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Abstract

Background: If biology is modular then clusters, or communities, of proteins derived using only protein

interaction network structure should define protein modules with similar biological roles. We investigate the link

between biological modules and network communities in yeast and its relationship to the scale at which we

probe the network.

Results: Our results demonstrate that the functional homogeneity of communities depends on the scale selected,

and that almost all proteins lie in a functionally homogeneous community at some scale. We judge functional

homogeneity using a novel test and three independent characterizations of protein function, and find a high

degree of overlap between these measures. We show that a high mean clustering coefficient of a community can

be used to identify those that are functionally homogeneous. By tracing the community membership of a

protein through multiple scales we demonstrate how our approach could be useful to biologists focusing on a

particular protein.

Conclusions: We show that there is no one scale of interest in the community structure of the yeast protein

interaction network, but we can identify the range of resolution parameters that yield the most functionally

coherent communities, and predict which communities are most likely to be functionally homogeneous.
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1 Background

Large protein-protein interaction data sets [1–3] and functional information about many proteins are

increasingly available. This allows one to investigate the patterns in protein-protein interactions that

enable proteins to act concertedly to carry out their functions. In particular, considerable recent attention

has been given to the modularity of the cell’s functional organisation [4–6]. A module is often thought of as

a group of components that carry out a functional task fairly independently from the rest of the system. It

is thought that such modules yield robust and adaptable systems [7]. There is also much suggestive

evidence that modules within the cell are themselves the building blocks of a higher level of structural

organisation (e.g. [8–10]).

Within the networks literature a great many algorithms have been proposed that locate dense regions in a

network, often called communities (reviewed in [11, 12]). A community is loosely defined as a group of

nodes that are more closely associated with themselves than with the rest of the network. Such

communities are potentially good candidates for functional modules, and many studies report running one

of the myriad algorithms for detecting community structure on protein interaction networks [13–19].

Having located communities, such studies then attempt to assess their functional homogeneity by searching

for terms in a structured vocabulary —usually the Gene Ontology (GO, [20]) or Munich Information Centre

for Protein Sequences categories (MIPS, [21])—that are significantly over-represented within communities.

If such terms exist, the identified communities are said to be ‘enriched’ for biological function. In many

studies such enriched communities are found, and hence are plausible candidates for biological modules.

Recently there has been an acknowledgement that many community detection algorithms – in particular all

those that rely on optimising the quality function known as modularity – impose an artificial resolution

limit on the communities detected [22]. Such algorithms return communities found at one particular

resolution – i.e. at one particular scale within the network – whereas there are many scales of potential

functional relevance within the protein interaction network. For example, one might expect to find smaller

communities embedded inside progressively larger ones [11]. There are now algorithms available that

include a ‘resolution parameter’, which allow one to uncover structure at many different

resolutions [23–27]. However, no study to our knowledge has systematically applied such an algorithm and

analysed the results across different resolutions in protein interaction networks (one study reports testing

more than one value of a parameter akin to the resolution on a protein interaction network, in order to
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select an optimal value for their purposes [28]).

In this study, we probe the functional relevance of communities at multiple resolutions (scales) in the yeast

protein interaction network, for two main biological reasons. First, considering the whole proteome, it is

possible to view how the network breaks into communities (hierarchically or otherwise), and to investigate

whether some scales of organisation are of more relevance than others biologically. Second, the relationship

of multi-scale community structure to a particular protein is of interest: it is possible to see which other

proteins co-occur with it at different resolutions – perhaps it co-occurs robustly with a small group of

proteins at high resolution but also with a larger set of proteins at a lower resolution. Both groups are of

potential interest in understanding what role the protein plays. This is particularly pertinent for poorly

annotated proteins, as their patterns of potential function can be revealed through clustering into

communities [29].

Although it is already thought that communities have some relationship to functional modules, here we

expand on previous work to assess the functional relevance of communities in four main ways.

First, assessing functional relevance by counting over-represented terms amongst a group of proteins is not

a sufficiently stringent test of functional relevance when the group of proteins in question is a community.

This is because two proteins that interact are functionally more similar than a randomly chosen pair of

proteins, so one must control for the number of interactions when assessing the biological relevance of a

community (which will necessarily include more interacting pairs than a randomly selected group of

proteins). We therefore control for the number of interacting proteins found in a community.

Second, instead of assessing functional homogeneity on a term by term basis we use all the annotations

available within a given ontology.

Third, GO and MIPS are subjective by their nature, both in the definition of the sets of terms themselves

and in the process of annotation of terms to proteins. Due to their role in a particular process, a protein

might well be both annotated more fully and have a higher probability of having had protein interaction

experiments performed on it. Therefore, in addition to using GO and MIPS as protein functional

characterizations, we use a single high-throughput experiment on the growth rates of gene knock-out
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strains under various conditions (using data from [30]).

Fourth, protein interactions are of two fundamentally different types. The Molecular Interactions

ontology [31] recognises two distinct types of interactions: physical associations (henceforth denoted P )

and associations (henceforth denoted A). The main experimental type for the former are yeast-two-hybrid

screens (e.g. [32]). The main type of experiment to fall under the latter are based on tandem affinity

purification (TAP, e.g. [33]). These interaction types are known to have very different properties [1, 34].

