is in long-run equilibrium (optimized). In the realm of cost comparisons
between alternative modes, options based upon the car are found to be
among the cheapest for trips to the CBD except in the peak. In terms of
public modes, dial-a-ride systems seem to have some economic justification
for low density neighborhoods as a feeder to linehaul buses operating on
freeways, but at high densities integrated bus service appears to be far
more viable. The latter is markedly cheaper than a feeder bus + rapid rail
alternative. TFinally, there seems to be little economic justification for

the current interest in non-standard buses for transit service.
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In two decades the national level of transit
ridership has fallen in almost direct propor-
tion to the rise in automobile usage. Twice
as many cars are in use today as in 1954,
But, despite a surge in ridership during the |
energy crisis, half as many transit fares will
be paid this year as were paid twenty years ago.

‘Russell E. Train [
Administrator, EPA .
Pittsburgh 1974 ‘

1. Introduction

It is by now a commonplace that public transit is an important N
component of an efficient allocation of transport resﬁurces. And yet
it is equally clear, as Train points out, that when faced with a choice, ’
the travel preferences of the urban public are otherwise -- there is no ‘
rush to join the buses. .

There appear to be at least two reasons for this situation: first
that public transit often fails to optimize simultaneously over agency
and consumer (time and effort) inputs, both of which are essential to its
production. This is more true of off-peak service than peak, when
scheduling tends to be on a "leave-when-full" basis.l The second reason
is that private transport is beset with a "social cost" problem, in that ;

\

the externalities generated by trip-making are not perceived by the individual
as part of the costs of his or her travel, pollution and highway congestion
being prime examples. In the case of pollution the spillover costs are
inflicted on the public at large; with congestion they are inflicted only
on other users of the road system. Congestion is a peak phenomenon pro-
ducing driving modes conducive to high wvehicular emissions and thus ex-
acerbating pollution; therefore both "social costs" are associated with

rush-hour conditions. As the individual only considers the private costs
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when deciding between modes, it is likely that the resulting mix will
be sub-optimal, frequently emphasizing the automobile at the expense of
public transit.

However in a city where there are significant disparities in
income, pricing the various modes to reflect these dimensions may have
serious repercussions for social welfare. On the other hand, the costs
of reaching the optimum may make it impractical.- Under such conditions
"second best" pricing, where the transit fare is lowered from the marginal
toll to compensate for underpricing of the automobile,is often advocated
(Sherman 1972; Abe 1973).

v An assessment of the full costs of urban transit is therefore
crucial if there is to be rational planning of transportation facilities.
It is the purpose of this paper to report on these costs, primarily in
relation to the efficient provision of a bus-based transit system -~ the
major source of public transportation in North American cities. To do
this we construct a supply-oriented framework, incorporating both the
consumer and agency inputs into the production process.r This allows an
exploration of the various factors that affect the short- aﬁd long-run
costs of scheduled service. Further, least-cost levels of operation can
be established, which when contrasted with the comparable costs of other
modes performing at their best (Keeler, Small and Clﬁff, 1975; Pozdena 1974)
make it possible to begin to define an optimal mix. v

It should be noted that the method of analysis is that of partial
equilibriuﬁ: each mode is optimized separately without taking account of
interdependencies. Hence the results represent a first pass at the problem.
Construction of a general equilibrium model is clearly the next step,

although the difficulties of doing this should not be under-estimated. But



Small (1974) has made a beginning here with an economic analysis of
the equilibrium established between buses and cars on freeways.

The research presented in this paper is a component part of a
wide-ranging study of the Comparative Costs of Bay Area Transportation
Modes, and accordingly the bulk of the unit cost estimates and applica-
tions of the methodology relate to the San Francisco Bay Area., Two points
need to be made in this regard: first, there is a large weasure of
empirical uncertainty about the values to be assigned to the consumers'
shadow prices of time and effort. Our estimates are drawn from the logit
analvsis of McFadden (1972, 1974%4a, 1974b) and Chan (1973) on the Bay Area
commuters. Nevertheless, our theoretical framework is sufficiently
general to permit exploration of the sensitivity of outcomes to different
assumptions. Secondly, our major data base for bus operations is the
Alameda-Contra Costa Transit Company (AC Transit), reputed to be one of
the more efficiently run transit companies in the nation. Use of AC Transit
data conforms to a general strategy of ensuring that the most efficient
provision of bus service be the basis of comparison with other modes,
subject to similar efficiency provisions. The use of this company's
unit costs in our abstract framework allows us to draw broad policy con-
clusions for bus transit in general.

Finally, the term "demand" which occurs frequently throughout
this paper does not refer to the conventional demand function of economic
theory. The question of the empirical determination of the demand
function for urban public transportation is the subject of other studies,
notably the current work of McFadden. We, on the other hand, assume
various distributions of "requests for service," which are generally
independent of price éharged, and derive the corresponding average cost

and optimality conditions. This can be done for the demand corresponding




to any given price: thus the possibility of substituting empirically
estimated demand functions remains open, contributing to the level of

generality of the analysis.



2 Data-Derivation of Unit Costs

The costs of running a bus system fall into three categories:
variable costs, which depend on the level of service; fixed costs, which
are essentially invariant over a wide range of service levels; and
consumen costs, wﬁich éfevincurred directly by the bus passenger. Since
fixed costs determine only the '"shutdown level" of the system, that is
to say the level of revenues at which the company will decide to cease
production, and not the marginal costs on which optimality calculations
derend, this paper will not consider fixed costs further. In this category
are administrative costs, and the value of the system's land and structures.
We assume throughout that fixed costs can be covered: this certainly
holds trué for our service archetype, AC Transit.

All cost values in this report aie in terms of 1972 dollars.

Capital values assume a 6% interest rate.

2.1 Agency Cpsts

Variable costs relate to demand dependent expenses of operation,
varying either with the vehicle-miles run by the system (costs of fuel,
maintenance, and the capital costs of the fleet, etc.) or with the

number of hours of operation (wages and fringe benefits, etc.).2

Operating Costs with Standard Size Buses

Drawing upon annual 1972 AC Transit data relating to operation of
its standard size (50 seat) fleet, these hourly and mileage costs are dis-
aggregated on a unit basis in Table 1 (Vitom, 1974a).

Drivers' wages account for 89% of the payroll of the system.
Fringe costs such as social security, state employment insurance, ete.,
are not broken down by department in the data. These are small and to

a first approximation can be assumed directly proportiocnal to wage costs.




Table 1

BUS OPERATING COSTS

Lategory ] . 25-seat 50-seat 75-seat
i : (standard)

HOURLY COST3 © $8.10/hour $9.28/hour $10.98/hour

" Drivers' wages 5.68 7.94

" Fringes 1.98 1.21
Advertising Ll .13

MILEAGE" COSTS $.3093/mile $.3007/mile 26,4732 /mile
Capital Cost (6%) +1000 1172 - .2358
Mai_ntenance .0983 ) .1073 L1163
Fuel & 0il .0308 ) .0.251 .0559
Tires .0108 ,0116 ,0156
Timetables & Tickets .0024 .00u7 .0071
Claims .0u75 .0153 .0230

Right-of-Way (6%) . : ,0195 . L0195 . . 0185



"Advertising" includes those costs that directly affect demand (materials,
phones, etc.) and excludes wages payed to advertising employees.

Bus capital costs are based upon the 1972 replacement value of
AC's 721 vehicle fleet. Since the buses vary in age and condition, con-
ceptual problems arise as to whether the assessed value should be on the
basis of replacement with new buses, or a matched replacement via new
and secondhand markets, according to age and/or condition. The latter is
a complex issue and warrants further research: it includes problems
centering upon the scarcity and the representativeness of existing second-
hand market data. To permit comparisons with smaller and larger buses
recently introduced to the market, our capital cost is based upon replace-
ment by new standard size buses at 1972 prices.

1"

As a pointer to AC's efficiency, maintenance is "preventive,"
hence the figure given is lower than the neighboring Muni system which
repairs buses only on breakdown (Lee, 1974). Right-of-Way costs are
attributed to the system using general marginal cost figures of Bay Area
arterials, as reported by Finke and Cluff (1974). This includes the cost
of supporting services such as police, sheriff, coroner and those provided
by elected and appointed officials.

The "total direct cost" (TDC), that is, the cost borme directly
bv the company in providing service over a route of L miles at a service
speed of V miles per hour, is given by aggregating the items in Table 1

L

viz: TDC50 = 9.28 7 + .3007 L.

Operating Costs with Non-Standard Size Buses

Alameda-Contra Costa Transit, in common with most North American
bus companies, runs service with standard size coaches, seating between

45 and 51 passengers. Recently, considerable interest has been generated



in vehicles of other sizes. For example, transit companies on the West
Coast, including AC, have been service testing a demonstration articulated
bus seating 75 passengers, while MBS Transit in New York has purchased
10 double decker buses from Britain. At the other end of the scale,
Santa Clara Transit 1S using larger than usual buses for their dial-a-bus
system to keep open an-option of a possible later useage in arterialservice.3

With a view to contributing to the burgeoning discussion of these
"alternatives," sections 3 and 4 make comparative cost analyses according
to size. For this it is necessary to estimate the total direct cost of
these two non-standard buses, as if in service with AC Transit.

In the case of the smaller vehicle we have some estimates of the
cost of running a 17-seat TC-25 Twin Coach bus in Haddenfield, N.J.
(Clemons, 1974). However, the Haddonfield (Dial-a-Ride) buses are designed
for luxury travel with sparse seating. To provide seating accommodation
comparable with AC standard size buses, there would need to be 25 seats.l+

Cost estimates disaggregated by hours or mileage are given in
Table 1. Wages of drivers and supervisors are assumed to vary directly
with the passenger capacity of the bus. This is the case with airline
pilots, and it seems reasonable to assume that driving a 50 seat bus,
which also involves fare collection (as well as overseeing operation) is
somehow more arduous.than with the smaller capacity vehicle, and is
remunerated accordingly. To the extent that this assumption is violated,
then the gap between the costs of running the two vehicles will be
nar'rowed.5 Note that advertising costs are higher and may reflect intense
publicity for a demand activated service or alternatively smaller scale
ecsnomies of the Haddonfield operation. There is simply not

enough information to reject the figure as it stands.



It is assumed that Haddonfield is maintaining its fleet efficiently
and on a comparable basis to AC's maintenance procedures. However, if
their procedures are closer to Muni's than to AC's scheme, then the true
costs of maintenance will be higher than reported here. As with wages,
claims and ticket costs are taken to vary directly with passenger capacity.
Finally, the average age of the Haddonfield fleet is much less than that
of AC Transit. This means that while costs reported here may be attain-
able in the short run, as the 25-seat buses age, costs will increase,
narrowing the gap between these two sizes of vehicle.

The total direct cost is given (as before) by aggregating the
items in Table 1.

. . L
viz:  TDC,, * 8.10 &+ 0.309, L.

Comparable estimates of the cost of running the 75-seat bus are much more
difficult, since there are currently no vehicles of this size in regular
full-scale service in North America and certainly no formal operating
statistics. The actual bus on which our cost estimates are based is a
VYolvo on loan from the Stockholm Transit Authority for demonstration in
the U.S., under the sponsorship of Seattle's Metro.

Because there is no direct information on the way hourly costs
vary with this larger bus, we extrapolate from the corresponding smaller
bus values, viz:

hourly costs ($) = 5.58 + 0.068 x Capacity
Hence hourly costs amount to $10.98 per hour.

The Metro estimates the price of the Volvo "between $75,000 and
$90,000." Suppose that it costs $82,500, the mid point of the range, and
has a life of 15 years. Assuming a utilization equal to the AC average

of 3,000 miles per month, this is equivalent to a capital cost of
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‘30.2358 per mile. As for other costs varying with miles, Metro reports
paying about $0.0540 per mile in fuel and $0.0019 per mile in oil (a
total of $0.0559 per mile) during demonstration sefvice. There are two
additional wheels over the standard size bus, so tire expenditures will
be 1-1/3 times greater. No information exists as to maintenance cost,
so we again extrapolate from the corresponding smaller bus values: i

Maintenance Costs ($) = 0,0833 + ,0036 x Capacity
Hence maintenance costs are estimated at $0.1163 per mile. The total direct
cost is therefore

L

TDC75 = 10.98 V—+ 0.14732 L.

2.2 Consumer Costs

The second major component of travel cost is the value of the
consumer's '"non-money'" input into the production process, that is, the
price of his travel in terms (a) time (opportunity cost) and (b) effort
(disutility) and comfort (utility).

This contribution can be divided into two types: an in-vehicle
travel input, which in the absence of highway congestion will be near
constant for a given trip; and an out-of-vehicle travel input from the
consumer's origin point to the vehicle. The latter is generally decomposed
into walking to, and waiting at, the bus stop, and sometimes, transfer.

The opportunity cost component is purely time dependent, whereas
the disutility/utility compoﬁent depends on the time spent in some type
of input activity: in-vehicle or out~of-vehicle effort/eomfort. However,
measurement problems generally prevent discrimination between these two
components.

The question is, what dollar amount should we assign to each type i

of input to measure its (combined) opportunity cost and disutility?
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There has been a great deal of work of late in this area: McFadden (1972),
(1974a), (1974b), and Chan (1973) have as part of the BART Impact Study
used sophisticated econometric techniques to measure values for the

Bay Area; a good summary of other work is given by Hensher (1974). The
estimates used in most of the numérical‘analysis to follow, derive from

Chan's werk on commutation, and may be summarized as follows:

Table 2
Type of Non-Money Travel Input Unit Shadow Price
Walk ) V! $9.00 per hour
Wait . v, $9.00 per hour
Transfer V! $9.00 per hour
In-vehicle v, $3.00 per hour

The data is drawn from trips of both bué and automobile travelers
and corresponds to a median income level. No distinction is drawn between
the in-vehicle shadow price for car and transit. However, it would seem
that the additional comfort (utility) of the car is offset by driving
under rush-hour conditions (disutility).6

These shadéw prices are socio-economically dependent and hence
likely to vary with geographic region, although there is a good agreement
between the various (logit) studies as to the magnitude of scaling
between the in-yehicle and out-of-vehicle components (Hensher, op. cit.)

The values of Table 2 are used in the numerical cost calculations
because they are rigorously derived and relate to the same region as‘the
agency costs, The contention that AC Transit is an "efficiency archetype"
carries the implication that the (imputed) costs of its operation are

capable of replication in other cities. Hence, while agency costs would
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not vary with city, some (local) adjustment to ve and v, could be required,

slightly changing the numerical cost calculations.

2.3 The Peak - Off-Peak Cost Problem

In presenting our operating cost estimates, we have not distin--
guished between the costs of providing peak and off-peak service. The
estimates given lie between these two bounds. Goldstein (1974) has
m;de a preliminary estimate of the "peak penalty" (that is, the increased
hourly cost of providing peak.service brought on by union agreements
regarding the proportion of working days that may be split up). He
estimates that the peak penalty is about 20%; that is, hourly costs for
the peak are 20% above those incurred in the non-peak period; These are
order-of-magnitude estimates: to refine them further a more detailed
institutionéllstudy of union contracts would need to be undertaken. To
round out the estimation of peak costs, all capital costs of the fleet
would ;éed’to be attributed té the ﬁeak.

| Fiﬁally, to capture all the differences between the two periods
there ié a need to distinguish between the unit shadow prices of time
and effbrt at different periods. ’Off-peak valuations will in general
tend to be lower than the peak valuations; but how much lower remains
sometﬁing of an open question. For exampie, Chan (1973) reports a slightly
lower Valué for the.off-peak trip, but is unable to reject the statistical
hypothesis that tﬁe time valuations in the two periods are equal,7 which
highlights the difficulties‘involved in accurately esfimating the costs

in question.
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3. Methodology - A Structure for Assessing the Short and Long Run
Costs of Bus Service

Qur aim is to establish a generalized average cost function
(Mohring [1972], Byrne and Vuchic [1971], Hurdle [1973a,b], Newell [1971],
Boyd et al [19731, Douglas & Miller [1974]) and to explore thoroughly the
inter-relationships between the consumer and agency components to increase
our understanding of the economics of providing service. This will be at
first under the most simple assumptions,(viz: random arrival at bus stop,
no capacity constraints, and point-to-point linehaul service), after which

these restrictions will be progressively relaxed.

3.1 A Generalized Average Cost Function

Consider a line-haul system transporting Q passengers in a service
intervalB ts between two stops distant L apart, at a speed of V. All
passengers board at one point and alight at the other. To address the
optimality question we ask: at what time should the bus be dispatched to
achieve the most favorable tradeoff between agency and user costs?

Suppose that it costs the bus company TDC [L, V] per trip and that
passengers have a wait shadow price of $vw per unit time and an
in-vehicle shadow price of $vv per unit time.g The ith passen-
ger's probability of arrival at the stop can be described by a probability
(density) function pi[t], such that fzs pi[t]dt = 1. If we assume that
these individual probabilities are independent and that the Q passengers
show the same arrival behavior (p&[t] = p[t]) which is independent of dis-

patch (schedule), then by time t = P, the number of arrivals will have risen to

alvd = o £¥ preiae (1)
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and the average wait time or "schedule delay'" will be:

fi(w-t)p[t]dt fg qltldt

dafy] = T
J

[o]

= (2)
pltldt qly]

and in this case identical to the "frequency delay'component: the average duration
between arrival and the next scheduled departure. The frequency delay is
dependent on the cumulative distribution of arrivals umulative demand) qlt],
rather than the individual probability of arrival pl[t].

The total cost per patron (i.e., the average cost) is

TDC[L,V]

AC[Y] = W—

L
+ Ve v + vwd[w] (3)

Hence to find the best tradeoff between Agency and Consumer Costs, we

differentiate (3) with respect to Y and set the result equal to zero:10

. TDCLL,V] q'[w] _ ' =
i.e., CIODE v, d'[v] 0 ()

which may be solved for Y to give the optimal dispatch time.

