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This paper gives new conditions for the functional central limit theorem, and weak
convergence of stochastic integrals, for near-epoch-dependent functions of mix-
ing processes+ These results have fundamental applications in the theory of unit
root testing and cointegrating regressions+ The conditions given improve on ex-
isting results in the literature in terms of the amount of dependence and hetero-
geneity permitted, and in particular, these appear to be the first such theorems in
which virtually the same assumptions are sufficient for both modes of convergence+

1. INTRODUCTION

Asymptotic theory for integrated processes is an area of research where results
from functional limit theory are crucial+ These results are the main underpin-
ning of the econometric analysis of models with integrated and cointegrated
variables+ Phillips ~1986, 1987!, Phillips and Durlauf~1986!, Park and Phillips
~1988, 1989!, and Johansen~1988, 1991! are the well-known seminal contribu-
tions to what is now a very extensive literature+

In this theory, the sample statistics whose distributions are sought are typi-
cally functions of sample moments in which the data may be~a! stationary or
~b! integrated or~c! a mixture of both+ The asymptotic analysis of each of these
cases requires a different technique+ Case~a! is the standard one leading to
Gaussian limit distributions+ In case~b!, weak convergence to functionals of
Brownian motion or related Gaussian processes must usually be proved, and
the technique of analysis is to combine a multivariate functional central limit
theorem~FCLT! with the continuous mapping theorem+ It is important, espe-
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cially for applications to economic data, that a wide latitude should be permitted
in the amount and type of dependence and heterogeneity in the random vari-
ables under consideration+ In case~c!, the limits in question are stochastic in-
tegrals ~Itô integrals!, and except in the univariate case, to show weak
convergence calls for a different technique of proof+

Results of type~b! are applied in all the previously cited studies, and results
of type ~c! are also crucial in all but the first two+ It is noteworthy in view of
the now routine use of tests based on these asymptotics~with critical values
obtained by simulation! that in the latter case, the available proofs of weak
convergence impose relatively stringent conditions on the amount and form of
permitted dependence+ For example, Strasser~1986!, Chan and Wei~1988!, and
Jeganathan~1991! impose a martingale difference assumption, ruling out serial
correlation of the increments, at least of the integrator process+ Phillips ~1988b!
considers linear processes with independent and identically distributed~i+i+d+!
innovations, and Hansen~1992! allows strong mixing, but all the cited condi-
tions are stronger than are known to be sufficient for the FCLT for the same
multivariate process+ Moreover, the results given by Phillips~1988a! and Da-
vidson~1994! contain errors+1

In this paper, we give new conditions for the multivariate FCLT and stochas-
tic integral convergence+ The former result dominates the existing ones in the
econometrics literature using comparable assumptions, such as Wooldridge and
White ~1988! and Davidson~1994, Theorem 29+18!+ The conditions are only a
little stronger than the best comparable ones for the ordinary central limit theo-
rem ~CLT!+ Moreover, our results for stochastic integral convergence impose
virtually the same conditions as the FCLT and so represent a substantial im-
provement over previous results+ Section 2 sets out the main assumptions; Sec-
tion 3 discusses the FCLT and Section 4 the corresponding stochastic integral
convergence result+ Section 5 concludes the paper+ The proofs are gathered in
Appendixes A–C+

2. DEFINITIONS AND ASSUMPTIONS

A key issue in this theory is the method of characterizing weak dependence of
the underlying time series+We follow authors such as Gallant and White~1988!
and Pötscher and Prucha~1991! in working with the concept ofnear-epoch
dependence on a mixing process+ This framework has considerable generality+
Whereas additional dependence can be allowed in specific cases such as linear
processes~see Davidson 2000; Phillips and Solo 1992!, our assumption is more
likely to be robust in cases of partially specified models, in which aspects of
the short-run data generation process are unknown+ Such situations are en-
demic in econometric research+ In addition to including infinite-order moving
averages under suitable summability conditions, near-epoch dependence can be
shown to be satisfied in various nonlinear dynamic processes+ See Davidson
~2000! for examples+ Mixing processes are also allowed+
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Our definition of near-epoch dependence is as follows+ Let Xnt denote a tri-
angular array of random variables defined on the probability space~V,F, P!
and let7X7p denote~E6X6 p!10p for p $ 1+

DEFINITION 1+ Xnt is called L2-NED on randomvariables Vnt if for
m $ 0,

7Xnt 2 E~Xnt 6Fn, t2m
t1m !72 # dnt n~m!, (2.1)

whereFns
t 5 s~Vns, + + + ,Vnt! , F for t $ s, dnt is an array of positive constants,

and n~m! r 0 as mr `+

We refer to thednt as the “near-epoch-dependence~NED! magnitude indi-
ces” and to then~m! as the “NED numbers+” A sequence such asn~m! is said
to be ofsize2l if n~m! 5 O~m2l2«! for some« . 0, and we also say thatXnt

is NED of size2l on the processVnt+ In the application, Vnt can be a mixing
process+ Of the different mixing concepts that have been defined, the econo-
metrics literature usually adopts either uniform~f-! or strong~a-! mixing, and
we consider both of these cases, with similar “size” terminology for thea- and
f-mixing numbers+ For definitions and details see the preceding references
and also Davidson~1994!+

De Jong~1997! appears to provide the most general CLT for NED functions
of mixing processes currently available+ Letting $Xnt% denote a triangular sto-
chastic array, it is shown in that paper that(t51

Kn Xnt
d
&& N~0,1!, whereKn is an

integer-valued increasing sequence, if the following assumption holds+2

Assumption 1+

~a! Xnt has mean zero and7(t51
Kn Xnt72 5 1+

~b! There exists a positive constant arraycnt such that$Xnt0cnt% is Lr -bounded for
r . 2 uniformly in t andn+

