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RESEARCH Open Access

The functional spectrum of low-frequency coding
variation
Gabor T Marth1*, Fuli Yu2†, Amit R Indap1†, Kiran Garimella3†, Simon Gravel4†, Wen Fung Leong1†,

Chris Tyler-Smith5†, Matthew Bainbridge2, Tom Blackwell6, Xiangqun Zheng-Bradley7, Yuan Chen5, Danny Challis2,

Laura Clarke7, Edward V Ball8, Kristian Cibulskis3, David N Cooper8, Bob Fulton9, Chris Hartl3, Dan Koboldt9,

Donna Muzny4, Richard Smith7, Carrie Sougnez3, Chip Stewart1, Alistair Ward1, Jin Yu2, Yali Xue5, David Altshuler3,

Carlos D Bustamante4, Andrew G Clark10, Mark Daly3, Mark DePristo3, Paul Flicek7, Stacey Gabriel3, Elaine Mardis9,

Aarno Palotie5, Richard Gibbs2 and the 1000 Genomes Project

Abstract

Background: Rare coding variants constitute an important class of human genetic variation, but are

underrepresented in current databases that are based on small population samples. Recent studies show that

variants altering amino acid sequence and protein function are enriched at low variant allele frequency, 2 to 5%,

but because of insufficient sample size it is not clear if the same trend holds for rare variants below 1% allele

frequency.

Results: The 1000 Genomes Exon Pilot Project has collected deep-coverage exon-capture data in roughly 1,000

human genes, for nearly 700 samples. Although medical whole-exome projects are currently afoot, this is still the

deepest reported sampling of a large number of human genes with next-generation technologies. According to

the goals of the 1000 Genomes Project, we created effective informatics pipelines to process and analyze the data,

and discovered 12,758 exonic SNPs, 70% of them novel, and 74% below 1% allele frequency in the seven

population samples we examined. Our analysis confirms that coding variants below 1% allele frequency show

increased population-specificity and are enriched for functional variants.

Conclusions: This study represents a large step toward detecting and interpreting low frequency coding variation,

clearly lays out technical steps for effective analysis of DNA capture data, and articulates functional and population

properties of this important class of genetic variation.

Background
The allelic spectrum of variants causing common human

diseases has long been a topic of debate [1,2]. Whereas

many monogenic diseases are typically caused by extre-

mely rare (<<1%), heterogeneous, and highly penetrant

alleles, the genetic basis of common diseases remains lar-

gely unexplained [3]. The results of hundreds of genome-

wide association scans have demonstrated that common

genetic variation accounts for a non-negligible but modest

proportion of inherited risk [4,5], leading many to suggest

recently that rare variants may contribute substantially to

the genetic burden underlying common disease. Data

from deep sampling of small numbers of loci have con-

firmed the population-genetic prediction [6,7] that rare

variants constitute the vast majority of polymorphic sites

in human populations. Most are absent from current data-

bases [8], which are dominated by sites discovered from

smaller population samples, and are consequently biased

toward common variants. Analysis of whole exome data

from a modest number of samples (n = 35) suggests that

natural selection is likely to constrain the vast majority of

deleterious alleles (at least those that alter amino acid

identity and, therefore, possibly protein function) to low

frequencies (<1%) under a plethora of evolutionary models

for the distribution of fitness effects consistent with
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patterns of human exomic variation [9]. However, in order

to broadly characterize the contribution of rare variants to

human genetic variability and to inform medical sequen-

cing projects seeking to identify disease-causing alleles,

one must first be able to systematically sample variants

below an alternative allele frequency (AF) of 1%.

Recent technical developments have produced a series

of new DNA sequencing platforms that can generate

hundreds of gigabases of data per instrument run at a

rapidly diminishing cost. Innovations in oligonucleotide

synthesis have also enabled a series of laboratory meth-

ods for targeted enrichment of specific DNA sequences

(Figure S1 in Additional file 1). These capture methods

can be applied at low cost, and large scale, to analyze the

coding regions of genes, where genomic changes that

most likely influence gene function can be recognized.

