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ABSTRACT
Newtonian simulations are routinely used to examine the matter dynamics on non-linear
scales. However, even on these scales, Newtonian gravity is not a complete description of
gravitational effects. A post-Friedmann approach shows that the leading-order correction to
Newtonian theory is a vector potential in the metric. This vector potential can be calculated
from N-body simulations, requiring a method for extracting the velocity field. Here, we present
the full details of our calculation of the post-Friedmann vector potential, using the Delaunay
Tessellation Field Estimator code. We include a detailed examination of the robustness of our
numerical result, including the effects of box size and mass resolution on the extracted fields.
We present the power spectrum of the vector potential and find that the power spectrum of
the vector potential is ∼105 times smaller than the power spectrum of the fully non-linear
scalar gravitational potential at redshift zero. Comparing our numerical results to perturbative
estimates, we find that the fully non-linear result can be more than an order of magnitude larger
than the perturbative estimate on small scales. We extend the analysis of the vector potential to
multiple redshifts, showing that this ratio persists over a range of scales and redshifts. We also
comment on the implications of our results for the validity and interpretation of Newtonian
simulations.

Key words: gravitation – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

On the largest scales in cosmology, theoretical calculations can
be carried out using standard cosmological perturbation theory.
These calculations fully encompass General Relativity (GR) but
are limited to scales where the perturbations, in particular the den-
sity perturbation, are small. On smaller scales, where the focus is
on non-linear structure formation, Newtonian N-body simulations
are used. These simulations do not require that the density contrast
be small, but they suffer from the limitations of being Newtonian
rather than GR simulations. There is an entire field in cosmology
dedicated to developing, running and analysing these Newtonian N-
body simulations. There has been sporadic interest in understanding
the use of Newtonian theory in cosmology (Tomita 1991; Shibata
& Asada 1995; Matarrese & Terranova 1996; Takada & Futamase
1997; Carbone & Matarrese 2005; Hwang, Noh & Puetzfeld 2008;
Flender & Schwarz 2012; Haugg, Hofmann & Kopp 2012; Hwang
& Noh 2013; Kopp, Uhlemann & Haugg 2014; Milillo et al. 2015),
as well as examining the relativistic interpretation of the simulations
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(Chisari & Zaldarriaga 2011; Green & Wald 2012; Adamek et al.
2013; Bruni, Thomas & Wands 2014). These studies have predom-
inantly focused on whether the dynamics of density contrast and
scalar potential accurately match those of GR.

In this paper, we are mostly interested in another important
limitation of Newtonian simulations. Even if the matter dynamics
are being computed correctly, there are cosmological quantities of
interest on non-linear scales that have no counterpart in Newtonian
theory. Examples of these quantities include the difference between
the two scalar potentials, gravitational waves and the vector poten-
tial in the metric, all of which must exist on non-linear scales in a
GR universe.

These extra quantities would naively be expected to be small if
the Newtonian simulations are a good approximation to a GR uni-
verse. However, explicitly calculating these quantities has several
advantages. To start with, it would be good to have a quantitative
check of whether these quantities are small, and indeed how small
they are. In particular, as we enter the era of precision cosmology,
we need to check that these quantities will not affect the observables
at the per cent level. Furthermore, checking that these quantities are
negligible provides a quantitative check on the Newtonian approx-
imation in a � cold dark matter (�CDM) cosmology.

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at U
niversity of Portsm

outh L
ibrary on February 3, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

mailto:thomas.daniel@ucy.ac.cy
http://mnras.oxfordjournals.org/
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We will be working with the post-Friedmann formalism (Milillo
2010; Milillo et al. 2015). This generalizes to cosmology the weak-
field (post-Minkowski) approximation, with a post-Newtonian style
expansion (Chandrasekhar 1965; Weinberg 1972; Poisson & Will
2014) in inverse powers of the speed of light c of the perturbative
quantities. These expansions need to be performed differently in
cosmology compared to those in the Solar system due to the different
situations and aims in the two cases. For example, the time–time
and space–space components of the metric need to be treated at the
same order in cosmology in order for the resulting equations to be
a consistent solution of the Einstein equations.

The post-Friedmann formalism, when linearized, correctly repro-
duces conventional linear perturbation theory and can thus describe
structure formation on the largest scales. More importantly, the
leading-order equations in the 1/c expansion can be examined and
are expected to yield the non-linear Newtonian equations. Note that
in this ‘Newtonian’ regime, the density contrast has not been as-
sumed to be small. The equations in this regime will be shown in
Section 2, essentially comprising the Newtonian equations, as ex-
pected, plus an additional equation. This additional equation shows
how the vector potential in the metric, the lowest order beyond-
Newtonian quantity, is generated by the matter dynamics. This vec-
tor potential is the beyond-Newtonian quantity that we will examine
in this paper; it is the cosmological manifestation of the ubiquitous
relativistic effect of frame dragging. This effect has been measured
in the Solar system by Gravity Probe B (Everitt et al. 2011).

In this paper, we present a calculation of this vector potential
based on extracting the density and velocity fields from N-body
simulations. We expand on the results of Bruni et al. (2014), which
was the first calculation of an intrinsically relativistic quantity on
fully non-linear scales from large-scale cosmological matter fields,
rather than from individual astrophysical occurrences. The main
focus in this paper is to present the method used to extract this vector
potential from N-body simulations. In particular, we examine the
robustness of the numerical extraction of the vector potential and
present the tests we carried out to examine the numerical effects of
simulation parameters on the extraction, which were not presented
in Bruni et al. (2014).

The main physical results of this paper are Figs 3 and 8, showing
the power spectrum of the vector potential at redshift zero and its
evolution with time, respectively. Additionally, we have presented
the ratio of the vector potential power spectrum to that of the scalar
potential in Figs 5 and 9. The results on the magnitude and evolution
of the power spectrum of the vector potential in this paper were used
in Thomas, Bruni & Wands (2014) to examine the possible weak-
lensing consequences of the vector potential.

This paper is laid out as follows. In Section 2, we present the
pertinent details of the post-Friedmann formalism and show the
equation governing the vector potential. We will also present our
definitions and notation regarding vector power spectra. In Sec-
tion 3, we explain how the relevant fields were extracted from
N-body simulations and examine the robustness of this extraction.
In Section 4, we show the power spectrum of the vector gravi-
tational potential and its time evolution, as well as comparing it
to the closest analytical results in the literature. We conclude in
Section 5. Appendix A contains some details about vector power
spectra and in Appendix B we show results from some of the
numerical tests that were carried out. Additional plots are avail-
able as online supplementary material, divided amongst three files:
Resolution_and_BoxSize_Dependence.pdf (hereafter RB), Grid-
Size_and_Binning_Dependence.pdf (hereafter GB) and Consisten-
cyChecks.pdf (hereafter CC).

