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This paper gives new conditions for the functional central limit theoweml weak
convergence of stochastic integrdigr near-epoch-dependent functions of mix-
ing processesThese results have fundamental applications in the theory of unit
root testing and cointegrating regressiomnke conditions given improve on ex-
isting results in the literature in terms of the amount of dependence and hetero-
geneity permittedand in particularthese appear to be the first such theorems in
which virtually the same assumptions are sulfficient for both modes of convergence

1. INTRODUCTION

Asymptatic theory for integrated processes is an area of research where results
from functional limit theory are crucialThese results are the main underpin-
ning of the econometric analysis of models with integrated and cointegrated
variables Phillips (1986 1987), Phillips and Durlauf(1986), Park and Phillips
(1988 1989, and Johanse(1988 1991 are the well-known seminal contribu-
tions to what is now a very extensive literature

In this theory the sample statistics whose distributions are sought are typi-
cally functions of sample moments in which the data maydestationary or
(b) integrated oKc) a mixture of bothThe asymptotic analysis of each of these
cases requires a different technig@@ase(a) is the standard one leading to
Gaussian limit distributionsin case(b), weak convergence to functionals of
Brownian motion or related Gaussian processes must usually be praved
the technique of analysis is to combine a multivariate functional central limit
theorem(FCLT) with the continuous mapping theoreth is important espe-
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cially for applications to economic datiéhat a wide latitude should be permitted
in the amount and type of dependence and heterogeneity in the random vari-
ables under consideratiom case(c), the limits in question are stochastic in-
tegrals (Itd6 integral9, and except in the univariate cas® show weak
convergence calls for a different technique of proof

Results of typgb) are applied in all the previously cited studiesd results
of type (c) are also crucial in all but the first twdt is noteworthy in view of
the now routine use of tests based on these asymptotith critical values
obtained by simulationthat in the latter casehe available proofs of weak
convergence impose relatively stringent conditions on the amount and form of
permitted dependencEor exampleStrassef1986, Chan and We{1988), and
Jeganathafl991) impose a martingale difference assumptianing out serial
correlation of the incrementat least of the integrator proce$hillips (1988hH
considers linear processes with independent and identically distrilfuited)
innovations and Hanser{1992 allows strong mixingbut all the cited condi-
tions are stronger than are known to be sufficient for the FCLT for the same
multivariate processMoreover the results given by Phillip§1988a and Da-
vidson (1994 contain errors

In this paperwe give new conditions for the multivariate FCLT and stochas-
tic integral convergencélhe former result dominates the existing ones in the
econometrics literature using comparable assumpteuth as Wooldridge and
White (1988 and Davidsor(1994 Theorem 2918). The conditions are only a
little stronger than the best comparable ones for the ordinary central limit theo-
rem (CLT). Moreover our results for stochastic integral convergence impose
virtually the same conditions as the FCLT and so represent a substantial im-
provement over previous resul8ection 2 sets out the main assumptiddsc-
tion 3 discusses the FCLT and Section 4 the corresponding stochastic integral
convergence resulBection 5 concludes the pap&he proofs are gathered in
Appendixes A-C

2. DEFINITIONS AND ASSUMPTIONS

A key issue in this theory is the method of characterizing weak dependence of
the underlying time serie§Ve follow authors such as Gallant and Wh(i®898

and Potscher and Pructia99l in working with the concept ohear-epoch
dependence on a mixing proces3$is framework has considerable generality
Whereas additional dependence can be allowed in specific cases such as linear
processesgsee Davidson 20Q@hillips and Solo 1992 our assumption is more
likely to be robust in cases of partially specified modétswhich aspects of

the short-run data generation process are unknd@uth situations are en-
demic in econometric researcim addition to including infinite-order moving
averages under suitable summability conditiorear-epoch dependence can be
shown to be satisfied in various nonlinear dynamic procesSes Davidson
(2000 for examplesMixing processes are also allowed
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Our definition of near-epoch dependence is as follovet X, denote a tri-
angular array of random variables defined on the probability spacé, P)
and let| X[, denote(E|X|P) for p = 1.

DEFINITION 1. X, is called L,-NED on randomvariables \j; if for
m = 0,

I Xt — E(Xnt|-7'—nt,ﬂ1m)”2 = dyv(m), (2.1)

whereFL= 0 (Vg ...,Va) C Ffort=s, d, is an array of positie constants
andv(m) — 0 as m— co.

We refer to thed,; as the “near-epoch-dependend¢ED) magnitude indi-
ces” and to ther(m) as the “NED number$A sequence such as(m) is said
to be ofsize—A if v(m) = O(m~*#) for somee > 0, and we also say tha{,,
is NED of size—A\ on the proces¥,;. In the applicationV,; can be a mixing
process Of the different mixing concepts that have been defjrtbé econo-
metrics literature usually adopts either unifo(tt) or strong(a-) mixing, and
we consider both of these casesth similar “size” terminology for thex- and
¢-mixing numbers For definitions and details see the preceding references
and also DavidsoK1994).

De Jong(1997) appears to provide the most general CLT for NED functions
of mixing processes currently availableetting {X,} denote a triangular sto-
chastic arrayit is shown in that paper tha&;"; X, LN N(0,1), whereK, is an
integer-valued increasing sequenife¢he following assumption hold%

Assumption 1

(@ Xn has mean zero an® ke, X[, = 1.