Together, these two technologies present the opportunity

to obtain full exome sequence for population samples

sufficiently large to capture a substantial collection of

rare variants.

The 1000 Genomes Exon Pilot (Exon Pilot) Project set

out to use capture sequencing to compile a large catalog

of coding sequence variants with four goals in mind: (1) to

drive the development of capture technologies; (2) to

develop tools for effective downstream analysis of targeted

capture sequencing data; (3) to better understand the dis-

tribution of coding variation across populations; and (4) to

assess the functional qualities of coding variants and their

allele frequencies, based on the representation of both

common (AF > 10%), intermediate (1% < AF < 10%) and

low frequency (AF < 1%) sites. To attain these objectives,

while simultaneously improving DNA enrichment meth-

ods, we targeted approximately 1,000 genes in 800 indivi-

duals, from seven populations representing Africa (LWK,

YRI), Asia (CHB, CHD, JPT), and Europe (CEU, TSI) in

roughly equal proportions (Table 1).

Results and discussion
Data collection and quality control

Four data collection centers, the Baylor College of Medi-

cine (BCM), the Broad Institute (BI), the Wellcome Trust

Sanger Institute, and Washington University applied dif-

ferent combinations of solid-phase or liquid-phase cap-

ture, and Illumina or 454 sequencing procedures on

subsets of the samples (Materials and methods). In order

to aggregate the data for a comparison of analytical

methods, a set of consensus exon target regions was

derived (Materials and methods; Figure S2 in Additional

file 1). After filtering out genes that could not be fully

tested because of failed capture or low sequence cover-

age, and samples that showed evidence of cross-contami-

nation, a final sequence data set was assembled that

corresponded to a total of 1.43 Mb of exonic sequence

(8,279 exons representing 942 genes) in 697 samples (see

section 3, ‘Data quality control’ and Figure S3 in Addi-

tional file 1 for details of our quality control procedures).

The project was closely coordinated with two related

Pilot programs in the ongoing 1000 Genomes Project,

the Trio Sequencing Pilot and the Low Coverage Sequen-

cing Pilot, enabling quality control and performance

comparisons.

Data processing and variant analysis

Two separate and complementary pipelines (Materials

and methods; Figure 1a), developed at Boston College

(BC) and the BI, were used to identify SNPs in the

sequence data. The main functional steps in both pipe-

lines were as follows: (1) read mapping to align the

sequence reads to the genome reference sequence; (2)

alignment post-processing to remove duplicate sequence

fragments and recalibrate base quality values; (3) variant

calling to identify putative polymorphic sites; and (4)

variant filtering to remove likely false positive calls.

Table 1 Samples, read coverage, SNP calls, and nucleotide diversity in the Exon Pilot dataset

Population YRI LWK CHB CHD JPT CEU TSI All

Samples 112 108 109 107 105 90 66 697

Technologies ILL,454 454 ILL,454 ILL,454 ILL,454 ILL,454 ILL ILL,454

SNPs 5,175 5,459 3,415 3,431 2,900 3,489 3,281 12,758

%dbSNP 53.8 50.1 52.6 50.3 57.9 65.9 65.6 30.36

Ts/Tv 3.56 3.67 3.74 3.64 3.67 3.47 3.53 3.82

Read coverage (first quartile) 18× 19× 18× 30× 20× 20× 20× 19×

Read coverage (median) 27× 25× 22× 36× 26× 43× 57× 29×

Read coverage (mean) 52× 25× 40× 49× 43× 69× 71× 48×

Read coverage (third quartile) 42× 32× 37× 44× 54× 98× 118× 49×

Heterozygosity, all sites 4.42 4.52 3.34 3.35 3.26 3.54 3.5 -

Heterozygosity, four-fold synonymous sites 9.24 9.16 6.6 6.63 6.43 7.12 7.04 -

Heterozygosity, three-fold synonymous sites 5.01 5.41 4.24 4.39 4.6 3.59 3.59 -

Heterozygosity, two-fold synonymous sites 6.04 6.16 4.447 4.42 4.37 4.74 4.68 -

Heterozygosity, non-synonymous sites 2.74 2.86 2.19 2.21 2.12 2.31 2.29 -

Heterozygosity estimates are given in units of 10-4 per base pair. ILL: Illumina; Ts/Tv, transition/transversion ratio.
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(a)