3.2 Single Frequency Bus Service

Uniformly Distributed Demand

If we assume that the arrival of Q patrons (within a
service interval of unit time [ts= 1]) is indiscriminant with respect to
time (random) then from (1), by time t cumulative demand will be q[t:FQt}l
and by substituting in equations (1), (2), and (3), the average cost

corresponding to the first bus is

_ TDC L ¥
AC[W] = W + Vv V + Vw E (5)

where the average wait time is half the dispatch time.
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Sensitivity Analyis:

Dependence of Average Cost on the Dispersal of Demand

In general, demand is not uniformly dlstrlbuted in time, but
characterlzed by peaks of commutlng, shopplng trlps, etc. The assumption
of uniform demand is therefore limited to short service 1ntervals, usually
of one hour or less.

Qur first consideration is to see how average cost (3) depends
upon the distribution of demand. For example, consider two hypothetical

(but algebraiéally simple) arrival prbbabilities
pltl = 2t and p[t] = 6t[1-t],

with a unit time service interval.- The first function is linear whilst

the second is a quadratic approximation to a normal distribution, with a
peak at t = 1/2. Assuming that all Q patrons have the same arrival behavior,
substitution of the above functions in the expressions for cumulative demand

s . 12
qly] and the average wait time d[y], lead to average costs of

_ TDC L Y. N
AC[\P] = W. + Vv 2 + Vw E) (6)
and
_ . TDC L " 2-y
ACEWJ = W + Vv V + VW E’ . m (7)
respectively.

Note that in the case of the demand distribution corresponding to
plt] = 2t, the number of riders is lower than with the uniform demand dis-
tribution, so average agency costs are higher. However since there are
relatively fewer initial arrivals, the frequency delay is only 2/3 of the
uniform case, so the higher agency costs tend to be offset. Hence the best
tradeoff of agency and user costs is struck at a longer dispatch time but a

higher cost than in (5).
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With the demand distribution corresponding to p[t] = 6t[1-t],
cumulative demand is relatively low at short dispatch time§ but begins
to approach tﬁe uniform distribution case after half the service interval,
when arrivals are declining. Hence at short dispatch times the averagel
agency cost is higher than in the uniform case; however the averagé wait
time is lower (by approximately 7/10's for t < ts/z) because initial arrivals
are relatively fewer until the dispatch time approaches the duration of
the service intefvél. Accordingly fhe best tradeoff is reached at a ldnger
dispatch time, but at a comparable dollar value.

These results are illustrated in figure (1) for a set of parameters

representative of line haul conditions on East Bay AC Transit service, with

a 50 seat bus and a service interval of one hour.

Conclusions

Some limited general conclusions are possible: First, demand
distributions that are characterized by few initial arrivals, tend to have
less favorable agency-user cost tradeoffs. Secondly, the frequency delay

for the first bus is quite dependent on the distribution of demand.

3.3 Multiple Frequency Bus Service

However the foregoing relates only to the first bus, and not to
multiple frequency service, for which we need to establish the corresponding
average agency and uéer cost components. As linehaul conditions are assumed,
with no intermediate stops,the in-véhicle cost component remains constant,
and attention can be focussed on the average (over the service interval)
of the agency and user schedule delay cost components, based on a regular

headway (dispatch).



FIGURE 1

RELATIONSHIP BETWEEN AVERAGE COST, DISPATCH TIME,

AND THE DISTRIBUTION OF DEMAND.

PARAMETERS

L= 14 mi. Vv = 21 mph
v » $3.00 v = $9.00
v W

0 = 250 C =50

Service Interval 1 hr

Demand Distributions

plt] =1

plt] = 6t(1 - ¢t)

plt] = 2¢

10 20 30 40. 50 60

¥ (mins.)
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Average Agency and User Wait Costs

The average agency cost is the Total Direct Cost per trip divided
by the average number of passengers per bus viz: the total demand
Q divided by the number of buses. Therefore, the average number of pas-

sengers per bus, q[V¥1, is independent of the demand so that
qlwl = Qv (8)

However the question of wait time is more complex: Generalizing

(2), the schedule or frequency delay within the nth interbus interval is

given as
ny ny
doiy] = Lnoayy ¥ot) pLEIdEvaltn-ayd ¢ STy galedde (g,
ny qnyT - q[(n-1)9]
f(n—l)w p[tldt ‘
The average frequency delay is therefore
/¢
3 .1 nyY . nyY Ve
d [v]l = 3 f f(n—l)wp[t]dt ,f(“_l)‘p (ny-t)pltldt (10)
S { oY )
= nfl {qlny] - q[(n-1)91} Yql(n-1)y] + (n_l)wq[t]dt

This represents the schedule (frequency) delays of each interval, weighted

according to demand in each interval (riders per bus).

Sensitivity Analysis:

Depéndence of the Average Frequency Delay on the
Distribution of Demand

(A) Simple Distributions

Assuming that demand is uniformly distributed so that q[t]=Qt, then

the frequency delay within the nth interbus interval reduces to dn[y] = % .
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But demand within all interbus intervals is identical, so that the average
frequency delay is d [¥] = % , or half the headway. '
For demand corresponding to p[t] = 2t, the.frequency delay within

the nth interval is

_ 3n-2 1 3. 2
dn[w] = EYEE?IT'w =3 (é 1 5;:34w . (11)

n

Hence for the first interwval dl[w] = $/3 (as previously derived) for the
second interval it is (4/9)¢ , etc. Note that as the headway gets very
small, dn[w] approaches half fhe headway, since the dispersal of demand
during interbus intervals becomes virtually uniform.

For the demanq distribution corresponding to p[t] = 6t[1-t], the
frequency delay within the nth intervalkis given by

-2 + (4n - ? - 1.5)¢

6n-2 + 2(3n - an? - L)Y ¥ (12)

d [yl =

Evaluation of the average frequéncy delay for the three cases
v
above, with respect to the example of Section 3.2, results in the average

cost curves of figure (2). Notice that the average frequency delay is

consistently half the headway for both the uniform distribution and the dis-

tribution corresponding to p[t] = 6t[1-t], because of their very similar
cumulative demand viz: q[t] = Qt and q[t] = Qt[3t - 2t?]. However for the
case of p[t] = 2t, where initial cumulative demand is relatively low, there
is a deviation from this rule beyond headways of one quarter of the service
interval. Such headways are rarely optimal; and user schedule knowledge

would no doubt upset the assumption of arrivals independent of headway.
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(B) General Distributions

Proceeding further, we simulate a more realistic demand behavior: that
patronage is made up of g patron types or groups, characterized by g

distinct arrival behaviors. The ith group has Qi members, such that

g
Q= I Qi , with a likelihood of arrival concentrated within a narrow

i=1

. 13 . s . cqs . .
period. For simplicity we assume that the probability of arrival is
described by the same functional form for all groups, but the latter is set
within different periods for each, i.e., maximum centered at g points over

: . t
the service interval, _s apart.

g
Assuming a quadratic approximation to normally distributed probability of arrival,

the ith group, with a maximum arrival likelihood at time ti = gﬁ-- i, has a
behavior

p,[t] = {1—(%-1)9} . %,{t—ti} {T—t+ti}
for ti - T/2St¢g ti + T/2
and

p;[t] = {‘gs—'r}p
for0<t<ti—‘r/2 and tg >t >t + T2 (13)

where f;spi[t]dt=l for all i, T is the base width of the quadratic
function, and p is the value of pi[t] outside the range (ti-T/2, ti+T/2),
and can be set to a very small number. Accordingly any pattern of demand
can be simulated through adjustment of relative membership levels %_.

To evaluate average frequency delay corresponding to (13) a
discrete summation is now necessary. It is shown in Appendix A-1 that the

equivalent of the continuous expression (10) is
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_ P4

where di,n is the frequency delay of the ith patron group in the nth
interbus interval, and qi,n ié the corresponding demand. This relationship
assumes a regular headway ,14and represents the frequency delays for each
bus, weighted according to the number of passengers (drawn from the demand
distribution) in each interbus interval.

Similarly the discrete equivalent to (8), the average number of

passengers per bus is

B N g
qf¥l=v¢ L & qi n (15)
n=1l i=1 ’
g
where L G 4 is the number of riders on the nth bus.
i=1

Estimation of Average Cost (-~ Algorithm SRACL)

The above equations embody the main computational aspects of
algorithm SRAC1 ([Short Run] Average Cost 1), and are the basis of more general
algorithms SRAC2, SRAC3 and SRAC4, to be introduced later. SRAC1l takes
as input: the service interval, shadow prices v, and v speed V,
distance L, and dependent functional relationships for TDC and p[t]. To
e;aluate average cost, the service interval is partitioned into equal sub-
intervals, the end of these sub-intervals being marked by the arrival of
a bus to collect patrons who have accumulated in that interval. Because
of the finite integration, average cost estimates are confined to headways
that coincide with integration intervals, and are computed according to

equations (3), (14) and (15) for varying levels of demand Q. Output is
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'average cost as a function of headway for each level of demand. The

minimum value of average cost can therefore bé derived by interpolation.

Application to More General Dispersions of Demand

Accompanying figure (2) are three peaked demand distributions,
labeled as: '"right-skew,”" "left-skew," and "symmetric." These result
from an assumptién of thirteen patron types, over a service intefval of
one hour. Likelihood of arrival is concentrated in a 12 minute period
for each group, and is described by equation (13), with a base demand
Q = 72, and group populations Q; of :

6,14,26,6,2,0,0,0,2,4,9,2,1 (left-skew)

1,2,4,9,2,0,0,0,1,6,14,26,6 (right-skew)
and u,e,l2,8,4,0,0,0,u,8,12,8,4 (symmetric), have been used.

In Figure (2) the average frequency delays resulting from these
distributions have been evaluated with SRAC1 for the example of Section

32 . Ve see that the frequency delay of the symmetric distribution has

the same relationship to headway as do the previously worked distributions:

the half-headway rule holds because all have similar cumulative demand
functions qft]. The right and left skew distributions also conform to

the half-headway rule until about a half an hour headway.

A Findings Regarding Average Frequency Delay

" If demand is symmetrically distributed over the service interval
the average frequency delay is just a function of headway. Furthermore,
this independence holds for arbitrary distributions at headways of up to
one quarter of the service interval (15 minutes).

Different patron types could well have différent
incomes (different disutilities and opportunity costs of

travel), with différent starting times. It was found however
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that there was no difference in the minimum cost value and its corresponding
headway, using either the mean shadow price of time and effort inputs of all
patron groups or the individual values. Agency and user in—yehicle costs are
clearly the same in each case, so the problem is to show that the wait costs

are the same?

This can be seen by rearrangement of (lu):if v, di n is the cost of the
i i ]

frequency delay incurred by the ith patron group in the nth interbus interval,

then the average frequency delay or wait cost is

— 1WA e g 1 1/‘*
CsS(y) = 7 I I gq, di v,=L v {= ¢ q, d, }
n=l §=1 Lom i,mwg oo W Q p=1 o0 1,07,
Anticipating (17) we can reduce this to:
g v, g _ - g
es(y) = L Ve {-2-1' -]-'-} = %-]-'- I v z vw'% , where v = s v .
i=1 %1 & g =1 %3 B 4=1 Mi

That is, the averaging can be implicit or explicit.

General Results and Conclusions

Some important conclusions follow as to the component cost inter-
relationships: First for a given demand Q, the average number of passengers
per bus is independent of the distribution of demand and therefore independent

of the underlying arrival probabilities. We have the general result

W = qu ' (16)

where ¥ is the headway.
Secondly the average frequency delay d(y) for service frequencies
of at least four buses per hour is simply a function of headway,

independent of the distribution of demand, and is given as
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aw =L an
(i.e., half the headway). This result is familiar to the literature, but
appears to have a wider validity than generally appreciated.

Its origin lies in the averaging process wherein as the headway
gets smaller and smaller, the demand within each interbus interval becomes
more and more uniform. Moreover in deriving the average frequency delay,
interbus intervals in which this is more than half the headway tend to be
offset by interbus intervals where if is less than half the headway, i.e.,
arrivals tend to take on a random character. It is only when the headway
is quite large that the pattern of demand is influential.

Therefore if we substitute (16) and (17) in the general average

cost expression (3), we have a similar independence for AC:

_ TDC L 2
AC = W tv, Tt (18)
wherein
TDC
AFC = — 19
q s)
(agency input)
and
- L ¥
AVC = v 5+ Ve s (20)

(user's time and effort inputs).
The SRMC is given as

_ 2 . L
SRMC = 57 (Q + AC) = v T+ ¥,

9 ' (21)

Nje

Hence SRMC= AVC, since an additional rider inflicts no delay on others
under point to point linehaul conditions. In other words, there are no

implicit constraints to produce congestion effects.
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From equation (4), the minimum average cost headway is

® /2 -1/2
p= (2170 (22)
v
W
. s : . 15
whence substitution in (18) yields
ac | = —_TDC 4y L, _w g2mDC 12 -1/2
min 2TDC,1/2 -1/2 vy 2 v
af v } Q W
W
- 1/2,-1/2 L
= {2 TDC vw} Q t v,y (23)

In practice these expressions are supplanted by numerical
computation with SRACL.

Note the familiar result that the minimum cost frequency is pro-
portional to the square root of demand for service and is independent of
the way demand is dispersed over the service interval. Significant scale
economies are possible with increasing ridership; for example, if demand
doubles, we only need ¥2 as many buses (per service interval) and average

cost declines by (1 iv%) of Agency Cost. Figures 3(a) and 3(b) show the

relationship between the unit shadow price of wait (vw $ per hour) and
minimun cost and associated headway.
Costs are mirrored about the minimum average

cost headway, since for any m, then AC(my) equated to AC(yY/m), implies
which is just the optimal headway. Hence reducing the

(minimum cost) headway by a given proportion, or increasing that headway

by the same proportion, increases the average cost by the same amount.
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In conclusion, for patronages sufficiently low that a capacity
constraint is not encountered, bus service provided at a rate proportional
to that to which people travel is not optimal. Although the. frequency
delay is proportional to half the headway, the net frequency delay or wait
under minimum cost conditions, derived from by (22) and (17), is not independent
of demand. This is a consequence of bus service showing increasing returns
to scale.

3.4 Multiple Frequency Bus Service with Capacity Constraints

Hitherto we have been considering an idealized case of a bus
with unlimited capacity in linehaul operation. But our TDC estimate
has been based on the costs of a standard 50 seat coach. If we impose
a capacity constraint we will find that running buses too infrequently
for a given net demand will lead to more people arriving in the interbus
interval than the bus can accomodate, and therefore some will have their
departure displaced to later buses. This displacement of the patron's
actual departure from the nearest departure is called 'stochastic delay."
Under capacity constraint conditions, we can also introduce the concept of
a load factor K, the ratio of the number of rideré to the capacity of the
bus, i.e., K = %ﬂ .

Estimation of Average Costs with Capacity Constraints (Algorithm SRAC2)

Algorithm, SRAC2 incorporates a size constraint, and is built
on SRACLl. The: service interval is partitioned in the same way, but
loading on the bus arriving at the end of each interbus interval is subject
to the capacity constraint. An accounting routine is incorporated that
reéords not only the wait time of those who are successful in catching the
bus at the end of the interbus interval in which they arrive, but also
keeps track of those who forego buses, and are later successful. This is

equivalent to the Markov process described by Douglas & Miller (1974).
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Accomodation on each bus is on a first-come-first-served basis.
This can be visualized as a queue of patrons forming at the bus stop,
conforming to the arrival sequence determined by the demand distribution.
At the end of each interbus interval, SRAC2 examines the queue and removes
from its head the number corresponding to the number of seats available on
the bus: (bus capacity). It then computes their schedule delay by noting
when they arrived and in what interval; The process is repeated for each
bus.

The average schedule delay is the individual schedule delays
(frequency and stochastic) of the boarders of each bus, weighted by theig

respective numbers, and in analogy to equation (14) is given by (Appendix A-2):

_ ; V¥om
dy) ==~ L I q d (24)
Q p=1 per WM MM
nl
such that T q <c where C is the bus capacity (seats), with
n,m - 7’
m=1

n' € n, and qn m is the number of boarders of the nth bus who arrived in
3
the mth interval. Afterwards U = 0 for all m, for which total absorption
3
takes place, and if a residue for qn ' results, then it is reset to
,

q =L q - C. In this expression dn n is the schedule delay of

b

those who arrive in the mth interval and succeed in boarding the bus
arriving at the end of the nth interval. The corresponding average number
of passengers per bus is 16

_ /Y n'

ay) =y T I q = Q (25)

n=l m=1 70
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Constrained Minimum Average Cost

Figure (4) shows the effect of size constraint C on the variation
of average cost, where the unconstrained curve corresponding to a bus of
unlimited capacity is the envelope of the family of curves for different
size vehicles.l7 Note that if the vehicle size constraint is encountered
at headways prior to that of unconstrained minimum, the minimum average
cost is increased. This corresponds to the familiar "leave-when-full"

%
dispatch rule, and is encountered when C $ Q ¥ or from (22)

Q> csz/z TDC. (26)

This rule is clearly optimal since there is no point in delaying the dispatch of
a fully laden bus. Hence in figure (4), the minimum corresponding to a

25 seat bus is "constrained" (unity load factor), whilst the other minima

are "unconstrained." This constrained headway is
*
¥ =C/Q 27)

and the associated minimum average cost is given by substitution in

equation (18), viz:

_ TDC L c
ACmin =t v, ¥ + v 3 (28)

The scale economies observed with (22) and (23) are now enhanced.

Estimation of Minimum Average Cost With Capacity Constraints
(Algorithm LRAC1)

LRAC1 is an algorithm that computes the minimum average cost by a
direct iterative procedure. Beginning at zero headway (y=0), each iteration

advances the headway. At the%th iteration le and ACE are computed



FITGURE i

EFFECT OF BUS CAPACITY ON THE VARJATION
OF AVERAGE COST.
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(according to [31). If ¢RQ > C, then Acl—l is a constrained minimum,
otherwise it tests for ACE > Acl-l' If this is true, then Acl—l is an
unconstrained minimum, failing this it proceeds to the next iteration.

The algorithm is rapid and well suited to derivation of long run average

cost envelopes, and is used for this purpose in Section 4.

Comparative Average Costs as a Function of Capacity

There is another important feature of Figure 4. Notice that as
vehicle size decreases there is markedly lower cost tolerance in scheduling
about the optimal headway. If the headway with a small vehicle is a little
bit too long, then stochastic delay congestion costs occur because all the
people who arrive within a given interbus interval may not be cleared by
the first arriving bus, and costs rise steeply as wait accumulates.