(b) There exists a positive constant arrgy such that{X/c.} is L,-bounded for
r > 2 uniformly int andn.

(€) Xntis L-NED of size—3 on Vi, whereV,, is ana-mixing array of size—r/(r —
2), or X, is L,-NED of size —3 on V,;, whereVy is a ¢-mixing array of size
—r/(2(r — 1)), anddy/cy is bounded uniformly irt andn.

(d) For some sequench, such thatb, = o(K,) and b;! = o(1), letting r, =
[Knbr ], Mai = max; 15, 1=t=ib, Cnt ANAMp ;11 = Max 1 1-t=k, Cne>

max M, = o(b;"?), (2.2)
1=i=r,+1
and
> MZ=0(b,"). (2.3)
i=1

In the case ofp-mixing, r = 2 is allowed also if the assumption of uniform
integrability of X2/c2 is added to Assumption(i).
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3. A FUNCTIONAL CENTRAL LIMIT THEOREM
Let

Kn(£)
Xq (&)= 2 Xy forée[01], (3.2)
t=1

where{K,(£),n= 1} is a sequence of integer-valyeitjht-continuousincreas-

ing functions of¢, with K,,(0) = 0 for alln=1; K,,(¢) is nondecreasing in for

all £ € [0,1]; andK,(¢) — K,(£¢') —» oo asn — oo if £ > £'. The reference case
obviously isX,; = n~Y2X,, for some sequence of random variab¥s with
Kn(¢) = [n£]. This framework is basically the same as that of Wooldridge and
White (1988 and Davidsor(1994 Ch. 29).

THEOREM 31. Let Assumptiorl hold for X,; and assume that

n(§) = l[)noo EXy(£)? (3.2)
exists for all¢ € [0,1] and thaf

Kn(£+6)
lim sup limsup > c%=0. (3.3)

-0 £€[0,1-6] nooo  t=K,(£)+1

Then X,(¢) N X(€), where X¢) is a Gaussian process himg almost surely
(a.s.) continuous sample paths and independent increments

The line of argument we adopt to prove Theorerh Sontrasts with that of
Wooldridge and Whité¢1988 and Davidsorn(1994). They obtain the FCLT by
a direct proof that generates the central limit theorem as a corplidrgreas
we start with the finite dimensional distributiandnder Assumption 1

(Xa(&2), -, Xa(&) 5 (X(£1), ..., X (&) (3.4)

for any finite collection of coordinates,, ..., & € [0,1], where the limit dis-
tributions are &. continuous and Gaussiamhis follows from Theorem 2 of
De Jong(1997) and the Cramér—Wold theorefBavidson 1994 Theorem 25%).
According to Theorems 1% and 155 of Billingsley (1968, X, LN X, whereX
is continuous with probability onéf (3.4) holds andX, is stochastically equi-
continuous This is the property that for alt > 0,

lim limsupP( sup sup X (&) = X, (£)] >e)=0. (3.5)
020 oo gE[01] {£1E-¢ <5}

Therefore to complete the proof it suffices to show th@&5) holds for the
partial sum process and that the increments are independent in theTlirage
arguments are set out in Appendix B
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If n(¢) = ¢ thenX is Brownian motion More generally X belongs to an
extension of the class of transformed Brownian motion proceBgségfined in
Davidson(1994 Ch. 29.4). The termn(¢) must be nondecreasing everywhere
on[0,1], but under the present generalization it need not be strictly increasing
everywhergand increments of the process may equal zeso a

The dependence and heterogeneity conditions of TheorémeBax those
employed by Wooldridge and Whitd 988 and Davidson1994), whose con-
ditions are similarThese latter theorems do not permit a sizg¢ of the NED
coefficients but employ a trade-off conditiofhe rate at which max~,C is
required to approach zero is dictated by this trade-off conditaml also the
condition

Kn(§+6)

sup limsup > c3/8<c (3.6)
£€[0,1),6€(0,1-¢) n—oo  t=K,(&)+1

is imposed which is obviously stronger thafB.3). For example consider
Kn(€) = [né] andc,, = t #nf~Y2 for B € (0,3), appropriate to the casé, =
t~Anf~Y2y,, whereu, is i.i.d. with finite variance Then

Kn(£+8)

limsup > C&/8 = C((£+8) 2 — g1728) /5 (3.7)

n—oo  t=Ky(§)+1

for C > 0, and clearly the condition from equatié8.6) does not holdwhereas
the condition from equatiof.3) does hold

Plausible examples in which conditigB.3) fails to hold are not easy to
construct but consider the case? = tY*n"'3I(t = n%1%). Note that
MaX<i=nCnt = 0(1) and that

n4/15

n 4

limsup Y, ¢ = limsupn=3 > t¥4 = — (3.8)
n—oo t=1 n—oo t=1 5

One can clearly find a sequendg such that Assumption (i) holds here

However

[(£+8)n] [8n]
lim sup limsup Y c&=limlimsup > t¥*n~Y3|(t = n¥2%)
-0 ¢£€[0,1-8] noow  t=[én]+1 020 nseo =1

[6n] 4
lim min{ limsup > t¥4n~3 —
6—0 5

n—oo t=1

2 (3.9)

- 5. .
The limit of a process whose increments have variances evolvingchkie
this example has a discontinuity at the origim other words X(0) = 0 as., but
for 0 < & =1, X(¢) = Y as, whereY is distributed asN(0,2).
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Extending Theorem .3 to the multivariate case is straightforwaehd we
have the following corollarywhich follows directly from Theorem.2 and Theo-
rem 2916 of Davidson(1994.