(b)

Figure 1 Variant calling procedure in the Exon Pilot Project. (a) The SNP calling procedure. Read alignment and SNP calling were carried

out by Boston College (BC) and the Broad Institute (BI) independently using complementary pipelines. The call sets were intersected for the final

release. (b) The INDEL calling procedure. INDELs were called on the Illumina and Roche 454 platforms. The sequence was processed on three

independent pipelines, Illumina at the Baylor College of Medicine Human Genome Sequencing Center (BCM-HGSC), Illumina at BI, and Roche

454 at BCM-HGSC. The union of the three call sets formed the final call set. The Venn diagram provided is not to scale. AB: allele balance; MSA:

multiple sequence alignment; QDP: discovery confidence of the variant divided by the depth of coverage; SW: software.
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Mapping

In both pipelines, the individual sequence reads were

first mapped to the genome (using the entire human

reference sequence, as opposed to just the targeted

regions), with the MOSAIK [10] program (at BC), and a

combination of the MAQ [11] and SSAHA2 [12] map-

ping programs (at BI) (Materials and methods).

Alignment post-processing

Mapped reads were filtered to remove duplicate reads

resulting from clonal amplification of the same fragments

during library construction and sequencing. If kept, such

duplicate reads would interfere with variant detection.

We also applied a base quality re-calibration procedure

that resulted in a much better correspondence of the

base quality values to actual base error rates (Figure S4 in

Additional file 1), a property that is essential for accurate

variant detection.

There was substantial heterogeneity in the depth of cov-

erage of different regions that were targeted for capture

(Figure 2a), reflecting different affinities for individual

probes. Although the coverage variance was generally

reproducible from experiment to experiment, additional

variance could be attributed to individual samples, capture

reagents, or sequencing platforms (Table 1). Despite this

variance, >87% of the target sites in all samples have at

least 5× read coverage, >80% at least 10×, and >62% at

least 20× (Figure 2b).

Variant calling

The two pipelines differed in the variant calling proce-

dures. Two different Bayesian algorithms (Unified Genoty-

per [13] at BI, GigaBayes at BC: see Materials and

methods) were used to identify SNPs based on read align-

ments produced by the two different read mapping proce-

dures. Another important difference between the BI and

BC call sets was that the BI calls were made separately

within each of the seven study populations, and the called

sites merged post hoc, whereas the BC calls were made

simultaneously in all 697 samples.

Variant filtering

Both raw SNP call sets were filtered using variant quality

(representing the probability that the called variant is a

true polymorphism as opposed to a false positive call).

The BC set was only filtered on this variant quality and

required a high-quality variant genotype call from at least

one sample. The BI calls were additionally filtered to

remove spurious calls that most likely stem from map-

ping artifacts (for example, calls that lie in the proximity

of a homopolymer run, in low sequence coverage, or

where the balance of reads for the alternative versus the

reference allele was far from the expected proportions;

see Materials and methods for more details). Results

from the two pipelines, for each of the seven population-

specific sample sets, are summarized in Table 2. The

overlap between the two data sets (that is, sites called by

both algorithms) represented highly confident calls, as

characterized by a high ratio of transitions to transver-

sions, and was designated as the Exon Pilot SNP release

(Table 1). This set comprised 12,758 distinct genomic

locations containing variants in one or more samples in

the exon target regions, with 70% of these (8,885) repre-

senting previously unknown (that is, novel) sites. All data

corresponding to the release, including sequence align-

ments and variant calls, are available through the 1000

Genomes Project ftp site [14].