Additionally, the networks constructed using these two types of interactions have quite different global

properties (see Table 1). We thus investigate the two networks, based on type A and type P interactions,

independently.

We identify communities at multiple resolutions in these two fundamentally different interaction networks.

We then use novel tests to determine the communities’ functional homogeneity using three different

characterisations of function. As the functional knowledge of proteins is far from complete (even for well

characterised organisms such as yeast), we also search for topological properties of communities that are

correlated with functional homogeneity.

In our study we find many functionally homogeneous communities at multiple network resolutions. Almost

all proteins are in functionally homogeneous communities at some resolution (4652 of 4980 proteins in the

A network, and 5647 of 5669 proteins in the P network). The resolution that places most proteins in

functionally homogeneous communities is beyond the ‘resolution limit’, or standard resolution, discussed

above. At this maximum, 3071 out of 4980 proteins are in functionally homogeneous communities

according to our GO similarity measure in the A network. Communities at this resolution have mean size

73, compared to mean size 293 at the standard resolution. We find similar numbers for the P network.

Additionally, we find a high degree of overlap between communities judged functionally homogeneous using

three separate quantifications of functional similarity. Through a further characterization of the

communities using 26 topological properties, we identify the mean clustering coefficient of a community as

a good predictor of functional homogeneity, with a true positive rate of 70% achievable with a false positive

rate of 30%. In addition to these proteome-scale results, we demonstrate via examples how this approach

can be used to predict groups of proteins likely involved in similar processes to a particular protein of

interest.
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Network A P
Number of nodes 4980 5669
Number of edges (of which self edges) 48,330 (868) 33,321 (941)
Mean degree 19.1 11.5
Mean clustering coefficient 0.22 0.10

Table 1: Network statistics of the A and P networks

Additional Files can be found at http://www.stats.ox.ac.uk/research/proteins/resources.

Methods
Protein-Protein Interaction Datasets

Here we use the BioGrid (www.thebiogrid.org, downloaded January 2010, [35]), IntAct

(www.ebi.ac.uk/intact, downloaded January 2010, [36]) and Mint databases

(mint.bio.uniroma2.it/mint, downloaded January 2010, [37]) to assemble our protein interaction

networks. We use only interactions between proteins that have an SGD identification (Saccharomyces

Genome Database, www.yeastgenome.org). We divide interactions on the basis of their type (A or P ) and

hence assemble the two networks (See Additional File 1 for details). Of the potential 6607 proteins in the

yeast proteome (www.yeastgenome.org), there are 5002 proteins connected by A type interactions, and

5692 connected by P type interactions. Here we only study the largest connected component of these

networks, leaving 4980 proteins in the A network and 5669 in the P network. Some summary statistics for

the two amalgamated networks are shown in Table 1. The A network is denser, and has higher clustering.

There are 5947 interactions in common between the A and the P networks.

Potts community detection

We apply the Potts method [23]. It partitions the proteins into communities at many different values of a

resolution parameter, thus finding communities at different scales within the network. The method seeks a

partition of nodes into communities that minimises a quality function (‘energy’):

H = −
∑

ij

Jij(λ)δ(si, sj), (1)

where si is the community of node i, δ is the Kronecker delta, λ is the resolution parameter, and the

interaction matrix Jij(λ) gives an indication of how much more connected two nodes are than one would

expect at random (i.e., in comparison to some null hypothesis). The energy H is thus given by a sum of

elements of J for which the two nodes are in the same community. Optimising H is known to be an
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NP-complete problem [38,39], so one must use a computational heuristic. Here we use the greedy

algorithm discussed in [27] and freely available (www.lambiotte.be/codes.html), which performs well

against various benchmark tests [40].

The interaction matrix J has elements

Jij(λ) = Bij − λRij , (2)

where the matrix B with elements Bij is the adjacency matrix. In this case Bij = 1 if proteins i and j

interact, and Bij = 0 otherwise. The matrix R with elements Rij defines a null model, against which we

are comparing the network of interest. Here we choose the standard Newman-Girvan null model [41],

which has the property that it preserves the node degree sequence. That is,

Rij =
kikj

2W
, (3)

where ki =
∑

j Bij is the degree of node i, and W =
∑

ij Bij/2 is the number of edges in the network.

When λ = 1, H is the standard Newman-Girvan modularity quality function, upon which many

community detection algorithms are based [11,41]. We hence refer to this value of the resolution parameter

as the standard resolution. Values of λ > 1 probe the network at resolutions above the resolution limit.

We investigate partitions of the network in the range 0.1 ≤ λ ≤ 1000, and sample at intervals of 0.01 on a

logarithmic scale (we hence report results for −1 ≤ log(λ) ≤ 3). At λ = 0, all nodes in our set will be

assigned to the same community. As we increase λ, communities split and become smaller. If we allow λ to

increase until all of the entries in Jij are negative, then each node will be assigned to its own community.