2 POST-FRI EDMANN FORMALI SM

The post-Friedmann approach is developed in Milillo et al. (2015)
and Milillo (2010); see there for the full details. This approach con-
siders a dust (pressureless matter) cosmology with a cosmological
constant. The perturbed Friedmann–Lemaı̂tre–Robertson–Walker
metric, in Poisson gauge, is expanded up to order c−5, keeping the
g00 and gij scalar potentials at the same order:

g00 = −
[

1 − 2UN

c2
+ 1

c4

(
2U 2

N − 4UP

)]

g0i = −aBN
i

c3
− aBP

i

c5

gij = a2

[(
1 + 2VN

c2
+ 1

c4

(
2V 2

N + 4VP

))
δij + hij

c4

]
. (1)

The g00 and gij scalar potentials have been split into the Newtonian
(UN, VN) and post-Friedmann (UP, VP) components. Similarly, the
vector potential has been split up into BN

i and BP
i . Since this metric

is in the Poisson gauge, the three-vectors BN
i and BP

i are diver-
genceless, BN

i,i = 0 and BP
i,i = 0. In addition, hij is transverse and

tracefree, hi
i = h,i

ij = 0. Note that at this order, hij is not dynamical,
so it does not represent gravitational waves. From a post-Friedmann
viewpoint, there are two different levels of perturbations in the the-
ory, corresponding to terms of orders c−2 and c−3, or of orders
c−4 and c−5, respectively. Defining ‘resummed’ variables, such as
� = 2UN + c−2

(
2U 2

N − 4UP

)
, then calculating the Einstein equa-

tions and linearizing them reproduces linear GR perturbation theory
in Poisson gauge. Thus, this approach is capable of describing struc-
ture formation on the largest scales.

For smaller scales, in a dust cosmology, we are interested in
the weak-field, slow motion, sub-horizon, quasi-static and negligi-
ble pressure regime. This is simply derived by retaining only the
leading-order terms in the c−1 expansion and upon doing so we
recover Newtonian cosmology, albeit with a couple of subtleties.
The first is that the space–time metric is a well-defined approximate
solution of the Einstein equations. The second is that we have an
additional equation, which is a constraint equation for the vector
gravitational potential BN

i . The full system of equations obtained
from the Einstein and hydrodynamic equations (Milillo et al. 2015),
given the evolution of the background a(t), is as follows:

dδ

dt
+ vi

,i

a
(1 + δ) = 0 (2)

dvi

dt
+ ȧ

a
vi = 1

a
UN,i (3)

1

c2a2
∇2VN = −4πG

c2
ρbδ (4)

2

c2a2
∇2 (VN − UN) = 0 (5)

1

c3

[
2ȧ

a2
UN,i + 2

a
V̇N,i − 1

2a2
∇2BN

i

]
=8πGρb

c3
(1 + δ) vi . (6)

As expected, we have the Newtonian continuity and Euler equa-
tions from the hydrodynamic equations as well as Poisson equation
from the Einstein equations. Note that the time derivative here is the
convective derivative, dA/dt = ∂A/∂t + viA,i/a, for any quantity
A. The Einstein equations yield two additional equations. The first
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The non-linear post-Friedmann vector potential 1729

is an equation forcing the scalar potentials VN and UN to be equal,
consistent with there being only one scalar potential in Newtonian
theory. Note that some approaches consider the potentials to be a
priori equal at leading order whereas here we assumed that the full
generality of GR and the equality of the potentials arose naturally
on taking the Newtonian regime. The second additional equation
relates the leading-order vector gravitational potential, BN

i , to the
momentum of the matter. Thus, even in the regime where the matter
dynamics are correctly described by Newtonian theory, the frame-
dragging potential BN

i should not be set to zero; this would corre-
spond to putting an extra constraint on the Newtonian dynamics.
We note that there is a similar equation in several other formalisms
in the literature (Takada & Futamase 1997; Green & Wald 2012;
Hwang & Noh 2013). We can see from equation (6) that the poten-
tial BN

i is sourced by the vector part of the energy current ρv. This
is made apparent by taking the curl of this equation, which gives

∇ × ∇2 BN = − (
16πGρba

2
) ∇ × [(1 + δ)v] , (7)

where the source term on the right-hand side splits up into three
terms: the vorticity ∇ × v and then two further terms,

∇ × [(1 + δ)v] = ∇ × v + δ∇ × v + ∇δ × v. (8)

It is equation (7) that will be used for the rest of the paper. Since
the matter dynamics are not affected at this order, i.e. they are
described by the standard Newtonian equations (2)–(4), the density
and velocity fields sourcing the vector potential are Newtonian and
can be extracted from N-body simulations. Using the definitions of
vector power spectra in Appendix A, the power spectrum of the
vector potential is given by

PBN (k) =
(

16πGρba
2

k2

)2
1

k2
Pδv(k), (9)

with

Pδv = P∇×v(k) + Pδ∇×v(k) + P(∇δ)×v(k) + P(∇δ×v)(∇×v)(k)

+P(∇δ×v)(δ∇×v)(k) + P(δ∇×v)(∇×v)(k). (10)

Unless stated otherwise, all plots of the gravitational potentials
show the dimensionless power spectrum �(k); see Appendix A for
conventions.

3 SI M U L AT I O N S

Our simulations have all been run using the publicly available N-
body code GADGET2 (Springel 2005). Many simulations have been
run in order to quantify the effects of box size and mass resolution
on the quantities that we are extracting; see Table 1 for a full list of
the simulations. All of the simulations were run with dark matter
particles only, as the equation for the vector potential is derived for a
pressureless matter and cosmological constant cosmology. To allow
comparison to previous studies of vorticity (Pueblas & Scoccimarro
2009), the simulations were run with the cosmological parameters
�m = 0.27, �� = 0.73, �b = 0.046, h = 0.72, τ = 0.088, σ 8 = 0.9
and ns = 1. All of the simulations started at redshift 50 and had
their initial conditions created using 2LPTIC (Crocce, Pueblas &
Scoccimarro 2006). Our final result for the vector potential is taken
from the three 160 h−1 Mpc simulations with 10243 particles; these
will be referred to as the high-resolution (HR) simulations.

Table 1. Parameters for the simulations.

Box size Particle Mass resolution Number of Softening
(h−1 Mpc) number (108 M�) realizations (h−1 kpc)

80 5123 3.97 8 6.25
80 5123 3.97 1 4.0
140 7683 6.31 8 6.25
140 5603 16.3 8 6.25
160 10243 3.97 3 6.25
160 8803 6.26 3 6.25
160 6403 16.3 8 6.25
160 6403 16.3 1 5.0
160 3203 130 8 15.0
200 10243 7.76 2 6.25
240 9603 16.3 3 6.25
240 4803 130 8 15.0
320 6403 130 8 15.0

3.1 Tessellation

To extract the necessary fields from the simulations, the Delau-
nay Tessellation Field Estimator (DTFE) code was used (Cautun
& van de Weygaert 2011). Standard methods of extracting fields
from N-body simulations, such as cloud-in-cells (CiC; Hockney &
Eastwood 1981), work well for the density field, as the particles, by
definition, sample the density field well. However, these methods
have several shortcomings when applied to the extraction of velocity
fields. One is that the field is only sampled where there are parti-
cles, so in a low-density region the velocity field is artificially set to
zero. In addition, the extracted field will be a mass-weighted, rather
than volume-weighted field. A consequence of these shortcomings
is that, as the grid size is increased, the velocity field will not con-
verge. In fact, it will become zero in an increasing proportion of
the grid cells as the grid size increases. Several authors have looked
at using the Delaunay tessellation (Bernardeau & van de Weygaert
1996; Schaap & van de Weygaert 2000; van de Weygaert & Schaap
2009) for astrophysical applications including the examination of
velocity fields. See also Pueblas & Scoccimarro (2009) for compar-
isons of extracting velocity fields with tessellations rather than more
standard methods. The DTFE code constructs the Delaunay tessella-
tion of the set of particles, consisting of tetrahedra whose nodes are
located at the particles’ positions. The tetrahedra are constructed
such that the circumsphere of each tetrahedron does not contain
any of the particles except for the particles located at the nodes
of the tetrahedron in question. This makes the tessellation unique.
The particles’ velocities are then linearly interpolated across each
tetrahedron, yielding a value for the smoothed velocity field and its
gradients at every point in the simulation volume. A regular N3

grid

grid is laid down and the code samples Nsamples points at random
in each grid cell and averages the field over these points, giving
a value for the smoothed field in each grid cell. Once the fields
are obtained on the regular grid, the power spectra are calculated
using the standard process of averaging the modulus-squared of the
Fourier coefficients over a given range of k. For the analyses here,
we used Ngrid/4 bins, although varying this value does not affect the
results (see Appendix B7).