Specificity and sensitivity of the SNP calls

A series of validation experiments (see Materials and

methods; Table S1 in Additional file 1), based on random

subsets of the calls, demonstrated that the sequence-based

identification of SNPs in the Exon Pilot SNP release was

highly accurate. More than 91% of the experimental assays

were successful (that is, provided conclusive positive or

negative confirmation of the variant) and therefore could

be used to assess validation rates. The overall variant vali-

dation rate (see Table S2 in Additional file 1 for raw out-

comes; see Table S3 in Additional file 1 and Table 3 for

rates) was estimated at 96.6% (98.8% for alternative allele

count (AC) 2 to 5, and 93.8% for singletons (AC = 1) in

the full set of 697 samples). The validation experiments

also allowed us to estimate the accuracy of genotype

calling in the samples, at sites called by both algorithms,

as >99.8% (see Table S4 in Additional file 1 for raw out-

comes; see Table S5 in Additional file 1 for rates). Refer-

ence allele homozygotes were the most accurate (99.9%),

followed by heterozygote calls (97.0%), and then alterna-

tive allele homozygotes (92.3%) (Table S5 in Additional

file 1). Although the main focus of our validation experi-

ments was to estimate the accuracy of the Exon Pilot SNP

release calls, a small number of sites only called by the BC

or the BI pipeline were also assayed (Table S2 in Addi-

tional file 1). Although there were not enough sites to

thoroughly understand all the error modes, these experi-

ments suggest that the homopolymer and allele balance

filters described above are effective in identifying false

positive sites from the unfiltered call set.

We performed in silico analyses (see Materials and

methods) to estimate the sensitivity of our calls. In parti-

cular, a comparison with variants from the CEU samples

that overlap those in HapMap3.2 indicated that our aver-

age variant detection sensitivity was 96.8%. A similar

comparison with shared samples in the 1000 Genomes

Trio Pilot data also showed a sensitivity >95% (see sec-

tion 7, ‘SNP quality metrics - sensitivity of SNP calls’, in

Additional file 1). When the sensitivity was examined as

a function of alternative allele count within the CEU

sample (Figure 3), most missed sites were singletons and

doubletons. The sensitivity of the intersection call set was

31% for singletons and 60% for doubletons. For AC > 2,

Marth et al. Genome Biology 2011, 12:R84
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Figure 2 Coverage distribution. (a) Coverage across exon targets. Per-sample read depth of the 8,000 targets in all CEU and TSI samples.

Targets were ordered by median per-sample read coverage (black). For each target, the upper and lower decile coverage value is also shown.

Upper panel: samples sequenced with Illumina. Lower panel: samples sequenced with 454. (b) Cumulative distribution of base coverage at every

target position in every sample. Depth of coverage is shown for all Exon Pilot capture targets, ordered according to decreasing coverage. Blue,

samples sequenced by Illumina only; red, 454 only; green, all samples regardless of sequencing platform.
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sensitivity was better than 95%. The strict requirement

that variants had to be called by both pipelines weighted

accuracy over sensitivity and was responsible for the

majority of the missed sites. Using less strict criteria,

there was evidence for 73% of singletons and 89% of dou-

bletons in either the BC or the BI unfiltered dataset.

We investigated other, data-related determinants of

singleton detection sensitivity, beyond the impact of the

Project’s decision to form the official Exon Pilot variant

list as the intersection of the two independently derived

call sets (see section 7.1, ‘Sensitivity of singleton detec-

tion’, in Additional file 1, and Figure S7 in Additional file

1). Singleton detection sensitivity improves significantly

from low (1× to 9×) to medium (10× to 29×) read cover-

age (although there is no further improvement beyond

30× coverage). Importantly, approximately 9% (9 of 97)

of HapMap3.2 singletons in the 84 samples shared with

the Exon Pilot CEU sample panel had zero read coverage

in our data. There was no significant difference in sensi-

tivity between the Illumina and 454 reads, at comparable

sequence coverage. Based on these observations, the

main data-related reason for lower singleton sensitivity is

lack of sufficient read coverage in the samples that have

the singleton. Finally, our analysis (data not shown)

revealed that, even at some of the sites with >100× read

coverage in the sample with the putative HapMap3 sin-

gleton, there were no reads showing the alternative allele,

and therefore it would not be possible to call the sites

from the primary data. These cases represent either sites

with allele-specific capture (that is, fragments with the

alternative allele were not captured) or false positive sites

in the HapMap3 study.