THEOREM 32. Let X, be an mvectorvalued array and assume that for
every mwoector A of unit length there exists an array,csuch that the condi
tions of Theoren3.1 hold for A’X,,;, all with respect to the same functiong(K).
Then X 45 X, where X is a mdimensional Gaussian processuireg a.s. con
tinuous sample paths and independent increments

Implicit in the assumptions of Theorem23is the existence of a matrix of
covariance functionsay 7 (¢) (m X m), having the property that'n(é)Ais a
positive nondecreasing function ¢@,1] for all A of unit length For example
such a case is given by(¢) = £PQ for a positive definite matrix) and
B > 0. Having the variances trend at different rates is also clearly possible
although it is difficult to state a simple condition encovering all the possible
casesApart from this requirementhere should be no difficulty in meeting the
conditions of Theorem.2 provided Theorem.2 holds for each element of the
vector Thus Corollary 1 of De Jond1997) shows that any constant array of
the formc, = t#n~¥277 for B = vy, with no restriction on signswill satisfy
Assumption 1d). Clearly in this caseAssumptions {b) and 1(c) are satisfied
for all choices ofA by the maximum of then array constants specified in the
elementwise convergenc€ondition (3.3) will hold likewise in this casgac-
cording to the earlier discussion

4. WEAK CONVERGENCE TO STOCHASTIC INTEGRALS

Given vector-valued arrayd,{(p X 1) and W, (q X 1), we next consider the
convergence in distribution of sums of the type
n—-1 t
G, = E 2 UnsWn’,t+1(p X Q). 4.1)
t=1s=1
The caselN, = U,;, or more generally of the vectors having elements in com-
mon is permitted in our approach.etting U,(¢) = ZEQ’? Uy and W, (¢) =
Sl (U, W) -2 (U, W) under the conditions of Theorem23 Note that
with n large enoughU,(¢) and W,(¢) are arbitrarily well approximated by
ﬁ,{'lfgo—measurable random variables under the NED assumpgtienceU and
W, having independent incremeni@re martingales with respect to the same
filtration. We seek conditions under which the weak limit®f, after center-
ing, is the It6 integralf, UdW'.
The only existing results of this type allowing serial correlation appear to be
those of Phillips(1988h and Hanser{1992. Phillips (1988h assumes linear

processes withiid. innovations Hansen1992 assumes adapted strong-mixing
processesOur result contains these forms of dependence as special cases and
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in general dominates them in terms of size conditidh&he assumptions also
do not requirdJ,, andW,, to be adapted sequenc@$ese can depend on events
of the infinitely far future provided the dependence is damped at such a rate
that the limit processes are martingales with respect to the same filtratan
result holds by the application of the same type of blocking argument that al-
lows the CLT to be proved under dependence

Our theorem holds under essentially the same conditions as specified previ-
ously for the FCLTASs beforg it need not be the case thdtandW are Brown-
ian motion but this property will hold for the leading case Xf, = n~¥2X,
where lim,_,, n"1E(XZL; X) (S X))’ = Q (finite, positive semidefinitg
In the theorem it is useful to specify the joint convergence of the triple
(Un, W,, G, — AYW), so that the result may be used subsequently to construct
the limiting distributions of the statistics familiar in unit root testing and co-
integration theoryinvolving Brownian functionalsby applications of the con-
tinuous mapping theorem

THEOREM 41. Let the conditions of Theore82 hold for X,; = (U, Wi’
and K,(¢) = [né] + 1. Then

1
(UmeGn - ALr‘!nW) $ <U,W,fo UdW'), (42)

where U and W are .a continuous Gaussian processeswing independent
increments and

n n
AW =2 D EU W (4.3)
t=1s=t+1

To establish this result we adopt the approach of Chan and1888 Theo-
rem 24(ii)). Under the stated condition&J,,, W,) N (U,W). Therefore by the
Skorokhod representation theoréBkorokhod 1956 there exist random pro-
cessegU " W") having the same distribution &5,,W,) but that converge al-
most surely tdU, W), and these processes are used to construct an approximation
to the integralLetting G" denote the counterpart &, for these variableghe
joint distribution of (U"W" G" — AYW) is the same as that specified [#2).
To prove the theorem it is sufficient to show

1
GM— AU By f udw’, (4.4)
0

because the joint convergence follows as a case of Theoret 20 Davidson
(1994 in which G" — AYW is mapped into an(as. constant element of
C[0,1] P4 Moreover we can consider the case of scdlhrandW, without loss
of generality because the general case then follows by applying Theoretd 30
of Davidson(1994).
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The convergence ifd.4) is shown in two stepausing a blocking argument
Let k, (the number of blocksbe a nondecreasing sequence such khab oo
asn — oo and lim,_. k,(1/n + 8§2) = 0, where§, is the uniform distance
between(U",W") and (U,W) except on a set of arbitrarily small probability
and let

k

Gy = Z%Un(fjfl)(wn(fj) —Wa(§i-1), (4.5)
i<

where¢; = j/k,. Also, let G™ denote the counterpart @ for (U"W"). The
first step based on Chan and WEL988), is to show that