3.2 Convergence and tests

It is important to ensure that our numerical result for the vector
potential is robust and independent of the simulation parameters.
In this subsection, we will present the results of our examination
into the effects of different simulation parameters on the extracted
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Figure 1. The ratio of the vector potential power spectra computed using
the vector part of the momentum field and the curl of the momentum field.
The blue, magenta and red curves show the ratio for the three realizations
of the HR simulations, and the black (dashed) curve shows the average over
these three. There is reasonable agreement between the two power spectra
for the smaller scales; however, the two methods diverge for the largest
scales and there is a difference of a factor of 5 at the largest scales. For most
of the range of k under consideration (k ≥ 0.2 h Mpc−1), the two vector
power spectra agree to within a factor of 2.

vector power spectrum. Since the velocity and density fields both
contribute to the source for the vector potential, we will examine
the density, vorticity and velocity divergence spectra too. We will
examine their behaviour individually, compare them to other studies
and methods of extraction and also consider the consistency of the
extracted fields through the relations

k2Pδ(k) = P∇δ(k)

k2Pv(k) = P∇·v(k) + P∇×v(k). (11)

The box size and mass resolution of the simulation are the two
main parameters whose effect on the extracted fields needs to be
examined. In addition, we have examined the effect of varying the
grid size and Nsamples, which are both internal DTFE parameters. The
parameters of the different simulations used are given in Table 1.
We chose the softening lengths of the N-body simulations to be
consistent with Pueblas & Scoccimarro (2009) in order to recreate
their study of the velocity divergence and vorticity; however, varying
the softening length did not influence the results, see Appendix B5.

Although we did run some simulations with a box size below
140 h−1 Mpc, we have not included these in the analysis here as
smaller box sizes have systematically less power. See Appendix B6
for the results from these simulations and how they compare to the
larger box sizes. For further results regarding the effects of a small
simulation box on cosmological quantities, see Bagla & Prasad
(2006), Bagla & Ray (2005) and Gelb & Bertschinger (1994).

3.2.1 A note on error bars

Since we have only three realizations of our HR simulations, we can-
not compute meaningful error bars. Thus, we have not included any
error bars in the majority of our plots. Instead, in Figs 1 , 2, 5 and 6,
we have plotted the results from the three individual realizations, in
order to illustrate by how much the results vary. Unless stated other-
wise, the results shown in the other plots show the average over the

Figure 2. The ratio of the vector potential power spectra computed using
the vector part of the momentum field calculated using the CiC method
and the DTFE method. The blue, magenta and red curves show the ratio for
the three realizations of the HR simulations, and the black curve shows the
average over these three. The two methods agree very well on larger scales,
but diverge for the smallest scales.

realizations. We explicitly examine the variation amongst realiza-
tions in Appendix B4 for several quantities, notably the vorticity and
vector potential. In particular, we note there that when considering
the vector potential, cosmic variance on the largest scales affects
smaller scales, as explained by a perturbative analysis (Lu, Ananda
& Clarkson 2008; Hui-Ching Lu et al. 2009). See Appendix B4 for
more discussion of this. We also note there that the variation of the
vorticity amongst realizations seems to be larger than the variation
of the density, although there seems to be no discussion of this in
the literature.

3.2.2 Mass resolution

We have examined the dependence of the density, velocity diver-
gence, vorticity and vector potential on the mass resolution of the
simulations. For the density and velocity divergence, there is evi-
dence for a mild dependence on mass resolution for both of these
fields on smaller scales. This is likely to be due to the DTFE window
function, which cannot be compensated for, rather than a mass-
resolution dependence of the field itself. There is no evidence of
any mass-resolution dependence of these fields on larger scales. The
variation of the density and velocity divergence with mass resolution
can be seen in Figs 1 and 2 of file RB. The effect of the small-scale
mass-resolution dependence is negligible for our HR simulations,
as seen when comparing to alternative methods of calculating the
density power spectrum.

The dependence of the vorticity power spectrum with mass res-
olution is shown in Fig. B1. The power spectrum shows spurious
additional power when the mass resolution is insufficient. However,
once the resolution is sufficient, of the order of 109 M�, there is no
evidence for any systematic dependence on mass resolution. This
dependence on mass resolution, followed by convergence around
∼109 M�, matches previous findings, notably those of Pueblas &
Scoccimarro (2009).

In Fig. B2, we show the dependence of the vector potential on
mass resolution. There is a clear dependence of the vector potential
on mass resolution, similar to that seen for the vorticity. How-
ever, there are several differences. In particular, the mass-resolution
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The non-linear post-Friedmann vector potential 1731

Figure 3. The scalar (dashed red line) and vector (solid blue line) gravi-
tational potential power spectra at redshift zero, with the vector potential
calculated using the curl method. The linear theory scalar potential is shown
for comparison (dotted black line).

dependence seems to be less important for smaller scales, where
there is a greater dependence on box size (see later). In addi-
tion, the dependence on mass resolution is still apparent around
109 M�. However, once there mass resolution has improved to
around 6 × 108 M�, there is no evidence of a mass-resolution
dependence of the vector potential.

To show this further, Fig. B8 shows the higher resolution simu-
lations in more detail, complete with the individual realizations of
the HR simulations. The y-axis here is k2PB(k) in order to show
the variance more clearly over the range of scales being consid-
ered. The cyan line shows the simulation with the worst resolution
(16.3 × 108 M�) of those in this plot and indeed this simulation
shows a systematic deviation on the largest scales. The better reso-
lution simulations show better convergence, with the 140 h−1 Mpc
simulation with 7683 particles being consistent with the HR sim-
ulations for essentially the entire range under consideration. This
convergence is examined further in Appendix B4.

3.2.3 Box size

We have also considered the effect of varying the box size on
the extracted power spectra. As expected, there is no evidence for
any systematic dependence of the density, vorticity and velocity
divergence power spectra on the box size of the simulations. This
can be seen in Figs 3–5 of file RB. Note that, for sufficiently small
boxes, a systematic deviation can arise, see Appendix B6.

Fig. B3 shows the box size dependence of the vector potential. As
mentioned above, the vector potential does show some dependence
on box size. The vector potential shows signs of a dependence on
the box size on scales below 1 h−1 Mpc; however, this is difficult
to entangle from the effects of mass resolution and the window
function. For box sizes below 200 h−1 Mpc, there is no systematic
dependence of the vector potential power spectrum with box size.

In Appendix B4, we examine the variation between realizations
for the vector potential, and relate it to the behaviour that might be
expected from perturbative arguments. In particular, Fig. B8 shows
how the variation between realizations is larger than the effects of
box size and mass resolution for simulations with box sizes below
200 h−1 Mpc and mass resolution of at least 6 × 108 M�. Thus,

Figure 4. The scalar (dashed red line) and vector (solid blue line) gravi-
tational potential power spectra at redshift zero, with the vector potential
calculated using the momentum field method. The linear theory scalar po-
tential is shown for comparison (dotted black line).

Figure 5. The ratio at redshift zero between the vector potential, calculated
using the curl method, and the scalar potential. The three curves show the
ratio for the three realizations of the HR simulations.

we expect numerical effects from the simulation parameters to be a
sub-dominant source of error as long as the parameters are within
this range.

