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Abstract

The microbiota is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact

functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is

commonly used for taxonomic characterization of bacterial associates. In order to bridge this knowledge gap, we here analyzed

the metabolic competences of the native microbiota of the model nematode Caenorhabditis elegans. We integrated whole-

genome sequences of 77 bacterial microbiota members with metabolic modeling and experimental characterization of bacterial

physiology. We found that, as a community, the microbiota can synthesize all essential nutrients for C. elegans. Both metabolic

models and experimental analyses revealed that nutrient context can influence how bacteria interact within the microbiota. We

identified key bacterial traits that are likely to influence the microbe’s ability to colonize C. elegans (i.e., the ability of bacteria

for pyruvate fermentation to acetoin) and affect nematode fitness (i.e., bacterial competence for hydroxyproline degradation).

Considering that the microbiota is usually neglected in C. elegans research, the resource presented here will help our

understanding of this nematode’s biology in a more natural context. Our integrative approach moreover provides a novel,

general framework to characterize microbiota-mediated functions.

Introduction

Multicellular organisms are continuously associated with

microbial communities. The ongoing interactions have likely

influenced evolution of the involved microbes and hosts,

affecting bacterial growth characteristics or host develop-

ment, metabolism, immunity, and even behavior [1]. Host

organisms and their associated microorganisms (i.e., the

microbiota) are thus widely assumed to form a functional

unit, the metaorganism, where microbial traits expand host

biology [2]. To date, most microbiota studies focus on

describing bacterial taxonomic composition, using 16S
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rRNA amplicon sequencing [3]. These studies revealed that

specific taxa reliably associate with certain hosts, for example

Bacteroidetes and Firmicutes with humans, Snodgrassella

and Gilliamella with honeybees, or Lactobacillus and Acet-

obacter with Drosophila [4–6]. 16S profiling, however, is

insufficient to identify bacterial functions relevant for the

interaction [7]. More insights can be obtained from bacterial

genome sequences. For example, genomic analysis of bee

microbiota members revealed complementary functions in

carbohydrate metabolism, suggesting syntrophic interactions

among bacteria [8]. Further, the systems biology approach of

constraint-based modeling permits inference of genome-scale

metabolic models and prediction of microbial phenotypes [9],

as demonstrated for whiteflies and their endosymbionts

[10, 11] and also hosts with complex microbiotas [12, 13].

The nematode Caenorhabditis elegans is an important

model organism in biomedical research. Yet, almost all C.

elegans research has been without microbiota. In fact, the

nematode’s microbiota was only characterized recently, con-

sisting mostly of Gammaproteobacteria (Enterobacteriaceae,

Pseudomonaceae, Xanthomonodaceae) and Bacteroidetes

(Sphingobacteriaceae, Weeksellaceae, Flavobacteriaceae)

[14–17], some of which persist in the worm intestine

[15, 18, 19]. The microbiota composition is influenced by

both host genotype and environment, and appears similar

across geographic regions ([14, 15]; see meta-analysis in

[17]). The few studies on microbiota functions highlight an

influence on C. elegans fitness, stress resistance, and pathogen

protection [15]. Previous studies also combined C. elegans

with soil bacteria, revealing that these can provide specific

nutrients [20–24]. Bacterial metabolism can also affect the

worm’s response to drugs against cancer and diabetes [25–

28]. To date, the functions of the native microbiota have not

been systematically explored.

Our aim was to establish the natural C. elegans microbiota

as a model for studying microbiota functions. We extended

previous 16S rRNA data [15] by sequencing whole genomes

for 77 bacteria, which are associated with C. elegans in nat-

ure, most likely as part of the intestinal microbiota, and also

Escherichia coli OP50, the nematode’s standard laboratory

food. We reconstructed metabolic networks from the genomes

to explore the bacteria’s metabolic competences and

microbe–microbe interactions. We additionally characterized

bacterial physiology and assessed which bacterial traits shape

colonization ability and influence C. elegans fitness.

Materials and methods

Materials

Microbiota strains were previously isolated from natural C.

elegans isolates or corresponding substrates in Northern

Germany ([15]; Supplementary Table S1). Briefly, bacteria

from worms were obtained after nematodes were thor-

oughly washed and broken up by vortexing with Zirconium

beads. Most bacteria are likely from the intestines, yet an

association with the nematode cuticle cannot be excluded

[15]. A representative set of 77 strains was chosen for

genome sequencing, covering 79.5% of the diversity and

abundance of the top ten genera and still 54.6% of that of

the top 20 genera from the native C. elegans microbiota

(some common microbiota members such as Flavobacteria

could not yet be isolated [15]). For physiological analysis,

bacteria were cultured in tryptic soy broth (TSB) at 28 °C.

We performed experiments with the main C. elegans

laboratory strain N2 (see below), thus allowing us to use

previous literature and concurrent experiments with the

standard food E. coli OP50 as a reference. For these

experiments, bacterial TSB cultures (500 µl at OD600= 10)

were spread onto peptone-free medium (PFM). Main-

tenance and bleaching, to obtain gnotobiotic, age-

synchronized worms, followed standard methods [29].