1
‘G“* —f wa‘ 2. (4.6)
0

This proof can follow that of Theorem 3B of Davidson(1994), line for line
up to equation(30.78), with appropriate changes of notation

Because the distributions & andG"™ are the samat suffices for the sec-
ond step to show that

|Gy — Gr — AR B> 0. (4.7)
Noting that
G,— G — AEW =A,— B, (4.8)
where
Kn n—1 t-n_,—1
An = 2 (Un,t—mWn,t+l - EUn,t—mWn,H-l) (49)
j=1t=n_;+1 m=0
and
kn nj—l t—1
B, = 2 EUn Wi, 1415 (4.10)

j=1 t=nj_3 m=t—n;_;

wheren; = [ng;], for j = 1,...,k,, the proof of(4.7) is completed by showing
A, LN} andB,, — 0. These argumentsvhich are fairly lengthyare given in
Appendix C

5. CONCLUSION

This paper has given new weak convergence results that place the asymptotics
underlying the theory of cointegrating regressions on virtually the same foot-
ing as standard asymptoticd/e prove the FCLT under conditions similar to

the best ones known to us for the ordinary CEbm the point of view of the
amount of dependence and heterogeneity permitted in the underlying random
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processesWe also show that stochastic integral convergence holds under ef-
fectively the same conditionsomething that has not been demonstrated previ-
ously to our knowledge

NOTES

1. See Hansef1992. Davidson’s Theorem 303 (1994 is corrected in the 1997 reprint of the
work by revising the conditionsThe present paper shows that Davidson’s original theorem is cor-
rect as statedeven though the proof contains an error

2. In this pape,r$ denotes convergence in distributiomhereas"> denotes convergence in
probability.

3. Summations over an empty index set are defined as zero here

4. 1t can be difficult to determine whether one set of conditions actually contains anbither
ever we note that if in the Phillipg1988h model the linear MA coefficients are 1-summaliee
Phillips, 1988h p. 530), the process i&»,-NED on the ii.d. forcing variables of size-3.
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APPENDIX A: TECHNICAL LEMMAS
FOR MIXINGALES

An important tool for obtaining our results is the mixingale propefheL,-mixingales
were introduced by McLeisli19753, and the extension th,-mixingales p = 1, by
Andrews(1988. Let G,; denote an array af-fields, increasing int for eachn.

DEFINITION 2. {Xp, Gt} is called an L-mixingale if for m= 0,
[ Xat = EXntl G, e m)lp = @netp (M + 1), (A.1)
IE(Xat|Gn,t-m)llp = antp (), (A.2)
andy¢(m) — 0as m— co.

The notation here and in the rest of the paper is as in Davifk®®2 1993 and De
Jong(1997). Thea,, are referred to as the mixingale magnitude indiegsl X, is called
a mixingale of size- A if (m) is of size—A.

Under integrability conditionsrandom variables that are NED on a mixing process
are known to be mixingalesand in particular we have the following standard result
(see e.g., Davidson 1994 Corollary 176).

LEMMA A .1 If X, satisfies partga)—(c) of Assumptiorl, {X,, 71 _..} is an Ly-
mixingale of size-3 with mixingale magnitude indices,c
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Results of this kind are often used implicitly in the sequehere we proceed by
showing that certain functions of the variables are NEDVgnand applying the same
type of argumentAlthough the mixingale assumption is not structured enough to yield
weak convergence results without supplementary conditlmersause for example it may
not be preserved under transformatioitds useful at certain stages of the proofis
addition to the various known mixingale properties documented in sources such as Da-
vidson (1994, we make use here of the following results

LEMMA A 2. If {Yyj, Fy}is an Ly-mixingale with magnitude indices,gand
Kn

limsup >, a,; < o (A.3)

n—oo j=1

and for all g

Kn
E(E(Y”j | Fojeq) = EOVil Fojge1) =0, (A.4)

then

Kn
> Y, > 0. (A.5)
j=1

Proof. Note that for allm,

=

n

Kn
E Ynj = (Ynj - E(Ynj |~7:n,j+m))
=1 =1

m kn
+ E 2 (E(Ynj ‘-,Fn,jJrq) - E(Ynj|-7:n,j+q71))
g=—m+1 j=1
Kn

+ 2 E(Yyl Fojom)- (A.6)
j=1

The L;-norm of the first and third terms is bounded Ef;lanjap(m), which can be
made arbitrarily small by selecting a large valuemafThe second term converges in
probability to zero by the requirement of equati@n4). See also Andrew§1983. B

LEMMA A 3. Let{Xy, Gne} and{Y,, Gntt be triangular Ly-mixingale arrays of size
— with mixingale magnitude indicesfaand aY, respectiely, where 31 ;(a%)? =
O(1) and X (- (af)? = O(2). If y, = 1is an increasing integevalued function of n
with y, — o0 as n— oo, then

lim E E |E(Xn Yo [1 (|t = 8] > y,) = 0. (A7)