3.2.4 Consistency checks

There are a few consistency checks that can be performed on the
different fields that we are interested in. The quantities that are used
for the vector potential include the density field and its gradients as
well as the velocity field and its gradients. There are two relations
between these fields and their derivatives,

k2Pδ(k) = P∇δ(k) (12)

k2Pv(k) = P∇·v(k) + P∇×v(k). (13)

We have extracted the quantities on the left- and right-hand sides of
these relations from our HR simulations and compared them; see
Fig. 1 in file CC for the ratio P∇δ(k)/k2Pδ(k) and Fig. 2 in file CC for
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the ratio k2Pv(k)/(P∇·v(k) + P∇×v(k)). In both cases, two curves are
plotted, corresponding to two different methods of calculating the
ratio. The blue line shows the ratio exactly as suggested above, with
the factor of k in equation (12) taken to be the value defining the
centre of the bin. For the red curve, the exact k-value for each mode
is used when computing the sum in each bin. For small bins, or fields
where the values vary slowly as a function of k, these two should
agree and indeed they do for smaller scales where our (logarithmic)
bins are smaller. There is a difference between the methods for the
largest scales in our simulations; this will be discussed below for
each test.

For the density field, the two methods for calculating the ratio do
give different answers. However, for both methods, the deviation
is within 2 per cent for every bin except the first. Thus, this con-
sistency check for the density field is well satisfied for all scales
k ≥ 0.2 h Mpc−1.

The consistency check for the velocity field is less well satisfied:
there is a sharp divergence in the power spectra on the smallest
scales, such that the check is not satisfied within 10 per cent at
k ≈ 8 h−1 Mpc. This shows the effect of the DTFE window function
on the extracted fields. We will not consider the extracted vector
potential for k larger than k ≈ 8 h−1 Mpc when presenting our results.
Furthermore, the two methods show very different behaviour: the
method using the average k-value for each bin causes the consistency
test to fail on large scales. However, with the more exact method,
the consistency check is very well satisfied on all of the largest
scales. This suggests that the dominant contribution to the bins on
the largest scales comes from the low-k end of each bin, hence the
overestimation of k2Pv(k) when the average k-value for each bin is
used. The strong effect here is partly caused by the relatively steep
slope of the velocity power spectrum. We note that this effect would
also come into play when calculating the dimensionless velocity
power spectrum for binned data. None the less, the good agreement
of the consistency check when using the second method is strong
evidence that the derivatives of the velocity field are being calculated
correctly.

A further check that we can perform is to extract the complete
momentum field, p = (1 + δ)v, and decompose it into its vector
and scalar parts directly rather than dealing with derivatives. The
power spectrum of the vector potential can then be calculated from
the vector part of the momentum field, pv , using

PBN (k) =
(

16πGρba
2

k2

)2

P pv (k). (14)

In Fig. 1 we show the ratio of the vector power spectrum calculated
using the two methods, with the different lines corresponding to
different individual realizations. The vector potentials calculated
from the two methods are broadly consistent, within 20 per cent for
most of the range under consideration, and agreeing to within a
factor of 2 for k ≥ 0.2 h Mpc−1. We are unsure what the causes
of the difference between the two methods are. In particular, we
checked for whether there is an effect coming from the use of k
averaged over the bin, as in the velocity field consistency check;
however, this effect is negligible for the gravitomagnetic potential.1

1 As an aside, we note that we also calculated the momentum field by
extracting the velocity field and density field separately at each grid point,
before multiplying them together. The power spectrum calculated from this
field agrees well with that calculated by extracting the momentum field as a
single field. The same agreement is not obtained when extracting the field

The difference between the methods is larger than the variation
amongst realizations for either method.

We can also extract the momentum field directly using a standard
CiC approach (Hockney & Eastwood 1981), and compare this to the
momentum field extracted using the DTFE code. The ratio between
these fields is shown in Fig. 2. There is good agreement between
the two methods of computing the momentum power spectrum
on larger scales, but with a divergence between the two methods on
smaller scales. It is unclear which method would be expected to be
more accurate on these smaller scales: the DTFE method suffers from
having a window function that cannot be deconvolved; however, the
CiC method will have cells with a zero momentum field, due to the
lack of nearby particles, for a sufficiently large grid. In fact, the CiC
method does not converge as the grid size is increased. We used a
5123 grid for the CiC code, although we checked that changing this
to 256 or 1024 does not significantly affect the results. Unlike the
DTFE method, derivatives cannot be directly extracted with the CiC
method, so the consistency checks performed earlier for the DTFE

method cannot be applied to the CiC method. This also means that
the first method of extracting the vector potential, using the curl of
the momentum field, cannot be carried out with the CiC method.

We present the vector power spectrum from both the momentum
field and the curl method in the results section. We note that the
level of agreement between Figs 1 and 2 suggests that our vector
potential power spectrum is robust and correct to within a factor of
2. It is unclear to us which method should be trusted more; whilst the
momentum field method is simpler, the derivative method allows
us to examine the different components, notably the vorticity, and
check that it behaves as expected. The differences between the two
methods do not affect the observability of the vector potential; see
Bruni et al. (2014) and Thomas et al. (2014).

3.2.5 Comparison to previous findings

There are several works in the literature to which we can compare
our findings on the velocity field and its components. As mentioned
above, the vorticity and velocity divergence power spectra were ex-
tracted from N-body simulations in Pueblas & Scoccimarro (2009)
using an alternative implementation of the Delaunay tessellation.
They found a strong dependence on resolution of the extracted vor-
ticity power spectrum and an approximate scaling of the vorticity
power spectrum with the seventh power of the linear growth factor.

The vorticity and velocity divergence power spectra in Pueblas
& Scoccimarro (2009) are consistent with the spectra extracted
for this paper and we found the same resolution dependence of
the vorticity power spectrum (see above). However, as detailed in
Appendix B2, we do not find the same scaling of the vorticity
spectrum with the seventh power of the linear growth factor (D+).
Although this scaling seems to hold at low redshift, it no longer
holds at redshift one and beyond. At these earlier times, the power
spectrum is smaller than expected from the growth factor to the
seventh scaling, so the vorticity power spectrum must have grown
by less at redshift two than expected.

Two recent publications (Koda et al. 2014; Zheng et al. 2013)
have examined the velocity field from the point of view of redshift
space distortions. In these works, a different method of extracting
velocity fields is used, the nearest particle method. In this method,
the velocity at a grid point is given by the velocity of the nearest

δ2 and comparing to squaring the density field, when using either the DTFE

code or a CiC method.

MNRAS 452, 1727–1742 (2015)

 at U
niversity of Portsm

outh L
ibrary on February 3, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


The non-linear post-Friedmann vector potential 1733

particle to that grid point. See those works for comments on the
differences between the nearest particle and Delaunay tessellation
methods of extracting the velocity power spectra. Here, we note
that there appear to be pros and cons to both methods, with no clear
‘better’ method. It would be interesting to examine how close the
agreement between the vector potentials extracted by the DTFE and
nearest particle methods is.

None the less, there are some general observations that can be
compared between these works. Notably, the magnitude of the ve-
locity and vorticity spectra is found to be similar, considering the
differences in cosmological parameters. Also, the onset of non-
linearity is found to occur at lower k for the velocity divergence
than for the density. In addition, Zheng et al. (2013) find a strong
dependence of the curl component of the velocity field on the res-
olution, similarly to both this paper and Pueblas & Scoccimarro
(2009). They also find a time dependence of this component that
is approximately D7

+ up to z = 2, although this relationship breaks
down by up to a factor of 2 for certain redshifts and scales. As men-
tioned above, whilst our simulations also find this time dependence
of the vorticity at low redshift, we find that the relationship breaks
down for z > 1. There is no examination of multiple realizations in
Zheng et al. (2013) and, similarly to the comments in Appendix B2
regarding Pueblas & Scoccimarro (2009), the difference between
our realizations is sufficient to explain the difference between our
results and those of Zheng et al. (2013).