Genome sequencing

Total bacterial DNA was isolated using a cetyl-trimethyl-

ammonium-bromid (CTAB) approach [30]. Sequencing

was based on Illumina HiSeq and in a subset of nine strains

additionally PacBio (Supplementary Table S1). For PacBio,

SMRTbell™ template library was prepared following

manufacturer’s instructions (Pacific Biosciences, US; Pro-

tocol for Greater Than 10 kb Template Preparation). SMRT

sequencing was performed on the PacBio RSII (Pacific

Biosciences, US), applying 240-min movie lengths. PacBio

data was assembled using the RS_HGAP_Assembly.3

protocol (SMRT Portal version 2.3.0). Chromosomes and

chromids were circularized, unusual redundancies at contig

ends and artificial contigs were removed. Error correction

was performed by Illumina reads mapping onto genomes

using BWA [31] with subsequent variant calling using

VarScan [32]. QV60 consensus concordances were con-

firmed for all genomes. Annotations were obtained with the

NCBI Prokaryotic Genome Annotation Pipeline (PGAP).

For samples with only Illumina data, low-quality reads and

adaptors were trimmed with Trimmomatic v0.36 [33].

Genomes were assembled using SPAdes v3.8.0 [34] and

contigs greater than 1000 bp annotated with PGAP and

Prokka v1.11 [35]. Genomes were compared with BRIG

[36]. BUSCO [37] analysis revealed high-genome com-

pleteness, irrespective of sequencing technology (mean

completeness of 96.81%; Supplementary Figs. S12 and

S13). As assembly quality of the available OP50 genome

was low (NCBI project PRJNA41499; >2900 contigs, 73%

completeness), we sequenced and assembled it again (218

contigs, 98.7% completeness).
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All sequences are available from NCBI Genbank, Bio-

project PRJNA400855.

Reconstruction of metabolic networks

Metabolic networks were reconstructed following two steps

(Fig. 1a). First, genomes were used to create draft metabolic

models, using ModelSEED version 2.0 [38] and associated

SEED reaction database. Second, we corrected errors and

extended drafts by (i) finding futile cycles, (ii) allowing

growth with the isolation medium (TSB), (iii) improving

biosynthesis of biomass components, (iv) extending capa-

cities to use different carbon sources, and (v) checking for

additional fermentation products. Curation was based on

combining topological- and sequenced-based gap-filling

using gapseq (version 0.9; https://github.com/jotech/ga

pseq), pathway definitions of MetaCyc release 22 [39],

and UniProt [40]. The presence of enzymatic reactions was

inferred by BLAST with bitscore of ≥50 (≥150 for more

conservative estimation), and 75% minimum query cover-

age. Moreover, reactions were assumed to be present if

overall pathway completeness was >75% or if it was >66%

and key pathway enzymes were present. Host–microbe

interaction genes were identified with the virulence factor

database [41]. The resulting curated models (Supplementary

data S1) were used for further metabolic network analysis.

Genome incompleteness did not have a large effect on

pathway reconstruction (Supplementary Fig. S14). Com-

putations were done with GNU parallel [42].

Phylogenetic correlation and clustering of metabolic
pathways

We assessed the correlation between metabolic pathway

similarity and phylogenetic relationships, using pairwise

comparisons of bacteria. We specifically focused on 16S

rRNA sequences to calculate phylogenetic similarities, in

order to enable comparisons with the standard microbiota

analysis approach, based on 16S amplicon sequencing. 16S

similarity was scored as percent identity with biostrings

[43], using data from the SILVA database [44] based on

best hits of extracted genomic 16S rRNA using RNAmmer

[45]. To determine overall metabolic distances between

isolates, metabolic networks were treated as vectors, clus-

tered horizontally, followed by computation of Euclidean

distances between vectors. Cluster similarity was estimated

Fig. 1 Genomes of bacterial
isolates, reconstruction and
validation of metabolic
networks. a Pipeline for
metabolic network
reconstruction. Sequenced
genomes were used to create
draft metabolic models. Draft
models were curated using
topological- and sequenced-
based gap-filling. The resulting
models were validated with
physiological data (BIOLOG
GN2; see Fig. 3); these models
represent the metabolic
networks of microbiome isolates
and were used for functional
inference. b Model
improvements by curation,
leading to an increase in
accurate prediction of uptake of
carbon sources, and decreases in
the prediction of non-producible
biomass components and the
number of components needed
for growth. c Model curation
improved agreement with
experimental data, as for
example the BIOLOG results
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by average linkage and assessed via multi-scale boot-

strapping (10,000 replications) using pvclust [46].

BIOLOG experiments

We used BIOLOG GN2 plates to assess metabolic com-

petences of selected bacteria, including MYb10, MYb11,

MYb71, MYb237, and OP50. Bacterial cultures were

washed thrice using phosphate-buffered saline (PBS) and

density adjusted to OD600= 1.150 µl bacterial suspension

per well of BIOLOG plate was incubated at 28 °C for 46 h.