Nucleotide diversity and allele frequency distributions

The high quality of the data enabled us to accurately esti-

mate values of nucleotide diversity, a commonly used

measure of genetic variability within populations, in the

coding regions (using pair-wise heterozygosity as our

metric (section 8, ‘Heterozygosity estimates’, in Additional

file 1) within each of the seven populations (Table 1).

These estimates were confirmed in the 1000 Genomes

Low Coverage Pilot data in the Exon Pilot target regions

(Table S9a in Additional file 1). Nucleotide diversity in the

coding regions was 47.3 to 48.4% of the genome-averaged

value for the corresponding population (Table S9b in

Additional file 1). As expected, diversity was substantially

higher in African than in European and Asian populations.

It was, however, very similar for populations within the

same continent (Table S9c in Additional file 1). Missense

variation is substantially reduced (for example, compared

to four-fold degenerate sites, where a single base substitu-

tion does not alter the amino acid) as a result of purifying

selection. In turn, diversity at four-fold degenerate sites is

comparable to average genomic diversity, consistent with

very weak selection, if any. Diversity ratios across site

types (for example, missense, four-fold degenerate) and

datasets (for example, Exon Pilot, Low Coverage Pilot) are

highly consistent between populations.

We compared the allele frequency spectrum (AFS) in

the sequenced coding regions among the Exon Pilot popu-

lations (Figure 4a). The high sensitivity assures us that the

observed AFS are accurate for AC > 2 (or AF > approxi-

mately 1%). The AFS were very similar for populations

from the same continent, except for the JPT population,

where we observed a significantly lower fraction of rare

alleles than in the two other Asian populations, consistent

Table 2 SNP variant calls in the seven Exon Pilot

populations

LWK YRI CHB CHD JPT CEU TSI All
697

Unique to BC

SNPs 580 716 925 831 983 613 448 1,384

%dbSNP 23.5 15.6 26.7 24.1 27.6 19.9 23.4 5.4

Ts/Tv 2.09 0.95 1.23 1.68 1.54 0.92 0.71 1.38

Both BC and
BI

SNPs 5,459 5,175 3,415 3,431 2,900 3,489 3,281 12,758

%dbSNP 50.1 53.8 52.6 50.3 57.9 65.9 65.6 30.36

Ts/Tv 3.67 3.56 3.74 3.64 3.67 3.47 3.53 3.82

Unique to BI

SNPs 911 694 557 450 1,819 327 1,004 5,391

%dbSNP 9.8 10.2 5.8 6.4 1.7 15.9 4.8 3.13

Ts/Tv 1.56 1.48 1.37 1.33 0.74 1.32 0.85 1.05

Calls made by the Boston College pipeline only (unique to BC), calls made by

the Broad Institute pipeline only (unique to BI), and calls made by both

pipelines (both BC and BI) are reported. Ts/Tv, transition/transversion ratio.

Table 3 Validation outcomes and rates of the Exon Pilot SNP variant calls

AC = any AC = any AC = 1 AC = 2 to 5 Totals

Samples All 697 CEU + CHB + YRI All 697 All 697

Series Series 1 Series 2 Series 3+4 Series 3 + 4 Series 1 to 4

Variant 92 122 166 164 544

Non-variants 3 3 11 2 19

Validation rate 96.8% 97.6% 93.8% 98.8% 96.6%

Outcomes and rates are reported for various alternate allele count (AC) ranges.
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with reduced recent population growth in Japanese.