~c! Xnt is L2-NED of size2 1
2
_ on Vnt, whereVnt is ana-mixing array of size2r0~r 2

2!, or Xnt is L2-NED of size2 1
2
_ on Vnt, whereVnt is a f-mixing array of size

2r0~2~r 2 1!!, anddnt0cnt is bounded uniformly int andn+
~d! For some sequencebn such thatbn 5 o~Kn! and bn

21 5 o~1!, letting rn 5
@Knbn

21# , Mni 5 max~i21!bn11#t#ibn
cnt andMn, rn11 5 maxrnbn11#t#Kn

cnt ,

max
1#i#rn11

Mni 5 o~bn
2102!, (2.2)

and

(
i51

rn

Mni
2 5 O~bn

21!+ (2.3)

In the case off-mixing, r 5 2 is allowed also if the assumption of uniform
integrability of Xnt

2 0cnt
2 is added to Assumption 1~b!+
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3. A FUNCTIONAL CENTRAL LIMIT THEOREM

Let

Xn~j !5 (
t51

Kn~j !

Xnt for j [ @0,1# , (3.1)

where$Kn~j !, n $ 1% is a sequence of integer-valued, right-continuous, increas-
ing functions ofj, with Kn~0! 5 0 for all n $ 1; Kn~j ! is nondecreasing inn for
all j [ @0,1#; andKn~j ! 2 Kn~j '! r ` asn r ` if j . j '+ The reference case
obviously isXnt 5 n2102Xt , for some sequence of random variablesXt , with
Kn~j ! 5 @nj# + This framework is basically the same as that of Wooldridge and
White ~1988! and Davidson~1994, Ch+ 29!+

THEOREM 3+1+ Let Assumption1 hold for Xnt and assume that

h~j! 5 lim
nr`

EXn~j !2 (3.2)

exists for allj [ @0,1# and that3

lim
dr0

sup
j[@0,12d#

lim sup
nr`

(
t5Kn~j !11

Kn~j1d!

cnt
2 5 0+ (3.3)

Then Xn~j ! d
&& X~j !, where X~j ! is a Gaussian process having almost surely

~a+s+! continuous sample paths and independent increments+

The line of argument we adopt to prove Theorem 3+1 contrasts with that of
Wooldridge and White~1988! and Davidson~1994!+ They obtain the FCLT by
a direct proof that generates the central limit theorem as a corollary, whereas
we start with the finite dimensional distributions+ Under Assumption 1,

~Xn~j1!, + + + ,Xn~jk!! d
&& ~X~j1!, + + + ,X~jk!! (3.4)

for any finite collection of coordinatesj1, + + + ,jk [ @0,1# , where the limit dis-
tributions are a+s+ continuous and Gaussian+ This follows from Theorem 2 of
De Jong~1997! and the Cramér–Wold theorem~Davidson, 1994, Theorem 25+5!+
According to Theorems 15+4 and 15+5 of Billingsley ~1968!, Xn

d
&& X, whereX

is continuous with probability one, if ~3+4! holds andXn is stochastically equi-
continuous+ This is the property that for all« . 0,

lim
dr0

lim sup
nr`

P~ sup
j[@0,1#

sup
$j ' :6j2j ' 6,d%

6Xn~j ! 2 Xn~j ' !6 . «! 5 0+ (3.5)

Therefore, to complete the proof it suffices to show that~3+5! holds for the
partial sum process and that the increments are independent in the limit+ These
arguments are set out in Appendix B+
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If h~j! 5 j then X is Brownian motion+ More generally, X belongs to an
extension of the class of transformed Brownian motion processesBh defined in
Davidson~1994, Ch+ 29+4!+ The termh~j! must be nondecreasing everywhere
on @0,1# , but under the present generalization it need not be strictly increasing
everywhere, and increments of the process may equal zero a+s+

The dependence and heterogeneity conditions of Theorem 3+1 relax those
employed by Wooldridge and White~1988! and Davidson~1994!, whose con-
ditions are similar+ These latter theorems do not permit a size2 1

2
_ of the NED

coefficients but employ a trade-off condition+ The rate at which max1#t#n cnt is
required to approach zero is dictated by this trade-off condition, and also the
condition

sup
j[@0,1!,d[~0,12j !

lim sup
nr`

(
t5Kn~j !11

Kn~j1d!

cnt
2 0d , ` (3.6)

is imposed, which is obviously stronger than~3+3!+ For example, consider
Kn~j ! 5 @nj# andcnt 5 t2bnb2102 for b [ ~0, 12_!, appropriate to the caseXnt 5
t2bnb2102ut , whereut is i+i+d+ with finite variance+ Then,

lim sup
nr`

(
t5Kn~j !11

Kn~j1d!

cnt
2 0d $ C~~j 1 d!122b 2 j122b !0d (3.7)

for C . 0, and clearly the condition from equation~3+6! does not hold, whereas
the condition from equation~3+3! does hold+

Plausible examples in which condition~3+3! fails to hold are not easy to
construct, but consider the casecnt

2 5 t 104n2103I ~t # n4015!+ Note that
max1#t#n cnt 5 o~1! and that

lim sup
nr`

(
t51

n

cnt
2 5 lim sup

nr`
n2103 (

t51

n4015

t 104 5
4

5
+ (3.8)

One can clearly find a sequencebn such that Assumption 1~d! holds here+
However,

lim
dr0

sup
j[@0,12d#

lim sup
nr`

(
t5@jn#11

@~j1d!n#

cnt
2 $ lim

dr0
lim sup

nr`
(
t51

@dn#

t 104n2103I ~t # n4015!