Pairwise measures of functional similarity

It is impossible to uniquely quantify similarity in biological function. Here we rely primarily on the GO

(www.geneontology.org), which provides the most comprehensive available database of functional

annotations. We use the Biological Process sub-ontology annotations to yeast, which are maintained by the

SGD consortium [42]. Terms are related to each other through a directed acyclic graph (DAG) (see

Additional File 1 Figure S1 for a visualisation of this structure). Proteins are annotated with the most

specific terms that are known about them. It is then possible to add to this set their parent terms by

following the structure of the DAG, up to the root node. Well-characterised proteins are those annotated

with terms far from the root node. Of the 6346 yeast proteins in the GO annotation set, 5347 have
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biological process annotations (excluding the root node). We carried out the same tests using the

Molecular Function and Cellular Component sub-ontologies, which gave similar results.

We also use MIPS terms (www.helmholtz-muenchen.de/en/ibis, [21]), which are a useful double check

on our results from GO, and have the added advantage that the terms are all found at the same level

within the hierarchy of terms. Here we only use the top level of the MIPS hierarchy.

Following [43], we quantify the functional similarity between two proteins i and j by finding the set of GO

terms annotated to both proteins and counting the total number of proteins, nij , that share that set of

terms. We then define a similarity measure between proteins i and j as

Gij = 1 − log(nij)/ log(N), (4)

where N is the total number of proteins. If both proteins are annotated with a set of terms that few

proteins share, then they will be judged as functionally similar under this measure. Unlike many other

measures, Gij does not penalise proteins for lack of annotation when judging their similarity. This is

desirable, as we know that the GO annotations (even for the well-characterised S. cerevisiae) are far from

complete. The quantity Mij is similarly defined through Equation 4 for the MIPS annotations.

The benefit of using a pairwise similarity measure that takes into account the full set of functional

information available, rather than examining enrichment of function on a term by term basis, is that the

measure has the potential to capture more general functional similarities between a pair of proteins.

We also define a similarity between two proteins from a single high-throughput experiment via the growth

rates of knock-out strains under a range of different conditions. Using the data in [30], we define Cij , the

correlation in growth rates of the strain with gene i knocked out to the strain with gene j knocked out

under 418 different conditions:

Cij = corr(Li, Lj), (5)

where the elements of the vector Li are

Lt
i = log(µc

i/µt
i), (6)

the parameter µc
i is the mean growth rate of strain i under different control conditions, and µt

i is the

growth rate under one of the 418 treatment conditions. We use the results from the homozygous strains.
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Because many gene deletions are lethal, there is only data available for 3625 proteins, of which 3184 are in

the A network and 3422 are in the P network.

Assessment of a community’s functional homogeneity

As mentioned previously, a fair test of the functional homogeneity of a community must take into account

the fact that a pair of proteins that interact will be more similar than a randomly chosen pair. Standard

enrichment tests do not take this into account, as they compare enrichment in a group of proteins, in this

case a community, to what one would expect to attain from a randomly chosen set of proteins [44]. A

community necessarily contains many more interacting pairs than a randomly chosen set. We thus compare

the pairwise functional similarities of all interacting pairs of proteins in a community to the same measure

for all interacting pairs in the network, thereby controlling for the number of interacting pairs.

To capture the pairwise similarity between two proteins that interact {ij}, we use z-scores:

z{ij} =
S{ij} − µ

σ
(7)

Where S stands for one of our three similarity measures (based on GO, G, MIPS, M , or correlated growth

rates, C), µ is the mean and σ the standard deviation of all of the elements of S for which proteins i and j

interact in the network of interest (A or P ).

A desirable quality for our test of functional homogeneity is the ability to compare communities found at

different resolutions in an even handed manner. It is inherent in the nature of a statistical test that the

significance of the test statistic under consideration (for example, the difference between the sample mean

and the population mean) depends on the sample size: if one has a larger sample size, one can judge

smaller differences to be ‘significant’. To determine the aggregate z-score, zagg, for the mean of a set of

individual z-scores, zind, one calculates zagg =
√

Nµ(zind), where N is the number of zinds and µ(zind) is

their mean [45]. So, given a µ(zind), a larger and hence more significant zagg is achieved for a larger sample

size (i.e. larger N). In order to separate out the effects of the number of interactors in the community from

functional homogeneity, we thus choose to base assessment of functional homogeneity on the µ(zind), in our

case µ(z{ij}) (z{ij} is defined in Equation 7). We judge as ‘significant’ all those communities that have

µ(z{ij}) above 0.3, and call such communities “functionally homogeneous”. We stress that this is not

strictly an assessment of statistical significance, as we are choosing to ignore sample size. The value of 0.3
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would be judged to be significant at the 0.05 significance level for any community with 30 or more

interacting pairs.