Tetrazolium dye absorption (OD595) was measured every

30 min (three replicates per strain). Substrate reduction was

inferred from fold-change in tetrazolium absorbance:

Foldchange ¼
ODt46 � ODt0

ODt0

� ODcontrol

Fold-changes in water were subtracted as background.

Hierarchical clustering of strains was based on average fold-

change profiles (Ward’s clustering; Euclidean distance) and

bootstrapping (n= 100). We analyzed metabolic speciali-

zation by k-means clustering of substrates (k= 7, n= 103;

[47]) (Supplementary Fig. S1). Statistical analyses were

performed in R version 3.3.1 [48] and ggplot2 [49].

Bacterial growth experiments

To validate BIOLOG results, we assessed growth of

MYb11, MYb71, and their co-culture in defined media

with either alpha-D-glucose or D-(+)-sucrose as carbon

sources. We focused on these two isolates, because they

are members of two common taxa of the native micro-

biota of C. elegans [15] and because detailed information

is available on the interaction of these two isolates with

C. elegans, including their ability to colonize the nema-

tode gut, persist under stressful conditions, influence

nematode population growth, and provide protection

against pathogens [15, 18]. Our defined medium is related

to S medium [29]: 0.3% NaCl, 1 mM MgSO4, 1 mM

CaCl2, 25 mM KPO4, 0.1% NH4NO3, 0.05 mM EDTA,

0.025 mM FeSO4, 0.01 mM MnCl2, 0.01 mM ZnSO4,

0.01 mM CuSO4, and 1% carbon source. Medium without

carbon source served as negative and TSB as positive

control. Overnight cultures were washed and adjusted to

3.94 × 107 CFUs for growth experiments. Microtiter

plates were incubated as BIOLOG plates above. OD600

was measured every 30 min, and cultures plated after 48

h. Selective plating of MYb71 using kanamycin (10 µg/

ml) allowed to quantify MYb11/MYb71 proportions in

co-culture. Three independent runs with technical repli-

cates were assessed with Mann–Whitney U-tests and P-

value adjustment by false discovery rate (fdr, Benjamini

Yoav et al. [50]).

Simulation of bacterial in silico growth

We used the curated models to simulate growth of MYb11

and MYb71 with sucrose as carbon source using BacArena

[51]. Sucrose invertases were identified with gapseq (https://

github.com/jotech/gapseq) and secreted peptides with Sig-

nalP 4.1 [52]. The MYb71 extracellular sucrose invertase

was modeled as independent species with a single sucrose

invertase reaction and exchange reactions for sucrose, glu-

cose, and fructose. Carbon source utilization and metabolic

by-products were predicted using flux balance and varia-

bility analysis in R with sybil [53]. Flux balance analysis is

a constrained-based method to estimate intra-cellular reac-

tion activities by linear optimization [54], permitting infer-

ence of bacterial growth. A carbon source was assumed

utilizable if the minimal solution of the corresponding

exchange was negative and a byproduct producible if the

maximal solution of exchange positive.

Simulation of ecological interactions

We assessed possible interactions among bacteria using

joined models, assuming a common compartment for

metabolite exchange between microbes. Activity of indivi-

dual reactions (i.e., fluxes) was linearly coupled to biomass

production to prevent unrealistic exchange fluxes, such as

those that solely benefit the partner but not the producer

[55]. The objective function was set to maximize the sum of

fluxes through both biomass reactions. Two growth media

were used for simulations, TSB (Supplementary Table S2)

and a glucose minimal medium with thiamine and traces

(0.001 mM) of sucrose and methionine to allow initial

bacterial growth (Supplementary Table S3). Joined growth

rates (j1, j2) were compared to single growth rates (s1, s2).

Mutualism was defined as j1 > s1 and j2 > s2, competition

as j1 < s1 and simultaneously j2 < s2, parasitism as j1 < s1

and simultaneously j2 > s2 (or j2 < s2 and j1 > s1),

and commensalism as j1= s1 and j2 > s2 (or j2= s2 and

j1 > s1).

Experimental analysis of bacterial colonization and
bacterial effects on C. elegans population growth

We examined bacterial colonization of C. elegans (i.e.,

bacteria attached to worms after the washing protocol, thus

mainly consisting of intestinal bacteria) by quantifying

CFUs extracted from young adults exposed to bacteria for

24 h. In detail, L4 larvae were raised on OP50 lawns and

placed on each of the considered bacteria (500 µl, OD600=

10; only one bacterium present). After 24 h, they were

washed in a series of buffers (2 ×M9 buffer with 25 mM

tetramisole, 2 ×M9 with 25 mM tetramisole and 100 µg/ml

gentamicin, 1 × PBS with 0.025% Triton-X) to remove
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bacteria from nematode surfaces, and homogenized in the

GenoGrinder 2000 using 1 mm zirconia beads (1200

strokes/min, 3 min). Worm homogenate and supernatant

control were plated onto tryptic soy agar for quantification.

We further measured worm population growth as a proxy

for worm fitness. Three L4, raised on OP50 lawns, were

transferred onto lawns with the considered bacteria and total

worm numbers counted after five days at 20 °C.