5 lim
dr0

minHlim sup
nr`

(
t51

@dn#

t 104n2103,
4

5J
5

4

5
+ (3.9)

The limit of a process whose increments have variances evolving likecnt
2 in

this example has a discontinuity at the origin+ In other words, X~0! 5 0 a+s+, but
for 0 , j # 1, X~j ! 5 Y a+s+, whereY is distributed asN~0, 45_!+
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Extending Theorem 3+1 to the multivariate case is straightforward, and we
have the following corollary, which follows directly from Theorem 3+1 and Theo-
rem 29+16 of Davidson~1994!+

THEOREM 3+2+ Let Xnt be an m-vector-valued array and assume that for
every m-vector l of unit length there exists an array cnt such that the condi-
tions of Theorem3+1 hold forl'Xnt, all with respect to the same functions Kn~j!+
Then Xn

d
&& X, where X is a m-dimensional Gaussian process having a+s+ con-

tinuous sample paths and independent increments+

Implicit in the assumptions of Theorem 3+2 is the existence of a matrix of
covariance functions, say, h~j! ~m3 m!, having the property thatl'h~j!l is a
positive nondecreasing function on@0,1# for all l of unit length+ For example,
such a case is given byh~j ! 5 j bV for a positive definite matrixV and
b . 0+ Having the variances trend at different rates is also clearly possible,
although it is difficult to state a simple condition onh covering all the possible
cases+ Apart from this requirement, there should be no difficulty in meeting the
conditions of Theorem 3+2 provided Theorem 3+1 holds for each element of the
vector+ Thus, Corollary 1 of De Jong~1997! shows that any constant array of
the formcnt 5 t bn21022g for b # g, with no restriction on signs, will satisfy
Assumption 1~d!+ Clearly, in this case, Assumptions 1~b! and 1~c! are satisfied
for all choices ofl by the maximum of them array constants specified in the
elementwise convergence+ Condition ~3+3! will hold likewise in this case, ac-
cording to the earlier discussion+

4. WEAK CONVERGENCE TO STOCHASTIC INTEGRALS

Given vector-valued arraysUns~ p 3 1! and Wnt~q 3 1!, we next consider the
convergence in distribution of sums of the type

Gn 5 (
t51

n21

(
s51

t

UnsWn, t11
' ~ p 3 q!+ (4.1)

The caseWnt 5 Unt, or more generally of the vectors having elements in com-
mon, is permitted in our approach+ Letting Un~j ! 5 (t51

@nj# Unt and Wn~j ! 5

(t51
@nj# Wnt , ~Un,Wn! d

&& ~U,W! under the conditions of Theorem 3+2+ Note that
with n large enough, Un~j ! and Wn~j ! are arbitrarily well approximated by
Fn,2`

@nj# -measurable random variables under the NED assumption+ HenceU and
W, having independent increments, are martingales with respect to the same
filtration+ We seek conditions under which the weak limit ofGn, after center-
ing, is the Itô integral*0

1 UdW'+
The only existing results of this type allowing serial correlation appear to be

those of Phillips~1988b! and Hansen~1992!+ Phillips ~1988b! assumes linear
processes with i+i+d+ innovations+ Hansen~1992! assumes adapted strong-mixing
processes+ Our result contains these forms of dependence as special cases and,
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in general, dominates them in terms of size conditions+4 The assumptions also
do not requireUnt andWnt to be adapted sequences+ These can depend on events
of the infinitely far future, provided the dependence is damped at such a rate
that the limit processes are martingales with respect to the same filtration+ This
result holds by the application of the same type of blocking argument that al-
lows the CLT to be proved under dependence+

Our theorem holds under essentially the same conditions as specified previ-
ously for the FCLT+ As before, it need not be the case thatU andW are Brown-
ian motion, but this property will hold for the leading case ofXnt 5 n2102Xt

where limnr` n21E~(t51
n Xt !~(t51

n Xt !
' 5 V ~ finite, positive semidefinite!+

In the theorem it is useful to specify the joint convergence of the triple
~Un,Wn,Gn 2 Ln

UW!, so that the result may be used subsequently to construct
the limiting distributions of the statistics familiar in unit root testing and co-
integration theory, involving Brownian functionals, by applications of the con-
tinuous mapping theorem+

THEOREM 4+1+ Let the conditions of Theorem3+2 hold for Xnt 5 ~Unt
' ,Wnt

' !'

and Kn~j ! 5 @nj# 1 1+ Then

~Un,Wn,Gn 2 Ln
UW! d

&& SU,W,E
0

1

UdW'D, (4.2)

where U and W are a+s+ continuous Gaussian processes having independent
increments and

Ln
UW 5 (

t51

n

(
s5t11

n

EUntWns
' + (4.3)

To establish this result we adopt the approach of Chan and Wei~1988, Theo-
rem 2+4~ii !!+ Under the stated conditions, ~Un,Wn! d

&& ~U,W!+ Therefore, by the
Skorokhod representation theorem~Skorokhod, 1956! there exist random pro-
cesses~U n,Wn! having the same distribution as~Un,Wn! but that converge al-
most surely to~U,W!, and these processes are used to construct an approximation
to the integral+ Letting Gn denote the counterpart ofGn for these variables, the
joint distribution of ~U n,Wn,Gn 2 Ln

UW! is the same as that specified in~4+2!+
To prove the theorem it is sufficient to show

Gn 2 Ln
UW p

&& E
0

1

U dW', (4.4)

because the joint convergence follows as a case of Theorem 29+16 of Davidson
~1994! in which Gn 2 Ln

UW is mapped into an~a+s+ constant! element of
C@0,1# pq+ Moreover, we can consider the case of scalarUn andWn without loss
of generality, because the general case then follows by applying Theorem 30+14
of Davidson~1994!+
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The convergence in~4+4! is shown in two steps, using a blocking argument+
Let kn ~ the number of blocks! be a nondecreasing sequence such thatkn r `
as n r ` and limnr` kn~10n 1 dn