Topological properties that correlate well with functional similarity

We investigate 26 topological properties of the identified communities and assess whether any of these can

be used to identify functionally homogeneous communities. Examples include mean clustering coefficient,

betweenness measures, and network diameter. Any topological properties that correlate well with

functional homogeneity can then be used to predict functionally homogeneous communities. We use each

topological property as a classifier by predicting communities as functionally homogeneous when the value

of that property is above a threshold, which we vary to construct a Receiver Operating Characteristic

(ROC) curve. An ROC curve plots the number of communities correctly predicted as functionally

homogeneous versus the number falsely predicted [46]. We calculate the area under the ROC curve (AUC)

for each metric at each value of λ, and report the mean of this quantity over resolutions between

0 ≤ log(λ) ≤ 3 (we exclude −1 ≤ log(λ) < 0, as the results are very noisy due to the small number of

communities present). An AUC of 0.5 would be expected from a random classifier. AUCs of greater than

0.5 imply that higher values of the metric are predictive of functional homogeneity. AUCs of less than 0.5

imply predictive power if below a threshold of that particular property was used (i.e. that the property and

functional homogeneity are negatively correlated).

Results and Discussion
Pairwise properties of proteins

Community structure, if of any biological relevance, should uncover patterns that are more than the sum of

effects from pairs of interacting proteins. In Table 2 we show the pairwise similarity of proteins in each

network under our three different measures of functional similarity (based on GO, MIPS, and correlated

growth rates; see Methods). The similarity of pairs known to interact with either A or P type interactions

is much higher than a randomly chosen pair of proteins under all three measures. This both helps motivate

the investigation of the connection between functional similarity of proteins and the topology of the

network, and demonstrates the necessity of taking into account pairwise properties when assessing any

additional information that one can gain by studying communities.
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A P
All pairs Interacting pairs All pairs Interacting pairs

G 0.04 0.14 0.04 0.12
C 0.19 0.35 0.18 0.33
M 0.22 0.28 0.22 0.27

Table 2: Pairwise similarities of proteins in the A and P networks under the three different
similarity measures, G, C, and M

Figure 1: Communities identified in the A and P Networks. Communities identified in the yeast
protein interaction network for interactions of a) type A and b) type P . When the resolution parameter λ
is very small, all nodes are assigned to the same community (which is analogous to viewing the network at a
great distance). As λ is increased (viewing the network at progressively closer distances), more structure is
revealed. The figures on the right hand side show visualisations of the networks’ partition into communities
at three different values of λ. Each circle represents a community, with size proportional to the number of
proteins in that community, positioned at the mean position of its constituent nodes. (These positions were
determined via a standard force directed network layout algorithm [52].) The shade of the connecting lines
is proportional to the number of links between two communities. The main figure shows the communities
that we find as we vary the resolution. We identify communities as the same through changing resolution
parameter, and hence colour them the same, according to a convention described in Additional File 1 (only
communities of size 50 or more are shown). Note that the ordering of proteins is not the same in the two
figures.
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log(λ) mean size of communities
A P

-0.5 681 2834
0 293 405
0.5 73 79
1 22 26
1.5 11 10
2 6 6
2.5 5 5
3 4 4

Table 3: Mean size of communities in the A and P networks

Communities

Figure 1 shows the communities that we find in the A and P yeast networks as the resolution parameter λ

is varied. As λ increases, more and smaller communities are found (see Table 3). At λ = 1 (i.e.

log(λ) = 0), which corresponds to standard Newman-Girvan modularity [41], most communities contain a

few hundred proteins. By log(λ) = 3 however, almost all proteins are in communities of size three or

smaller. As shown in Figure 1, some sets of nodes are classified in the same community through large

changes in the resolution parameter and hence represent particularly inter-connected parts of the network.

Figure 1 should be contrasted with Figures S2 in Additional File 1, which are similar calculations on a

random network and a network designed to possess strong communities. In the former, not much structure

is present, in the latter, there are very distinct blocks.

Figure 2a illustrates for the A network the number of communities of size four or more as the resolution

changes, and Figure 2b shows how many proteins are in those communities. (Figure S3 in Additional File 1

is the same plot for the P network, and shows similar behaviour).

The two networks, A and P , contain very different types of interactions, and they can therefore be used to

identify different aspects of the cell’s functional organisation. The A network is also much denser than the

P network. A interactions would therefore dominate the clustering into communities, thereby making it

very hard to pick out any structures given by P type interactions (as occurs in [47]). When considering a

particular protein or set of proteins, comparisons between communities found in the A and P networks can

be made, see the Examples section. Global comparisons between the partitions of the A and P networks at

a particular resolution are not necessarily meaningful as, for example, the size of communities depends

both on the size and other properties of the network.
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Data files containing the A and P networks and the community membership of proteins at multiple

resolutions are available at http://www.stats.ox.ac.uk/research/proteins/resources.

Functional homogeneity of communities

We now assess how many communities are judged functionally homogeneous, looking in particular at how

our results vary with resolution parameter.