The broad agreement between different methods, including
agreement regarding resolution dependence and convergence, is
promising. Details of the vorticity field and its evolution require
further study, but the vorticity is a sub-dominant contribution to
the vector potential. As the simulations and snapshots used in the
papers mentioned in this section are different from ours, it is not
possible to compare the methods and extracted fields any more pre-
cisely. We note that the three works mentioned here do not have
multiple realizations of their HR simulations, so we are unable to
determine if the variation in vorticity between realizations found by
us is reproduced (see Appendix B4).

As this paper was being prepared, Hahn, Angulo & Abel (2014)
appeared on the arXiv. This paper investigates the properties of
velocity divergence and vorticity and confirms many of the findings
of Pueblas & Scoccimarro (2009). In particular, they agree with
our results regarding the convergence of the DTFE code for sufficient
mass resolution and our finding of a resolution dependence of the
velocity divergence, which did not appear in Pueblas & Scoccimarro
(2009). They use a different method to compute the vorticity and
velocity divergence power spectra, which agrees with the DTFE code
for sufficient resolution. However, as with the previous papers, there
seems to be no examination of multiple realizations with the same
resolution, in order to compare our findings. In addition, there is
no examination of the time dependence and thus no confirmation
or rejection of the D7

+ scaling of the vorticity spectrum at higher
redshifts.

4 R ESULTS

In this section, we present the power spectrum of the post-Friedmann
vector potential as calculated from N-body simulations. We show the
power spectrum at z = 0 and the different components of the source,
as well as the evolution of the power spectrum between z = 2 and 0.
In addition, we show the ratio between the vector and scalar power
spectra, and examine the time evolution of this quantity as well.
The power spectra plotted for the scalar and vector gravitational
potentials are the dimensionless power spectra. The closest analytic

result to our calculation is the second-order perturbative vector
potential calculated in Hui-Ching Lu et al. (2009). We will compare
our results to theirs at redshift z = 0, as well as comparing the time
evolution.

4.1 Results at redshift zero

In Figs 3 and 4, we show the power spectrum of the post-Friedmann
vector potential as well as the standard Newtonian scalar potential,
at z = 0, for the curl and momentum field methods of extraction,
respectively. As expected, both methods show that the scalar poten-
tial is small over all scales and the vector potential is sub-dominant.
There is a quantitative difference between the two methods on the
largest scales, but this difference is not sufficient to alter the expected
qualitative behaviour. Notably, the effect of the vector potential on
weak-lensing power spectra, as examined in Thomas et al. (2014),
will remain negligible, regardless of which method is used to cal-
culate the vector potential. We have been unable to determine the
reason for this discrepancy and it is unclear to us which method
should, a priori, be expected to be more accurate.

In Figs 5 and 6, we show the ratio between the power spectra of
the vector and scalar gravitational potentials at redshift zero, for the
two methods of extracting the vector potential. We plot the ratios for
all three individual realizations of the HR simulations. For the curl
method, as shown in Bruni et al. (2014), this ratio is approximately
2.5 × 10−5. This ratio does not vary significantly over the range
of scales considered, although there is a slight increase towards
smaller scales. However, for the momentum field method, the ratio
is not approximately constant due to the decreased power on large
scales. We will compare this behaviour to the analytic second-
order perturbative behaviour shortly; here we just note that the curl
method produces qualitative behaviour that is closer to the analytic
prediction.

In Fig. 7, we show the power spectra of the three sources of
the vector potential using the curl method, see equation (8). The
power spectra plotted here are given by P (k)/

(
f 2H2(2π)3

)
, where

H is the conformal time Hubble constant and f = dln D/dln a is
the logarithmic derivative of the linear growth factor D. These units
are chosen such that the power spectrum of the velocity divergence
agrees with the density power spectrum on linear scales and have
the same units as the matter power spectrum, following Pueblas

Figure 6. The ratio at redshift zero between the vector potential, calculated
using the momentum field method, and the scalar potential. The three curves
show the ratio for the three realizations of the HR simulations.
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Figure 7. The power spectra of the three source terms for the vector poten-
tial in equation (8), the vorticity (dashed black line), ∇δ × v (dot–dashed
blue line) and δ∇ × v (solid red line). The power spectra plotted here are
given by P (k)/

(
f 2H2(2π)3

)
, such that the power spectrum of the velocity

divergence agrees with the density power spectrum on linear scales and en-
suring that all of the power spectra have the same units, following Pueblas &
Scoccimarro (2009). The linear matter power spectrum is shown as a dotted
magenta line for comparison.

& Scoccimarro (2009). The vorticity, although often ignored in
perturbation theory, is the only one of these three quantities that
is linear in perturbations. This figure shows that it is negligible
compared to the other two components, so the vector potential is
being predominantly generated by non-linear effects.

Since this vector potential is the first correction to Newtonian
theory, this calculation is the first quantitative check of the relation-
ship between Newtonian simulations and GR on fully non-linear
scales. The small magnitude of the vector potential suggests that
running Newtonian simulations is sufficiently accurate for cosmo-
logical purposes, whereas a larger calculated value for the vector
potential would suggest that the approximations taken in deriving
the fully non-linear Newtonian equations do not hold sufficiently
well. As far as relating Newtonian and relativistic cosmologies goes,
in the language of Green & Wald (2012), the smallness of this vec-
tor potential allows the use of the abridged dictionary in Chisari &
Zaldarriaga (2011), rather than the dictionary proposed in Green &
Wald (2012). We note that the analysis here is for a �CDM cosmol-
ogy; further work is required to determine the validity of Newtonian
simulations in general dark energy cosmologies.

4.2 Time evolution

In this section, we will examine the time evolution of the vector
potential, and its ratio to the scalar potential, for the redshifts listed in
Table 2. The vector potential is this section has been computed using
the curl method. In Fig. 8, we plot the ratio of the vector potential
to the scalar potential as a function of redshift. The different curves
in this plot show the evolution for different wavenumbers. We can
see that individual k modes do not exhibit significant growth over
time, although the more non-linear scales do exhibit slightly more
variation in time. Similarly to the scalar gravitational potential, the
vector potential at a fixed scale is not monotonic over time on non-
linear scales.

In Fig. 9, we plot the ratio of the vector potential to the scalar
potential as a function of redshift. The different curves in this plot

Table 2. Redshifts used to probe time evolution of quantities.

Scale factor Redshift Colour on time evolution plots

0.33 2.0 Black
0.4 1.5 Red
0.5 1.0 Magenta
0.6 0.67 Yellow
0.7 0.43 Green
0.8 0.25 Cyan
0.9 0.11 Blue
1.0 0.0 Brown

Figure 8. The evolution of the vector potential for six different wavenum-
bers. From top to bottom, these are k = 0.23 h Mpc−1 (brown),
k = 0.55 h Mpc−1 (black), k = 0.79 h Mpc−1 (cyan), k = 1.01 h Mpc−1

(blue), k = 2.51 h Mpc−1 (magenta) and k = 5.03 h Mpc−1 (red).