Regression models

We analyzed the association between phenotypic measure-

ments (i.e., bacterial colonization, worm fitness) and meta-

bolic or virulence characteristics using Spearman rank

correlation and random forest regression analysis. Sig-

nificance of correlations was assessed with permutation

tests (100 randomly generated features, FDR-adjusted P-

values). For random forest regression, the R package

VSURF served to select features via permutation-based

score of importance [56] and otherwise default settings

(ntree= 2000, ntry= p/3).

Adaptive strategies

According to the universal adaptive strategy theory (UAST)

[57, 58], heterotrophic bacteria follow one of three strate-

gies: (i) rapid growth and thus good competitor, (ii) high

resistance and thus stress-tolerator, or (iii) fast niche occu-

pation and thus ruderal. We categorized bacterial isolates

using published UAST criteria for genomic data [58], which

are based on three scores, inferred from genome sequences

and metabolic models. In detail, the components of a

competitive strategy were large genome size, antibiotics

production (presence of pathways belonging to “Antibiotic-

Biosynthesis” category in MetaCyc), high-catabolic diver-

sity (Metacyc: “Energy-Metabolism”), and siderophore

biosynthesis (Metacyc: “Siderophores-Biosynthesis”). The

criteria for stress-tolerators were auxotrophies, slow growth

rates in TSB, few rRNA copies, and exopolysaccharides

production (MetaCyc pathways: PWY-6773, PWY-6655,

PWY-6658, PWY-1001, PWY-6068, PWY-6082, PWY-

6073). Those for a ruderal strategy were fast growth in TSB,

multiple rRNA copies, and low catabolic diversity (Meta-

cyc: “Energy-Metabolism”). The characteristics of each

isolate were related to the other bacteria, yielding a relative

score, thereby assuming that different strategies are present

in the microbial community as a whole. For each isolate, we

assessed whether the inferred value belonged to the lower or

upper quantile of this criterium (in case of growth rates we

used the mean instead). The total adaptive score per strategy

was scaled by the number of features considered per strat-

egy. An isolate was assumed to follow the strategy, for

which it produced the highest score. If two strategies had

the same score, then we assumed a mixed strategy. The

UAST classification remained stable with the same quali-

tative order, irrespective of genome completeness or

sequencing technology (Supplementary Figs. S15 and S16).

Results

Genomes of bacterial isolates, reconstruction and
validation of metabolic networks

We obtained whole genome sequences for 77 bacterial

isolates of the C. elegans microbiota (Table 1). Of these,

nine were sequenced with PacBio technology, allowing

their full assembly, yielding either a single-circular chro-

mosome (four strains) or three chromosomes/chromids in

case of the five isolates of the genus Ochrobactrum, which

is known to have more than one chromosome [59] (Sup-

plementary Table S1). The remaining isolates were

sequenced with Illumina only, resulting in assemblies with

11 up to 243 contigs. For four genera (Ochrobactrum,

Pseudomonas, Arthrobacter, Microbacterium), we included

more than five strains and identified substantial intra-

generic genome variation (Supplementary Fig. S2).

To study the microbiota’s functional repertoire, we

reconstructed genome-scale metabolic models (Fig. 1a and

Supplementary Data S1). The initial metabolic models were

curated by screening for transporter proteins and filling of

missing reactions (gap-filling). Curation increased model

quality, including doubling of utilizable carbon sources,

reduced absence of essential biosynthesis pathways (e.g.,

for nucleotides or amino acids) from 60% to below 10%,

and reduction in the required additional compounds for

growth on defined media from on average six to one

(Fig. 1b). To validate our metabolic models, we experi-

mentally quantified the ability of five selected bacteria to

utilize 46 carbon sources using the BIOLOG approach. The

results produced 49.6% overlap with the initial and 70%

overlap with the curated models (Fig. 1c and Supplementary

Fig. S9). A 70% overlap is generally consistent with pre-

vious studies with model organisms like Salmonella enter-

ica, E. coli, Bacillus subtilis, or Pseudomonas putida [60–

62]. Notably, the models in these studies were manually

reconstructed, highlighting the quality of our automated

reconstructions.

Metabolic diversity within the microbiome of C.
elegans

We used the curated metabolic networks to assess the

relationship between metabolic and phylogenetic simila-

rities and the bacteria’s metabolic potential. For phyloge-

netic relationships, we specifically focused on 16S rRNA

30 J. Zimmermann et al.



sequences, as they are most commonly used to characterize

microbiota communities [3]. We found that pairwise 16S

phylogenetic relationships are generally indicative of

metabolic network similarities (Fig. 2a; Spearman rank

correlation, RS= 0.6199, P < 0.0001). Phylogenetic simi-

larities appeared to be larger than metabolic similarities,

suggesting some variation in metabolic competences within

taxa. Such variation even occurred among isolates with 16S

identity above 97%, often used as a species cut-off. This

was confirmed through hierarchical clustering of inferred

metabolic networks (Fig. 2b), for example for the genus

Pseudomonas with three clearly separated clusters (see

similar patterns for Enterobacter, Ochrobactrum, or

Microbacterium). We conclude that variation in metabolic

competences is generally related to bacterial phylogeny

albeit some variation being present within genera.