Figure 2a illustrates the number of communities judged to be functionally homogeneous, and Figure 2b

shows the number of proteins in communities judged to be functionally homogeneous. Both are for the A

network. We find that the large communities present at small values of the resolution parameter λ are not

judged to be functionally homogeneous. As λ is increased, larger numbers of proteins occur in functionally

homogeneous communities, peaking in the range 1.5 < log(λ) < 2. At log(λ) = 1.5, the mean community

size is 73 proteins, and the majority of proteins, 3071 of 4980, are in functionally homogeneous

communities as judged by our GO similarity measure. The shapes of the curves of both Figure 2a and b

for all three similarity measures are very similar. Indeed, we find that the overlap between the communities

judged to be functionally homogeneous between any two of the three measures is high (see Figure S4 in

Additional File 1); for example, it is 70% between the GO and correlated growth rates measure over almost

the entire range of the resolution parameter in both A and P networks. Given that the correlated growth

similarity measure represents a very different data type to the GO and MIPS annotations, this agreement

gives us confidence in the similarity measure we use for GO and MIPS. As we use only the top level of the

MIPS functional annotations, we capture less information than the GO measure, so it is unsurprising that

fewer communities are found to be functionally homogeneous under this measure.

The P network (see Figure S3 in Additional File 1) shows a similar pattern to the A network. One

difference is that communities start to be judged as functionally similar at a slightly lower resolution. This

is most likely due to the different topological properties of the P network. That there are comparably

many functionally homogeneous communities in the P network as the A network is of interest, as

communities found in P networks are found to be poor choices for predicting function on the basis of

enrichment of terms [29].
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Figure 2: For the A network a) the number of communities of size four or more and b) the
number of proteins in such communities and the fraction of these that are judged functionally
homogeneous. a) The number of communities with changing resolution parameter (solid black curve) b)
The number of proteins p in communities of size four or more (solid black curve). Also shown are the numbers
of communities/proteins in such communities judged to be functionally homogeneous according to the GO
similarity measure (green curves), the MIPS measure (dot-dashed blue curves) and the correlated growth
similarity measure (dashed red curves). At values of log(λ) ≤ 0.5, relatively few proteins are in communities
judged to be functionally homogeneous. The equivalent figure for the P network is given in Additional File
1 Figure S3.
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For almost all proteins, there is some value of the resolution parameter that assigns them to a functionally

homogeneous community. In fact 4652 out of 4980 A proteins and 5647 and of 5669 P proteins are in such

communities at some value of the resolution parameter. For a given protein, it may not be that it interacts

most closely with proteins involved in the same process. Indeed it is often necessary to look at a larger

scale, placing the community in a bigger community in order to identify the biological processes it

participates in. Whether or not this is the case, and which network scale (resolution) is most indicative of

the processes a protein is involved in, will depend on the particular protein one is interested in. This

demonstrates the biological motivation for investigating community structure at multiple resolutions, and

suggests the desirability of a method to easily identify those communities most likely to be functionally

homogeneous.

We might expect proteins involved in particular processes to show different propensities to lie in

functionally homogeneous communities. We focus on a small but broad set of protein types, which are the

GO biological process terms within the yeast GO slim [48] that are annotated to at least 200 yeast proteins.

There are 11 such terms, which are listed in Additional File 1, as well as the numbers of proteins annotated

to each. We investigate what fraction of each type of protein lie in communities judged functionally

homogeneous under the GO measure through changing resolution parameter. Figure 3 illustrates for the A

network these percentages for four particular processes. (Figure S5 in Additional File 1 shows the same

figure for all 11 terms for the A network and separately for the P network). Proteins of some types are far

more likely to be found in functionally homogeneous communities than others. For example, for both the A

and P networks, proteins involved in chromosome organisation are far more likely to be found in

functionally homogeneous communities than proteins involved in lipid metabolism. In addition, there are

some indications that the resolutions of most interest can depend on the type of protein under

investigation. As can be seen in Figure 3, proteins involved in RNA metabolic processes are more likely to

be found in functionally homogeneous communities at log(λ) = 0.8, where the mean size of communities is

30. In contrast, proteins involved in vesicle-mediated transport are found in greater numbers in

functionally homogeneous communities at log(λ) = 1.7, where the mean size of communities is 10.

Examples of communities found at multiple resolutions

Consider the community at log(λ) = 0 that is marked as the blue block in Figure 1 for the A network (over

node labels approximately 0 to 500). This contains 528 proteins and consists largely of proteins with some
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Figure 3: Fraction of proteins of particular types in functionally homogeneous communities.
The fraction of proteins, f , of particular types that are in functionally homogeneous communities in the
A network, with changing resolution parameter. With changing resolution parameter proteins of particular
types have consistent differences as to how often they are found in functionally homogeneous communities.
For example, proteins involved in chromosome organisation are far more likely to be in functionally homoge-
neous communities than proteins involved in metabolism. There are also some features that suggest ‘good’
resolutions for particular processes. For example, a good resolution for proteins involved in vesicular medi-
ated transport would be log(λ) = 2.7 (for which the mean size of communities is 10), whereas for proteins
involved in RNA metabolic processes, log(λ) = 0.8 would be better (the mean size of communities is 30).

relationship to the ribosome (based on short protein descriptions found on the SGD website). Figure 4a

shows this community, where we have coloured nodes according to the community partition at the later

partition log(λ) = 0.5. The colours – red, yellow, and blue – are the same as in Figure 1, where most of the

community present at log(λ) = 0 has split into three communities at log(λ) = 0.5. The blue community

consists of 107 proteins, which are largely precursors to and processors of the large ribosomal unit. The red

community consists of 95 proteins, which have a similar function but for the small ribosomal subunit. The

yellow community has 190 proteins, 93 of which are constituents of the ribosome and the remainder of

which are either of unknown function or associate to the ribosome. We give short descriptions of the

proteins in these communities in Additional File 2.