Figure 9. The ratio of the vector potential to the scalar potential plotted for
six different wavenumbers. From bottom to top (at redshift = 1), these are
k = 0.23 h Mpc−1 (brown), k = 0.55 h Mpc−1 (black), k = 0.79 h Mpc−1

(cyan), k = 1.01 h Mpc−1 (blue), k = 2.51 h Mpc−1 (magenta) and
k = 5.03 h Mpc−1 (red).

show the same wavenumbers as in Fig. 8. The ratio stays fairly
constant over time, varying by less than a factor of 2 for a given scale.
Across the entire range of times and scales under consideration,
the ratio varies by less than a factor of 4. The ratio between the
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gravitational potentials is also not monotonic over the redshift range
under consideration for a given scale.

4.2.1 Comparison to perturbative calculation

In Hui-Ching Lu et al. (2009), an analytic calculation of the vector
potential was performed using perturbation theory. As a perturbative
analysis, it is unclear how large a value of k this calculation should
be extended to. Here we will assume that it is valid on all of the
scales of overlap between this method and ours.

For the curl method of computing the vector power spectrum,
there is similar qualitative behaviour between the two methods,
with the ratio of the power spectra of the vector and scalar potentials
being fairly constant and of the order of 10−5 in both methods. The
difference between the two methods being that the ratio in Hui-
Ching Lu et al. (2009) is between the vector and the linear theory
scalar potential, whereas the our ratio is between the vector and the
fully non-linear scalar potential. This means that despite this similar
qualitative behaviour, the power spectrum of the vector potential
in Hui-Ching Lu et al. (2009) underestimates the fully non-linear
value on these scales by up to two orders of magnitude, the same
factor by which the linear theory scalar potential power spectrum
underestimates the power spectrum of the fully non-linear scalar
potential.

The momentum field method of calculating the vector power
spectrum results in less similar qualitative behaviour. It is unclear
how well the gravitomagnetic potential would be expected to match
the perturbative prediction on these scales as the velocity field differs
from the linear theory at larger scales than the density.

The power spectrum of the perturbative vector potential is given
in Hui-Ching Lu et al. (2009) as

Ps(k) =
(

2�R
5g∞

)4
(

3g
[
g′ + H}]
�mH2

)2

k2�(u2), (15)

where Ps is the dimensionless power spectrum of the vector poten-
tial, �R is the primordial power of the curvature perturbation, g is
the growth factor for the scalar potential, g∞ is a normalization pa-
rameter chosen so g(0) = 1, � is a function of the transfer function,
�m is the time-dependent matter density and H is the conformal
Hubble constant. The second term in parentheses contains all of
the time dependence of the vector potential power spectrum and
essentially acts as the growth factor for the vector potential. We
have compared this perturbative prediction for the growth factor of
the vector potential to the growth measured in the simulations (see
Fig. 5 in file CC). This shows that the analytic prediction is not the
main source of the time evolution of the vector potential.

5 C O N C L U S I O N A N D D I S C U S S I O N

In this paper, we have presented the post-Friedmann frame-dragging
vector potential calculated on non-linear scales from N-body simu-
lations. We have presented this vector potential at redshift zero, as
well as examining its evolution with redshift. We have also presented
the tests we have performed in order to establish the robustness of
our result, including tests of simulation parameters and different
methods of extracting the source of the vector potential.

We have shown that our density, velocity divergence and vorticity
spectra are consistent with the literature and show similar behaviour
regarding convergence tests, particularly mass resolution. We do not
see the vorticity scaling with the seventh power of the linear growth
factor D+ (Pueblas & Scoccimarro 2009) beyond z = 1; however,

the differences between our results and others’ are within the vari-
ance between realizations. We have noted a larger variation of the
vorticity than the density and velocity divergence fields between dif-
ferent realizations, a result that does not seem to have been studied
in the literature.

We have shown that there is no evidence for a systematic depen-
dence of the vector potential spectrum on box size for boxes smaller
than 200 h−1 Mpc or on mass resolution with mass resolution better
than 6 × 108 M�. There is also no evidence that the vector poten-
tial is sensitive to the softening length, binning, number of samples
(an internal DTFE parameter) or the grid size used in the analysis.
There is reasonable agreement between the different methods (curl
and momentum field) of extracting the vector potential, although
there is an unresolved discrepancy between the two methods on the
largest scales. We do however note the importance of the variation
of the vector potential between realizations; this issue is discussed
more fully in Appendix B4.

Figs 3 and 8 comprise the main physical results of this paper,
showing the magnitude of the vector potential power spectrum at
redshift zero and its evolution with time, respectively. The magni-
tude of the vector potential power spectrum can also be expressed
in terms of its ratio to the power spectrum of the scalar potential,
as shown in Figs 5 and 9. We have shown that the power spectrum
of the vector potential is around 105 times smaller than the power
spectrum of the scalar potential, over a range of scales and redshifts.
These values were used in Bruni et al. (2014) and Thomas et al.
(2014) when examining the observability of the vector potential,
showing that it is negligible for currently planned weak-lensing
surveys. The small magnitude of the vector potential found here is
the first quantitative check of the validity of Newtonian simulations
compared to GR on fully non-linear scales and supports the use of
Newtonian simulations for computing cosmological observables. In
terms of interpreting the simulations, the small value of this vec-
tor potential seems to justify the use of the abridged dictionary in
Chisari & Zaldarriaga (2011), rather than the dictionary proposed in
Green & Wald (2012), for relating GR and Newtonian cosmologies.

The work carried out so far considers a �CDM cosmology, so
this conclusion may no longer be true for a dark energy or modified
gravity cosmology. The post-Friedmann approach would need to
be expanded to include modified Einstein equations and/or a fluid
with pressure in order to examine alternative cosmologies and de-
termine whether the use of Newtonian-type N-body simulations is
still valid in those cosmologies. The post-Friedmann expansion has
been applied to f(R) gravity and the vector potential calculated from
f(R) simulations in Thomas et al. (2015). The vector potential in
f(R) was found to be larger than that in GR. We hope that this, and
further extensions to the work in this paper, will allow us to under-
stand how generic the findings in this paper are, and thus justify one
of the most widely used tools in cosmology, N-body simulations.
Whilst this paper was being prepared for submission, Adamek,
Durrer & Kunz (2014) appeared on the arXiv. Their preliminary
results seem to agree with the results of this work. It will be inter-
esting to perform a more in-depth comparison once the details of
their work are available.
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APPENDIX A : V ECTO R POW ER SPECTRA

We will be dealing with vector quantities, for which there are different ways to define the power spectrum. Our power spectrum for a generic
vector v is defined as

〈ṽ(k) · ṽ∗(k
′
)〉 = (2π)3δ3(k − k

′
)Pv(k). (A1)

Note that for a divergenceless vector, such as BN, k2PBN (k) = P∇×BN (k). With our Fourier transform convention, the dimensionless power
spectrum for a field X is given by �X = k3PX(k)/2π2. All plots of the power spectrum of the vector potential show the dimensionless power
spectrum.

Using equation (7)〈
˜∇ × BN(k) · ˜∇ × BN∗(k

′
)

〉
=

(
16πGρba

2

k2

)2 〈[
˜(∇δ) × v + ˜(1 + δ) ∇ × v

]
·
[

˜(∇δ) × v + ˜(1 + δ) ∇ × v
]∗〉

(A2)

〈 ˜∇ × BN(k) · ˜∇ × BN∗(k
′
)〉 =

(
16πGρba

2

k2

)2

⎛
⎜⎜⎜⎝

〈 ˜[∇δ × v] · ˜[∇δ × v]
∗〉 +〈 ˜[∇δ × v] · ˜[δ∇ × v]

∗〉 +〈 ˜[∇δ × v] · ˜[∇ × v]
∗〉

+〈 ˜[δ∇ × v] · ˜[∇δ × v]
∗〉 +〈 ˜[δ∇ × v] · ˜[δ∇ × v]

∗〉 +〈 ˜[δ∇ × v] · ˜[∇ × v]
∗〉

+〈 ˜[∇ × v] · ˜[∇δ × v]
∗〉 +〈 ˜[∇ × v] · ˜[δ∇ × v]

∗〉 +〈 ˜[∇ × v] · ˜[∇ × v]
∗〉

⎞
⎟⎟⎟⎠ .