Despite the large difference among continents at low AF,

they converged at higher AF, reflecting the greater age of

common variants, many of which pre-date the expansion

of modern humans out of Africa. In all seven populations,

there was a notable excess of rare variants compared to

predictions for a constant-size, neutrally evolving popula-

tion. This effect was enhanced at missense sites (Figure

4b), which were more highly represented at low alternative

allele frequency than silent variants, as well as intergenic

variants from the HapMap Encyclopedia of Coding Ele-

ments Project (ENCODE) re-sequencing study. The

apparent excess of high frequency derived sites has often

been observed in studies of human AFS, and may in part

be due to ancestral misidentification [15].

Rare and common variants according to functional

categories

Recent reports [16] have also recognized an excess of

rare, missense variants at frequencies in the range of 2 to

5%, and suggested that such variants arose recently

enough to escape negative selection pressures [9]. The

present study is the first to broadly ascertain the fraction

of variants down to approximately 1% frequency across

nearly 700 samples. Based on the observed AFS (Figure

4c), 73.7% of the variants in our collection are in the sub-

1% category, and an overwhelming majority of them

novel (Figure 4c, inset). The discovery of so many sites at

low allele frequency provided a unique opportunity to

compare functional properties of common and rare

variants.

We used three approaches to classify the functional

spectrum (see Materials and methods): (i) impact on the

amino acid sequence (silent, missense, nonsense); (ii)

functional prediction based on evolutionary conservation

and effect on protein structure by computational meth-

ods (SIFT [17] and PolyPhen-2 [18]); and (iii) presence in

a database of human disease mutations (Human Gene

Mutation Database (HGMD)). All three indicators

showed a substantial enrichment of functional variants in
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the low frequency category within our data (Figure 5).

First, and as noted by other studies [19,20], we saw a

highly significant difference (P << 10-16) in the AFS of

silent versus missense variants (Figure 5a) with a skew

towards rare alleles in the latter, so that approximately

63% of missense variants were <1% in frequency whereas

approximately 53% of silent variants fell into this cate-

gory. The same patterns held for nonsense versus either

silent or missense variants (P << 10-16) where approxi-

mately 78% of nonsense variants were below AF = 1%.

Second, we found that PolyPhen-2/SIFT damaging

predictions (Figure 5b) were likewise enriched in the rare

part of the spectrum (approximately 72% for damaging

versus 63% for possibly damaging, and 61% benign). This

observation goes an important step beyond the enrich-

ment of amino acid changing variants because the Poly-

Phen-2/SIFT programs make specific predictions about

whether or not such a variant is damaging to protein

function. Error rate variation between different AFS bins

was not a significant confounder for these conclusions:

error rates were estimated at 6.2%, 3.2% and 3.4% for dif-

ferent AFS bins (Tables S3, S4 and S5 in Additional
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file 1) and highly significant differences were still found

after correcting for this error rate variation (P << 10-16

for missense, and P < 10-5 for nonsense SNPs). Third, 99

coding variants in our dataset were also present in

HGMD, and therefore linked with a disease in the litera-

ture (although not necessarily causative). We tested these

variants with SIFT and PolyPhen-2, and obtained predic-

tions for 89 (Figure 5c). All 14 variants classified as

damaging were below 1% frequency in our dataset, and

found only in a heterozygous state. This observation

strongly suggests that the majority of variants that are

directly damaging to protein structure and therefore may

result in deleterious phenotypic effects (that is, actual

causative variants, as opposed to merely disease-linked

markers) are likely to occur at low AF in the population.

It is also noteworthy that only a very small fraction

(<20% in each category, marked on all three panels of

Figure 5) of the putatively damaging variants in the Exon

Pilot dataset were detected with an alternative, low cover-

age whole genome sampling strategy employed in the

Low Coverage Pilot in the 1000 Genome Project [19],

which was designed to find common variants but not

powered to systematically detect low frequency sites (also

see Figure 4b). The higher performance in detecting rare

damaging variants in the Exon Pilot compared to the

Low Coverage Pilot underlines the utility of targeted

exome sequencing for disease studies.