An illustration of the biological relevance of community structure at three partitions is given in Figures 4b

and c. We show a community of 90 proteins at log(λ) = 0.5, and display its partition into communities at

b) log(λ) = 0.75 and c) log(λ) = 1.6. Almost all of the proteins in the community at log(λ) = 0.5 play

some role in transcription initiation. At log(λ) = 0.75 this community has split into two main smaller

communities: the pink community contains constituent proteins of the RNA polymerase II mediator
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Figure 4: Examples of communities found. a) A representation of a community in the A network at
resolution parameter value log(λ) = 0, with nodes (proteins) coloured according to the partition of this
community at log(λ) = 0.5. The colours are the same as for Figure 1a, where this group of proteins has
labels roughly in the range 0 − 500. Almost all of the nodes have some relationship to the ribosome. The
proteins in the yellow community are mostly ribosomal subunits, those in the red community are mostly
pre-cursors to and processors of the small ribosomal subunit, and those in the blue community have similar
roles to those in the red community but for the large subunit. The shading of the links has no significance;
its purpose is to ease visualisation. Black nodes are not located in one of the three largest communities
discussed in the text. b) A representation of a community at log(λ) = 0.5, with nodes (proteins) coloured
according to the partition of this community at log(λ) = 0.75. The proteins identified at the lower resolution
almost all play some role in transcription initiation. At the higher resolution, more structure is revealed: the
pink community consists mostly of proteins from the RNA polymerase II mediator complex and the green
community mostly consists of proteins from the TFIID and SAGA complexes. c) The partition at a higher
resolution (log(λ) = 1.6). The green community from b) has split into the SAGA complex (green) and the
TFIID complex (orange). The names and descriptions of the proteins in these example communities are
given in Additional File 2. The node positions for visualisation were computed in the same way as for Figure
1.
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complex and the green community contains components of the closely related SAGA and TFIID

complexes. At log(λ) = 1.6, this second community has split into the SAGA and TFIID complexes.

Multi-resolution community detection and characterisation is relevant both from the global viewpoint,

where one can investigate the aggregate functional organisation of the proteome, and from the local

perspective, where the community membership of particular proteins can be traced through changing

resolution parameter. We thus now consider a protein-centred view of multi-resolution community

detection. We consider, for an example protein, the properties of the communities to which it is assigned

through changing resolution parameter, see Figure 5. The size of the communities, their mean similarity

under the G and C measures, and the mean clustering coefficient are shown. The protein is a member of

the ESCRT-I complex. (Figure S6 in Additional File 1 gives a further four examples.) Note the very robust

properties of the communities in the A network over resolution parameter values of approximately

1 ≤ log(λ) ≤ 2.5, despite the tendency for them to be partitioned as λ increases. At these resolutions, the

protein is in the same community as other members of the complex, as well as a few other very closely

associated proteins. Beyond log(λ) = 2.5, the complex is broken up, as reflected in the drop in mean

similarity values. The community present over 0.7 ≤ log(λ) ≤ 1.4 in the P network contains many proteins

associated to the complex (in addition to the complex itself). Above the step observable at log(λ) = 1.4,

only members of the complex are present. In Additional File 2, we give the names and brief functional

descriptions of proteins that occur in some of the same communities for this example, and the four other

examples given in Additional File 1. These five examples all show the following behaviour.

• In general, as would be expected, the size of the community to which a protein is assigned decreases

with increasing resolution. There is often a large range of resolutions over which the community has

constant size (which we have observed in practice to entail the same community across multiple

resolutions). Such communities are particularly resilient to being split up at increasing resolutions,

despite the tendency for them to be partitioned.

• The community similarity under the G, C and M measures often shows a close correlation.

• At higher resolutions, there tends to be a higher community similarity, as might be expected of a

hierarchically organised system. This is, however, not always the case: community similarity can

decrease at higher resolutions. In these instances, a group of proteins has been partitioned beyond

the point at which function is shared, possibly through the exclusion of proteins involved in the same
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Figure 5: Tracing the community membership of a particular protein through changing reso-
lution. For the example protein YCL008C, we show the size (solid blue curve), mean clustering coefficient
(dot-dashed black curve), mean z-score under the GO measure (solid green curve), and correlated growth
measure (dashed red curve) with changing resolution for the A network (top) and P network (bottom). Long
plateaus in these properties represent robust communities. We give further examples in Additional File 1
Figures S6.

processes that do not necessarily directly interact with each other.

• There is often a large overlap between the community membership in the A and P networks, but it

can also be quite different. For example, in Additional File 1 Figure S6c, the protein occurs with

other proteins in the same complex in the A network, whereas in the P network it occurs with

non-complex members which are nonetheless involved in the same process. The functional

homogeneity of communities can also be different: sometimes the protein occurs in many functionally

homogeneous community in the A network and not the P , and sometimes vice versa. This is

unsurprising given the very different nature of A and P interactions. By treating them separately, we

are able to pick out both types of pattern.