2! 5 0, where dn is the uniform distance
between~U n,Wn! and ~U,W! except on a set of arbitrarily small probability,
and let

Gn
* 5 (

j51

kn

Un~jj21!~Wn~jj ! 2 Wn~jj21!!, (4.5)

wherejj 5 j0kn+ Also, let Gn* denote the counterpart ofGn
* for ~U n,Wn!+ The

first step, based on Chan and Wei~1988!, is to show that

*Gn* 2E
0

1

U dW* p
&& 0+ (4.6)

This proof can follow that of Theorem 30+13 of Davidson~1994!, line for line
up to equation~30+78!, with appropriate changes of notation+

Because the distributions ofGn
* andGn* are the same, it suffices for the sec-

ond step to show that

6Gn 2 Gn
*2 Ln

UW6
p
&& 0+ (4.7)

Noting that

Gn 2 Gn
*2 Ln

UW 5 An 2 Bn, (4.8)

where

An 5 (
j51

kn

(
t5nj2111

nj21

(
m50

t2nj2121

~Un, t2mWn, t11 2 EUn, t2mWn, t11! (4.9)

and

Bn 5 (
j51

kn

(
t5nj21

nj21

(
m5t2nj21

t21

EUn, t2mWn, t11, (4.10)

wherenj 5 @njj # , for j 5 1, + + + , kn, the proof of~4+7! is completed by showing
An

p
&& 0 andBn r 0+ These arguments, which are fairly lengthy, are given in

Appendix C+

5. CONCLUSION

This paper has given new weak convergence results that place the asymptotics
underlying the theory of cointegrating regressions on virtually the same foot-
ing as standard asymptotics+ We prove the FCLT under conditions similar to
the best ones known to us for the ordinary CLT, from the point of view of the
amount of dependence and heterogeneity permitted in the underlying random
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processes+ We also show that stochastic integral convergence holds under ef-
fectively the same conditions, something that has not been demonstrated previ-
ously to our knowledge+

NOTES

1+ See Hansen~1992!+ Davidson’s Theorem 30+13 ~1994! is corrected in the 1997 reprint of the
work by revising the conditions+ The present paper shows that Davidson’s original theorem is cor-
rect as stated, even though the proof contains an error+

2+ In this paper, d
&& denotes convergence in distribution, whereas

p
&& denotes convergence in

probability+
3+ Summations over an empty index set are defined as zero here+
4+ It can be difficult to determine whether one set of conditions actually contains another+ How-

ever, we note that if in the Phillips~1988b! model the linear MA coefficients are 1-summable~see
Phillips, 1988b, p+ 530!, the process isL2-NED on the i+i+d+ forcing variables of size2 3

2
_ +
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APPENDIX A: TECHNICAL LEMMAS
FOR MIXINGALES

An important tool for obtaining our results is the mixingale property+ TheL2-mixingales
were introduced by McLeish~1975a!, and the extension toLp-mixingales, p $ 1, by
Andrews~1988!+ Let Gnt denote an array ofs-fields, increasing int for eachn+

DEFINITION 2+ $Xnt,Gnt% is called an Lp-mixingale if for m$ 0,

7Xnt 2 E~Xnt 6Gn, t1m!7p # ant c~m1 1!, (A.1)

7E~Xnt 6Gn, t2m!7p # ant c~m!, (A.2)

and c~m! r 0 as mr `+

The notation here and in the rest of the paper is as in Davidson~1992, 1993! and De
Jong~1997!+ Theant are referred to as the mixingale magnitude indices, andXnt is called
a mixingale of size2l if c~m! is of size2l+

Under integrability conditions, random variables that are NED on a mixing process
are known to be mixingales, and in particular we have the following standard result
~see, e+g+, Davidson, 1994, Corollary 17+6!+

LEMMA A +1+ If Xnt satisfies parts~a!–~c! of Assumption1, $Xnt ,Fn,2`
t % is an L2-

mixingale of size2 1
2
_ with mixingale magnitude indices cnt+
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Results of this kind are often used implicitly in the sequel, where we proceed by
showing that certain functions of the variables are NED onVnt and applying the same
type of argument+ Although the mixingale assumption is not structured enough to yield
weak convergence results without supplementary conditions, because for example it may
not be preserved under transformations, it is useful at certain stages of the proofs+ In
addition to the various known mixingale properties documented in sources such as Da-
vidson~1994!, we make use here of the following results+

LEMMA A +2+ If $Ynj ,Fnj % is an L1-mixingale with magnitude indices anj and

lim sup
nr`

(
j51

kn

anj , ` (A.3)

and for all q,

(
j51

kn

~E~Ynj 6Fn, j2q! 2 E~Ynj 6Fn, j2q21!!
p
&& 0, (A.4)

then

(
j51

kn

Ynj
p
&& 0+ (A.5)

Proof. Note that for allm,

(
j51

kn

Ynj 5 (
j51

kn

~Ynj 2 E~Ynj 6Fn, j1m!!

1 (
q52m11

m

(
j51

kn

~E~Ynj 6Fn, j1q! 2 E~Ynj 6Fn, j1q21!!