= t=1s=1

Proof. This is analogous to Lemma 4 of De Jo(iP97). u
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LEMMA A 4. If {Xpnt, Gt} and{Y,y, Gne} are Ly-mixingales with mixingale numbers
#*(j) andyY(j) and magnitude indicesaand gy, then

n ot 1/2
Z 2 XntYns = C(E(a )2 2('091)2¢X(J) >
n o 1/2
x (El(aIQz_Zl(logj)sz(j)2> . (A.8)
s= j=
for0 < C < oo.
Proof. Define
nlI E(xm|gnt I) E(Xm|gn,tflfl) (Ag)
and
nS| - E(Yns|gn s— |) E(Yns‘gn,s—i—l) (A].O)

and note that

n [e's) [e's) n
2 E xnlYns = H 2 2 2 2 meYnS|
t=1s=1 1 |=—wi=—cot=1s=1 1
e} o) n t
= 2 2 EEXntIYnsil(t_l>S_i)
|=—wi=—co |l t=1s=1 1
oo oo n t
+ 2 2|22 X Vel (1= 1 <5=1)
|=—0i=—cllt=1s=1 1
o o n t
+ 2 22X XYl (t—1=5—1) (A.11)
|=—wi=—co|lt=1s=1 1
Consider each of these three sets of terNte first that the sequence
t
ExntIYnsil(t_|>S_i)y l=t=n (A12)

s=1

is a martingale difference with respect to tfig;—, and therefore for some constants
C; > 0 andC, > 0,

>

o i=—0o0

2 Z >(ntIYnsiI(t_I >Ss— |)

t=1s=1

1

[}

oo n t 2\1/2
= Cl E 2 E E Xr%tl max 2 Ynsi
t=1 1=t=n\s=1

|=—0i=—o0
> n 1/2 o t 2\1/2
=C 2 | ZEXG| 2 (Emax| 2 Yoo
l=—co \ t=1 i=—oo 1=t=n
1/2

X
o n o n 1/2
s 2( Exn) S (2 v) , (A13)
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where these inequalities arespectivelyby the BurkholderCauchy—Schwarzand Doob
inequalities A similar argument holds for the second set of termgArl1), noting that

n
2 X Yosil (t=1<s—1i),  1=s=n
t=s

is a martingale difference with respectdq s—; and also that for each

n s
E Xntl E ><ntI
t=s t=1

= 2 max

1=s=n

. (A.14)

Finally, we have

M:

E XntIYnsiI(t_I =s—1i)

1s=1

I:i:oo %

i=—o0

t

1

Ms

=c,
|

o) n 1/2
=C; X < EthI)
t=1

|=—00

[e’e] n
> > [ Xoa oY o1 1A=t =1+i=n)|,
i=—oot=1

o)

oo n 1/2
X sup > (2 EYnz,t_Hi’il(lst—l—#isn)) (A.15)
—oo=l=00 j=—00 \ t=1

for C3 > 0.

The majorant ofA.11) does not exceed the sum @.15) and two terms of the form
(A.13). Now, the lemma follows by combining the mixingale assumption with the fact
that

Exr%tl = EE(Xnt|gn,tfl)2 - EE(Xnt‘gn,tflfl)2
= E(Xnt = EXtlGn, 121002 = EXe = EXn|Gn 1) (A.16)

with similar equalities forY,;, and the fact that for a monotone decreasing sequence
{X;,] = 1} the relation

oo o) 1/2

> (= xA)V= C( > (Iogj)zxj2> , (A17)
j=1 j=1

for C > 0, holds by an argument similar to McLeigh975a Theorem 16). u

APPENDIX B: PROOF OF THEOREM 3

Fix 6 > 0 and leté; = j6/2 forj = 0,...,[2/8]. For any pairé, ¢’ such thaté — ¢'| <
8/2, letjs(¢,&") denote the maximal value gfsuch thatt > &5 andé’ > &5 and note
that 0< & — &5, <8 and 0< &' — &5 (4 ) < 6. In addition define
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Knp(min(£+6,1))

Vi€ 8) = > ¢k (B.1)

and letX,(¢) = X,(1) if £ > 1. Then

P( sup  sup \xn(§>—xn<f'>|>s)

£€[01] {£":|6-¢"|<8/2)

= P( SUp  sUP  [Xa(€) = XalEspyieen) + XnlEspeen) = Xalé)] > )
(E[0,1] {&":|¢—¢"[<8/2}

=2P( max sup [ Xn(€) — Xn(é5)| > &/2
1=0,....[2/8] {£:0<£—¢5<8)

[2/8]

=23 P( sup \xn<g>—xn<fa,->|>s/z>

j=0  \{&0<e—i5<8)

[2/8]

=22P<( sup |xn<§>—xn<§5j>|>2

j=0 {£:0<&—&5<6}

X | (( sup X, (&) - xn(gsj)|)2 > 82/4> > 82/4>

{£:0<¢—€5<5}

[2/5] 2
=2 48*2E< sup  [Xa(é) - xn(fsj-)\)
j=0 {£:0<é—&5<5}

X |<< sup  [X,(&) — xn<§5j>|>2 > 82/4)