Use of topological properties to select functionally homogeneous communities

Almost all proteins are in functionally homogeneous communities at some value of the resolution

parameter, and we therefore devise a method to swiftly identify these resolutions, especially if there is a

dearth of functional information. We investigate whether any easily-calculated topological properties of the
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A P
Network topology measure G C M G C M
Mean degree 0.6476 0.6476 0.6142 0.5130 0.5373 0.5387
Degree assortativity coefficient [53] 0.6913 0.6913 0.6277 0.4799 0.5517 0.5181
Clustering coefficient [54] 0.7186 0.7186 0.6613 0.5521 0.5829 0.5725
Global mean Soffer clustering coefficient [55] 0.4857 0.4857 0.4819 0.3915 0.4735 0.4461
Local mean Soffer clustering coefficient [55] 0.4784 0.4784 0.4662 0.3892 0.4654 0.4540
Mean geodesic node betweenness centrality [56] 0.4600 0.4600 0.4973 0.5045 0.5094 0.4959
Mean closeness centrality [56] 0.5275 0.5275 0.5524 0.4877 0.4919 0.4815
Mean eigenvector centrality [56] 0.5601 0.5601 0.5722 0.5312 0.5551 0.5246
Mean information centrality [56] 0.5191 0.5191 0.5429 0.5253 0.5456 0.5170
Mean geodesic distance [54] 0.3839 0.3839 0.3717 0.4274 0.4945 0.5066
Diameter [56] 0.4457 0.4457 0.4042 0.4366 0.5004 0.5079
Mean harmonic geodesic distance [54] 0.4088 0.4088 0.4042 0.5024 0.4834 0.4995
Energy [54] 0.5237 0.5237 0.4982 0.4568 0.4976 0.5114
Entropy [54] 0.5655 0.5655 0.5327 0.5077 0.5127 0.5280
Off-diagonal complexity [57] 0.5941 0.5941 0.5457 0.5081 0.5054 0.5237
Cyclomatic number [57] 0.6331 0.6331 0.5733 0.5173 0.5300 0.5425
Connectivity [57] 0.6437 0.6437 0.5766 0.5245 0.5334 0.5468
Number of spanning trees [57] 0.4525 0.4525 0.4531 0.4451 0.4516 0.4491
Medium articulation [57] 0.5659 0.5659 0.4463 0.5295 0.5070 0.5592
Efficiency complexity [57] 0.5316 0.5316 0.5343 0.4911 0.4945 0.4982
Graph index complexity [57] 0.6564 0.6564 0.6492 0.5211 0.5469 0.5250
Density 0.6541 0.6541 0.6553 0.5277 0.5676 0.5235
Efficiency [58] 0.5790 0.5790 0.5896 0.4964 0.5071 0.4865
Fraction of articulation vertices [59] 0.5065 0.5065 0.5028 0.5216 0.5062 0.5091
Largest eigenvalue 0.6054 0.6054 0.5663 0.4941 0.5041 0.5185
Rich club coefficient [60] 0.5428 0.5428 0.5896 0.4988 0.5209 0.4868

Table 4: Topological metrics tested and AUCs. The network topology measures tested and their
associated AUCs. We report the results for using each of these as a predictor for functional homogeneity
as judged under the three measures of functional similarity (GO, G, correlated growth rates, C, and MIPS,
M) for both the A and P networks. The AUCs are given as the average performance over the range
0 ≤ log(λ) ≤ 3. The clustering coefficient (definition given in the text, equation 8) is the best predictor in
all cases. (The topological properties were computed from code developed by Gabriel Villar.)

communities can act as indicators of functional homogeneity. Given a protein of interest we can then use

such measures to quickly identify ‘good’ resolutions, without the need to assess functional homogeneity.

We tested 26 topological properties for their ability to predict functional homogeneity using the AUC

metric (see Methods), and show our results in Table 4. In general, the AUCs for the P network are lower

than those for the A network, perhaps because there is more potentially usable information in the A

network as it is significantly denser (see Table 1).

We find that clustering coefficient is the most useful of the topological properties tested in the prediction of
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functional homogeneity for all three similarity measures and in both the A and P networks. The clustering

coefficient of a network is a measure of the mean local clustering around nodes: A node has a high

clustering coefficient, c, if its neighbours are also neighbours of each other [49, 50]. It is defined for each

node as

c =
3Ntriangle

Ntriple

, (8)

where Ntriangle is the number of triangles of which the node is a member, and Ntriple is the number of

connected triples of which the node is a member. (A connected triple is a single node with edges running

to an unordered pair of other nodes.) Figure 6 shows the ROC curve for using the mean clustering

coefficient of nodes in a community as a predictor of functional homogeneity for each of the three similarity

measures in the A network. (See Methods for a description of the construction. The corresponding Figure

for the P network is given in Additional File 1, Figure S7.)

There is some element of discretion for annotating A type interactions, i.e. deciding which pairs to list

interactions between following experiments, with the principle competing models referred to as ‘matrix’

and ‘spoke’ [51]. This choice could cause artefactual topological features, so the extent to which we find

particular topological features correlating with functional homogeneity could be sensitive to annotation

choice. We are therefore encouraged that the same trends in predictive ability are evident in the P

network, for which there is no such element of discretion.