1 (
j51

kn

E~Ynj 6Fn, j2m!+ (A.6)

The L1-norm of the first and third terms is bounded by(j51
kn anj c~m!, which can be

made arbitrarily small by selecting a large value ofm+ The second term converges in
probability to zero by the requirement of equation~A+4!+ See also Andrews~1988!+ n

LEMMA A +3+ Let $Xnt,Gnt% and $Ynt,Gnt% be triangular L2-mixingale arrays of size
2 1

2
_ with mixingale magnitude indices ant

X and ant
Y , respectively, where(t51

n ~ant
X !2 5

O~1! and (t51
n ~ant

Y !2 5 O~1!+ If gn $ 1 is an increasing integer-valued function of n
with gn r ` as nr `, then

lim
nr`

(
t51

n

(
s51

n

6E~XntYns!6 I ~6 t 2 s6 . gn! 5 0+ (A.7)

Proof. This is analogous to Lemma 4 of De Jong~1997!+ n
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LEMMA A +4+ If $Xnt, Gnt% and $Ynt, Gnt% are L2-mixingales with mixingale numbers
cX~ j ! and cY~ j ! and magnitude indices ant

X and ant
Y , then

**(
t51

n

(
s51

t

XntYns**
1

# CS(
t51

n

~ant
X !2 (

j51

`

~ log j !2cX~ j !2D102

3 S(
s51

n

~ans
Y !2 (

j51

`

~ log j !2cY~ j !2D102

+ (A.8)

for 0 , C , `+

Proof. Define

Xntl 5 E~Xnt 6Gn, t2l ! 2 E~Xnt 6Gn, t2l21! (A.9)

and

Ynsi 5 E~Yns6Gn,s2i ! 2 E~Yns6Gn,s2i21! (A.10)

and note that

**(
t51

n

(
s51

t

XntYns**
1

5 ** (
l52`

`

(
i52`

`

(
t51

n

(
s51

t

Xntl Ynsi**
1

# (
l52`

`

(
i52`

`

**(
t51

n

(
s51

t

Xntl YnsiI ~t 2 l . s2 i !**
1

1 (
l52`

`

(
i52`

`

**(
t51

n

(
s51

t

Xntl YnsiI ~t 2 l , s2 i !**
1

1 (
l52`

`

(
i52`

`

**(
t51

n

(
s51

t

Xntl YnsiI ~t 2 l 5 s2 i !**
1

+ (A.11)

Consider each of these three sets of terms+ Note first that the sequence

(
s51

t

Xntl Ynsi I ~t 2 l . s2 i !, 1 # t # n (A.12)

is a martingale difference with respect to theGn, t2l and, therefore, for some constants
C1 . 0 andC2 . 0,

(
l52`

`

(
i52`

`

**(
t51

n

(
s51

t

Xntl Ynsi I ~t 2 l . s2 i !**
1

# C1 (
l52`

`

(
i52`

`

ES(
t51

n

Xntl
2 max

1#t#n
S(

s51

t

YnsiD2D102

# C1 (
l52`

` S(
t51

n

EXntl
2 D102

(
i52`

` SE max
1#t#n

S(
s51

t

YnsiD2D102

# C2 (
l52`

` S(
t51

n

EXntl
2 D102

(
i52`

` S(
s51

n

EYnsi
2 D102

, (A.13)
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where these inequalities are, respectively, by the Burkholder, Cauchy–Schwarz, and Doob
inequalities+ A similar argument holds for the second set of terms in~A+11!, noting that

(
t5s

n

Xntl Ynsi I ~t 2 l , s2 i !, 1 # s# n

is a martingale difference with respect toGn,s2i and also that for eachs,

*(
t5s

n

Xntl* # 2 max
1#s#n*(t51

s

Xntl*+ (A.14)

Finally, we have

(
l52`

`

(
i52`

`

**(
t51

n

(
s51

t

Xntl Ynsi I ~t 2 l 5 s2 i !**
1

# C3 (
l52`

`

(
i52`

`

(
t51

n

7Xntl727Yn, t2l1i, i I ~1 # t 2 l 1 i # n!72

# C3 (
l52`

` S(
t51

n

EXntl
2 D102

3 sup
2`#l#`

(
i52`

` S(
t51

n

EYn, t2l1i, i
2 I ~1 # t 2 l 1 i # n!D102

(A.15)

for C3 . 0+
The majorant of~A+11! does not exceed the sum of~A+15! and two terms of the form

~A+13!+ Now, the lemma follows by combining the mixingale assumption with the fact
that

EXntl
2 5 EE~Xnt 6Gn, t2l !

2 2 EE~Xnt 6Gn, t2l21!2

5 E~Xnt 2 E~Xnt 6Gn, t2l21!!2 2 E~Xnt 2 E~Xnt 6Gn, t2l !!
2, (A.16)

with similar equalities forYnsi, and the fact that for a monotone decreasing sequence
$xj , j $ 1% the relation

(
j51

`

~xj
2 2 xj11

2 !102 # CS(
j51

`

~ log j !2xj
2D102

, (A.17)

for C . 0, holds by an argument similar to McLeish~1975a, Theorem 1+6!+ n

APPENDIX B: PROOF OF THEOREM 3+1

Fix d . 0 and letjdj 5 jd02 for j 5 0, + + + ,@20d# + For any pairj,j ' such that6j 2 j ' 6 ,
d02, let jd~j,j '! denote the maximal value ofj such thatj . jdj andj ' . jdj and note
that 0, j 2 jdjd~j,j ' ! , d and 0, j ' 2 jdjd~j,j ' ! , d+ In addition, define
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nn
2~j,d! 5 (

t5Kn~j !11

Kn~min~j1d,1!!

cnt
2 (B.1)