On the other hand if the headway is a bit too short then the load factor
per bus is too low and costs rise steeply again. However with larger buses
we have a wider latitude of headway around the optimum without departing
significantly from the minimum average cost value, because the likelihood
of stochastic delay is reduced.

Sensitivity Analyses
A. An Exploration of the Form of Stochastic Delay

The average cost curves in Figure 4 correspond to a uniform dis-
tribution of demand. It will be noticed that their right hand upper reaches
are turning over. This appears to be the result of a failure to clear the
given catchment at longer headways, and therefore not totally accounting
for the schedule delay of the patrons who are unable to board within the defined
service interval. To check this explanation, components of average cost
corresponding to a bus capacity of 50 (and an unlimited capacity, for

reference) were computed with SRAC2, according to:
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(a) a service interval of one hour, and a uniform distribution
of demand with 250 patrons, and
(b) a service interval of three hours, and a uniform distribution
of demand within each hour, but with virtually all 250 patrons
confined to the first hour.18 This is’to ensure that non-
boarders from the first hour are acconﬁodated in the remaining
two hours, when there are effectively no new pgtrons added
to the queue.
Figure (5) shows the resulting consumer schedule delay cost curves. Notice
‘that the "wait equals half headway" rule breaks down after 12 minutes headway,
with the onset of stochastic delay (missed buses). Under the assumptions of
(a), the wait of non-boarders beyond theihour is not'fracked, and costs are
deflated artificially, whereas under (b), they are tracked and those not
accommodated at the end of the first hour progreésively £ill up later
scheduled buses. This occurs up to a headway of 36 minutes, beyond which
patrons are increasingly unsuccessful., Up to the 36 minute point costs rise
linearly, as a result of uniform arrival and orderly queueing. Note that
under (a), failure to cléar the catchment does not result in significant cost
" deflation until 16 minutes, or more generally, twice the optimal headway.
A simultaneous examination of agency and average costs (also graphed) show
that the consumer wait process described above, is the underlying mechanism
of the turning-over effect observed with the average cost.

B. The Inter-relationship between the Distribution of
Demand and Minimum Cost

Tests made in Section 3.3 to determine the inter-relationship
between demand distribution and the minimum average cost were repeated in-

corporating the capacity restraint. Using the uniform and peaked ('symmetric"
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and "right-skew'") distributions given in Figure 6a, average costs were

computed by SRAC2. The results show that at low levels of demand (Figure 6a)

when the best tradeoff is unconstrained, the minimum average cost (and
headway) is,.as before, insensitive to the distribution, but has a\markcd
dependence at higher levels when the capacity constraint is encountered
(Figure 6b). (The average cost corresponding to the skew distribution,
after diverging from the minimum, goes through an inflection: the result
of stochastic delay being momentarily curtailed by a lull in a;rivals.

The latter could arise from staggered starting times.)

C. Limitations of the Regular Headway Assumption

An underlying assumption contained in the general averagé cost
relationship (3), is the independence of arrival behavior with respect to
headway.lg To make for an independence and simplify analysis, evaluation
of average cost has centered on the notion of regular headway.

Minimum Average Cost: The assumption of regular headway to derive minimum
average cost is clearly justifiable when demand approximates a uniform
distribution. However when it shows a pronounced peaking, minimum cost
scheduling theoretically requires adjustment of dispatch times (headway)
to meet cumulative demand. For example, when the level of demand is too
high to allow a free tradeoff ﬁetween agency and user costs, dispatch
would be on a leave-when-full basis. The derivation of minimum average
cost on the basis of regular headway, is equivalent to smoothing the dis-
patch times over the service interval. When the demand is high, and wait
expensive, this fechnique focusses upon the minimization of stochastic

delay, rather than agency cost (when cumulative demand is slack). The

higher the concentration of demand, the closer the optimal (regular) headway



FIGURE 6a

THE EFFECT OF THE DISTRIBUTION OF DEMAND
ON AVERAGE COST.
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FIGURE 6b

THE EFFECT OF THE DISTRIBUTION OF DEMAND
ON AVERAGE COST.
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is to the typical dispatch-when-full interval in the peak. This accounts

for the reduced minimum cost headways shown by the peaked distributions in
Figures 6a and 6b. It is important to note that some stochastic delay

exists at the optimal frequency in this case but it is small.20 Regularization
of headway on an hourly basis is not an uncommon practice of bus companies

and leads to some stochastic delay during the rush hour.

Since the smoothed (regular) headway tends to be an over-estimate
of the typical optimal dispatch interval during the peak, and a corresponding
under-estimate during the off-peak, the averaging process incorporated in
SRAC2 results in a minimum average cost very close to that found by free
adjustment of dispatch with LRAC1.

General Average Cost: The evaluation of average costs in general is
analytically complex, particularly if a capacity constraint is incorporated.
When the demand is not uniformly distributed, some systematic basis for
varying dispatch (headway) needs to be assumed to represent a simple agency
input. The most elementary basis for dispatch is the regular headway.

However a more adequate treatment may call for division of the
service interval into intervals with more or less uniformly distributed
demand, and independent regularized headways. But a single agency
input for analysis of average cost over the whole service interval is
difficult, and it is not clear what would be the basis of a simultaneous
minimization of average costs over all intervals.

Consequently, regular headway will continue to be the main basis of
analysis of average costs in this paper. One hour service intervals with uniformly
distributed demand will also be used, except for a detailed analysis of
costs associated with stochastic delay, as this process implies some

slackening in demand outside the immediate service interval being considered.
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Average Costs as a Function of Frequency, Capacity and Demand

Figure 7a shows the relationship of average cost to headway for
various levels of uniformly distributed demand; Figure.7b shows their
disaggregation into agency and user components. Note the scale economies
with increasing demand. .

The average costs shown in Figure U4, contain no adjustment of TDC
for varying bus size C. For example a 25 seat bus is éheaper in operating
and capital costs than the 50 seat bus. Making these adjustments
reference to Section 2.1 gives the improved average cost estimates of
Figures 8(a), (b), and (c). Notice the marked cost tolerance with lower
levels of demand and larger vehicles. Figures 9(a), (b), and (c) (alternatively)
show averaée cost as a function of demand, for fixed frequencies % .

Patronage Q reaches the system capacity constraint at Q0 = C/y , after
which stochastic delay occurs, with rising average cost. Headway variations

are significantly cheaper with the 75 seat vehicle over a wide volume of

demand.

Stochastic Delay Congestion Costs

To examine costs associated with the stochastic delay process,
the service interval is widened and demand distributed on a peak-off-peak
basis. Whereupon the various fixed frequencies can be interpreted as, in
turn, the best the company can provide (subject to labor and equipment
constraints) to move passengers over the peak period. These limitations
are reflected in increased delay costs to the consumers of the service.
Figures 10(a), (b), and (c) show the AVC and AFC components as a function
of demand corresponding to a three hour service interval (1 hour peak)

with peak to off-peak patronage in the ratio of 5:1.



FIGURE 7a

RELATIONSHTP OF AVERAGE COST TO HEADWAY FOR VARIOUS
LEVELS OF DEMAND.
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FIGURE 7b

COSTS IN FIGURE 7a DISAGGREGATED INTO USER WAIT
COSTS (CS) AND AGENCY COSTS (CC).
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FIGURE 8a

AVERAGE COST AS A FUNCTION OF BUS CAPACITY

AND HEADWAY .
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FIGURE &b

AVERAGE COST AS A FUNCTION OF BUS CAPACITY
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FIGURE O9a

AVERAGE COST AS A FUNCTION OF FREQUENCY AND
LEVEL OF DEMAND.

2

S 4 PARAMETERS

& D
< < L =12 mi. ¥ =40 mph
W
~ v = $3,00 v = $9.00
B v w
L 4y c =25
Demand = uniform
5
0'0 ~
B
Y,
4
9,
-
N
RS
<
_QQ
by
. , . S S
500 1000 2000 3000 4000

Q (/hr)



FIGURE @

AVERAGE COST AS A FUNCTION OF FREQUENCY AND
LEVEL OF DEMAND.
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FIGURE Qe

AVERAGE COST AS A FUNCTION OF FREQUENCY AND
LEVEL OF DEMAND.
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FIGURE 10a

AVERAGE VARIABLE AND FIXED COSTS AS A FUNCTION
OF FREQUENCY (SYSTEM CAPACITY),
25-SEAT BUS.
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FIGURE 10e
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The agency cost AFC is defined according to (19)

viz AFC = I

Qv

and continueé to decline after missed buses at Qs since peak loading
is progressively displaced to off-peak buses with (otherwise) small load
factors.,

This displacement is reflected by a basically linearly increasing

2
consumer cost AVC, defined by 1

-y L ¥
AVC = Vo7tV 5 + vwf(Q-Qo) (29)
where v, g- is the frequency delay and

vwf(Q-Qo) is the stochastic delay, such that

C
- = < = =
£(Q QO) 0 for Q £ Q, v
The Average Cost is therefore:
= = 1DC L ¥ -
AC = AFC + AVC = v rV, gtV St vwf(Q Qo) (30)

and the Short Run Marginal Cost is

-2 . sy L,y ¥ . ' eo-
SRMC = ) (Q : AC) = Vo7t Y 2+\{1f(Q QO) + vaf «Q QO) (31)
Hence  SRMC - AVC = vaf'(Q—Qo) (32)

Thus a demand dependent gap is introduced between Short Run Marginal

and Average Variable Costs, because the marginal passenger increases the

level of congestion.
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The relationship between AVC and SRMC for various frequencies with a
standard coach is shown in Figure 11. The curves labelled LRAC and LRMC
approximate a "restrained" long run equilibrium derived from the lower
bound envelope of average costs for the three hour period. Notice how steeply
the SRMC rises after the constraint is encountered.22 This reflects the
cascade nature of the congestion process (for the marginal rider produces
substantial spill-over costs) and the high price of waiting (vw = $9/hour).
Each frequency is optimal at a level of demand where SRMC=LRMC, that is
where long run equilibrium as well as short run equilibrium has been
achieved. If this occurs after the demand QO, the best tradeoff is
constrained. For example, the frequencies of 20 and 30 buses per hour,
are optimal and constrained at demand levels of 1000 and 1500 patrons

(per peak hour) respectively. The relatively low frequency of 12 buses

per hour is optimal and unconstrained at 600 patrons per peak hour.

Marginal Cost Pricing - Congestion Tolls

Three different pricing systems (Wohl 1970) are applicable to

bus transit operations:

(a) Uniform Daily Fare: This is a commonly used money charge
added to the user's time and effort inputs. The user cost
is then roughly comparable to the Average Variable Cost

(b) Zero fare: no money charge

(c¢) Marginal Cost Fare: This money charge, when added to
user's time and effort inputs, makes the price of a trip
equal to the Short Run Marginal Cost. Since Short Run
Marginal Cost varies with the level of demand, and hence with
congestion, this is also referred to as '"Congestion Toll

Pricing."
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In equation (29) and Figure 11 the Average Variable Cost is the

user's time and effort input, hence the Marginal Cost Fare or congestion

toll, is simply the gap between SRMC and AVC as given by (32). This is
similar to Mohring's (1972) example, where the congestion toli cor-
responds to load and discharge delay. This affects schedule delay by
reducing frequency; a process Mohring describes as a "system effect."
Load and discharge delay is incorporated in Section 3.4; in the present
case the congestion toll corresponds only to stochastic delay.

This toll is designed to make the user pay for the costs he
inflicts on the system, that is, by increasing the general level of
stochastic delay?3 Marginal Cost Pricing is therefore an efficiency
measure that formally incorporates the externalities ("unperceived costs”fu
that result from an individual's travel, into his cost reckoning process.
Therefore it tends to produce a more efficient (even) distribution of
demand, e.g., smooths out the load factors.

If equipment and/or labor (Goldstein, 1974) restraint€>do not
permit a company to provide a level of serviece during periods of peak
demand comparable to the optimum frequency, then, as is clear from Figure 11,
considerable stochastic delay tolls need to be levied to induce the marginal
passenger to forego his travel or displace it to another period. In this
case the tolls are generally well in excess of the average fixed and
variable costs. They can be put to use in many ways, for example, used
positively as a '"bonus" to induce some passengers to another period
(Vickrey , 1967) (Hedges, 1969) or, within the framework of this analysis
where demand is a fixed input, used to expand the fleet size and/or labor

pool and implement optimal scheduling.
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Under peak conditions a small degree of stochastic delay is
'favored at the optimum because the spill-over increases the otherwise
low load factors of the adjeining slack period. However the taoll is
now very sn{all (of the order of a uniform daily fare) and could go
toward covering operating and maintenance costs (AFC). When demand is
slack, so thét the capacity constraint of the system is not encountered
(there is no congestion) the SRMC and AVC are equivalent, being simply
the user's time and effort inputs. Hence (32) SRMC - AVC = 0, and no
fare should be charged. (Kraft, 1973; Kemp, 1974). For example, in
Figure 11, with a slack demand (Q = 600) the toll is zero. Whereas at
demand levels of Q = 1000 and 1500 corresponding to rush hour conditions,
fares of the order of 10¢ and 18¢ (per peak hour patron) should be charged.

Congestion tolls corresponding to (32) as a function of capacity
and frequency are shown in Figures 12(a), (b), and (c). Note how sharply
these increase with excess demand Q—QO, particularly for the smaller
vehicle at low frequencies. Thus suppose a bus company has a comfortable
surplus of labor but equipment just adequate to provide optimal scheduling
to meet an existing peak hour demand of 1000 patrons, that is, it runs
20 buses per hour. If demand should suddenly increase to 1500 patrons,
then stochastic delay will occur. From Figure 12(b), the company would
need to levy a toll of $7 per head, or, charging only rush hour passengers,
a toll of $8.40 per head, which would raise $12,600 per peak hour. To
restore optimal scheduling an additional 10 buses per hour would be re-
quired, at a capital cost of $10 x 40,740 = $407,740. Hence the number
of levied peak hours to raise this capital would be 407,740 + 12,600 = 32.
In practice, fleet additions could be progressive, and, with each addition,
the toll lowered. These monies could alternatively be used to alleviate

labor restraints if these were limiting service level.
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A further example of fleet supplementation by congestion
tolling is given in Table 3. It may seem unreasonable to charge a
congestion toll of $8 per person. This is because we are unaccustomed
to thinking inAterms of an explicit costing of time and effort. The
dollar value given to v, (%9 per hour) represents in large part the
ardour of waiting.

For a given service frequency, increasing demand (in the presence
of stochastic delay) means that the average patron tends to wait longer
and longer as fully loaded departing buses make less and less impact
on the queue he faces. The fares levied in Table 3, mean that the
(SRMC) price paid (time and effort plus congestion toll) is well above
the price of the cheapest cost service for that level of demand when
the toll would be quite small. The high toll deters patrons (an
alternative activity valued at up to $vv per hour can be found) or in
the context of this analysis, permits a rapid expansion of the fleet.

The tolls of Table 3, apart from being technically difficult
to levy, would be politically untenable and inequitable (Vickrey, 1955,
Abe, 1973, etc.). Further, without marginal cost pricing for all modes
they would most likely lead to a worse than second best outcome (Lipsey
and Lancaster, 1956).

If users of a substitute mode, like car drivers on a congested
highway, are not levied a toll to also equate the price of their travel
to the marginal cost, then bus passengers will be "tolled off" the
system to automobiles, leading to an inefficient allocation of transport
resources. The situation is complicated by the fact that buses and
automobiles usually share a common right-of-way so that there is an

interdependence of the congestion experienced by both modes. But this
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TABLE 3

EXPANSION OF FLELT THROUGH CONGESTION TOLLING

Peak Hour Demand Level 2,000
Capacity of Single Vehicle of Fleet 50
Max (Peak Hour) Frequency

with Existing Fleet 30
Short Run Toll/Patron $ 6.16
Short Run Toll/Patron (levying peak hour

patrons only) $ 7.39
Net Toll Monies per Peak Hour $14,780
Additional Buses Required to minimize

stochastic delay 10
Capital Cost 407,740

Number of Peak Hours SR Toll levied, to
Purchase Equipment 28

2,000

50

20

$ 9.u40

$ 11,28

$22,560

20

$815,u480

36

2,000

75

20

$ 6.16

$ 7.39

$14,780

7

$577,500

39

2,000

75

12

$ 9.80

$11.76

$23,520

15

$1,237,500

52
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is generated disproportionately, as the marginal automobile user makes
a far greater confribution'to highway congestion than the marginal
bus user.

Automobilg users are generally charged a price equivalent to
average variable cost, and in these circumstances, Sherman (1971) finds
that with perfect (and perhaps imperfect) substitutability between
modes (car and bus) the bus fare should be such that the price is below
average variable cost (which in terms of our analysis implies zero fare)
requiring a subsidy. However if a marginal pricing regime is implemented,
and the bulk of highway congestion attributed to the automobile user,
then the congestion toll for a 12 mile trip with optimun flow conditions,
is about $2 per car (Keeler, 1974) which is an order of magnitude larger
than the comparable rush hour fare indicated in Figure 11 for the

(competing) bus mode operating optimally.
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Long Run Equilibrium

It is contended in Section 4, that the envelopes formed by the
average cost curves Figures 9(a), (b), and (c), comprise estimates
of a "restrained" long run average cost: each envelope ‘corresponding
to the long run equilibrium of a (single route) "firm" whose operation
is restricted to one size vehicle. These envelopes are shown in Figure 13.
Notice that the long run average costs do not vary significantly between
firms (vehicle sizes): there is virtually no difference between the
25 and 50 seat vehicles in small passenger markets. This stems from a
disproportionately low capital cost of the standard coach as a result
of mass production scale economies.

Derivation of Long Run Marginal Cost
and Operating Subsidies ‘

. 2
Given a firm operating buses of capacity C, then for demand Q < ¢ Vu .
2TDC

its LRAC is described by (23); otherwise the minimum average cost is

constrained and its LRAC is given by (27).

The Long Run Marginal Cost corresponding to (23) is

9

. . _1 1/2 ,-1/2
LRUC = = (Q-LRAC) = 3 [2TDC v, T7% @

+ v (33)

v

<l

Inspection of (23) reveals that the agency and user components
are equal, hence (33) is the sum of the agency and in-vehicle user costs.
Thus from (23) and (33) we have

LRAC - LRMC = [TDC"’w:! 1/24-1/2 (34)
3

which is the user wait cost.