We next assessed the bacteria’s metabolic competences

(Supplementary Table S4). In general, the inferred meta-

bolic competences are consistent with the aerobic and het-

erotrophic lifestyle of the C. elegans host. The glycolysis, at

least the partial pentose phosphate pathway, the tri-

carboxylic acid cycle, and enzymes enabling oxidative

phosphorylation (cytochrome oxidases) were present in all

genomes. Almost all isolates possessed enzymes enabling

tolerance to microaerobic conditions (e.g., cytochrome bd

oxidase). Some Bacilli, Pseudomonas, and Ochrobactrum

showed competences for chemolithotrophic lifestyle (nitrite

and formate oxidation) and anaerobic respiration (nitrate,

arsenate reduction). Pathways related to CO2 fixation

(reductive TCA or anaplerosis) were found in several

Pseudomonas, Microbacterium, or Bacilli. Two Bacillales

strains showed capacity to degrade polysaccharides, such as

starch, cellulose, mannan, rhamnogalacturonan (e.g., Pae-

nibacillus MYb63, Bacillus MYb67). The microbiota

members are able to produce all essential substances

required for C. elegans growth, which the nematode cannot

synthesize on its own (i.e., all essential amino acids and

vitamins; Fig. 2c). Most variation among isolates was

observed in the biosynthetic pathways of B12, pantothenate,

phenylalanine, and siderophores (Fig. 2c). Simulation of in

silico growth (Supplementary Fig. S9) suggests that all

bacteria can use simple sugars, such as glucose, ribose, or

arabinose, while only some can degrade lactose, mal-

todextrin, or sucrose. Short-chain fatty acids can be gener-

ated by all bacteria (Supplementary Fig. S9), while they

vary in succinate, cysteine, and valine production. Several

microbes possess potential virulence genes, especially

Pseudomonas and Escherichia isolates (Supplementary

Table S5).

We subsequently focused on Ochrobactrum and Pseudo-

monas isolates. These two genera are enriched in the native

microbiota of C. elegans, comprising 10–20% of the asso-

ciated bacteria, they are particularly well able to colonize the

nematode gut [15], and some isolates can protect C. elegans

from pathogens [15, 18]. Most Pseudomonas isolates can

provide all required substances for nematode growth.

Table 1 Overview of bacterial isolates from the natural microbiota of C. elegans included in this study

Phylum Order Genus/Family Isolate

Proteobacteria Xanthomonadales Stenotrophomonas MYb238, MYb57

Proteobacteria Pseudomonadales Pseudomonas MYb1, MYb114, MYb115, MYb117, MYb12, MYb13, MYb16, MYb17,
MYb184, MYb185, MYb2, MYb22, MYb3, MYb60, MYb75, MYb11,
MYb187, MYb193

Proteobacteria Pseudomonadales Acinetobacter MYb10

Proteobacteria Enterobacterales Erwinia MYb121

Proteobacteria Enterobacterales Escherichia MYb137, MYb5, OP50

Terrabacteria group Actinobacteria Micrococcaceae MYb211, MYb213, MYb214, MYb216, MYb221, MYb222, MYb224,
MYb227, MYb229, MYb23, MYb51

Terrabacteria group Actinobacteria Microbacteriaceae MYb24, MYb32, MYb40, MYb43, MYb45, MYb50, MYb54, MYb62, MYb64,
MYb66, MYb72

FCB group Bacteroidetes Flavobacteriales MYb25, MYb44, MYb7

Proteobacteria Caulobacterales Brevundimonas MYb31, MYb33, MYb46, MYb52

Terrabacteria group Bacilli Paenibacillaceae MYb63

Proteobacteria Rhizobiales Ochrobactrum MYb6, MYb14, MYb15, MYb18, MYb19, MYb29, MYb49, MYb58, MYb68,
MYb71, MYb237

Proteobacteria Burkholderiales Achromobacter MYb9, MYb73

Terrabacteria group Bacilli Bacillaceae MYb48, MYb56, MYb67, MYb78, MYb209, MYb212, MYb220

Bacteroidetes Sphingobacteriales Sphingobacterium MYb181

Actinobacteria Actinomycetales Rhodococcus MYb53

Strains with PacBio sequencing data are given in bold
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Ochrobactrum isolates can produce vitamin B12, like Pseu-

domonas isolates, but unlike most other microbiota members

(Fig. 2c). Moreover, the Ochrobactrum isolates vary from

other microbiota members in degradation pathways, energy-

metabolism, vitamin biosynthesis, and potential virulence

factors (Supplementary Table S6). They apparently lack thia-

mine and panthothenate vitamin biosynthetic pathways,

essential for C. elegans. They possess a unique Brucella-like

putatively immune-modulating LPS (Supplementary

Table S5).

In summary, C. elegans harbors a microbial community

with diverse metabolic competences, which can supply all

essential nutrients for C. elegans and includes several

Ochrobactrum and Pseudomonas isolates capable of pro-

ducing important vitamins such as B12.