and letXn~j ! 5 Xn~1! if j . 1+ Then

PS sup
j[@0,1#

sup
$j ' :6j2j ' 6,d02%

6Xn~j ! 2 Xn~j ' !6 . «D
5 PS sup

j[@0,1#

sup
$j ' :6j2j ' 6,d02%

6Xn~j ! 2 Xn~jdjd~j,j ' ! ! 1 Xn~jdjd~j,j ' ! ! 2 Xn~j ' !6 . «D
# 2PS max

j50, + + + ,@20d#
sup

$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !6 . «02D
# 2 (

j50

@20d#

PS sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !6 . «02D
5 2 (

j50

@20d#

PSS sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !6D2

3 ISS sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !6D2
. «204D . «204D

# 2 (
j50

@20d#

4«22ES sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !6D2

3 ISS sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !6D2
. «204D

5 2 (
j50

@20d#

nn
2~jdj ,d!4«22ES sup

$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !60nn~jdj ,d!D2

3 ISS sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !620nn
2~jdj ,d! . «20~4nn~jdj ,d!2!DD

# 4S(
t51

n

cnt
2D max

j50, + + + ,@20d#
4«22ES sup

$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !60nn~jdj ,d!D2

3 ISS sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !620nn~jdj ,d!2D . «20~4nn~jdj ,d!2!D
# C«22 max

j50, + + + ,@20d#
ES sup

$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !60nn~jdj ,d!D2

3 ISS sup
$j:0,j2jdj,d%

6Xn~j ! 2 Xn~jdj !620nn~jdj ,d!2D . «2

3 S4 max
j50, + + + ,@20d#

nn
2~jdj ,d!D21D (B.2)
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for some finite constantC . 0+ The second inequality follows from subadditivity, the
third inequality is Markov’s, and the remaining steps follow from the assumptions+

Next, note that by the mixingale property~Lemma A+1! and Corollary 16+14 of Da-
vidson~1994!, the sequence

Yn~d,j ' ! 5 sup
$j:0,j2j ',d%

6Xn~j ! 2 Xn~j ' !60nn~j ',d! (B.3)

is uniformly square-integrable+ Moreover, Assumption 1~b! implies that this property is
independent of the segment of the data sequence represented byYn+ ~Compare McLeish,
1975b, Lemma 6+5; and McLeish, 1977, proof of Theorem 2+4+! In other words,

lim sup
nr`

max
j50, + + + ,@20d#

EYn~d,jdj !
2I ~6Yn~d,jdj !6 . K !

5 max
j50, + + + ,@20d#

lim sup
nr`

EYn~d,jdj !
2I ~6Yn~d,jdj !6 . K !

5 f ~K !, (B.4)

wheref ~K ! does not depend ond and f ~K ! r 0 asK r `+
Becaused is arbitrary, it follows by ~3+5!, ~B+2!, and ~B+4! that Xn~j ! is stochasti-

cally equicontinuous on@0,1# if

lim
dr0

lim sup
nr`

max
j50, + + + ,@20d#

nn
2~jdj ,d! 5 0+ (B.5)

Because the max and the lim sup in equation~B+5! can similarly be interchanged, this
holds by the assumption of equation~3+3!+

Next, we show thatX~j ! has independent increments+ In view of the Gaussianity, it
suffices to show that for any set$j1, + + + ,jk : 0 , j1 , j2 , {{{ , jk , 1% and all i , j,
X~ji ! 2 X~ji21! andX~jj ! 2 X~jj21! are uncorrelated+ This follows because

E~X~ji ! 2 X~ji21!!~X~jj ! 2 X~jj21!!

5 lim
nr`

E~Xn~ji ! 2 Xn~ji21!!~Xn~jj ! 2 Xn~jj21!!, (B.6)

where for any fixedd . 0,

6E~Xn~ji ! 2 Xn~ji21!!~Xn~jj ! 2 Xn~jj21!!6

# * (
t5Kn~ji21!11

Kn~ji !

(
s5Kn~jj21!11

Kn~jj211d!

EXnt Xns* 1 * (
t5Kn~ji21!11

Kn~ji !

(
s5Kn~jj211d!11

Kn~jj !

EXnt Xns*
# ** (

t5Kn~ji21!11

Kn~ji !

Xnt **
2
** (

s5Kn~jj21!11

Kn~jj211d!

Xns**
2

1 (
t51

Kn~1!

(
s51

Kn~1!

6EXnt Xns6 I ~6s2 t 6$ Kn~jj21 1 d! 2 Kn~ji !!+ (B.7)
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Note that

lim
nr`

(
t51

Kn~1!

(
s51

Kn~1!

6EXnt Xns6 I ~6s2 t 6 $ Kn~jj21 1 d! 2 Kn~ji !! 5 0 (B.8)

for d . 0, by Lemma A+3 and the requirement thatKn~j ! 2 Kn~j '! r ` for all j . j ',
and also that

lim
dr0

lim
nr` ** (

s5Kn~jj21!11

Kn~jj211d!

Xns**
2

5 0

by the assumption in equation~3+3!+ Becaused is arbitrary in~B+8!, it follows that

E~X~ji ! 2 X~ji21!!~X~jj ! 2 X~jj21!! 5 0+

This completes the proof+ n

APPENDIX C: PROOF OF THEOREM 4+1

First, write

Bn 5 (
j51

kn

(
t5nj21

nj21

(
m5t2nj21

t21

EUn, t2mWn, t11 I ~m# qn!

1 (
j51

kn

(
t5nj21

nj21

(
m5t2nj21

t21

EUn, t2mWn, t11 I ~m . qn!, (C.1)

whereqn is a nondecreasing sequence such thatqn r ` asn r `+ We definecnt
U and

cnt
W as the constants with respect to which Assumption 1 holds forUnt andWnt, respec-

tively+ Note that because

lim
nr`

max
1#t#n

max$~cnt
U!2,~cnt

W!2% 5 0 (C.2)

by Assumption 1~d!, it is possible to choosekn andqn such that

lim
nr`

knqn
2 max

1#t#n
max$~cnt

U!2,~cnt
W!2% 5 0+ (C.3)
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The second term in~C+1! converges to zero, because its absolute value is bounded by

(
t51

n

(
m51

t21

6EUn, t2mWnt 6 I ~m . qn! 5 o~1! (C.4)

by Lemma A+3+ For the first term in~C+1!, note that

(
j51

kn

(
t5nj21

nj21

(
m5t2nj2111

t21

6EUn, t2mWn, t11 I ~m # qn!6

# (
j51

kn

(
t5nj21

nj211qn

(
m5t2nj2111

t21

6EUn, t2mWn, t11 I ~m# qn!6

5 O~knqn
2 max

1#t#n
max$~cnt

U!2,~cnt
W!2%!