Similarly when LRAC is a constrained minimum given by (27) then

9 _ TDC
LRUC = 5 (Q-LRAC) = =+ v,

<

Hence from (27) and (35) we have

<

LRAC - LRMC = 5“1

o0

which is again the user wait cost.

Thus the gap between LRAC and LRMC is equivalent to the cost

of the average user's wait (average schedule delay).

(35)

(36)
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A given frequency 1/¢y is optimal at some demand level Q where

SRMC=LRMC. Equating (21) and (33) or (21) and (35), this is seen to

correspond to matching the agency cost with the average user's wait cost.

Therefore the gap between LRAC and LRMC, (34) and (36) is also equivalent

to the agency cost.

The extent to which the money component of LRMC (equal to the toll

portion of SRMC [ 32]), falls short of the money costs of providing service

(LRAC) is made up by a subsidy which is equal to the Agency Cost (AFC).

This subsidy frees the company from charging to match operating costs,

and allows implementation of efficient pricing. Alternatively, if the

transit system is going to be operated anyway, there is no need to charge

the user any more than the costs (externalities) he or she creates, and the

deficit can then be made up by a subsidy.

In Figure 11, these subsidies are:

Q Subsidy/head
600 0 .40
1000 D .28
1500 0.16

Note the presence of significant scale economies.
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The relationship between subsidy and capacity is shown by
Figure 13. As is clear from (34) and (36) the larger the bus, the
higher the subsidy (agency cost).

For example, at a demand of 4000 patrons per hour, these are:

’Cagacigl Subsidy/head LRAC Proportion of LRAC
25 $0,02 $1.17 2%
50 $0.04 $1.08 ) u%
75 $0.08 $1.12 8%

Although the subsidy per head for a 25 seat vehicle is only half
that for a 50 seat vehicle the LRAC is about 10% more expensive and the
congestion toll (fare) would be higher. Note that the 75 seat bus remains
more expensive than a 50 seat vehicle, even at a demand level of 4000. These

and other issues are discussed in Section 4., -

3.5 Multiple Frequency Bus Service with Capacity Constraints and Multiple Stops

The foregoing analyses have been restricted to point-to-point
linehaul conditions, where load and discharge delays do not affect in-
vehicle time. Extending the analysis to include collection at more than
one stop permits a fuller examination of real-world congestion effects,
and provides a foundation for the integrated service considerations in
Section 5.

Estimation of Average Cost with Multiple Stops

and Capacity Constraint
(Algorithm SRAC3)

To derive average cost when there are intermediate stops, we need to
estimate cost components associated with the average jourmey. Both the agency
cost (CC) and in-vehicle time and effort cost (CV) are affected by the
distribution and number of collection points S along the route. It is

shown in Appendix A-~3 that these are given by:
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1 1/¢ S s
ccC == I L L TDC (n,s) (37)
Q n=l s=1 s'=1
and
v, /¢ s s AL
cVv= — L x x q oy (38)
n=l s=1 s'=1 n,s n,s
where:

THC (n,s) is the Total Direct Cost for the nth bus between the sth
and s-1th stops
Vn s is the mean traverse speed (stationary to stationary) between
the sth and s-1th stops,
and ALS is the distance between these stops.
The average schedule delay is:
1/4
E

S
I q ., d (39)
=]

where dn,s' is the schedule delay incurred for the nth bus at the
s'th stop.

Algorithm SRAC3 is an extension of SRAC2, based on (37), (38),
and (39), and includes the capacity constraint.2GCorrections to the
service speed through loading, acceleration and braking have also been
incorporated.27

Loading (and discharge) delays affect the in-vehicle cost (38)
(Mohring's "own bus effect'") and to a lesser extent agency cost (37), and
are present at all levels of demand, so that SRMC is in excess of AVC even
before encountering the capacity constraint.28 However calculations with
SRAC3 confirm that this congestion is very small in the presence of slack

demand, so that the toll is minimal with respect to the peak, when stochastic
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congestion is superimposed. Loading congestion also imposes a con-
straint on the frequency of service with a fixed fleet (Mohring's
"system effect'") affecting the level of stochastic delay congesfion
when fleet sizé is insufficient for optimal scheduling. Further re-

search into the magnitude of these processes is proposed with SRAC3.

Minimum Average Cost as a Function of Stopping Frequency

Figure (l4a) shows the minimum average cost and its underlying
components, for a standard bus in shuttle service with a demand level of
250 patrons per hour., It is assumed that the latter are evenly distributed
over S equi-distant stops, and ride to the termination point.

The minimum average cost with no speed adjustment is also included.
Notice that this declines rapidly at first, hecause average in-vehicle time
is lower if passengers can board closer to their destination. However when
delays through braking, loading, and acceleration, are included, this
rises again because with increased stopping frequency, service speed is

reduced. For a given headway, increasing the number of stops increases the

agency cost because the total direct cost for the journey of the bus is borne

by a smaller complement of passengers, also the time taken to cover the route

is longer. Therefore the best cost trade-off is at a longer headway when
the agency component is lower. That is, increasing the schedule delay
effects a higher load factor and a higher subsidy is required.

Figure (l4a) indicates an optimum at about 4 stops over 2 miles,
or about one every half mile. A more complete consideration should make
a tradeoff with link (walk) costs: for example by assuming a demand

catchment of one quarter of a mile width on each side of the route we
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have estimated the meanxlink cost (in terﬁs of walk at $9/hour) as a
function of the number of stops. The cost tradeoff is made in Figure (1l4b),
and shows an optimal spacing of about one stop every 1/4 mile. -

Repeating the analysis for conditions approximating linehaul
on a freeway, Figure (15), a stop spacing anywhere between 5/8 and 1 mile
is sufficient. However collection points (ingress/egress ramps) are
unlikely to be closer than a mile, and in any case it is better to stop
the bus as little as possible for reasons of safety and rider comfort,
so the one mile spacing is best. This result would also apply to kiss-

and-ride and park-and-ride if the same catchment were assumed.

3.6 Backhauling

There has been an implicit assumption throughout this section
that the demand per route isithe same irrespective of the direction of
the trip. While this is generally true of the off-peak, in the peak
the demand is usually much greater in one direction than the other, so
that there is an imbalance in bus requirements.

There are three possible responses to this problem, any of which
may be exercised in concert: first, those buses not needed again may be
stored in the company yards: and, assuming a perfectly amenable union,
the drivers temporarily discharged. In practice, labor contracts.often
have drivers following private pursuits on company time. There is clearly
a cost here, and one which should be borne by the peak travelers. The
second response is to resort to 'deadhauling," that is return some of
the buses additional to those in regular (revenue earning) backhaul
by running empty over the fastest return path. The brevity of the peak

imposes a restraint on the effectiveness of this recycling, which some
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companies partly overcome by combining deadhauling with substitution of
buses between routes. Again, the costs should be allocated to the peak
users. The third response is to use the buses in charter service,
although the opportunities here are limited., The work of this section
suggests another strategy: converting this excess capacity into an
improved off-peak service, hence providing optimal scheduling.

Since we have not formally analysed the peak-off peak cost problem,
patronage has been assumed comparable in both directions. However, the
inclusion of different inward and outward bound levels of demand is
theoretically simple, but would considerably complicate our answers by
adding another dimension to them: for each inward demand level Q, there
would be an associated outward demand level Q%, and optimal scheduling

would be effected on the basis of both.
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4.0 Long Run Equilibria and System Capacity

In economic theory the long run is distinguished from the short
run by the variability of all factors of production. While in the short
run some factors are fixed, in the long run all factor inputs can be
varied. In the case of bus operations botﬁ frequency 1/¢¥ and vehicle
size C can be varied to adjust system capacity C/¢¥ to the long term
demand Q. In reality, increases to the frequency or number of buses
available to run service are principally made through purchasing buses
(and labor), rather than the minor economies that result from adjusting
service speed V (which apart from manipulating stop frequency is
virtually endogenous) and route length L to increase turn-around.

In section 3.4 we considered a special version of the distinction
between long and short run operation: the firm could, in the long run,
expand its capital stock (system capacity) by variation of frequency through the
acquisition of more buses of the same size. However it clearly makes sense
to also allow for the expansion of system capacity by buying buses of
different sizes. In section 2 we developed agency cost functions for
three size buses: the "standard" 50-seat bus; the 25-seat version of

the Haddonfield 17-seat bus; and the 75-seat articulated bus.

4.1 A Parametric Long Run Cost Relationship

Consider an industry composed of efficient bus companies, each of
which runs point-to-point line haul service over a single route. The jth com-
pany operates a route of length Lj at a service speed of Vj; the demand which
must be met is Qj’ and its patrons have time and effort shadow prices of
v, and v, Suppose that it operates buses of size Cj’ thus determining

3 3
the agency cost TDC [Lj’vj]' If passengers arrive at the starting point
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randomly over the service interval, then the optimal headway is given
by (22) or, if the capacity constraint is encountered, by (26). The
corresponding minimum average costs are given by (23) or (27).- Each
firm can increase its system capacity only by acquiring buses of the

same size,

As the various parameters for each company vary, we have an
industry operating in the long run in the sense that all factors, in-
cluding bus size, are variable., Then if we assume that the cost dif-
ferences among firms varying only in system capacity are attributable to
a random variable, "entrepreneurship," then we might model the industry
long-run cost function by an equation of the Cobb-Douglas type:

LRac = a % Bv¥ 18,
W v

Since we do not actually observe the industry just sketched, we
proceed by simulation of the data required. Each of the parameters is
allowed to vary over the three values noted in table 4. With six parameters
each varied three ways, this is equivalent to observations upon 36 (=792).
mono-route companies. The minimum average cost is calculated from
equations (23) or (26) using LRAC1l, and the Cobb-Douglas-type cost function
fitted by ordinary least squares, since it is linear in the logarithms
of the variables.

viz:

.1087v . 6940 v .1187 . .8776 ,-.7963

LRAC = 2,2155 Q 'y : L v (40)

The coefficients of this equation minimize the sum of the squared dif-
ferences between the actual and calculated values. Given that the R2
value is .9893, it is apparent'thét the fit is excellent. Further, if
the assumption is made that the random variables of "entrepreneurship'
are normally distributed with zero mean and variance 02, and that the

covariance of '"entrepreneurship" among different firms is zero, then it



Parameter

Q (persons)

v (%)

w

v (%)

v
C (seats)
L (miles

Vv (mph)

500

5.00

1,00

25

5.0

10.0

TABLE 4

Values

1000

9.00

2.00

50

10.0

75

2500

12.00

4.00

75

20.0

40.0
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can be shown that the coefficients are all estimated very accurately.
That is, the ratio of the coefficients to their estimated standard
errors exceeds the value of a t-distributed variate at the 99% level of
statistical significance.

We can now estimate the Long Run Marginal Cost:

3 . 3
LRMC = 3 (LRAC + Q) = LRAC + O £] LRAC

= (1 -..1087) LRAC

.8913 LRAC. (41)

This represents a value comparable to averaging the LRMC drawn from (33)
and (35) and accords well with Mohring's (1972) observation of long-
run increasing returns to scale: for as LRMC is less than LRAC, then
LRAC is falling.

Similarly, the subsidy required to provide efficient allocation
of resources, by allowing the price of a trip to be set equal to LRMC,

is just the difference between LRAC and LRMC:

Subsidy = LRAC - LRMC
" = LRAC - ,8913 LRAC

.1087 LRAC. (42)

That is, on average, a subsidy of about 10% of the average cost is
required.

The various coefficients of the estimated long-run'average cost
function can be interpreted as elasticities with respect to changes in
the inputs. Thus for example, the coefficient of -.1087 for Q (the
number of passengers) indicates that, holding all other factors constant,

a 10% increase in passengers will lead to a 1.1% decrease in average costs.
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By the same token, a 10% increase in distance travelled, at unchanged
speed, will increase average costs by 8.8%.

Notelthat we are not arguing that the cost function (40) repre-
sents the long-run behavior of any existing firm, but simply that if
firms were to allocate their fleet according to the optimality rules
derived in section 3, and the passengers had a uniform arrival rate
with time and effort shadow prices of v, and v, then the long-run average
cost would be substantiallv as derived. In this context our approach
has the advantage of not pre-judging the question of the values of v, and
v, which as pointed out in section 2 vary both with socio-economic
group and geographic region.

Finally, it should be re-emphasized that we have not differentiated
between peak and off-peak service. This is an important Aeficiency,
which centers on difficulties in the measurement rather than methodological

arena.

4.2 Linear Efficiency Regions

In sections 3.4 and 4.1 we modelled the individual firm as being,
in a sense, "locked in" to the way it could expand its fleét: it could
alter the number but not the size of its buses. In practice, there are
a number of reasons why this may apply: In the "bus market," manufacturers
tend to specialize in, and capture the market for, different size vehicles
(e.g., Volvo and M.A.N. supply articulated buses, Twin-Coach and Flxible
supply small buses, and G.M. has a virtual monopoly of the 'standard"
coach)., Running a fleet of different makes could lead to problems in the
maintenance division: more spare parts would have to be stocked; and
preventive maintenance schedules would be more complicated. And since
familiarity is an important component of safe driving, there might well

be a cost in this area as well,
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Nevertheless, many companiés do regaﬁd a‘fleet of different-sized
vehicles as feasible. The question then arises: suppose we know the
magnitudes of the consumer shadow prices v, and v, énd consider a given
route of length L and speed V. Then for what ranges of (uniformly dis-
tributed) demand are the various sizes most efficient -~ that is, consti-
tute a least minimum average cost operation?

Given a demand level Q, the exact answers can be obtained by simply
solving equation (23) or (27) for each size. But we are asking a slightly
different question: at what Q will, say, the 25-seat vehicle be as
costly to operate as the 50-seat vehicle? To answer this we approximate
points of equal cost by an iso-cost function that varies linearly with
v, and Q. This is a good approximation, except at very low levels of
demand.

Figures 16a, b, ¢ and 17 a, b, ¢ show the regions of cost
efficiency. As can be seen, given the level of Vo the area in which the
25-seat bus is less costly than the standard bus diminishes steadily as
the trip time %-(the ratio of distance to speed) rises, whilst the
75-passenger articulated bus becomes hofe competitive; but onl& significantly
it seems, at ceiling levels of demand.

The impression that the standard coach is most economical over
a wide range of trip characteristics, demand, and values of v, is rein-
forced by the thin lines on the figures which distinguish the (linearized)
regions where the cost savings with non-standard buses are less than 5¢
per passenger?g It is apparent that in most cases the region of efficiency
for the 50-seat bus and those where it has less than a 5¢ disadvantage
comprehends much of the v, - Q plane. This fact might be of interest to
transit companies seeking to minimize cost while retaining a maximum

of flexibility in operations. That is,to justify purchasing an articulated
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bus it has to be assumed that the route on which it is to be operated

is capable of generating a very large demand, or that its patrons will not
appreciably mind waiting for the bus to come along (i.e., have a low
shadow price vw). If these conditions cannot be envisapged over the

route in question, then it would seem better to invest in the standard

bus.
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5. Integrated Bus Service and Inter-Modal Cost Comparisons

In section 3.5 we modeled the costs associated with multiple-
stop bus service, and widened the analysis to include the spatially
related user costs. We noted that increasing the stopping frequency
of a bus while reducing the mean distance walked to a stop also
increases the time required to traverse the route.

The inclusion of all the time and effort costs of a trip in
the analysis means that the full price of door-to-door travel can now be
evaluated and cost comparisons made with other modes.

Jith the exception of a rail rapid transit, urban transport
technoiogies have a local collection capability. In the case of a bus,
this can take the form of a local or feeder service operating over a
fixed route with frequent stops, or the hybrid dial-a-bus, a recent
innovation, which has no fixed route, simply collecting patrons at their
door. A good feeder or local service would be comfortably accessible

on foot.

5.1 A Framework for Assessing Inter-Modal Travel Costs

The comparisons are to be made for corridor trips, permitting
the inclusion of rail rapid transit. These are considered focussed on
a high density node (or activity center) such as a CBD, in anticipation
that the more general urban trip can be analyzed by relaxing these re-
strictions once the framework is operative.

A trip consists of a feeder or local journey over semi-arterial/
arterial streets and a line haul journey over a freeway or fixed track
facility.aoThe average walk on termination of the journey is assumed

comparable for all modes and is not included.
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When the linehaul mode is rail, there is clearly a transfer and .
change of mode at the beginning of linehaul, as is also the case with
dial-a-bus. However a transfer and a possible change of mode need not
occur with bus or car because the same vehicle can continue its journey
by entering the freeway. In the case of bus, this mode of operation
is termed "integrated" or "throat" service, the Seattle Blue Streak and the
Washington Shirley Highway services being the most notable examples.

To formalize the distinction, suppose the net demand for transport
to destination D via corridor TD is contained within a circular catchment
of radius ry (Figure 18a). The typical trip therefore comprises a local
journey over a distance r, followed by a fixed linehaul journey over distance L.
To estimate the cost associated with the average journey we need to make
an assumption about the variation of demand as a function of radius r
from the feeder "terminus" T: suppose that demand density falls off
uniformly with distance such that it is zero at the ring boundary r = rys
that is:

r
P(r) = PO 1 - I‘_)
(o]

where P° is the demand density at T. This function is shown in Figure 18b.
Therefore the net demand within radius r is
r

r
JP(t)dA = 2nf Pp(t)yrdt = 2mp_ S (1 - L yrar
o ° % Yo

Q(r)

2 2r
™ r f1- —3-!:]
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This linear approximation derives from an increasing area being offset

by a declining demand density.

From the differential calculus relationship AQ = %%-Ar, we have:
27
~ 2 [
AQ 3 PoAr (uu)

which shows that increments in distance r are accompanied by propor-
tionate increases in demand.
R 27 . . .
The total demand is therefore Q = % Po ro which is equivalent

3
3 Q

to a terminus density of Po = Eﬁ-;i;.