(£:0<E—£45<5)

[2/8]
=23 vﬁ(éaj,ams*ZE( sup  [X,(€) — xn<§aj>|/vn<§3j,a)>2
j=0 {£:0<¢—&5<6}

><I(< sup |xn<5>—xn<§5j>|2/vn2<faj,6>>82/<4vn(§,3],6>2>>>

{§:0<¢—&5<6}

i=0,...,[2/

n 2
= 4< E let) ma[x 5] 48_2E( sup |xn(§) - Xn(f&j )|/Vn(§3j76)>

j {£:0<¢—¢£45<8}

xn(( sup |xn<§>—xn<§,5j>|2/un<§5,-,a>2>>82/<4vn<551,5>2)>

(£:0<E—£45<5)

=Ce?  max E( sup \xn@)—xn<§5j>|/vn<§aj,5>>2
{£:0<£—¢5<8)

X |<< sup X, (&) — xn<§5j>|2/vn<§5j,6>2> > g2

(£:0<6—¢5<8}

X (4_ max Vg(g,sj,s))*l) (B.2)
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for some finite constan€ > 0. The second inequality follows from subadditivithe
third inequality is Markov’s and the remaining steps follow from the assumptions

Next, note that by the mixingale propertemma A1) and Corollary 1614 of Da-
vidson (1994, the sequence

Ya(8,6") = sup  [X(&) = Xq(€)|/va(£,0) (B.3)

{£:0<¢—-¢"'<8}

is uniformly square-integrabléloreover Assumption 1b) implies that this property is
independent of the segment of the data sequence representgd Bpmpare McLeish
1975h Lemma 65; and McLeish 1977, proof of Theorem 2.) In other words

limsup Jmax EYA(8,&5) %1 (IYa(8,€5) > K)

n—oo 1=0,...,

= mag</ liMSUPEY,(8,&5) 21 (|Ya(8,é5)] > K)

§=0,....[2/8] noo
= f(K), (B.4)

wheref(K) does not depend ohandf(K) — 0 asK — oo.
Because’ is arbitrary it follows by (3.5), (B.2), and (B.4) that X,,(¢) is stochasti-
cally equicontinuous 0f0,1] if

lim limsup ma[x vi(é5,8) = 0. (B.5)

-0 npnooo J=0,...,

Because the max and the lim sup in equatiBrb) can similarly be interchangethis
holds by the assumption of equatit®3).

Next, we show thaiX(¢) has independent increments view of the Gaussianityit
suffices to show that for any s€f,...,&:0< & < & < - < g < 1tandalli <j,
X(&) — X(&-1) andX(&;) — X(§j-1) are uncorrelatedThis follows because

E(X(&) = X(&i—) (X(&5) = X(&-1))
= lim E(Xa(&) = Xa(i-1) (Xa(&) = Xa(-), (8.6)
where for any fixeds > 0,

‘E(Xn(é) - Xn(fi—l))(xn(fj) - Xn(fj—l))'

Kn(&i) Kn(£j-1+9) Kn(&i) Kn(£))
= > EXuXag + EXot Xns
t=Kn(&i-1)+1 s=Kp(&-1)+1 t=Kn(&i-1)+1 s=K,(&-1+8)+1
Kn(&) Kn(€j-1+8)
S 2 Xnt an
t=Ky(&i-1)+1 2l s=Kp(§j-1)+1 2
Kn(1) Kp(1)
+ E > | EX Xnel L (IS = t] = K (&-1 + 8) — Ky (&) (B.7)

t= s=1
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Note that

Kn(D) Kn(1)

lim 2 > EXy Xngl (IS = t] = Ky(§-1 + 8) =K (&) =0 (B.8)

n—oo t— s=1

for 8§ > 0, by Lemma A3 and the requirement tht,(¢) — K,(£') — oo for all ¢ > ¢/,
and also that

Kn(£j-1+9)

2 an

s=Kn(§j_1)+1

=0

2

lim lim

5—0 n—oo

by the assumption in equatidB.3). Because’ is arbitrary in(B.8), it follows that
E(X(-fi) - X(fifl))(x(é‘j) - X(fj—l)) =0

This completes the proof u

APPENDIX C PROOF OF THEOREM 4

First, write
Ko n—1 t—1
= 2 > EUp W, cia | (M=)
=1 t=n_; m=t—n_;
kn  n—1
+2 2 E EUp t-mWh, t+2 1 (M>qp), (C.1)

j=1 t=nj_; m=t—n_;

whereq, is a nondecreasing sequence such thats co asn — co. We definecl, and
¢\ as the constants with respect to which Assumption 1 hold&Jfpand W, respec-
tively. Note that because

lim max max{(c%)%(c¥)2} =0 (C.2)

n—oo 1=t=n

by Assumption 1d), it is possible to choosk, andg, such that

lim k,q2 max max{(c )2 (cW)2t = 0. (C.3)

n—oo
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The second term i6C.1) converges to zerdecause its absolute value is bounded by

-
|

1

|EUp, - mW |1 (M>q,) = 0(2) (C.4)
1

,,
ZE
S

m:

by Lemma A3. For the first term in(C.1), note that
kn n-—1 t—1
2 |EUn,t—mWn,t+1|(mS )|
j=1 t=nj_; m=t—n_;+1
Kn N-1+0, t—1