5 o~1! (C.5)

by ~C+3!, noting that values oft exceedingnj21 1 qn contribute zero to the sum+
To show thatAn

p
&& 0, first define

h~a, x! 5 xI ~6x6# a! 1 aI ~x . a! 2 aI ~x , 2a! (C.6)

and

g~a, x! 5 ~x 2 a! I ~x . a! 1 ~x 1 a! I ~x , 2a! (C.7)

and note thatx 5 g~a, x! 1 h~a, x!+ For someK . 0 to be chosen, define

EUnt 5 g~Kcnt
U ,Unt ! 2 Eg~Kcnt

U ,Unt ! and EUnt
m 5 E~ EUnt 6Gn, t2m! (C.8)

and

PUnt 5 h~Kcnt
U ,Unt ! 2 Eh~Kcnt

U ,Unt ! and PUnt
m 5 E~ PUnt 6Gn, t2m!, (C.9)

whereGnt 5 s~Vnt,Vn, t21, + + + !+ Note thatUnt 5 EUnt 1 PUnt+ Also note thatg and h are
Lipschitz functions and thereforeEUnt and PUnt areL2-NED on Vnt for all K, with NED
magnitude indicescnt

U and NED numbersn~m!+ ~See Davidson, 1994, Theorem 17+12+!
Therefore, EUnt is also anL2-mixingale of size2 1

2
_ with mixingale magnitude indicescnt

U ,
implying that

7 EUnt
m72 # Cm21022mcnt

U (C.10)

for m . 0 andC . 0 and also, by Assumption 1~b!, that

7 EUnt
m72 # cnt

U sup
t,n
7Unt 0cnt

U I ~6Unt 60cnt
U . K !72 # cnt

U f ~K ! (C.11)
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for somef ~K ! not depending ont or n, wheref ~K ! r 0 asK r `+ These inequalities
further imply that

7 EUnt
m72 # ~Cm21022mcnt

U!12m~cnt
U f ~K !!m 5 C 'cnt

U f ~K !mm21022m021m2
(C.12)

for C ' . 0+ Therefore, EUnt is an L2-mixingale of size2 1
2
_ with mixingale magnitude

indices cnt
U f ~K !m for some small enoughm . 0+ Similarly, we may decomposeWnt

into RWnt and GWnt, having the same properties with respect to constantscnt
W+

Note that

An 5 (
j51

kn

(
t5pj

nj21

(
s5pj

t

~ EUns GWn, t11 2 E EUns GWn, t11 1 EUns RWn, t11 2 E EUns RWn, t11

1 PUns GWn, t11 2 E PUns GWn, t11 1 PUns RWn, t11 2 E PUns RWn, t11!, (C.13)

where for economy of notation we henceforth use the symbolpj to denotenj21 1 1+
Consider the four sums of terms corresponding to this decomposition+ It follows by
Lemma A+4 that theL1-norms of all these sums except those involvingPUns RWn, t11 are of
order

OS(
j51

kn S(
s5pj

nj

~cns
U !2 (

t5pj

nj

~cnt
W!2D102

f ~K !mD 5 O~ f ~K !m !, (C.14)

where the equality in~C+14! is by assumption+ By choosing a large enoughK, the lim-
sups of the corresponding components ofAn can be made as small as desired+ Accord-
ingly, let the remaining component be defined as

NAn 5 (
j51

kn

(
t5pj

nj21

(
s5pj

t

PUns RWn, t11 2 E~ PUns RWn, t11!, (C.15)

and we complete the proof by showing that for allK . 0, NAn
p
&& 0, by an application of

Lemma A+2+
First write

NAn 5 (
j51

kn

Ynj , (C.16)

where

Ynj 5 (
t5pj

nj21

(
s5pj

t

~ PUns RWn, t11 2 E PUns RWn, t11!+ (C.17)

DefineFnj 5 s~Vn,nj
,Vn,nj21, + + + ! andHn, j2m

j1m 5 s~Vn,nj2m2111, + + + ,Vn,nj1m
! and for brev-

ity of notation let Ej2m
j1m denoteE~{6Hn, j2m

j1m !+ Then, note that form . 0 there exist
positive constantsC1, C2, andC3 such that
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7Ynj 2 Ej2m
j1mYnj71 5 ** (

t5pj

nj21

(
s5pj

t

~ PUns RWn, t11 2 Ej2m
j1m PUns RWn, t11!**

1

# ** (
t5pj

nj21

(
s5pj

t

PUns~ RWn, t11 2 Ej2m
j1m RWn, t11!**

1

1 ** (
t5pj

nj21

(
s5pj

t

Ej2m
j1m RWn, t11~ PUns2 Ej2m

j1m PUns!**
1

1 ** (
t5pj

nj21

(
s5pj

t

Ej2m
j1m RWn, t11 Ej2m

j1m PUns2 Ej2m
j1m RWn, t11 PUns**

1

# ** (
t5pj

nj21

~ RWn, t11 2 Ej2m
j1m RWn, t11! (

s5pj

t

PUns**
1

1 ** (
t5pj

nj21

RWn, t11 (
s5pj

t

~ PUns2 Ej2m
j1m PUns!**

1

1 ** (
t5pj

nj21

Ej2m
j1m RWn, t11 (

s5pj

t

~ PUns2 Ej2m
j1m PUns!**

1

# (
t5pj

nj21

7 RWn, t11 2 Ej2m
j1m RWn, t1172** (

s5pj

t

PUns**
2

1 (
s5pj

nj21

7 PUns2 Ej2m
j1m PUns72S** (

t5pj

nj21

RWn, t11**
2

1 ** (
t5pj

nj21

Ej2m
j1m RWn, t11**

2
D

# C1S(
t5pj

nj

cnt
WD~mn0kn!21022«S(

s5pj

nj

~cns
U !2D102

1 C2S(
s5pj

nj

cns
UD~mn0kn!21022«S(

t5pj

nj

~cnt
W!2D102

# C3m21022«~n0kn!2«S(
s5pj

nj

~cns
U !2 (

t5pj

nj

~cnt
W!2D102

(C.18)