5.2 Integrated Bus Service - Average Cost

(Algorithm SRACH)

Consider the above catchment to be served by R equally spaced
radial feeder routes of length ro,al having S equally spaced stops.
Since demand is isotropic, each route has a catchment of size Qn = %
which according to (44) is shared equally amongst the S stops, the
demand per stop being QnA = §£-= %5 . The mean walk distance to each
stop can be obtained by integrating over its catchment area,32 Figure 18c.
If minimization of walk were the sole objective then there would be no
theoretical upper limit on either the number of routes or stops. But
too many routes would lead to very low load factors significantly in-
creasing agency cost (37), while too many stops would slow service
speed, markedly increasing both the in-vehicle cost (38) and the agency
cost. Therefore a simultaneous tradeoffaais needed between the number

of stops and feeder routes on the one hand, and the mean walk distance

on the other.
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A journey by a small vehicle on the feeder leg and a larger
vehicle on the linehaul leg has clearly a higher minimum average cost
than utilization of the same vehicle throughout, if only because the
latter eliminates transfer costs. The problem is further compounded
by the '"mismatch' in vehicle sizes at T, requiring more than one feeder
bus load to fill a linehaul bus. If the linehaul buses were dispatched
on a single feeder-load basis, any cost advantages of using the smaller
vehicle would be eliminated. Yet there are quite significant problems
of synchronization of feeder services to eliminate wait at the feedér
terminus T, or at least to make it as small as pos.sible.sl+ Even then,
it is not clear that this would ensure a minimization of overall costs.

Because this process is hard to treat analytically and its costs
are decidedly suboptimal with respect to throat or integrated service,
we shall not evaluate it further. (The poor cost showings of the small
feeder type bus over the standard bus, as elaborated in sections 3.4 and
4.2, coupled with the need to provide interchange facilities at T, lend
further credence to the strategy of concentrating on integrated service,)

Algorithm SRACH4 (Appendix B-1) is an ad;ption of SRAC3 that
computes the average cost of the typical journey by integrated bus:
Given a point-to-point linehaul distance L and a demand catchment of
radius T, (Figure 18b), it evaluates this cost as a function of demand
level Q (an), headway Y, number of stops S and feeder routes R, via
(37), (38), (39), (24), and (25). Corrections to the service speed on
account of stopping and loéding are also included. By systematically
varying headway, number of stops and routes, the minimum average cost can
be found by interpolation. Note that the frequency on the linehaul leg,

resulting from the convergence of R (identical) feeder routes, is R/Y.
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Sensitivity Analysis

In Figure 19 we have simultaneously varied the number of stops
and roqtes, corresponding to feeder and linehaul lengths of 2 and 12 miles,
and to an hourly demand of 1000 spread over a catchmgnt of radius 2 miles.
In this and all following cases, the shadow price of walk is equated to
the shadow price of wait v, (section 2.2). Figure 19 shows that the
optimal "stop-route™ combination is about nine stops (or one every one
quarter of a mile) and 12 feeder routes, or in our notation, S = 9, R = 12,
Beyond nine stops the minimum cost again increases, because the bus be-
comes appreciab;y slowed.

At thisvstopping frequency twelve feeder routes are close to
optimal over much of the range of contemplated demand: see Figure 20.
Further, with increasing demand the cost minima became flatter, enabling
a wide latitude in the number of feeQer routes without appreciably de=
parting from optimality.

. Figure 21 again illustrates the effect of density, but this time

in terms of breadth of catchment. Stop spacing is held constant and
the number ofrfeeder‘routes varied as a function of catchment radius
r.» for a fixed demand Q = 1000. Not unexpectedly, the higher the
density the lower the cost of meeting the given demand, and the fewer
feeder routes needed.

Average Cost as a Function of
Linehaul Distance .and Demand

Using SRACH, the average cost of integrated service with a
standard bus has been evaluated as a function of demand for thpee dif-
ferent linehaul distances, Figures 22a, b, and c. A demand catchment

of r = 2 miles has been assumed with nine stops, and the number of



F1GURE 19

INTEGRATED BUS SERVICE: RELATIONSHIP OF AVERAGE COST TO
STOP FREQUENCY (S) AND NUMBER (F FEEDER ROUTES (R).

PARAMETERS

r 2 mi. L = 12 mi,

o

vlz 40 moh Vf = 25 mph

max

v = §2,00 v,T $9.00

5 L

C = 50 Q = 1000/hr

8=2.5 secs,  ag= 1500 mph?

Demand = uniform




FIGURE 20

INTEGRATED BUS SERVICE: RELATIONSHIP OF AVERAGE COST TO
LEVEL OF DEMAND AND NUMBER OF FEEDER ROUTES (RD.

PARAMETERS
r=2mi. L= 12 mi.
o

V1= 40 mph Vf = 25 mph
max

v = $3.00 v = $9.00
v v

s =9 C = 50

a = 1500 wph? & = 2.5 secs.

Demand = uniform
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F1GURE

INTEGRATED BUS SERVICE: RELATIONSHIP OF AVERAGE COST TO SPATIAL
DISPERSAL OF DEMAND (r,) AND NUMBER OF FEEDER ROUTES (R).

7
6 t
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L =12 mi. C =50
v = $3.00 v = $9,00
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0 = 1000/hr
Demand = uniform
4 b
3
F

w
=
=
]
o
=

36




000y 000€ 0002

0007

sng [NEYIUTT + IPTH-B-TWIQ

Sng TNBY2UT] + Ipry-pue-ssSyy

SNY [NBYIULT + IpTY-pur-yleg

187 3>2BdmOD-qng

/

18) piepuely

LYy
b Sng 4
Pas
o

TYm oz S ‘T g9 = 7]

A A
00765 = & 00°€s = A

SYALINVEVJ

TAINENOP TNVHINIT “ W oy = ONeW3AA 0 13A40 40

lLwnd v
5S¢ SNOJLYNISWD) TYQOW JAILYNAILIY 40 S1500 I9VIZAV W ITH W

e 3anNnolJ

uye
¥3V

(%)



000y 000¢ 00T 0001 00§

sng TnRYIUTT + PPry-e-|k LU

SNE TNBYIUTT 4+ IPTY-~pur-sinyy

SN TNRYBUTT + apTy-pur_ying

|llllllllll|lll|llll

ie) 312edwnod-qng

sn
q Pay mnwwu
ur

1e) piepueis

Lay,
L
g 9p,,
9,
d

LI AR SR © B A S |
L3
00765 = 2 00°€$ =&

SHALINVEVL

TASNGNOC MNWHENIT TIW 1 - GNWW3G 40 13AFT JO0 NOILONNA ¢
SY SNOTLYNIGWDD TVADW 3JALLYNYZLTY 40 SLSOD FIVUIAV WWINIW

qu 3I¥dN9I1 4

@ P



" TMOYeN]] + pTY-puv-yiwg

Sng vou-uuuunu

aw) 3owdmod-qng

ae) paepuwig

“Tu g 02 ‘TR 8T =1
”- A

00765 = A 00°€$ = A
S¥ALINVIV

SAINANOM WHANIT " IW 81 - QNWW3EQ 30 13AF1 20 NOILONNZ Y
SV SNOILWNIBWOZ VAW FATLVNYALTY 40 S1S0D IIVUIAY WIWINIW

W FANSD 14




99
feeder routes optimized, which often corresponds to R = 12. On the local
leg a maximum speed of Vf = 25 mph and an acceleration/deceleration
of a = 4000 mph2 has beeza:ssumed with a loading time of § = 2.5 seconds
per passenger. On the linehaul leg, a speed of Vl = 4O mph has been used
which corresponds to rush-hour conditions.35

Notice that integrated service is relatively expensive at low
demand levels, for to avoid small load factors the catchment per stop
is large, making for a higher walk cost. The scale economies in Figure 22b
are about double those observed over a comparable distance for point-to-
point linehaul in Figure 13.

Figures 23a, b, and ¢ on the other hand show minimum average cost
as a function of the linehaul length. Since on this portion of the journey
costs vary in direct proportion to distance and time, average costs in-
crease linearly as linehaul becomes the major component of the journey.

As expected, the subsidy payable increases with the length of the route,
but the magnitude of the scale economies observed above reduce its value

substantially when demand reaches the 4000 patrons per hour level.

5.3 Alternative Modes - Average Costs

We come now to the identification of other modes, or modal

combinations, that provide alternative ways of making the above trip,

and the evaluation of the average cost associated with a typical trip by each

mode within the framework established in section 5.1.
The following "alternatives'" have been selected:
(a) automobile

(b) parksand-ride + linehaul bus

mixed

(¢) kiss-and-ride + linehaul bus
mode

{d) dial-a-ride + linehaul bus

(e) feeder bus + rail rapid transit



FIGURE 23a

MINIMUM AVERAGE COSTS OF ALTERNATIVE MCDAL COMBINATIONS AS
A FUNCTION OF LINEHAUL DISTANCE - LOW LEVEL OF DEMAND.

PARAMETERS
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FITGURE 23b

MINIMUM AVERAGE COSTS OF ALTERNATIVE MODAL COMBINATIONS AS
A FUNCTTION OF LINEHAUL DISTANCE - MODERATE {EVEL OF DEMAND.

PARAMETERS
v = §3.00 v = 59.00
\' w

0 = 1000/hr r= 2 mi.




FIGURE

23c

MINIMUM AVERAGE COSTS OF ALTERMNATIVE MODAL COMBINATI(NS AS
A FUNCTION OF LINEHAUL DISTANCE - HIGH LEVEL CF DEMAND.

v =
v
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(a) Costs of an Automobile Trip

In estimating the cost of the average journey by automobile
it is important to distinguish between jourmey characteristics as they
apply to bus and to car. The bus, as a mass ridership vehicle, starts
at some terminal point:(r = ro) and runs into the feeder "terminus" T,
collecting passéngers en route. Clearly the agency and in-vehicle
components of average cost, equations (37) and (38), are larger and smaller
respectively than those incurred if all passengers were to load
at the starting point. That is, the average trip length is less than
the vehicle trip length.

However in the case of car with single occupancy these two

lengths are identical, and are given by:

r
= o
= 2
T fo rdQ , but from (u44), dQ = 37 Podr
r
o
fo de
Therefore, I = fo rdr = r
7 “
J © dr
o

That is, the mean distance driven to the feeder terminus T is half the

radius of the demand catchment. Hence the average automocbile trip com-
prises a drive of r°/2 miles at a mean speed Vf mph over local streets,
followed by a drive of L miles at a mean speed %; mph along a freeway.

The associated variable costs can now be evaluated.

Drawing on the vehicle-mile cost estimates of Bay Area roads
given by Keeler, Small and Cluff (1974), disaggregated figures for
arterials and fireeways with standard and sub-compact sedans are given
in Appendix A-4. A speed of 25 mph (Vf) has been assumed on the feeder

leg (arterial) and 50 mph (Vl) on the linehaul leg (freeway).



Including time and effort inputs, the net variable costs are

r v
AV = 2 -
A\'Cstd 0.1617 5t 0.128‘4 L + 5 [r‘o + L] (46)
r‘O vV
] = .12 iy . —_— 4
and /\\«CS/Cpt 0.1 7q 5t 0 0915 L + 5 [PQ + L] (47)

=

Lxternalities of noise and air pollution ($.0048/vehicle mile) and noise have bee

omitted, since these are not included with buses.aaln both cases, the

costs are a very small proportion of net vehicle mile costs, .ind even allowing
for disparities between buses and cars, would not affect comparability.

The fixed costs are those of parking:37 using a 6% interest rate

Meyer, Kain and Wohl (1965) estimate an annual cost of $388 for a low
(land value) CBD parking lot. This is equivalent to $1.06 per day

(per round trip) or $0.53 per one way trip. The equivaient costs for

garage (medium land value) and fringe (very low land value) parking are
$0.97 and $0.27 per one way trip, respectively. Assuming that destination D
is a Central Business District and that the average motorist parks in the

low CBD lot, then the degree of walk to the final destination is roughly

comparable with that for the use of bus and rail. Alternatively, the

same cost is incurred by fringe parking and making a local transit trip

(27¢ plus 25¢).

Assuming that the parking costs are the same for all size auto-

mobiles, and there is no depreciation of the vehicle while it is parked,

then the average fixed costs are AFC = 0.53. So the average cost is:

r V.
= 2 _—
AC_ 4= 0.53 + 0.161, ==+ 0.128 L + 5 [r_ + LI (48)
and
r .V
AC = 0.53 + 0.127_ 5>+ 0,091, L + v [r + L) (49)

s /ept q 2 5
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Note that these are equivalent to minimum average cost estimates,

and that the standard and sub-compact cars provide upper and lower

bounds respectively for the costs of automobile trips.

(b) Costs of a Park-and-Ride + Linehaul Bus Trip '

This park-and-ride alternative entails an automobile trip of
length ;9», a transfer of time Ot’ and a linehaul bus trip of Length L. \'
As the transfer is carried out in suburban locations, we
can assume parking costs equivalent to fringe CBD parking: $0.27 per ?
one way trip. Average costs for the automobile trip component are there-

fore given by adding this figure to (46) or (47) with L = 0, viz

v

s

- o,
Acstd = 0.27 + 0.161, 57 * 55 To (50)
ro Vv i
and Acs/cpt = 0.27 + 0.127, 7 * 55 %% (51) !

The transfer time for the mean trip is somewhat arbitrary: we shall settle
for Ot=3 minutes. At a shadow price of v, this amounts to a fixed cost
of 3/60 v, dollars.

It is reasonable to suppose that arrival at the terminus is quite
random so that the bus component of average variable cost is simply
deseribed by (23) or (28). Average cost is then the sum of these various

38
component costs.

(c) Costs of a Kiss-and-Ride + Linehaul Bus Trip

This situation is more complicated. The car makes two round
trips to the terminus T per day, or two trips per commuter trip. While
its operating costs can be wholly allocated to the commuter, there

is the problem of the time and effort costs, etc. incurred by the
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ferrying party. One way out is to assume that the benefits derived
from having the use of the car during the day equal or exceed these
costs in value (willingness to pay) and therefore do not enter into the
evaluation of the commutation trip. Average costs for the automobile

portion of the journey are therefore similar to (50) and (51) viz:

r v -
- . 2,
Acstd = 0,27 + 2 0.1617 3 + ) Po (52)
or
I‘O vV
Acs/cpt = 0.27 + 2 ¢ 0.127g 5 + 5 ro (53)

In this case transfer time is assumed halved because the commuter is

dropped near the bus or train station entrance at T. Under an assumption

of random arrival at this point,average costs are evaluated as for park

and ride.

(d) Costs of a Dial-a-Ride + Linehaul Bus Trip

Another link mode is dial-a-ride or demand-activated service.
Average costs here are even more difficult to evaluate because of
variable route and wait time. Utilizing cost data of Clemons (1974)
relating to the operation of the Haddonfield system (Appendix A-5), the
total direct costs (TDC) have been estimated as

r

TDC = 15.1% =2 + 0.451_ V_' (54)
v, 2 'f

where Vf' is the mean speed of the bus.
It must be emphasized that these vehicle-hour and mile costs
are no more than first round approximations containing a circuity factor

of 1.5 to account for the meandering nature of the service cohpared to

its fixed route counterpart.
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The average cost for the dial-a-ride portion of the journey is

e

therefore
r
TDC o
AC 2 — t V. o
a v Ve (55)

where q is the mean number of passengers per bus. If we assume that
having once requested dial-a-ride service the commuter can occupy his
or her time profitably, then we may exclude wait costs. In the
special case of subscription service the patron knows when the bus will
arrive, and here the wait is clearly close to zero. There is also a

problem of relating q to the demand level Q; we make the following assumptions:

Demand density q
"light" (Q = 500/hr) 3

"medium" (Q = 1000/hr) 8 (half-full)

"heavy" (Q = 4000/hr) 17 (full)

The remaining portion of the journey has costs identical to those of

kiss-and-ride line haul bus.

(e) Costs of Feeder Bus Plus Rail Rapid Transit (BART) Trip

Pozdena (1974) has established a similar framework to that out-lined in
section 5.1 for evaluating optimal costs associated with an average journey by
feeder bus and BART. Drawing upon his work we have a comparable minimum

average cost estimate of the form

_ ~-1/2 -1/3 -1
AC . Fa+ bQ + cQ + do (56)

where the first term corresponds to the transfer and net invehicle

time and effort costs; the second to the agency and wait costs on the
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linehaul leg; the third to wait, walk and agency costs on the feeder

leg; and the fourth to the fixed rail costs. The values for these

parameters as a function of linehaul distance are given in Appendix A-6.
Note that in (56) there is no matching of system capacity between

the feeder buses and trains, Becéuse 6f shunting problems, BART does

not have the capability of adjuéting train lengths”fo meet changing demand.

5.4 Inter-Modal Cost Comparisons

It is now possible to make some cost comparisqns'between in-
-tegrated bus service and these alternative modes. The schematic frame-
work, although abstracting from the cartesian character of local street
grids, does not significantly distort relative cost levels, since path
lengths of the various modes are comparable in both situations. This
is a partial equilibrium analysis: each mode is assumed to function
optimally independently of other modes.

In Figures 22(a), (b), and (c) costs of these four alternative
modal combinations are shown with integrated bus costs for three dif-
ferent linehaul distances. Note the significant returﬁs.to scale of
both integrated bus and feeder bus-BART services, especiglly in the case
of the latter where there are high fixed costs of trackage, signalling,
stations, etc. By comparison, right of way costs attributable to buses
when they share roads with automobiles and trucks are minimal (seétion 2.1).
One factor making the BART combination more expensive is the cost of
transfer which is avoided with integrated service.

While feeder-bus+#fixed rail is extremely expensive at low levels
of demand, it becomes more competitive with integrated bus servigg.as

demand climbs, but even at 4000 patrons/hour it is still a long way from
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breaching the cost gap. Rough calculations indicate that integrated
bus is still cheaper at 20,000 patroné/houruo over a route of 18 miles.

Except over thé shortest distance (6 miles) where transfer cost
is important, park-and-ride + linehaul bus is consistently cheaper than
the automobile alone: one gets the best.of both worlds since a costly
walk is eliminated and the scale economies afforded by bus are reaped
over the major portion of the journey. Kiss-and-ride + linehaul bus and
dial-a-ride + linehaul bus are cheaper again, but these are "softer"
estimates. It is likely that dial-a-ride is costlier at higher levels
of demand than indicated, since the assumption of random arrival at
T tends to break down as close to full buses produce marked "quanta of
arrivals," leading to a capacity mismatch problem. Note that inte-
grated service is cheaper than the least cost auto mode (sub-compact)
at higher levels of demand .and longer distances, since a finer route
coverage is possible, thus minimizing walk. 7n ct‘her words, the
virtual elimination of the appreciable disutility of walk at higher
demand levels makes integrated service strongly competitive with the
car which (still) incurs.a significant parking cost at the (CBD)
destination.