= E |EUn,t—mWn,t+1|(mS an)|

j=1 t=n_; m=t—nj_;+1
= O(k, 07 max max{(cy)?(cy)?})
1=t=n

= o(1) (C.5)

by (C.3), noting that values of exceedingn—; + g, contribute zero to the sum
To show thatA,, % 0, first define

h(a,x) = xI(|x| =a) +al(x>a) —al(x< —a) (C.6)
and
glax)=(x—al(x>a +(x+al(x< —a) (C.7)

and note thak = g(a, x) + h(a, x). For someK > 0 to be chosendefine

Un = 9(Kcit, Uy — Eg(KeH,Uy,)  and Ujp = E(Gnt|gn,t—m) (C.8)
and
Unt = h(Kcllel’Um) - Eh(KCr%Jt’Unt) and UnT = E(Unt‘gn,tfm)y (Cg)

whereGn = o (Vog, Vi t—1,...). Note thatU,, = U, + Uy.. Also note thatg andh are
Lipschitz functions and therefor,,, and U,,; are L,-NED on V,, for all K, with NED
magnitude indicesy and NED numberg (m). (See Davidson1994 Theorem 1712.)
Therefore Uy, is also arl ,-mixingale of size— % with mixingale magnitude indicess,
implying that

[0l = Cm V2 ey (C.10)
for . > 0 andC > 0 and alspby Assumption 1b), that

10512 = e S;UH|Um/C.ﬁJt| (1Unl/ei > K2 = et F(K) (C.11)
n
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for somef (K) not depending ot or n, wheref (K) — 0 asK — oo. These inequalities
further imply that

|G, = (Cm Y2 et (e F(K)) # = C/oi F(K)#m /2 mm/2 e (C.12)

for C' > 0. Therefore Uy is anL,-mixingale of size—3 with mixingale magnitude
indicesc f(K)* for some small enoughe > 0. Similarly, we may decomposiVy,
into W,; andW,,;, having the same properties with respect to constefjts

Note that

n17

t
z E (UnsWn,t+1 - EUnsWn,t+1 + UnsWn,t+l - EUnsWn,Hl
t=p, s=p

HM’T

+ Unsv’vn,'wl - EUnsWn,t+l + Uns\W/n, t+1 EUnsWn,t+1)7 (C13)

where for economy of notation we henceforth use the synpbed denoten;; + 1.
Consider the four sums of terms corresponding to this decompositidallows by
Lemma A4 that theL ;-norms of all these sums except those involviigW, ., are of
order

Kn n; n; 1/2
0(2(2(0%)22(0%” 2) f(K)“) = O(f(K)*), (C.14)

j=1\ s=p t=p

where the equality ifC.14) is by assumptionBy choosing a large enougdk, the lim-
sups of the corresponding componentAgfcan be made as small as desirAdcord-
ingly, let the remaining component be defined as

>

]

t
2 Z _n t+1 E(Unswn,wrl)y (C15)

|I
HMF

and we complete the proof by showing that forkalt> 0, A, 20, by an application of
Lemma A2.

First write

kn

Ao=3 Yo, (C.16)
j=1

where
njf t o o

Ynj = E E (UnsWn,H—l - EUnsWn,H—l)- (C17)
t=p; s=pj

Define Fy = o (Vo n> Vi 1-++) andM} " = o (V, Nmat1r+> Vin.,) @and for brev-
ity of notation IetE’+m denoteE( |5, \"m). Then note that form > 0 there exist

positive constanté:l, C,, andC; such that
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n—-1 ¢t

2 2 (Unsv_vn,t+1 - Ejjjr:’] Unsv_vn,Hl)

t=pj s=p;

HYnj - Ej]jnTYnj I, =

1

-1t

E 2 Uns(Wn t+1 +r:1an t+l)

t=p; s=p;

1

n—=1

2 2 Ejjjr:wnwn,Hl(Uns Ej+m ns)
t=p; s=pj

]+m j*tmT it
2 E E nl+1E Uns EJ mWn t+1Uns
t=pj s=p;

1

n-1

t
E (Wn,t+1 - EjJ—JranV_\/n,t+l) 2 Uns
t=p s=p

1

' t
2 Wn,t+1 2 (Uns_ El+m ns)

t=pj s=p

1

n—1

+m +
2 EJJ m n t+1 E (Unsi EJ nU ns)
t=p s=p

t
E L_Jns

S= pJ

n—1

= E ”Wn,t+1 - EJ]+nTWn t+1”2
t=p,

2

n—1

2 Wn,Hrl

t=p;

n—1

j+myg
Z Ejfm Wn,t+1
t=p;

n—1
+ E ”Uns E]+m ns|2<

s=p

n; n; 1/2
= C1< > CXY)(mn/kn)”“< > (C#s)2>
t=p; S=h

n; n; 1/2
e 3 e)omr o B )

)

2

s=p t=pj

n; n; 1/2

= Csml/“(n/an( > (c)? X (e 2) (C.18)
S:pj t:pj

for somee > 0. The first inequality follows from rearranging the terms and the norm

inequality, the second inequality uses iterated expectatioine third is the Cauchy—