Noting that A · B∗ = (A∗ · B)∗,

〈 ˜[∇ × v] · ˜[∇δ × v]
∗〉 + 〈 ˜[∇δ × v] · ˜[∇ × v]〉∗ = 2re

(
〈 ˜(∇ × v) · ˜(∇δ × v)〉

)
≡ (2π)3δ3(k − k

′
)P(∇δ×v)(∇×v)(k). (A3)
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And therefore the dimensionless power spectrum for the vector potential is given by

�BN (k) =
(

16πGρba
2

k2

)2
k

2π2
Pδv(k), (A4)

where

Pδv(k) = P∇×v(k) + Pδ∇×v(k) + P(∇δ)×v(k) + P(∇δ×v)(∇×v)(k) + P(∇δ×v)(δ∇×v)(k) + P(δ∇×v)(∇×v)(k). (A5)

APPENDIX B: ADDITIONAL RO BU STNESS I NFORMATI ON

In this appendix, we show the figures referred to in the main text (Figs B1–B3) as well as discussing additional robustness and convergence
tests that were carried out in order to establish our result.

B1 DTFE parameters

There are several internal DTFE parameters that are used when computing these fields on a regular grid. We investigate the effects of two of
these parameters here, the grid size and the number of samples that are made in each grid cell, Nsamples.

We examined the effect of varying the grid size on the extracted density, velocity divergence and vorticity power spectra. In all cases, the
agreement is very good, except on the smallest scales. A discrepancy on this scales is expected due to the change in the resolution of the grid
and the effects of the DTFE window function. However, even on the smallest scales, the discrepancy is small. This can be seen in Figs 1–3 in

Figure B1. The vorticity power spectra extracted from simulations with varying box size and mass resolution. Lines with the same colour share the same
mass resolution [in units of 108 M�: 3.97 (red), 6.26 (magenta), 6.31 (yellow), 7.76 (green), 16.3 (cyan) and 130 (blue)]. The black curve is the linear matter
power spectrum for comparison.

Figure B2. The vector potential power spectra extracted from simulations with varying box size and mass resolution. Lines with the same colour share the
same mass resolution [in units of 108 M�: 3.97 (red), 6.26 (magenta), 6.31 (yellow), 7.76 (green), 16.3 (cyan) and 130 (blue)]. The spectra have been multiplied
by k2 in order to better show the variation.
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1738 D. B. Thomas, M. Bruni and D. Wands

Figure B3. The vector potential power spectra extracted from simulations with varying box size and mass resolution. Lines with the same colour share the
same box size: 140 h−1 Mpc (red), 160 h−1 Mpc (magenta), 200 h−1 Mpc (yellow), 240 h−1 Mpc (green), 320 h−1 Mpc (blue). The spectra have been
multiplied by k2 in order to better show the variation.

Figure B4. The ratios of the power spectra computed with Nsamples = 100 and 1000. The ratios shown are for the density (red), velocity divergence (blue),
vorticity (cyan) and vector potential (black).

file BG, where we show the extracted spectra from one of the 160 h−1 Mpc simulations with 10243 particles at redshift zero. The different
lines show the different grid sizes used: 1024 (blue), 950 (cyan), 850 (green), 750 (magenta) and 640 (red). The black line shows the linear
density power spectrum for comparison. For our result plots, we have used the suggested value N3

grid = Npart = 1024.
Our analysis has all been carried out with Nsamples = 100 points per grid cell, partly due to computing constraints; increasing the number

of samples increases the run time and memory required when analysing a snapshot. However, in Fig. B4 we show the effect of increasing
Nsamples to 1000 points per grid cell for one of the 160 h−1 Mpc simulations with 10243 particles. The velocity divergence and vorticity spectra
agree very well between the two different numbers of samples. The density power spectrum shows a deviation that increases towards smaller
scales, however is within 5 per cent for the range of scales under consideration here. The power spectrum of the vector potential shows more
deviation, with decreasing deviation for smaller scales. However, the change in the vector potential is within 10 per cent for every bin after
the first and is within 5 per cent for all scales k > 0.3 h−1 Mpc.

B2 Linear evolution

A further check that can be performed is to examine how the time variation of our extracted density, velocity divergence and vorticity
power spectra compares to the respective linear predictions. For the density and velocity divergence fields, the power spectra evolve as
(D+(z)/D+(z = 0))2 on the largest scales and earliest times, as per the linear theory prediction. This prediction becomes increasingly
inaccurate for more scales at lower redshifts due to non-linear effects.

The time evolution that we found for the vorticity is shown in Fig. B5. In this figure, the power spectrum at each redshift has been divided
by the seventh power of the linear growth factor for that redshift, (D+(z)/D+(z = 0))7, as suggested by Pueblas & Scoccimarro (2009). In
Pueblas & Scoccimarro (2009), the authors include an approximate analytic derivation of the time evolution of the vorticity power spectrum,
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The non-linear post-Friedmann vector potential 1739

Figure B5. The non-linear vorticity power spectrum at selected redshifts, z = 2 to 0, each divided by the respective linear theory density growth factor to the
seventh power, see Pueblas & Scoccimarro (2009). See Table 2 for details and an explanation of the colours. As expected, the linear theory prediction works
well on the largest scales and is generally worse for smaller scales and later times; however, the scaling as the seventh power of the density growth factor seems
to break down at earlier times. The error bars on this plot show the standard error on the mean for each set of realizations.

finding it to behave as f 2
v (z)D6

+(z)), where fv(z) is the fraction of the volume that undergoes orbit crossing. Fitting to their simulations, they
found (D+(z)/D+(z = 0))7 ± 0.3 to be the best-fitting value. The scaling of our vorticity spectrum appears similar to that found in Pueblas &
Scoccimarro (2009). However, in our simulations this scaling appears to break down for higher redshift, z ≥ 1. We see a smaller vorticity
spectrum at these times than expected from the (D+(z)/D+(z = 0))7 scaling. Fig. B5 shows this discrepancy along with the error amongst our
simulations. These errors do not appear sufficiently large to explain the discrepancy. However, it is worth noting that the variation amongst
our realizations (see Appendix B4) is large enough to explain the difference in the time evolution of the vorticity between our simulations and
the single HR simulation in Pueblas & Scoccimarro (2009). The variation between realizations was not considered in Pueblas & Scoccimarro
(2009); however, it seems likely that the function fv(z) varies between realizations. The range of the scaling of the vorticity with the linear
growth factor has an upper value of 7.3 in Pueblas & Scoccimarro (2009). Using this value reduces, but does not remove the discrepancy.

B3 Comparison with the POWMES density power spectrum

The density and density gradient power spectra (the latter divided by k2, see the consistency check above) that we have extracted can be
compared to the density field extracted by POWMES (Colombi et al. 2009), a state-of-the-art conventional density power spectrum estimator.
For the HR simulations, the power spectra agree within 10 per cent for 0.2 h Mpc−1 ≤ k ≤ 7.0 h Mpc−1, see Fig. 3 in file CC, and within
5 per cent for the majority of this range. A similar result is seen for the ratio of the DTFE gradient of the density spectrum (divided by k2) to
the POWMES density spectrum, see Fig. 4 in file CC.