To gain a clearer undérstanding of the relationship of costs to
linehaul distance we have superimposed the estimates for alternative
modes on Figures 23(a), (b), and (c). These costs generally increase
linearly with distance: in the case of Feeder bus +‘BART this is most
dramatic at low demand when the large fixed rail costs are divided
amongst the few passengers. The rail-based mode is never competitive
with any other option except standard car, and only then at more
significant demand levels over a long haul (> 12 miles) which resembles

an intercity service.
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At low demand (500 patrons per hour), Figure 23(a) shows that
the automobile (especially the sub-compact sedan)is cheaper than park-
and-ridetlinehaul bus and dial-a-ride+linehaul bus for distances up to
about five miles because it has no transfer cost. This conforms with
consumer perceptions of cost, since over shorter distances direct
dbiving to the destination is preferred. TFor longer journeys, the mixed-
mode options based on linehaul bus are the most economical. The in-
tegrated bus is not competitive because of the sparse route coverage
necessary to maintain economical load factors. Increasing the linehaul
speed from 40 to 50 mph does not bridge this gap. With demand set
at moderate levels, Figure 23(b), the cost hierarchy is more-or-less
maintained, although the range over which the sub-compact automobile is
competitive is reduced. Both kiss-and-ride and dial-a-bus options are
cheaper than park-and-ride, basically because of a. smaller
transfer cost.

Finally, at high demand (Figure 23c) all costs have converged
quite markedly. The mixed-mode options based on linehaul bus are still
‘generally cheaper whatever the distance. However the higher density now
brings integrated service into strong competition with the sub-compact
car at distances exceeding 10 miles, and even rail rapid transit overtakes

the standard car beyond 12 miles.

5.5 Policy Implications

Some policy conclusions can be drawn regarding transportation
for metropolitan areas: if we suppose that patronages of 500, 1000 and
4000/hour are typical of the demand for CBD travel from corporate oriented,
outer, middle and inner distance suburbs, then in the case of a large

city, distances in excess of twelve miles can be interpreted as ''outer
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suburbs" (Figure 23a), distances between five and 12 miles (Figure 23b)
as '"middle sﬁburbs," and distaﬁces less than.five miles (Figure 23c) as
"inner suburbs."ul

The.mixed—mode'linehaul bus thions are the least expensive

for journeys from middle and outer suburbs, and (with the exception of

kiss-and-ride) are displaced by the sub-compact car for journeys originating

in the imner suburbs. However, if congestion costs are included in the
automobile estimatés then fhere are iﬁdiéations (Keeler, 1374) that these
mayrbe sufficient, even in the case of small cars, to raise costs above
the park-and-ride linehaul bus option.

Apart from the preceding consideration, these findings confirm
the perceived costs of CBD commuters: over shorter distances the car is
utilized; over longer distances they are inclined to park-and-ride.

What comes out very clearly is the importance of the auto-
mobile, at least as a link mode, in making @& minimum cost journey to
a high density activity center. For lower density activity centers
(where parking costs are allocatable at the CBD fringe rate) the car is
less gostly up to moderate distances -(10-12 miles). Its superiority in
trips linking low density areas to other low density areas is already
well known. The role of (subscription) dial-a-ride as an alternative
link mode requires a more thorough cost study before similar definitive
conclusions can be drawn. But in higher density settlements, it is clear
that some investment in integrated bus service is warranted over dial-
a-ride service.

Finally in view of the burgeoning controversy of rail rapid
transit versus bus systems, it may be useful to examine the highway lane

capacity required by a throat bus system serving different districts, as
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an altefnative to a feeder bus plus BART service. Imagine‘three
settlements: high density (6 miles), modérate Aensity (12 miles) and
low density (18 miles) centered on a transportation corridor as shown
in Figure 24%a. Each settlement is served by an (optimized) integrated
bus service which (by application of SRACH) produces the indicafed
freeway fiows, with an aggregate of 408 buses'pér hour. Such a voiume
can be échieved with an exclusive lane'operation, being well within the
theoretical upper limit set by the Highway Capacity Mannual (HRB, 1965).
This fécility would only be a necessity over the inner six miles of the
freeway since further out, the flows are relatively light. Note too,
that it would be possible to operate far fewer buses without greatly
departing from 6ptimality.

Figure 24%a also records the average costs for typical journeys
from each settlement by both integrated bus service and feeder bus
plus BART. Overall, the rail alternative is 50% more expensive than
the bus. In Figure 24b the analysis is repeated on a high density
settlement transport corridor. Note that bus flows remain within the
feasible realm, while the rail alternative is still 30% more expensive.

From the above, it is clgar that integrated bus service can
match rail in meeting typical.demands for corridor transportationat
a much cheaper cost, while maintaining flexibility."‘2 The performance of
the bus rapid transit ways proposed for Atlanta and other U.S. cities,
will be watched with keen interest (A.M.A., 1970; MARTA, 1973)."‘3

In conclusion, a word of caution is in order regarding inter-
pretation of these results. First, they are dependent upon Bay Area

estimates of the shadow prices of wait, in-vehicle time and effort, etc.,



FIGURE ®Ma

OPTIMAL TNTEGRATED SERVICE FRQM SETTLEMENTS LOCATED
ON A TRANSPORTATION CORRIDOR.

PARAMETERS TOTAL COST
V]= 40 mph v = 25 mph Bus $12,580
nax (BART  $18,7730)
v = $3.00 v = $9.00
v W
¢ = 50 § = 2.5 secs.
S=9 a= 4000 mph? (Feeder Bus + BART Average Cosl

in parenthescs)
Demand = uniform

24 routes 12 routes 12 routes
12 bph/route 6 bph/route 4 bph/coute
$1.82/patron $3.20/petron $4.20/patron
($2.30/palron) ($4.85/patron) (59.39/patron)
rg=2mi.
D
L 288 tph ] 72 boi f 48 bph r
’ 408 bph
D) e
Q=4000/1:r Q=1000/hr Q = 500/hr




FIGURE 2l

OPTIMAL INTEGRATED SERVICE FRCM (HIGH DENSITY) SETTLEMENTS
LOCATED ON A TRANSPORTATION CORRIDCR.

PARAMETERS TOTAL COST
Vi= 40 mph V=25 mph Bus $26,048

max
v = §3.00 v = $9.00 (BART  $37,000)
v . v .
C =50 § = 2,5 secs.

§s=9 a = 4000 mph (Peeder Bus + BART Average Cost
in parentheses)
Demand = uniform

24 routes 12 routes 12 routes
12 bph / route 11 bph / route 10 bph / route
$1.82 per patron $2.08 per patron $3.14 per patron
($2.30 per patrom) ($3.10 per patron) ($3.85 per patron)

288 bph

120 bph

540 bph

i )
CBD net

Q=4000/hr Q=4000 /hr Q=4000 /hr
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and these could vary with geographic region, although the relativity
of the costs would be unlikely to be upset. Secondly, there is a
measure of arbitrariness in the transfer time, and hence transfer cost.

Finally, modal interactions are not explicitly accounted for: the

approach is that of partial, as opposed to general, equilibrium analysis.

The results should therefore be viewed as first round.
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6. Conclusions

In this report -we have constructed a supply-oriented framework
of bus operations, and used it to 'quantify" the factors that affect the
short- and long-run costs of fixed route service. This framework has
included the commuters' time and effort inputs into the production
process, factors that transit companies do not formally incorporate
into their scheduling considerations. Hence section 3 has indicated
that headways during the off-peak should be significantly‘shorter than
typicaliy supplied. Sﬁch a measure would also reduce dead hauling and
under utilization of crews.

Further, an analysis of stochastic delay shows that marginal
cost pricing of point-to-point linehaul with standard buses to require
a zero fare in the off-peak and a fare between 10 and 20 cents (with
optimal scheduling) during the peak. Departure from optimality during
this rush hour period raises average cost considerably. When this
corresponds to an under-supply of buses, stochastic delay effects are
generally very significant, and the short-run marginal cost fare is very
steep -- usually more than an order of magnitude greater than the optimal
rate above. For a service operating both in short- and long-run equili-
brium, the subsidy payable should be about 10% of the average cost of the
operation. This is similar to other estimates made for public transit
(e.g., Vickrey, 1955).

The peak fares above wouid be raised somewhat if intermediate
stops are permitted, becéuse the mérginai usef would impose additional
delays on his or her fellow travelers Sy alighting or boarding ("own bus

effect"), as well as slowing the return of buses to make other commuter
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runs (";ystem effect"). However if‘highway users are not similarly
congestion-tolled, a second-.est solution would require a fare tﬁat
makes the price less than the marginal cost. In this case the optimal
values above provide an estimate of the upper bound.

If transit in its own right is to be an effective competitor
with door-to-door modes, it is important that agencies make a straight
tradeoff between their own costs and all the consumer'. time and effort
costs, including wait and transfer. This means that both the spatial
density of routes, and the schedule frequency on tﬁese routes, need to
be considered simultaneously. This is precisely what has been done in
section 5, where it was shown that optimized integrated service can be
cost-competitive with the automobile. This work suégests that fhére is
asingle combination of route coverage, stop spécihg and headway,'con-
stituting an optimal service for a given area.

Perhaps unexpectedly, the automobile fares well in cost terms,
especially as a direct commute vehicle over the short haul or as a link
mode to a linehaul bus operating express service on a freeway. This is
in large measure due to the fact that it incurs no walk ‘(or transfer)
costs. However if priced to take account of its significant spillover
costs of highway congestion, it would lgse its competitive edge as a
direct mode, in the peak, but would remain one of the cheaper means of
making off peak trips.

On the other hand, the rapid rail combination does not show up
well at all. Even in high density corridors the bus alternative has a
sizeable cost advantage. Accordingly, there would seem to be very few
cities in North America where transit flows could not be handled by a
bus system. In practice the cost'disadvaﬁtage to rapid rail is further

accentuated by its emphasis on high speed linehaul service to reduce



run time, which is at the expense of the time required to join the
system. This strategy seems misplaced .in view of the fact that riders
put a higher price on their out-of-vehicle (link) time than time spent
in the vehicle.

" 2ut aside from their cost advantages over rail, buses have a far
greater operational flexibility. Whereas investment in rapid rail systems
builds in a high degree of rigidity, .us systems are adaptable to changes
in urban development, travel patterns and new transport technology. In
addition optimal service levels can be derived by an interplay of both
theoretical considerations.and field experimenfation, in a way that is
clearly not possible with rail. Buses are also able to combine both the
feeder and linehaul functions.

3ut although it may be conceded that bus systems are more
economical and flexible, the objection is sometimes raised that they are
a ''second class transportation" (Wall Street Journal, 1974); with comfort
characteristics inferior to those of rapid rail coaches. In the Bay Area
the comparison would be between the rather plain buses used by AC Transit
and the plushness of the new BART cars. However the recently formed bus
system operated by Golden Gate Bridge Highway & Transportation District
has demonstrated that this image can be reversed. The district runs
a fleet of standard coaches with luxury seating and pleasing decor'\“‘l
which appears to have met with success in appealing to the high income
market.of Marin and Sonoma counties. The costs of upgrading a system
to this standard do not appear excessive: Appendix A-7 shows that the
additional expense of running Golden Gate buses in lieu of AC buses
amounts to, on average, only 5¢ per passenger with optimal scheduling.
iience allowing for this improved comfort in our calculations, would still

leave buses with a competitive edge over the rail alternative.



Lately both small and large (articulated) buses have ‘been
catching the eye of transit companies. There appears to be a widely
held belief that by buying these non-standard size. vehicles, operational
efficiency could be improved. This is not supported by our results: ex-
cept for extremes in demand, no economies derive from the operation of
small or large buses over fixed routes in lieu of_standard size buses.
This is in part the result of a disproportionately lower capital cost
of the standard bus, ar}sing from mass production scale economies. While
it is true that similar price advantages could accrue to other size
vehicles, should a very strong market develop for them, this is in the
realm of the hypothetical. The addition.of different size (brand)
vehicles to a fleet may alsé lead té inefficiencies in maiﬁtenance and
safety. As small buses cannot effectively be used on arterial routes and
large buses on feeder service, Huying non-standard buses would therefore
seem to be unnecessarily restrictive while offéring no cost advantages.
But we should add the qualification that these findings are no better
than the quality of the available cost data. With more and better data
our conclusions would be surer.

In an age of decidedly scarce transportation resources it is
important that some basis for deciding among competing modal altermatives
be found. We have proposed and explored an economic model of the provision
of bus transit services, and have broadened the framework to furnish such
intermodal cost comparisons. It is our feeling that an economic analysis
can succeed in clarifying many of the issues inwvolved, even if it cannot,
without some indication of society's preferences, solve them. It is to

this essentially preliminary task that .we hope to have made a cqntributiqn.
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APPENDIX A-1

Multiple Frequency Bus Service -
Derivation of Average Frequency Delay and Ridership

(ALGORITHM SRAC1)

(1) The frequency delay in the nth inter-bus interval is the weighted

average over g groups, Viz:

Where di n is the frequency delay of ith patron group in nth inter-val:I+5
2

né
di n* I (n¢-T) p(i,T) AT
’ T=(n-1)¢p+1
né
L p(i,T) AT
T=(n-1)¢+1

in which
n is the inter-bus interval,
¢ is the number of integration intervals of duration AT per
inter-bus interval
p(i,T) is the probability of arrival in the (integration)
interval T of a patron of the ith type
and né
4% n = Q; ) p(i,T) AT is the number of arrivals in the
T=(n-1)¢+1

nth inter-bus interval of the ith patron type.
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The average frequency delay is therefore the frequency delays

for each bus, weighted according to the number waiting in each inter-bus

interval.
_ /v ( g ). d
d(y) = L L q .
n=l i=1 1of "
1/ g
r {Z q. }
n=1 i=1 0
1 /Y g
= = I I gq _d
Q n=1 i=1 1% 1.0

Where Q is the total number of riders( patronage) of the service‘.“6

The average number of passengers per bus is therefore

. /v g
q() = ¢ L I q.

n=l i=1 o0
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APPENDIX A-2

Multiple Frequency Bus Service with Capacity Constraints -

Derivation of Average Schedule Delay and Ridership

(1)

(ALGORITHM SRAC2)

The schedule delay of the boarders of the mth bus, who

arrive in the nth inter-bus interval, is:

=d + {n-m} ° {¢°AT} ,
m

{n-m} - {$AT} is the '"stochastic delay,"

d

N,
where:
and

d

m

d,

i,m
and has the

is the '"frequency delay."

is the associated frequency delay of the ith patron group,

form of di 0’ except that the summation commences from the
k]

integration interval beyond which arrivals miss the next scheduled

departure.

Therefore the schedule delay of the boarders of the

nth bus is represented by the weighted average

n'
= L q
mey MM T,m
n'
I q




126
where the constraint n'< n applies, such that

n ]

L q <cC

m=l DM

in which C is the bus capacity, and UGome the number of boarders of the
s !
nth bus who were arrived in the mth interbus interval, afterwards a, m=0,
b

for all n' for which total absorption takes place, and if a residue for

q

n.n' results, then it is reset to
k]

SRAC2 commences allocation from the first (interbus) interval and forms
a patron queue with priority on a "first-come-first-served" basis.
n'
That is in: L UYom S C the allocation/addition is from the
s

m=1

first interval (m=1l) to the n'th interval.

The average schedule delay is the individual schedule delay of the

boarders of each bus, weighted according to their respective numbers.

_ /¢ n' 1 /¢y n! J
i.e.: = = = I L
e d(w? nfl {i-l qn,m} dn Q n=1 m=1 qn,m o.M
1I/¢ nf
r I
n,m

n=1l m=1
where Q is the nuﬁber of boarders (riders).u7
Finally the average number of passengers per bus is
_ 1/y n!
a) =¢ I T q = Q

n=l m=1 oM
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APPENDIX A-3

Multiple Frequency Bus Service with Multiple Stops
Derivation of Agency and User Costs.-

When more than one stopris introduced, the need is to estimate
cost components associated with the average journey. Both Agency and Consumer
(in-vehicle time) costs are affected by the distriﬁution and number of
collection points along the route.

In general, thig overall average trip cost is given by
/¢ s

Cy) = I I q

S
X c
n=l s'=1 =

szs! n,s

Ol

n,s'

Wherein Ch g = some specific cost incurred with the nth bus from the sth
bl

to the s-1lth stop,

and qn,s' = the number of passengers boarding at s'th stop.
g
viz: = I ;
qn,s' io1 ql,n,s'

(1) The agency cost per trip from s'th stop is experienced by Q. o boarders
. ’ B

i.e.,

C s = TC, /1

n,s !

n,S

Hence substituting in the general equation above we get

cc(y)

"
1
[ ]
[ ]
i1l 1w
-3
S
!
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(2) The in-vehicle cost component from the s'th stop is

v, /v S S
cV(Y) = — L I gq L =
Q n=l s'=1l n,s' szg' vn,s
v 1/y 8 s AL
= L LI a )
-~ n=l s=1 s'=s1 ’ n,s
Where
AL,
vn 5 vn s'
s s 0 v
s + qn,s §
v AL v2
wherein O , = max + = , for AL , < max .
s a v s
max o
ALS, 1/2
otherwise, @ _, = 2 ,
8 a

¢ is the loading time per passenger,

a, is the acceleration/deceleration of the bus,

\ is its maximum speed, and
max

ALS, is the distance between s'th and s'- 1 th stops.
(3) Average frequency delay cost. This does not involve an averaging
process with respect to an average journey.

The frequency delay in the nth interbus interval over the

overall route (viz, over S stops) is

qn,s' dn,s'
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Then the weighted average over all interbus intervals (buses) reduces to

/e s
I I q d

]
n=1s'=] ™5 S

d(y) =

Ofr=

Hence the Average Frequency Delay or Wait Cost is

- v, /¥ s
Cs(y) = T z L q d

m,s' n,s'
n=l s'=sl 7 *

SRAC3 embodies all the above features with the capacity constraint

of SRAC2.
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APPENDIX A-u

Automobile (Variable) Costs

Source: Keeler, Cluff and Small (1974).
manuscript by Small, September 1974.