Nutrient context influences ecological interactions
within the microbiota

To study how metabolic repertoires affect bacterial growth

and interactions within the microbiota, we characterized

carbon source utilization of selected isolates and tested

growth in different nutrient environments in vitro and in

silico. Using the BIOLOG approach, we focused on pro-

minent C. elegans microbiota members that colonize worms

and affect host fitness, including MYb71, MYb237 (both

Ochrobactrum), MYb10 (Acinetobacter), MYb11 (Pseu-

domonas lurida), and E. coli OP50 as control (Supple-

mentary Fig. S3; ref. [15]). For a first insight into bacterial

interactions, we additionally included a MYb11-MYb71

mixture (two strains that can co-exist in C. elegans [15]).

Metabolic repertoires of the strains differ and the four

microbiota isolates deviate from OP50 in carboxylic and

amino acid metabolism (Fig. 3a, cluster II; and Supple-

mentary Fig. S4). MYb10 was least versatile at using car-

boxylic acids and sugar alcohols (Fig. 3a, cluster IV), while

MYb11 and both Ochrobactrum could additionally meta-

bolize unique sets of carboxylic acids and sugar alcohols,

respectively (Fig. 3a, cluster V and III). Notably, the dis-

accharides sucrose and turanose were only metabolized by

MYb71 (Fig. 3a, cluster III), although sucrose invertases

were present in the genomes of both MYb71 and MYb11

Fig. 2 Metabolic network clustering and distribution of important
pathways. a Correlation between pairwise similarities in 16S rRNA
sequences and metabolic networks is shown. Red indicates pairs with a
16S rRNA identity above 97% and metabolic identity below 97% and
vice versa. b Hierarchical clustering of metabolic networks based on
pathway prediction. P-values were calculated via multi-scale bootstrap
resampling. In case of full support (i.e., P= 100), P-values are not
shown (For a complete list of different unbiased P-values and

bootstrap values see Supplementary Fig. S11). c Prediction of bacterial
capacity to produce metabolites favoring C. elegans growth. Filled
squares in light purple indicate that the metabolic networks predict the
presence of the biosynthetic pathway required to produce essential
amino acids and co-factors. Black dots within the filled squares indi-
cate that pathway presence is supported by more conservative para-
meters (BLAST bitscore ≥ 150). Different bacterial genera in b, c are
indicated by different colors of the strain names (Table 1)
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Fig. 3 Realized carbon metabolism and growth. a Profiles of carbon
substrate use of Acinetobacter sp. (MYb10), Pseudomonas lurida

(MYb11), Ochrobactrum sp. (MYb71), Ochrobactrum sp. (MYb237),
and E. coli OP50 in BIOLOG GN2 plates over 46 h. The fold-change
in indicator dye absorption from 0 to 46 h indicates that the particular
compound is metabolized. k-means clustering (k= 7) of substrates by
fold-change highlights metabolic differences between strains. See
Supplementary Fig. S5 for cluster VII with substrates used poorly
across most strains. b Colony-forming units per ml (CFU/ml) of
MYb11 and MYb71 in mono- and co-culture at 48 h in alpha-D-

glucose and sucrose-containing minimal media. The horizontal and
dashed lines indicate mean and SD of CFU/ml at inoculation. Statis-
tical differences were determined using Mann–Whitney U-tests and
corrected for multiple testing using fdr, where appropriate. Significant
differences are indicated by stars (** for P < 0.01; * for P < 0.05).
Data from three independent experiments is shown. c In silico growth
of MYb11 and MYb71 in mono- and co-culture in sucrose-thiamine
medium using BacArena with an arena of 20 × 20 and five initial cells
per species. d Bacterial interaction types observed during in silico co-
cultures of all combinations of the 77 microbiota isolates and OP50
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(cf. pathway: sucrose degradation I, Supplementary

Table S4). In co-culture, the metabolic repertoires of

MYb11 and MYb71 appeared additive.

We next assessed whether the differences in MYb11 and

MYb71 metabolic competences shape bacterial interactions

in growth media with only a single carbon source. We

focused on these two isolates as a model and proof-of-

principle, because their interaction with C. elegans has been

characterized in detail, including efficient colonization of

nematodes, persistence under stressful conditions, an effect

on nematode fitness, and protection against pathogens

[15, 18]. We considered growth in the presence of two

sugars, which are characteristic for the C. elegans natural

habitat (e.g., rotting fruits and plant matter). We did not

observe any growth in a control medium without carbon

source, and thus the tested bacteria are not chemoauto-

trophic (Supplementary Fig. S6). In minimal medium with

alpha-D-glucose, both MYb11 and MYb71 grew, yet

exhibited distinct growth dynamics (Fig. 3b and Supple-

mentary Fig. S6). MYb71 produced more CFUs than

MYb11 in co-culture (Fig. 3b), suggesting that MYb71 has

a growth advantage and/or interferes with MYb11 in some

other way. In agreement with the BIOLOG results, a

medium including only sucrose supported growth of

MYb71 but not MYb11 in monoculture (Fig. 3b and Sup-

plementary Fig. S6). Surprisingly, MYb11 grew in co-cul-

ture, indicating parasitic growth (Fig. 3b). Thus, the

presence of different carbon sources can change the inter-

action type between two isolates.