for some« . 0+ The first inequality follows from rearranging the terms and the norm
inequality; the second inequality uses iterated expectations; the third is the Cauchy–
Schwarz inequality and rearranging of terms; the fourth uses the NED definition, Theo-
rem 1+6 of McLeish ~1975a! ~see also Davidson, 1994, Theorem 16+9!, and the size
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assumptions; and the fifth is obtained using Jensen’s inequality+ For the casem5 0, all
except the two final steps of~C+18! hold, but for this case we have

7Ynj 2 E~Ynj 6Hn, j
j !71 # C4S(

s5pj

nj

~cns
U !2 (

t5pj

nj

~cnt
W!2D102

(C.19)

for C4 . 0, using some of the same arguments as before+We have therefore established
that Ynj is L1-NED of size2 1

2
_ , on a mixing process+ Because it also possesses all its

moments, it follows by Corollary 17+6 of Davidson~1994! that $Ynj ,Fnj % is also anL1-
mixingale of size2 1

2
_ , with respect to constants

anj 5 S(
s5pj

nj

~cns
U !2 (

t5pj

nj

~cnt
W!2D102

+ (C.20)

Note that lim supnr`(j51
kn anj , `, because by assumption,

maxH lim sup
nr`

(
t51

n

~cnt
U!2, lim sup

nr`
(
t51

n

~cnt
W!2J , `+ (C.21)

By Lemma A+2, the proof is therefore complete if we can show that for allq,

(
j51

kn

~E~Ynj 6Fn, j2q! 2 E~Ynj 6Fn, j2q21!!
p
&& 0+ (C.22)

We next write

PUnt 5 ~ PUnt 2 PUnt
m! 1 PUnt

2m 1 ~ PUnt
m 2 PUnt

2m!, (C.23)

and letting c~m! denote the mixingale numbers relating toPUnt , note that$ PUnt 2
PUnt

m,Gnt % and $ PUnt
2m,Gnt % areL2-mixingales with mixingale numbers equal toc~m! for

l # m andc~l ! for l . m+ Therefore, by Lemma A+4 and the assumptions,

lim sup
nr`

**(
j51

kn

(
t5pj

nj21

(
s5pj

t

~E~ PUns RWn, t116Fn, j2q! 2 E~ PUns RWn, t116Fn, j2q21!!

2 (
j51

kn

(
t5pj

nj21

(
s5pj

t

~E~~ PUns
m 2 PUns

2m! RWn, t116Fn, j2q!

2 E~~ PUns
m 2 PUns

2m! RWn, t116Fn, j2q21!!**
1

# CS~c~m!2 (
l51

m

~ log l !2 1 (
l5m11

`

c~l !2~ log~l !!2D102

5 O~m2« ! (C.24)

for someC . 0 and« . 0+ Therefore by choosingm large enough, the difference be-
tween the expressions can be made negligible+ A similar argument can be used to re-
place RWn, t11 by RWn, t11

m 2 RWn, t11
2m in the last expression, and therefore it remains to show

that for all q, K, andm,
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(
j51

kn

(
t5pj

nj21

(
s5pj

t

~E~~ PUns
m 2 PUns

2m!~ RWn, t11
m 2 RWn, t11

2m !6Fn, j2q!

2 E~~ PUns
m 2 PUns

2m!~ RWn, t11
m 2 RWn, t11

2m !6Fn, j2q21!!
p
&& 0+ (C.25)

Noting that

PUnt
m 2 PUnt

2m 5 (
h52m

m21

~ PUnt
h11 2 PUnt

h! (C.26)

and

RWn, t11
m 2 RWn, t11

2m 5 (
h52m

m21

~ RWn, t11
h11 2 RWn, t11

h !, (C.27)

it follows that this result holds if for allq, K, h, and l,

(
j51

kn

(
t5pj

nj21

(
s5pj

t

~E~~ PUns
h 2 PUns

h11!~ RWn, t11
l 2 RWh, t11

l11 !6Fn, j2q!

2 E~~ PUns
h 2 PUns

h11!~ RWn, t11
l 2 RWn, t11

l11 !6Fn, j2q21!!

[ (
j51

kn

~E~Znj 6Fn, j2q! 2 E~Znj 6Fn, j2q21!!

p
&& 0+ (C.28)

Because the terms of~C+28! are uncorrelated, the latter statement is true if for allq,
K, h, and l,

lim
nr`

(
j51

kn

EZnj
2 5 0+ (C.29)

However, note that
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EZnj
2 5 (
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(
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nj21

(
t25pj
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(
s15pj
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(
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t2

E~ PUns1

h1 2 PUns1

h111!~ RWn, t111
l1 2 RWn, t111

l111 !

3 ~ PUns2

h2 2 PUns2

h211!~ RWn, t211
l2 2 RWn, t211

l211 !+ (C.30)

Consider, as representative, the terms for which

s1 2 h1 # t1 1 1 2 l1 # s2 2 h2 # t2 1 1 2 l2+ (C.31)

The other cases are treated identically+ First, note that by the martingale difference prop-
erty of the four terms in equation~C+30!, the terms in that equation are zero unlesss2 2
h2 5 t2 1 1 2 l2+ Therefore, for the terms that satisfy the preceding restriction, we have,
applying Lemma A+4 once again,
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5 o~1!, (C.32)

where the last equality follows from the assumption of equation~3+3!+ This completes
the proof+ n
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