Mileage Costs (per Vehicle mile)

Standard Car Ffeewaz - SOEEh
Maintenance $. 0Ly
Accidents .0150
Roads .0195
Capital . 0495
TOTAL .1284

SubcomEact Car

Maintenance $.0282
Accidents .0205
Roads .0195
Capital .0233

TOTAL .0915

Revised in an unpublished

Urban Arterial - 25mph

$.0567
.0360
.0195
.0u95

.1617

$.0360
L0491
.0195
.0233

.1279
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APPENDIX A-5

Dial-a-Ride Costs (Haddonfield System)

Source: Clemons (1974)

Hourly Costs

Conducting Transportation $ 9.65
(included dispatch, drivers
wages, etc.)

Advertising Ly

$10.09/ hr.

Mileage Costs

Fuel and 0il $ .0308
Claims L0475
Maintenance .1125
Capital (at 6%) .1100

$ .3008/ mile

To adjust for the fact that both average trip length and duration
are subject to considerable uncertainty with dial-a-ride service (viz:
its meandering nature) the above costs are inflated by a circuity factor
of 1.5 (MITRE, 1974) so that hourly costs become $15.14 per hour and
mileage costs, $0.4512/ mile.
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APPENDIX A-6

Feeder Bus + BART (Minimum) Costs

Pozdena (1974) has set up a framework similar to ours for optimizing
the provision of BART services, and like us, trades off agency and
consumer (walk, wait and in-vehicle time) components. Theresult of his
optimization procedure is an equation of the form

/2 + -1/3 + -1

. _ -1
ACmin /hr of operation = a + b Q c Q dQ

where a, b, ¢ and d are determined by the linehaul distance of the trip.
The first term in this equation is the transfer and linehaul and feeder
in-vehicle time; the second accounts for the linehaul wait and agency
cost; the third represents the feeder wait, walk and agency cost; and
the fourth term is the fixed rail cost. Since BART routes are fixed,
the third term does not vary with linehaul distance. In our comparisons
we are interested in trips of 6, 12, and 18 miles: for these cases the

coefficients are as follows:

Coefficient
Distance a b c d
6 mi. .70 31.00 15.40 570.00
12 mi. 1.15 44, 30 15.40 1140.00
18 mi. 1,60 54,30 15.40 1710.00

Given these values, the minimum average cost of a BART trip can be

calculated.
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The question now arises, whether replication of the BART

system would incur similar costs. Two suggestions are relevant here:
first, that BART has experienced huge (and well-publicized) cost over-
runs; these, it might be claimed, need not occur in other such projects.
Secondly, many of BART's costs are thought to'be developmental in nature,
that is to say, costs associated with developing a novel system. Such
costs, if any, would not be ipcurred by potential replicators. With
respect to the first suggestion, Merewitz (1972) has compared BART's
45% cost over-run with over-runs on other projects. He finds that
"there is no evidence to indiéate that [BART's cost-estimating experience]
is appreciably different from [other] transit projects in the United
States -and Europe." Hence, there is reason to suppose that similar
cost over-runs would be experienced in replication experiments. On the
second poinf, Merewitz and Pozdena (1974) propose a model for a long-run
cost function for rapid transit properties. They estimate this model for
a cross-section of such properties, and find (in their Model 5) that the
predicted value is "fairly close' to the actual cost figure for BART.
Thus in this case too there is the feeling that many of BART's costs
would be incurred in replication attempts; though of course all the

evidence is not in.
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APPENDIX A-7

Upgrading the Comfort Characteristics Typical of an AC Transit Bus:

Golden Gate Cost Comparison

From the operating costs of the Golden Gate Bridge Highway and
Transportation District standard size bus system (Viton 1974) we have
s . . _ L
as an estimate of total direct cost: TDCGGT = $ll.92 vt .3272 L,
where L is the route length and V the service speed. Writing TDCACT

as the total direct cost of the comparable expression derived in section 2

for a 50 seat bus, we can draw the following comparison between agency costs:

Service Characteristics TDCGGT TDCACT Difference
v L

40 mph; 6 mi. $ 3.75 $ 3.19 . $ .56
12 mi. 7.50 6.39 1.11
18 mi. 11.26 9,59 1.67

20 mph; .5 mi. $ .46 § .38 $ .08
1.0 mi. .92 .67 .25
2.0 mi. 1.84 1.34 .50

Assuming various levels of demand Q, and our usual values of v, = $3.00
and v, = $9.00, then the following sample estimates of average cost under

optimal scheduling can be derived from (28) or (33):

CASE 1. L = 18 miles, V = 40 mph,

Demand level Q .Acmin - GGT ACmin - ACT Difference
100 $2.77 $2.67 $ .10
500 1.99 1.93 .08
1000 1.80 1.77 .03

5000 1l.64 1.59 .05
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CASE 2. L = 6 miles, V = %0 mph.

AC AC

Demand level Q min - GGT min - ACT Difference
100 $1.27 $1.21 $ .06
500 .81 .79 .02
1000 .71 .69 .02
5000 .57 .56 .01

That is, on average, the cost difference between operating with
the "plain" (ACT) or "luxury" (GGT) busamounts to no more than 5¢ per

passenger.
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APPENDIX B-1

PROGRAM SRAC4 (INPUT,0UTPUT)

AVERAGE COST OF INTEGRATED BUS SERVICE
{INCLUDES STDCHASTIC AND LOADING CONGESTION EFFECTS)

SRSV E SN RS R E SRS R RN SRR S EFE KRS SR KRR R R R R R R R R KRR R R R K SRS K S &

DIMENSTON P{180+60),AQP(60),0BAR{60)

DIMENSION QNC (604361 4QC (60036) +QNCL{60436) ,DC(60436)+DNC(60435)
LOGICAL TRIG,TRIGLTRIG2,TEST(60,36)

INTEGER QGL{60)QGU60)(QPHIG0) ¢ Q6S{60) ¢PST¢+S95SeGsRL2QPyGC,RSTEP
REAL L

SR EFEE R SR E AR AR R AR A RN R ER SRS R E R R R RS S RN S R R R S AR R SR RS SR SRR R &

DATA

SRR SRR R E R SR E R SRS SR SR AR R R S SRR SR SRS E SR SRR E R AR SRR SR SRR S S R R ek &

N IS THE NUMBER OF INTEGRATION INTERVALS
N=60
TSI IS THE NUMBER OF HOURS IN THE SERVICE INTERVAL
TSI=1
ASSUMP TIONS CONCERNING THE LEVEL/DISTRIBUTION OF DEMAND
G IS THE NUMBER OF USER GROUPS
6=1
QGLII) IS THE NUMBER OF MEMBERS IN THE I TH USER GROUP
DATA (QGLUI)y I=1,G1/50040,040404090405090¢040,0/
R1 IS THE INITIAL NUMBER OF FEEDER RCUTES
Rl=6
RSTEP IS THE NUMBER CF TIMES Rl IS DOUBLED
RSTEP=3
L IS THE LINEHAUL LENGTH
L=12
MILES ‘
RO IS THE FEEDER LENGTH "
RO= 2
VELLL IS THE SPEED OF THE BUS ON THE LINEHAUL LEG
VELLL=40 '
MPH 3
VELFF= THE MAXIMUM SPEED OF BUS ON THE FEEDER LEG
VELFF=25
A0 IS THE ACCELERATTON/DECELERATION OF BUS ON FEEDER LEG
A0=4000
MPHPH
(BASED ON ACCELERATION DATA FOR GREYHOUND BUSES)
S IS THE NUMBER OF BUS STOPS, SPACED DR MILES (S.GT.1)
$=9
DELTA IS THE LOADING DELAY PER PASSENGER
DELTA = 2,5/60,%%2
HOURS
BUSCP1 IS THE BUS CAPACITY
BUSCP1=50
WALK/WALT SHADOW PRICE —- VW
VN=9.00
s
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IN-VEHICLE SHADOW PRICE -- VV
vvV=3,00

R R S R RIS R 2 RS R N R R Rt e e R I R R R PR RS R S S

OERIVED DATA

DR IS THF DISTANCF BETWEFN STOPS ON FEEDER LEG
NR=RO/ELOAT(S~1)
CORRECTIONS TO STATTONARY TO STATIONARY T{ME DUE TN AZCSLERATION
AND RRAKING,
TR=VEL FF/ AO+DR/VEL FF
IF{{0OP-VELFF*%2/A0), LE,0.)TR=2,%SQRT (DR/AQ )
Tal=T2
INTEGRAT INN INTFRV AL
NT=1./FLOATIN)

Rk Rk R E ke a kRN KK KKK R G Rk kN Rk kb b kkk kk ko kR ke Rk kb hkk kK

GENERATTON CF ARFIVAL CISTRIBUTION

UNTIFOK¥ DEMAND OPTION
00 90  JU=1,N

90 P(J,1)=1

IF{G.FQ.1)G0 TO 91

GC IS THE CCNTROL CN THE NUMBER OF USER TYPES -— G
GC=4

TTAU IS THFE DURATION IN WHICH THE 1 TH USFR TYPE ARRIVF AT SYQP(S)
1Tay=12

TAU=FLOATCITAUY/FLOATI(N)

G=(N-1TAU) /GC+l

M=0

RHN=,01

AA=1.-{1l.—TAU}*RHO

DO S I=146

M=M+]

00 9 J=1,N

TT=1./FLOAT (N)*(.5+FLOAT [J~1))
TRANSLATE (QUANRATIC) PRNBARILITY OF ARRIVAL FUNCTION TO G
DIFFERENT POSITIONS OVER SERVICE INTERVAL
T=TT7

[F(IGT1IT=TT-{1.-TAU) 2FLOAT{I-1)/FLGAT(G-1)
PlIoMI={6 . 2AA/{TAU*%3 ) } 2T %(TAU-T)
IFIP(J,M) LT, 0.)P(J,M)=RHN

9 CONTINUE

kR kR kR Rk kR kAR R R P kR AR R kG E e Rk ke kG hE G ek Gk Rk G h kG he Rk kg

VARY NUMBER 0OF FEEDER RCUTES

91 R1=R1/2

D3 3 IR=1,RSTEP

R1=2%R1

R=R1

PRINT 101

PRINT 779,SsROsLyVELLL,VELFF
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PRINT 1779, AO

T T Y Ty e T T T T )

159

201
202

200

110

DERIVE FEEDER DEMAND LEVEL FROM NET
DO 158 I=1,6
QGUIV=FLDAT(CGLIL) )/ R+.5
AQP({1)=0

HOURLY DEMANC LEVEL
K=1
DO 200 KT=1,N
IF((TSISFLOAT(KT)/FLOATIN)) .GT.FLOATIK})GO TO 201
GO YO 202
K=K+l d
AQP{K) =0
DO 200 I=1,6 :

AQP(K)=AQP(K) +P{KT,I)*DT®FLOATI{QG(T))
QPHI{K )=AQP (K

CALCULATE ANGLE OF FEEDER SECTOR
PHI =3, 14159/R

NET DEMAND
QP=0
DO 110 [I=1,6
QP=QP+QGI(I)

R EEERRRERRR KRR R R EER R SR E kR E KK EBR SRR ER RS R R R E R R GRS R KSR E kR KK EE &

1221
C

1223

SPATIAL USER COST .
COMPUTE MEAN DISTANCE TO SS TH BUS STOP

DISCOR IS THE CORRECTICN TO WALK FOR NEED TG TAKE CARTESIAN PATHS

DISCOR=1.3

DO 2000 S=1,SS

NX=60

IF(SS«EQ.1)G0 TN 1223
Al=0

AAl=0

MEAN WALK TO FEEDER BUS STOP
DX=DR/FLOATE(NX)
0Y=DX
N0 1221 IX=l.NX
=5%FLOAT (2% [X-1)*DX-DR/ 2.
NY={ (DR*{FLOAT{SS)~.5)#X+DR/2.)*TAN{PHI}}/0DX
DO 1221 I¥Y=1,NY
=.5«FLOAT (2% [Y~]1 ) *LY
PD=1
Al=Al+PD*DX*DY
AAL=AAL+PDESQRTIX *%2+4Y%%2) ®0X *DY
MEAN DISTANCE WALKED TO SS TH STOP
DBAR{SS)¥=AAL/ AL *DISCOR
GO 1O 2000

A2=0
AA2=0
DX=,5%DR/FLOAT {NX}
DY=DX
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1222

2000

DO 1222 1X=1.NX

X = «S¥FLOAT{2¥IX-1)%DX
NY=X«TAN{PHI ) /DX

DO 1222 1Y=1,NY

PD=1

Y=, S*FLOAT(2%1Y-1)*DY
A2=A2+PD*DX*DY

AA2=AA2 +PD*SCRT (X **2+Y #%2 ) kCX*DY
NRAR(SS)=AA2/A2#%DN [ SCNR
CONTINUE

NR=R

PRINT 2779,NR

PRINT A779, (NEAR(SS),S55=1,S5)

LRSI R R R R R Rt R R R R R R R Rt R RS SRS RS2 222 222 S )]

NBUSCP=BUSCP]

PRINY 777,NBUSCP

PRINY 1230

PRINT 778, {QPH(M) yM=] ,K )
PRINT 17

R R E 2 LR R RS e R I R R R RS R R S IR R R R R R 2 R R R R R LRSS

30

VARY PRFGIN ARTZED FEACWAY (1/PST1)

(UNLESS OVHERWISE INCICATED #INTERVAL#=#INTERBUS INTERVAL#,
DO 3 PSI=1.N
EXCLUDE HEADRKAYS THAT DC NOT COINCINE AITH INTEGRATION [NTERVALS
TE(MON(Ny PST) aNFeO) GO TN 3
NI[=N/PST
BI= FLOATU(PST)/FLIAT(NY}
DO 30 S$S=1,S
DN 30 J=1,NI
TEST{JySS)=.TRUE.
cC=0
cv=0
CS=0
Cw=0
Ql=0
THETAL1=0

R AR AR R KRR R R ERRX SRR SR KRR KRR AR RS Rk kR SRRk ke ke kR ke kb kk k k& &

TREAT BUS ARRIVING AT END OF NBT TH INTERVAL

DO 12 NBI=14NL
KT1=(NBI-1)%PSI+1

KT2 =NBI*PST

ALLOCATE PASSENGERS TN BUS ARRIVING AT END OF NBI TH INTERVAL

EERERREEE RS R KRR Rk SR kR R R kKb ak kR bk kb k kb kb ko & ¥

ccc=0
cvv=0
CSS=0
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CHW=0

Qll=0

SFT BUSCAP TO CAPACITY QOF (EMPTY) BUS AT START OF RUN
BUSCAP=BUSCP 1

SCAN QVER STOPS FOR NBI TH BUS
DO 120 55=1,45

DISTRIBUTE QGUI) OVER S STOPS
QGS(1¥=FLOAT(2%QG{1) )/FLOAT {2¢5-1})+.5
IF(SS.EQ.1)1QGS( 1) =FLOATIQGS(1)) /2.¢.5

222 R R 23222 222 22 R a2 2R 2 222 R a2 2 A2 A2 2222 Rttt )

210

SCAN FROM FIRST INTERVAL TO (NBI —1)TH INTERVAL TO PICK UP NON-
BOARDERS, ALLACATION PRIORITY INCREASES WITH DECREASING NBI1
(FIRST COME-FIRST SERVED)

TRIGL=.FALSE,
Cl=0
IFINBI.EQ.11GO TO 212
NIl=NBI-1
DO 210 NBI1=]4NIL
IFITRIGLIQNC L{NBI1,55)=0
IF(TRIGL) GO TO 210
TESTINBIL,SS) =. FALSE.
CL=C1+QNCINBI 1, 5S)
BUS CAPACITY CCNSTRAINT
IF(Cl.GT.BUSCAPIGD TO 211
EXCESS PASSENGERS ABSORBED
QNC LINBI L SS)=QNCINBIL,SS)
RESET PASSENGERS TO RECORD ABSORBTION
GNC(NBI1,5S)=0.
GO TO 210
OVERFLOW PASSENGERS ABSORBED
QNG L{NBI1,SS) =QNCINBIL,SS)-{C1-BUSCAP)
(OVERFLOW) PASSENGERS NOT ACCOMODATED
QNC(NBT1,SS)=CL-BUSCAP
TRIGL= .TRUE.
KT11=KT]
CONTINUE

L2 RS2 2222 22 22 2 22 R 222 222 222 R 22 R R 2 22 R 22222222222 22 2 Rt ]

FOCUS ATTENTION ON INTERVAL AT HAND {VIZ. NBI TH)

BUS FULL «ees GO TO 1003 TO RECORD NCN-BOARDERS ORIGINAT ING IN
THIS NBI TH INTERVAL

IF(TRIGLIGO TC 1003

OVERFLOW ZERO DR LESS THAN BUSCPlecccscess

THEN SFE HOW MANY CAN ACCOMODATE FROM THIS NBI TH INTERVAL

FIND TIME INTERVAL CORRESPONDING TO ACHIEVMENT OF FULL BUS LOAD
TRIG= .FALSE.

KT22=KT2

Bl=Cl

DO 1000 KT=KT1,KT2

IF(TRIG) GO T4 1000

DO 1100 [I=1,6

1100 Bl=Bl+P(KT,1)*FLOAT(QGS(1))*DT
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BUS CAPACITY CONSTRAINT
[F{RL.LT.BUSCAPIGO TC 1000
KT22=KT
TRIG=,TRUF,

1000 CNNTINUE

E R R R L R R R R L R I R S R R R R R R R R RS T2 R R R 2

10

Lt

COMPUTE SCHEDUL® DELAY CF BOARDERS WHND ARRIVE / LFAVE IN THIS
NBT TH INTERVAL

GCINBT,SS5)=0.

DC{NRI 4SS)=0.