We subsequently assessed the basis for co-growth of

MYb11 and MYb71 in sucrose medium, using genome

sequence information and in silico growth simulations.

Interestingly, we found a secreted sucrose invertase in the

genome of MYb71 but not MYb11 (Supplementary

Fig. S10). In silico simulations demonstrated that MYb71

can grow in sucrose medium, MYb11 alone does not, while

both grow in co-culture (Fig. 3c), confirming our in vitro

results. Genome sequence information strongly suggests

that growth of both in co-culture is mediated by a secreted

enzyme from MYb71.

Taking a more global perspective, we next investigated

in silico the potential ecological interactions among bac-

teria. We compared bacterial growth characteristics in

monoculture and co-culture in different nutrient environ-

ments. In rich medium (TSB), the exclusive interaction type

was competition, indicated by lower growth rates in co- vs.

monoculture (Fig. 3d). This changed completely in glucose

minimal medium: 50% interactions were parasitic (i.e., the

growth rate for one isolate was higher in co-culture than in

monoculture, while this pattern was opposite for the other

isolate of a pair), 30% were competitive, and 8% mutualistic

(i.e., growth rates for both isolates higher in co-culture than

the monocultures; Fig. 3d). Under these minimal medium

conditions, the most frequently exchanged metabolites

across bacteria were glyceraldehyde, acetate, and ethanol

(Supplementary Fig. S7). We conclude that the nutrient

context modulates bacterial growth, consistently identified

in silico and in vitro, and thereby shapes bacteria–bacteria

interactions.

Specific metabolic competences predict bacterial
colonization ability and bacterial effects on
nematode fitness

We next characterized traits involved in the interaction

between bacteria and C. elegans, especially the bacteria’s

colonization ability and their effects on worm fitness. We

focused on 18 microbiota isolates based on (i) their abun-

dance in the C. elegans microbiota, (ii) enrichment in

worms, and (iii) effects on worm population growth

[15, 63]. OP50 was included as control. The bacteria varied

substantially in their ability to colonize C. elegans and their

effects on nematode fitness (Fig. 4; Supplementary Fig. S3;

and Supplementary Table S7). Importantly, these two

microbiota characteristics were significantly related with

certain metabolic competences. Pyruvate fermentation to

(S)-acetoin was significantly associated with bacterial load

and the degradation of trans-3-hydroxyproline with nema-

tode population growth (Fig. 4 and Supplementary

Table S8).

To further explore the potential behavior of all micro-

biota isolates in an ecological context, we interpreted their

genomic and metabolic traits in light of the universal

adaptive strategy theory [57, 58]. Twenty-six isolates were

associated with a competitive, nine with a stress-tolerating,

and 37 with a ruderal (fast niche occupiers) strategy (Fig. 5a

and Supplementary Table S9). The remaining six isolates

showed a mixed strategy (same score for competition and

stress-tolerance). Interestingly, isolates with different

adaptive strategies also varied in their colonization ability

(Fig. 5b): bacteria with competitive or stress-tolerance

Fig. 4 Relationship of bacterial metabolic competences with their
colonization ability and their effects on nematode fitness. Presence of
metabolic traits (light purple color), which were found to be associated
with the bacteria’s ability to colonize C. elegans or affect nematode
population growth as a proxy for worm fitness (green color).
Regression models suggested that the pathway of pyruvate fermenta-
tion to acetoin influences bacterial load while the presence of hydro-
xyproline degradation is associated with C. elegans population growth.
Colonization and population growth data was normalized; darker
colors indicate increased capacities. Different bacterial genera are
indicated by the different colors of the strain names (Table 1)

34 J. Zimmermann et al.



strategies showed higher bacterial load than those with

ruderal strategy (Wilcoxon rank-sum test, P= 0.01).

Moreover, for the competitive and stress-tolerance isolates,

bacterial load was significantly correlated with the inferred

score (Spearman, RS= 0.37, P= 0.1; Supplementary

Fig. S8). Taken together, the competitive and stress-

tolerating strategies are most prevalent within the C. ele-

gans microbiota and relate to bacterial colonization

capacity.