As can be seen from Figure 5 and the figures in Additional File 1 Figure S6, clustering appears to be a

good proxy for functional homogeneity when looking at individual proteins, and in the absence of much

functional information could guide which resolution(s) should be targeted for investigation.

Conclusions

If protein interaction networks are to aid understanding of how biological function emerges from the

concerted action of many proteins, then it is crucial to explore connections between network structure and

biological function. In this paper we investigate how the function of sets of proteins varies with network

community structure of yeast at multiple resolutions.

We find that community structure does indeed help identify sets of proteins that act together, and that

this connection between network structure and biological function depends on what network scales are
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Figure 6: ROC curve for using mean clustering coefficient to pick out functionally homogeneous
communities in the A network. The Receiver Operating Characteristic (ROC) curve for using mean
clustering coefficient as a predictor of functional homogeneity under the GO measure (solid green curve),
MIPS measure (dot-dashed blue curve) and correlated growth measure (dashed red curve). We plot the false
positive rate (FPR) versus the true positive rate (TPR). A random classifier would give the solid black line.
For the GO measure, a true positive rate of 70% is achievable with a false positive rate of 30%. The best
predictive ability is achieved for the GO measure, and the worst for the MIPS measure (see Table 4 for areas
under the curves (AUCs)).
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probed. We do not expect there to be any single scale of interest in this middle-scale structure of the

protein interaction network; although previous studies have applied community detection algorithms to

protein interaction networks, no study to our knowledge has investigated this structure at multiple

resolutions. We find that 4652 of 4980 proteins in the A network, and 5647 of 5669 proteins in the P

network, are in functionally homogeneous communities at some value of the resolution parameter as judged

under the GO similarity measure. The number of proteins in functionally homogeneous communities peaks

at about λ = 3 for the A network (which is beyond the standard ‘modularity’ resolution of λ = 1). For the

P network the peak is less pronounced, with the actual maximum occurring at λ = 7 (i.e. log(λ) = 0.86).

These findings emphasise that there are different scales of interest in the community structure of protein

interaction networks, and that the one of primary interest will depend on which proteins and processes one

is investigating. For some protein types, there are natural resolutions, at which more proteins of that type

are assigned to functionally homogeneous communities. We also find that proteins involved in some

processes are much more likely to be in functionally homogeneous communities than others. For example

we find for both networks and across a range of resolutions that approximately 70 − 80% of proteins

involved in chromosome organisation compared to 40% involved in lipid metabolism are in functionally

homogeneous communities.

Having a good measure of functional homogeneity is central for our analysis. We approach this issue by

using three different characterisations of functional similarity: two based on the GO and MIPS structured

vocabularies respectively and one based on the growth rates of gene knock-out strains under different

chemical conditions [30] (an independent and objective characterization of biological function). The

prevalent method in the literature for assessing functional homogeneity of a group of proteins is

inappropriate for communities, as the number of interacting pairs in a group must be taken into

consideration. By defining similarity at the pairwise level, we have developed a fair test of functional

homogeneity through a comparison of interacting pairs. We also capture the aggregate functional similarity

of two proteins, overcoming the need to assess functional homogeneity on a term by term basis (although

this is, of course, also possible once communities of particular interest have been identified). Our tests of

functional homogeneity (which are not statistical tests in the conventional sense because of our desire to

exclude the effects of sample size) using the three measures of similarity show a high level of agreement

with each other, giving us confidence in our chosen measures of functional similarity.
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Throughout this study, we have investigated two separate yeast protein interaction networks: that based

on associations (the A network; mostly TAP-like data), and that based on physical associations (the P

network; mostly yeast-two-hybrid data). We find that the two networks have similar properties with

respect to their community structure, despite their very different global topological properties. Rather

than regarding the yeast-two-hybrid data as of an inferior quality [29], we start from the basis that it is of

a fundamentally different type and should thus be treated separately. We find similar percentages of

functionally homogeneous communities in both networks.

As we have found a connection between network communities and biological function, we can use observed

community structure to predict aspects of biological function. We find in particular that communities with

a high mean clustering coefficient are far more likely to be functionally homogeneous than those with a

lower one. The mean clustering coefficient of nodes within a community can therefore be used to predict

that a group of proteins is functionally homogeneous, even in cases where our current knowledge does not

allow us to infer this on the basis of functional annotations alone. These results give insights into the

relationships between the structural and functional organisation of the cell considering the whole proteome.

We have also illustrated the utility of our framework for biologists who are interested in a particular

protein. In a chosen interaction network, one can determine the community membership of the protein of

interest at multiple resolutions. Even in the dearth of functional information, the easily-calculated

clustering coefficient can be computed to suggest resolutions of particular interest.

In conclusion, we have linked the community structure of a protein interaction network with biological

function by probing different scales of network structure. The identified communities are candidates for

biological modules within the cell. We have also illustrated how this connection can be used to select

groups of proteins that likely participate in similar biological functions.
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