N 1L T=1,6

A=0

R=h

f1=0

DY 10 KT=KTL,KT22

Rl=gleP (KT, [)*FLOATI(QGS(I)}*DT

R=B4+P (KT, 1}

A=A+ {FLOATINB [P ST-KT)) /FLOAT{N)*P(KT, 1}
DCINST,SS)I=DC{NBI,SS)+(A/B+DT*FLOAT(KT2-KT22))*B1

CCINRT ,SS)=QC (NAT,SS)+B1

SCHEDULFE NFLAY FJIR BUS ARRIVING AT END OF NBI TH INTERVAL
DCINAT 4SS )=DC(NBI,SS}I/QCINBI,SS)

Gk E R R a Rk Eh e dh kR kb r Rk kR k ko k ko kdk pk ko ok kdok ok ke kR Rk Rk ok ok

1003

108

810

CIMPUTE FREQUENCY DELAY CF NRI TH INTERVAL NUN-BOARDERS (VIZ.
THOSE WHN ARRIVE TOO LATF, AND MISS QUT ON ARRIVAL OF BUS AT THF
END Of INTERVAL)
KTL1=KT22+1
THERE MAY BF ZSRN NIN-ICARDERS ... CHFCK
DNCINR[,55)=0.
QNCINBI,5S)1=0.
TF(KT11.,GE.KT2) GO TO 1004
no 810 I=1,G
A=0
B8=0
R1=0
DO 108 KT=KT11,KT2
B1=R1+P{KT, [}£FLOAT(QGS(I}) *DT
B=B+P (KT, I}
A=A+FLOAT(NRI®PSI—KT} /FLOAT{N)®P (KT,I)

FREOJENCY DELAY WITHIN NBI TH INTERVAL (OF NON-BNARDERS
DNC(NBT 4SS)=DNCINBI,SS)+A/B*B1
QNCINRT,SS)=QNCINBT,SS)+R1

FREQUENCY DFLAY OF NNN-BTARCERS
DNC[(NBT ,SSY=DNCINRT,SS) /CNC {NBT 4SS)

HhRE kAT Rk AR R AR AR R h kb kR kR ke ko k Rk ke k Rk ko E kR kkk Rk k&

COMPUTE SCHFDULE DELAY CF PEOQPLE SUCCESSFULLY PICKED JP AT ENO
OF THIS NBI TH INTERVAL
SCAN THROUGH INTFRVALS TO PICK UP NON-BJARDERS

1074 D=0

Q=0
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DO 610 NBI1=1,NBI

JUMP OVER RICERS NOT ACCOMODATED ON BUS AT NBI TH INTERVAL, SS TH
sToP

IFINBIL.EQ.NBIMGO TO 611

IF(TEST{NBI1,SS)) GO TO 610

IF TESTINBILl,SS)=TRUE THEN RIDERS OF NBI1l TH INTERVAL AT SS TH
STOP MISSED OUT

OF = FREQUENCY DELAY

OF= DNCI(NBI1l,SS))

DS = STOCHAST IC DELAY

DS= B1*FLOAT{NBI-NBI1)

D=D+(NF+NS)*QNCLI(NBI1,SS}

GO TO 610

611 IF(TRIGL} GO 10 610

ADD ON THKIS INTERVALS NBI TH CONTRIBUTION IF APPLICABLE
D=D+DC(NBI1,SS)*QCINBIL,SS)

Q = THE NUMBER OF PASSENGERS BOARDING BUS A SS TH STOP AT THE
END OF THE NBI TH INTERVAL (L.E. BUSCAP)

Q=Q+QC(NBT1,SS) :

610 CONTINUE

R R RS2 R S RIS RS2SR RS 22 RS R RS R R R a2 R 2R R R R 2SS SRR 2L S )]

RESET BUS CAPACITY FOR NEXT STOP
BUSCP2=BUSCAP

BUSCAP=BUSCAP-Q

IF(BUSCAP .LT.C.)RUSCAP=0

L2 R RIS RS2 R 22 RS2 222 22 R 2R Rt R R R R LR 2 Rt Rt s R A R Y )

D/Q IS THE AVERAGE SCHECULF DELAY NF PASSENGER RIDING ON BUS AT END
OF THE NB! TH INTERVAL

Ql IS THE PROGRESSIVE TOTAL DF PASSENGERS (BY STOP) BOARDING

BUS AT END OF NBI TH [INTERVAL

Q1=Q1+Q

QL1 IS THE PROGRESSIVE TOT AL OF PASSENGERS CARRIED BY BUS AT END
OF THE NBT TH INTERVAL

Ql1=Q11+Q

PR R 2 222 Rl RS R R R R R L R R R R Rl Rt R R R R R S R IR R ]

COMPUTE MEAN INTERSTOP SPEED ON LOCAL PQRTION OF ROUTE
ASSUME PST REPRESENTS AVERAGE HFADWAY — N0 CORRECTION DN HEADWAY
FOR LCADING (DELAYS) AND PASSING STOPS (RUN EARLIES)

PASS STOPS [F FULLY LOADED
TR=TR1

IF(BUSCAP.EQ. C. Y TR=DR/VELFF 4 ,S*VELFF/AC
IF(BUSCAP.EQe 0+ ANDBUSCP2.EQ.04)TR=DR/VELFF
VELF=DR/(TR¢Q*DELTA)

EXCLUDE LOADING TIME CCNSIDERATIONS FRCM FIRST STOP

IF(SS oL TeSsAND.SS . EQ.1)VELF=DR/TR

INCLUDE LOADING CONSIDERATICANS INTO LINEHAUL FROM S TH STOP
IFESS <EQ.SIVELL=L /{L/VELL+Q*DELTA)
IF(SSeLT.S)THETAL=THETAL+CR/VELF
IF{SS.EQ.S)ITHETAL=THETAL+L/VELL

143
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C KRR REERRE R AR AR R R R R R CERE AR RS R RS R RN R R R R R AR SR SRR R AR R R RE R KR
C

TRIG2=, TRUE.

N0 122 NBI1=1,NBI

C TEST FOR OVERFLOW
TF(ONCINRLL,S5S).NEL Q. ) TRIG2=.FALSE.
C TEST FOR NO OVERFLOW FROM EXISTING INTERVAL

IF(TRIG) GO TC 122
XNRI=[FILOAT(NBI))*BI*TST+7,
C TF(TRIG2) PRINT 700,XNBI,PSI
122 COMTINUE

LRI AR RS RS I S R0 ST SR R 22 R R RS2 222 2122222212 R R 22t 2]

COMPUT E AGENCY CNST PER PATRON PFR BUS {AT END OF NBI TH
INTFRVAL)
TNCF IS COMPANENT OF TDC PER INTERSTOP DI STANCE
TE{SS.FGC.S1GO TN 1445
IF(BUSCP1.FQ.25.,) TDCF=,3C73%DR+8, 1 I*DR/VFLF
IF(BUSCPL sEQe504)TDCF=,2987%DR+9,23%DR/VELF
UF{BUSCPl EQeT75,} TNCF=,4T49*DR+10.98* R/ VELF
TF(SSAT.SIGO TD 1444
C TDCL IS THE CCMPCONENT 0OF TNC PER LINERAUL NISTANCE
1445 CONTINUF
TF{BUSCPL .EQ.25.)TDCL=.3073%L #8,10%L/VFLL
IF(BUSCPLl.EQ.50.) TOCL=,298T*L+9,28*%L/VELL
[F(RUSCPL.EQ.T5.)}TDCL=, 4T749%L +10,98%L/VELL
1444 CONTINUE

[a)aNeYalalel

AGENCY COST

FEENER COMPCNENTS
IF(SS.LT.S}ICCC=CCC+TDCF
C ADD LINEHAUL CCMPONENT
IF{ SS«EQ.SICCC=CCC+TDCL

[sXaXal

WFIGHTED IN-VEHICLE TIME
FEEDER COMPONENTS
IF{SS.LT.S)CVV=CVV+CR/VFELF®Q11
C ADND LINEHAUL COMPCNENT
[F{SS.FQ.SICVV=CVV+L/VELL*Q11

[aksNe

s Nal

WEIGHTEN SCHEDULF DELAY
CSS=CSS+0

WFIGHTFD WALK TIME
CHWW=CWW¢NBAR(SS)/3,.*Q

oo

120 CONTINUE
CC=CC+CCC
CV=CV+C VYV
CS=CS+CSS
CW=Cw+C WW

12 CONTINUE

C *%kkxkRbRR kR ERREEREAFR AR SRR EEIEREEE RPRRRR KRR AF A CRR RS RERRRE SRR SRR CE R F K



TDC=CC /FLOATINI)
cc=cc/Ql

Cv=CVv/Qlevy
CS={CS/QL+DT/ 2, )*VH*TSI
CW=CW/Ql*VW
AC=CC+CV+CS

TAC=AC +CW
D1=CS/(VW*TSI)
THETA=THETA1/FLOAT{NI)
Q=Q1/FLOAT{NL)
QPT=QP*R

PRI R R R 2L R SR 2 22 R R Rt R R R R Rt it ittt it il ] )]

RESULT WRITE-OUT
RPSI IS PSI EXPRESSED IN MINUTES
RPSI=({ (FLOAT{PSI)-.5)*DT+.5/FLOAT(N)) *TSI*60Q.
PRINT TyNyDT o TOCe THETA,CP,QPToVV, VW RPSTyD1,Q,CCsCVyCSeAC,
XCWe TAC
3 CONTINUE

[sNaRaNaNel
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101 FORMAT(1H1)

779 FORMAT(1HO*NUMBER OF STCPS =#%,12,*FEEDER DISTANCE =#%,F6.2,* LINE
1HAUL DISTANCE =%,F6.2,% LINE HAUL SPEED =% ,F4.0,% MAXIMUM POSSIBLE
1 FFEDER SPEED =%*,F4.0)

1779 FORMAT(LIH +* ACCELERATION/DECELFRATION =#,F6.0)

2779 FORMAT(1H , *NUMHBER OF FEFDER ROUTES =%,13)

8779 FORMAT(1lH ,*MEAN WALK CISTANCE TO RESPECTIVE STOPS =#%,9F5,2)

TTT FORMAT( 1HO,*BUS CAPACITY =¢13,//)

778 FORMAT (1HO,*HOQURLY LEVEL OF DEMAND -%, 10118)

17 FORMAT(1HO)
100 FORMAT (* N DY TDC THETA DEMND TDEMND VV VW PSI

10D Q cc cv cs AC CW TAC#*)
TO0 FORMAT(*MI SSED BUSES CEASE AT#,F5,2,#~HOURS FOR HEADWAY OF %, [4,*
1MINUTES*)

T FORMAT{LHO,14 4F6.34F6,2,F6.34216,F6.,0+F6.0+F6,2,8F8,3)
c
C *¥020ksr e e ARTRARERREE I S SRR AR AR ERKAEE N A AR R AR AR RERR ERRRENEKEX ERRERT KK
c
sTOP
END

1us
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FOOTNOTES

lFor example on AC Transit's transbay route F, buses have an
off-peak frequency of twelve minutes or more. A cost tradeoff between
agency and consumer (wait and in-vehicle) inputs suggests an optimal
frequency of about half of this, or even less when consumer walk is
included. As for the peak, we are assuming that the companies have
fleets sufficient to minimize stochastic delay (foregoing of buses).

2Blachman (1974) has examined returns to scale and factor
substitution econometrically in a cross-section of bus transit companies,
finding constant returns to scale (vehicle-miles) and fixed factor-
proportions in production. Given that this is the case, the "accounting
method" of cost allocation we use here will yield correct results.

3These buses are Twin Coach TC-3l's fitted out with 25 seats.
When marketed as commuter buses they have 31 seats.

l+The Twin-Coach TC-25 bus marketed as a commutér bus has 25 seats.

5

In the event of a system partially or fully changing over to
smaller buses it cannot be envisaged that (existing) drivers would accept
lower wages.

6FoP example:

Utility N Disutility
(privacy, comfort) (congested driving)| car
~ Utility N Disutility
(reading paper) (no seat, crowding)| bus

7 s .

Chan's sample relates to commutation trips only.
8, . . .
Viz: a representative period of service.

9Logit work in this area suggests that Vg = 3 v,

loThis is equivalent to setting LRMC = SRMC.
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llThis is a sufficient, but not a necessary condition of arrival
independent of headway. The simplest representation of random arrival is
pltl=1, which will therefore be used throughout much of this paper.

2
1 Hereafter "AC[Y]" shall be denoted by M"AC."

13It is necessary to assume that the patron has a finite but
infinitesimal probability of arrival outside this period (a not unreasonable
assumption), to avoid indeterminacy in the solution.

l“tThe average frequency delay is not affected by regular scheduling
with an irregular distribution of arrivals.

l5Again, equivalent to setting SRMC = LRMC.

16Here Q is the number of boarders, and is identical to the
demand if the catchment is cleared.

l7No adjustment of TDC has been made in this case for vehicle size.

18AI.uI.uroxim::n:ed by a probability of arrival function shared by all
riders, such that p[t] = .98 for t €1, and p[t] = .01l for 1 <t £ 3,

with fg pltl dt = 1.

lgThis assumption will break down if users have a schedule
knowledge, since they will tend to time their arrivals just prior to bus
departure. Any headway would then seem optimal.

20For example, there is a 14% spillover from the peak hour demand of
2000 in Figure 10b. By 4000 the spillover is 8%.

2lHere Y = my , where Y, is the headway in hours and m is the
number of hours in th@ service interval.

22A similar effect has been recorded by aur co-workers (Keeler,
Small, and Cluff, 1975) in relation to congestion and lane capacity of roads.

231n addition, the marginal user increments the level of '"crowding,"
thus lowering the quality of the service, and making for an elastic capacity
limit. Standees would then be expected o cost their in-vehicle time more
highly. In the present case the level of demand is presumed fixed, with
no standees permitted (as with Golden Gate service).
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2l}In addition to costs internmal to the system users ('private costs'),
externalities can also. include costs external to the system users, for ex-
ample: pollution. -The latter are extremely small for buses: Small (1974)
estimates a value of $0.001 per vehicle mile for 1970-72 model diesel buses
of standard capacity, which is only $0.0004" per passenger for a fully laden
bus on.a 20 mile trip.

25The extent to which' the agency can recirculate its buses (via
backhaul etec.) affects the system capacity. The comparability of the
average round-trip run time in relation to the (relatively short) peak
period limits this utilization.

26The introduction of this constraint means that the equality
between (20) and (21) ceases.

27An acceleration of ‘+000mph2 is assumed. This figure is based
upon an analysis of technical data relating to Greyhound buses, which for
all practical purposes are similar to the standard intra-city bus.. The
same Figure is assumed for deceleration. The loading delay is estimated
at 2.5 seconds per passenger (Kennedy, Homburger and Kell, 1973).

28Note that road congestion reéduces the cruising speed of the bus,
which affects the frequency of service possible with a given fleet. If
buses are unable to pull out of the traffic stream, a strong inter-
dependency develops between loading and road congestion, possibly affecting
following buses.

29In the absence of a thin line, the entire 75-seat region is
up to 5¢ cheaper than the 50-seat region.

aoThere is a -"complementary" trip outward in the evening. Some
subtle differences prevail between these inward and outward trips: for
instance, with buses, stochastic delay is confined to one point in the
evening (the downtown terminal) whereas in .the morning, it can be dis-
tributed over the local stops. 'Similar assymetries occur with wait for
dial-a-ride and kiss-and-ride + linehaul bus options. None of these
differences are sufficient to change the rankings-of our intermodal cost
comparisons.

31In reality this length should be less than the catchment radius,
but.no great .error is introduced by the above approximation.

32Assuming that the density of the demand is approximately con-
stant over this area.

Boyd et al. (1973), DOT (1969) and Meyer, Kain and Wohl (1965)
have made some estimates of the cost of integrated bus service and compared
these with similar estimates for other modes, but have not made this es-
sential simultaneous optimization. Mohring (1972) and Hurdle (1973a&b)
have performed a similar analysis for buses only.




BuConsider the following example: suppose feeder service is -
operated by 25-seat.buses and linehaul service by 75-seat buses, Assuming
all feeder buses have the same load factors, then minimization of wait
at terminus T would require a simyltaneous arrival of, say, three feeder
buses so the linehaul bus could be loaded in one step. Otherwise, riders
from the first and second to arrive feeder buses would, in addition to
their transfer costs, experience an (in-vehicle) wait to ensure a pay-
load for the larger bus.

35A correction of 1.3 has been made to the walk cost to allow
for a cartesian path.

36The corresponding air pollution cost for buses (1970-72 standard
models) is $.001 per vehicle mile, or on a per passenger basis about one
hundredth of the auto pollution cost.

3 : . .
7We have not included in any of the auto costs the capital cost
of a residential garage or the value of on-street parking.

38Note that costs of deprivation of a car in one car households
are not included. These would be very difficult to estimate.

39”Optimization”in the context of this report: (a tradeoff between
user and agency costs) is not meaningful in relation to a service where
scheduling is by response to individual demand.

qussume the catchment is a high density settlement generating
Q = 20,000 patrons/hour for a linehaul journey of 18 miles (intercity
service), If feeder costs are taken to be comparable and both systems
have the same linehaul speed .(i.e., equal in-vehicle time cost), then
agency costs per bus patron are IDC _ 6.37 _ $0.13 whilst for BART

50 50 T

(from Appendix A-6) they are $0,25. That is, the bus is cheaper. To
move 20,000 people per hour would require 400bph, well within the flow
capacity of an exclusive lane facility. (HRB, 1965)

ulFor example, suppose the fringe suburb has a residential density
of four households per acre, then within the catchment of two mile radius,
there are T x 22 x 64 x 4 = 3000 households. - If on average, one in every
five of these has a CBD commuter, then this corresponds to about 600
patrons per hour. By this reasoning middle and inner distance suburbs
would correspond to about 10 and 30 households per acre, which fits well
with reality.

uzvickrey (1974) has pointed out that rail rapid transit, unlike
throat bus service, combines local collection with a local delivery ability,
while not compromising markedly in service speed. Bus stops on freeways no
doubt can serve a similar role.
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uaFurther research on the economics of exclusive lane bus operation
is being conducted by Small (1974).

lmGolden Gate Bridge & Transit District is planning to fit their

buses with bucket seats and personalized sound systems, similar to those
used in aircraft. A survey of Shirley Highway express bus riders (Saks
et al. 1973) has shown that, apart from air conditioning, comfort ranks
rather low; frequency and reliability being the most highly valued. How-
ever their sample comprises people who -have already made a choice to use
the system.

®rhe discrete equivalent of (9).
us s .
Assumes buses have an unlimited capacity.

l+7This is identical to the net demand if the catchment is cleared.
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