Discussion

We here present the first overview of the functional reper-

toire contained within the native microbiota of C. elegans

and provide a metabolic framework for functional analysis

of host-associated microbial communities. Whole-genome

sequences were used to reconstruct the metabolic network

of 77 microbiota members. We found that bacterial meta-

bolic competences vary and that the community as a whole

can produce nutrients essential for C. elegans growth. We

identified a significant correlation between metabolic simi-

larities and phylogenetic relationships inferred from 16S

rRNA sequences, which are commonly used for bacterial

classification. Metabolic variation was larger than evident

from 16S data alone, suggesting that metabolic compe-

tences can be derived to only limited extent from 16S

sequences and should ideally be reconstructed from whole-

genome information. For selected bacteria, we validated the

model predictions using physiological analyses. Moreover,

both in vitro and in silico approaches demonstrated that the

nutrient environment can modulate bacterial interactions,

for example, from competition to mutualism. We further

identified specific metabolic modules that appear to shape

the interaction with the host. Finally, we considered a

combination of genomic, metabolic, and cellular traits to

infer bacterial life history strategies according to the uni-

versal adaptive strategy theory [57, 58], finding that bac-

terial colonization ability is associated with a competitive or

stress-tolerant strategy. In the following, we will discuss in

more detail (i) the diversity of metabolic competences in the

microbiota and possible implications for C. elegans biol-

ogy, (ii) how metabolic networks shape bacteria–bacteria

interactions, and (iii) how bacterial traits affect colonization

and C. elegans fitness.

Our analysis revealed that the microbiota members are

jointly able to synthesize all essential nutrients required by

C. elegans. The considered isolates varied in their capacity

to produce vitamins essential to C. elegans, such as folate,

thiamine, and vitamin B12, which are known to affect

nematode physiology and life history [21–23, 25, 64, 65].

For example, vitamin B12 influences propionate break-

down, it can accelerate development, and reduce fertility

[21, 65]. Of the characterized bacteria, only Pseudomonas

and Ochrobactrum strains had the pathways to produce

vitamin B12. Their enrichment in the microbiota should

therefore affect the metabolic state and fitness of C. elegans.

Our study demonstrated that the nutrient environment

can change bacterial interactions. In our simulations, com-

petitive interactions dominated in rich medium, while

parasitic and mutualistic interactions in minimal medium.

Interactions between Pseudomonas lurida MYb11 and

Ochrobactrum MYb71 shifted from parasitic to competitive

in a sucrose- vs. glucose-supplemented medium. We

Fig. 5 Different adaptive strategies within the microbiota and their
relationship to worm colonization. We applied the universal adaptive
strategy theory proposed for soil bacteria [58] to categorize the bac-
terial isolates. a Based on genomic and metabolic features, each isolate
obtained a score for the competitive (C), stress-tolerating (S), and
ruderal (R) strategy, which is represented in the 3D-coordinate system.

b Bacterial colonization behavior in comparison to adaptive strategies.
Isolates that were categorized as ruderal produced the lowest bacterial
load, whereas stress-tolerator and competitors had the highest values.
The difference in bacterial load between ruderal and other strategies
was significant (Wilcoxon rank-sum test, P= 0.01)
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detected a secreted sucrose invertase in the MYb71 genome,

which otherwise lacks sucrose transporters. Thus, we pro-

pose that MYb71 breaks down sucrose extracellularly, and

the monosaccharides glucose and fructose become exploi-

table by MYb11. While a similar phenomenon was

described for yeast with engineered auxotrophies [66, 67], it

was here observed for naturally coexisting host-associated

bacteria. This emphasizes the relevance of nutrient context

in host microbiota interactions. Importantly, no single

growth medium might reliably predict all possible interac-

tion types. It is therefore essential to consider the nutrient

context to fully understand bacterial interactions within the

microbiota (e.g., ref. [68]).

Our analysis further identified two bacterial traits that

appear to influence the interaction with the host. Coloni-

zation ability was associated with pyruvate fermentation to

(S)-acetoin. This fermentation pathway includes the ketone

diacetyl as an intermediate, whose buttery odor attracts C.

elegans and promotes feeding behavior [69]. In detail,

diacetyl binds the transmembrane odor receptor odr-10 and

affects odortaxis [69–71]. As a result, worms are more

attracted to bacterial lawns with this particular smell [69].

Indeed, lactic acid bacteria in rotting citrus fruits were more

attractive to worms when releasing diacetyl [72]. Similarly,

entomopathogenic Steinernema nematodes were more

attracted to insect cadavers infected with the diacetyl-

producing bacterial symbionts of the nematode [73]. Thus,

if worms are attracted to diacetyl-producing bacteria, they

should spend more time in their presence. This alone could

increase bacterial uptake and colonization.

We also found that trans-3-hydroxyproline degradation

in bacteria is associated with increased nematode fitness. In

worms, hydroxyproline is present in collagen type IV, a

major component of the extracellular matrix in the pharynx,

intestine, and cuticle [74–76]. The breakdown of hydro-

xyproline can generate reactive oxygen species [77]. These

may act as signaling molecules, which could affect cellular

proliferation [78] and C. elegans reproduction [79]. Whe-

ther ROS in the gut increases brood size is unknown.

Alternatively, bacteria with the degradation pathway may

utilize the amino acid as a carbon source, consistent with the

“microbiome on the leash” hypothesis, characterized by

host-selection of beneficial bacterial traits [80].

In conclusion, our study provides a resource of naturally

associated bacteria, their whole-genome sequences, and

reconstructed metabolic competences that can be exploited

to study and understand C. elegans in an ecologically

meaningful context. This resource may help to further

establish C. elegans as a model for studying host–microbe

interactions.
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