Schwarz inequality and rearranging of tegritee fourth uses the NED definitioiTheo-

rem 16 of McLeish (19753 (see also Davidsqril994 Theorem 1), and the size
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assumptionsand the fifth is obtained using Jensen’s inequakiyr the casen = 0, all
except the two final steps ¢.18) hold, but for this case we have

s=p t=p

1/2
HYnj - E(Ynj|Hrj1,j)”1 = C4< 2 (c5)? 2 (c¥ > (C.19)

for C4 > 0, using some of the same arguments as befdehave therefore established
that Y, is L1-NED of size —3, on a mixing processBecause it also possesses all its
momentsit follows by Corollary 176 of Davidson(1994 that{Y,;, 7} is also anlL,-
mixingale of size— 3, with respect to constants

n; n; 1/2
nj = (E (c)? X (e 2) : (C.20)
s=p t=p
Note that lim sup.,., Ej-kglanj < oo, because by assumption
n n
max{lim sup D, ()2 limsup D (¢ 2} < 0. (C.21)
n—oo t=1 n—oo t=1

By Lemma A2, the proof is therefore complete if we can show that foraall
Kn
D (EYol Frjmg) = EYVy| P j—q-1) 0. (C.22)
i=1
We next write

nt — (Unt - UnT) + Unitm + (Unrp - UnTm)7 (C.23)
and letting(m) denote the mixingale numbers relating th;, note that{U,; —

Um, G, and{U;™, G, } areL,-mixingales with mixingale numbers equal #dm) for
I = mandy(l) for | > m. Therefore by Lemma A4 and the assumptions

kn m—1 ¢
limsup| > > X (EUneW, 1l Foj—q) = E(UnsWh il F j—g-1))
n—oo [[j=1t=p; s=p
Kn nj—
- E E E (E((Uns n_sm)Wn,t-#l‘]:n,j—q)
j=1t=p; s=p;

- E((Unn; - L_Jn_sm)\W/n,t+1|‘7:n,j—q—1)) H
1

m 1/2
5C<(¢(m)2|2(|09|)2 E y(1)2(log(1))? )

I=m+1
= 0o(m®) (C.24)

for someC > 0 ande > 0. Therefore by choosing large enoughthe difference be-
tween the expressions can be made negligidlsimilar argument can be used to re-
placeW, 11 by W, ; — W, [, in the last expressigrand therefore it remains to show
that for all g, K, andm,
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kn m—1 ¢
2 2 2 (E((Un”s]* Un;m)(WnTt+1 - anml)‘fn,i*q)
j=1t=p; s=p;
- E((Unrg - Un;m)(_n'?qt+1 - anml)‘]:n,ijfl)) i> 0. (C25)
Noting that
UnT - Un_rn = 2 (Unht+l - Unht (C26)
h=-—m
and
Wies — Wo ity = E (Wit — Wiii0), (C.27)
h=—m

it follows that this result holds if for alg, K, h, andl,

kn m—1 ¢

Z 2 2 (E((Unhs,_ Unh;l)(wnl,wl t+1)|-7:nj q)

j=1t=p; s=p
- E((L_Jnhs_ ljnhs-*—l) (V_VrLtJrl - erft&l)'ﬁ,ij—l))

Kn
= E E(Zn]|]:n] q) E(an‘]:n,j—q—l))
e
50 (C.28)

Because the terms dfC.28) are uncorrelatedthe latter statement is true if for afj,
K, h, andl,

Kn
lim > Ezﬁj =0. (C.29)

n—oo j=1

However note that

Kn Kn n— 1 n— 1 ty ty
E => 2 X2 2 2 EOn-Ou Wi — Waity)
=1 J=1 t1=p; t=p; S1=P =P
X (U — Uz h) (Waz,, — Woztty). (C.30)
Considey as representativehe terms for which

ss—hi=t;+1-l,=s,—h,=t,+1—1,. (C.31)

The other cases are treated identicafiyst note that by the martingale difference prop-
erty of the four terms in equatio(C.30), the terms in that equation are zero unless

h, = t, +1 — |,. Therefore for the terms that satisfy the preceding restrictime have
applying Lemma A4 once again
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ke m—1 ty
E 2 E (Unhsiiunhs{rl)(wnl,ltfrl Wr: t1+1)

i=1 t1=p; s;=p;
n—1
X 2 1l=t,+1-1l,+h,= n)(Unr,lztz—|2+h2 Un (- I2+h2)(Wr!,2t2+1 er 12+1)
to=p, 1
kn | ni—1 tg
= 2 E E - Uhﬁl)(wnl,ltlﬂ WI 11+1)
i=1llt,=p, s=p 1
n—1
2 A=t + 1=l +h,=n) (0% 1 1,0n, — U5 n,)
L=p
X (Wr:,zterl - V_\/r:,zt:il)
n 1/2
o3 (S )
j s=pj t=p,
Ny
X D Il=t,+1-l,+h,= n)cr‘,’tvzc;ftzﬂlﬁhZ)
t=p;
= (E S (e )ZE(CVYZ)
j=1s=p t=pj
n; 1/2
= O max 2 (c)? X (ea)?
1=j= S=p; t=p
=o0(1), (C.32)

where the last equality follows from the assumption of equat®8). This completes
the proof |