The agreement on the largest scales, in the first four to five bins, is affected by the choice of binning. If the number of bins used for the
DTFE extraction is doubled, then the DTFE and POWMES extractions agree much more closely as the bins are then of a more similar size and
location. As noted in Appendix B7, if we increase the number of bins, then the number of k modes contributing to the first few bins is much
smaller, so we will continue to use Ngrid/4 bins in our analysis. The agreement between the POWMES and DTFE methods is sufficient to support
the robustness of our density and density gradient spectra.

B4 Realizations

In this section, we show how the extracted spectra vary amongst realizations. We will illustrate this with the 160 h−1 Mpc 6403 particle
simulations for which there are eight realizations. In all cases, we consider the variation at redshift zero.

We examined the variation amongst realizations for the density field, using both the DTFE code and POWMES, and also the velocity divergence.
These all showed the expected variation, namely that cosmic variance causes a difference between the realizations on the largest scales in
each box, but this difference is much reduced on smaller scales. The variance between realizations for the density field was very similar for
the two methods of extracting the density field.

In Fig. B6, we show the variation of the vorticity field amongst realizations. This plot shows that the variation amongst realizations is
greater for the vorticity than for the density. On smaller scales, the variation amongst realizations of the vorticity is less than that on large
scales, but still greater than that for the density field. We are not aware of this being previously noted in the literature, and the works (Pueblas
& Scoccimarro 2009; Zheng et al. 2013; Hahn et al. 2014) that we compare our vorticity spectrum to in the main text do not have multiple
realizations in order to have seen this effect.

In Fig. B7, we show the variation amongst realizations of the vector potential. On large scales, the variation between realizations is very
similar to that between the vorticity spectra. However, the variation does not appear to reduce on smaller scales. According to perturbative
results (Lu et al. 2008; Hui-Ching Lu et al. 2009), the vector is generated most efficiently by coupling between two different k modes,
particularly if one of them is entering the horizon. Given the similar qualitative behaviour of the fully non-linear vector potential, it is
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1740 D. B. Thomas, M. Bruni and D. Wands

Figure B6. The vorticity power spectra as extracted from the eight 160 h−1 Mpc simulations with 6403 particles. The dashed black line denotes the average
of the eight simulations.

Figure B7. The vector potential power spectra as extracted from the eight 160 h−1 Mpc simulations with 6403 particles. The dashed black line denotes the
average of the eight simulations. The spectra have been multiplied by k2 in order to better show the variation.

reasonable to assume that this is also generated by coupling between large-scale modes and small-scale modes. Thus, the large-scale variance
between realizations will be affecting the vector power spectrum on smaller scales, resulting in the variance between realizations not decreasing
on small scales.

In Fig. B8, we show how the value of the vector potential from the individual realizations of the HR simulations compares to the average
over realizations of simulations with different parameters. Note that the variation between the HR realizations is greater than the variation
between the average over realizations for different simulation parameters.

As mentioned above, the increased variance between realizations may be an unavoidable feature of the vector potential. As such, this
represents the dominant source of error in calculating the vector potential, as long as the simulation parameters are sufficiently good. If an
observational test of the vector potential was found, then many more realizations than the number carried out for this paper would be required,
in order to more carefully investigate this effect and determine more precisely what the observational prediction would be for a �CDM
cosmology.

B5 Softening length

In this paper, we have chosen our softening lengths following Pueblas & Scoccimarro (2009) in order to compare to their results. In Fig. B9,
we show how a 160 h−1 Mpc simulation with 6403 particles and the same initial conditions varies if the softening length changes from 6.5
to 5 kpc. This is a 20 per cent change in the softening length. The variation between the density, velocity divergence and vorticity spectra is
very small for this change. The power spectrum of the vector potential varies more, but is within 5 per cent of the value for nearly the entire
range under consideration. Since this 5 per cent variation is significantly smaller than the 20 per cent variation in the softening length, we do
not think the choice of softening length significantly impacts our results for a sensible choice of softening length.
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The non-linear post-Friedmann vector potential 1741

Figure B8. The vector potential power spectra from different simulations, divided by the average vector potential from the three 160 h−1 Mpc simulations
with 10243 particles. The three red curves show the vector potential from the three realizations of the 160 h−1 Mpc simulations with 10243 particles. The
cyan and magenta curves show the vector potential from the average of the 160 h−1 Mpc simulations with 6403 and 8803 particles, respectively. The yellow
curve shows the average of the 140 h−1 Mpc simulations with 7683 particles and the green curve shows the average of the 200 h−1 Mpc simulations with
10243 particles. Note that the variation between the HR simulations is greater than the variation between the average values from simulations with different
parameters.

Figure B9. The ratio between the power spectra extracted at redshift zero for the same initial conditions run with two different softening lengths. The different
spectra plotted are density (red), velocity divergence (blue), vorticity (cyan) and the vector potential (black).

B6 Smaller boxes

Here we examine some additional plots that demonstrate some of the comments made in the main text. We ran a set of eight simulations
with 5123 particles in an 80 h−1 Mpc box and extracted the power spectra in the same way as from our other simulations. In Figs 3, 5 and 6
in file RB, we show the density, vorticity and vector potential power spectra, respectively, colour coded to match box size as in Fig. B3. In
addition, the power spectra extracted from the smaller boxes are shown as a dashed black line. It is clear that the spectra extracted from the
smaller 80 h−1 Mpc boxes are systematically smaller, irrespective of any other dependence on box size and resolution. The effect of using
(too) small boxes when running N-body simulations has been examined in the past, see e.g. Gelb & Bertschinger (1994), Bagla & Ray (2005)
and Bagla & Prasad (2006). A suggestion in Bagla & Prasad (2006) is that it is important that the ratio between the box size and the scale
of non-linearity is sufficiently large. As a result, for our simulations, the smallest boxes we have run that we consider trustworthy are the
140 h−1 Mpc simulations. It remains to be seen whether smaller boxes, such as the 100 h−1 Mpc simulations used in Zheng et al. (2013), are
a robust source of spectra such as the density and vorticity.

B7 Number of bins

We considered the effect on our extracted power spectra of varying the number of bins. As expected, increasing the number of bins increases
the noise of the power spectra and there is no systematic deviation. Our results from varying the number of bins on the density, velocity
divergence and vorticity power spectra are shown in Figs 4–6 in file GB. In each of these plots, the 256 bins used for the analysis in this
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paper are shown by the black line, the blue line denotes the use of 512 bins and the red line is for 1024 bins. We have used 256 bins for our
analysis to ensure that the low-k bins contain a sufficient number of k modes. For the 256 bins, the first two k bins contain 58 and 218 k
modes, respectively, whereas these numbers are 12 and 41 for the corresponding bins when 1024 bins are used. Note that, as mentioned in
the POWMES section, the variation between the 256-bin and 512-bin power spectra is similar to the variation between the POWMES method and
the DTFE method using 256 bins. This is due to the number and location of bins in the POWMES method being very similar to the DTFE method
with 512 bins.

In addition, Fig. 7 in file GB shows the variation of the vector potential power spectrum with the number of bins. Again, the change in the
number of bins is negligible. In this plot, the dashed lines show the power spectra computed with the extra factors of k explicitly included
whilst summing over the modulus-squared values of the field; see the velocity consistency check for more information. As expected, this
change affects things the most in the largest bins and therefore on large scales and for the smallest number of bins; however, it does not affect
our results.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 452, 1727–1742 (2015)

 at U
niversity of Portsm

outh L
ibrary on February 3, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/