The extent of between-population allele sharing in rare

versus common variants

We next examined the patterns of allele sharing (Materi-

als and methods) among the Exon Pilot populations and

between continents (Figure 6), and observed an expected

reduction in the degree of allele sharing at low frequency.

Comparison to intergenic variants from the HapMap3

ENCODE re-sequencing project [7] revealed that allele

sharing at high and intermediate frequency was similar,

but that at AF <1% it was substantially reduced in the

coding regions, relative to intergenic regions (P < 10-6).

This suggests that the low level of allele sharing of rare

coding variants cannot be explained by allele frequency

alone, and that such variants are likely to be younger

than would be expected from neutral models, presumably

because of negative selection acting at these sites.

Short insertion/deletion variants in the Exon Pilot data

In addition to SNPs, the data also supported the identi-

fication of multiple, 1- to 30-bp insertions and deletions

(INDELs; Materials and methods). The BCM and BI

INDEL calling pipelines were applied (Figure 1b), and
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identified a total of 21 insertions and 75 deletions in the

1.43 Mb target regions (Tables S6 and S7 in Additional

file 1). Comparisons with dbSNP and the other pilot

projects showed high concordance rates. The overall

experimental INDEL validation rate (Table S8 in Addi-

tional file 1) was 81.3%. Secondary visual inspection

revealed that many of the events that did not validate

were cases where multiple INDEL events were incor-

rectly merged, and the wrong coordinates were sub-

mitted for validation. This visual inspection confirmed

all such alleles as true positives, substantially raising the

effective validation rate. Coding INDEL variants change

the amino acid sequence of the gene, and therefore

these variants are very likely to impact protein function.

Indeed, the majority of the events were non-frameshift

variants (Figure S5 in Additional file 1) altering, but not

terminating, the protein sequence. In agreement with

our observations for SNPs, most INDELs were present

at low population allele frequency (Figure S6 in Addi-

tional file 1).
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Conclusions
In addition to its goal of generating an extensive catalog

of human population variations, the 1000 Genomes Pro-

ject has served as an intensive technology development

project in terms of both molecular methodologies and

informatics methods for high-throughput data collection

and data analysis. Although it is not a main focus of our

manuscript, development and refinement of the DNA

capture methods for this project have led to the current

whole-exome capture reagents available for the commu-

nity. The Exon Pilot project also led to the construction

of informatics pipelines for effective analysis of targeted

exon sequencing data, and these pipelines are now routi-

nely used for whole-exome datasets. This study clearly

lays out the informatics steps required to analyze such

datasets and avoid the many pitfalls due to capture

biases, coverage fluctuations, INDELs and alignment

issues, population biases, and sequencing errors.

The extensive collection of SNPs in the 8,000 exons,

detected with accurate and sensitive algorithms, allowed

us to characterize fundamental variation properties in

coding regions, and to compare them to overall genomic

variation. The most important contribution of this study

concerns the functional properties of rare variations, and

their population specificity. We see a substantial deple-

tion of putatively functional variants at intermediate and

high AF, and a corresponding enrichment at low AF,

which is expected as a result of negative selection, and

has been noted recently [20,21]. However, our ability to

study variants at 1% frequency revealed more direct sig-

nals, strongly suggesting that variants conferring direct

changes on protein function will be present mostly at low

population frequency. We were also able to note a signifi-

cant reduction in the level of between-population allele

sharing of rare coding variants, compared to intergenic

variants, an effect that was not visible for variants above

1% in frequency. This effect is likely to reflect a combina-

tion of more recent origin and stronger negative selection

for rare alleles in coding, compared to intergenic regions.

Our complete dataset, including a list of SNP and INDEL

variants with well characterized ascertainment properties

is providing a useful substrate for more specialized ana-

lyses [22] to interpret functional and population aspects

of low frequency coding variation.

Materials and methods
Data collection

Baylor College of Medicine

NimbleGen 385 K capture chips were designed to target

the coding regions of the 1,000 genes. Target enrich-

ment was performed following the Short Library Con-

struction Protocol and NimbleGen Arrays User’s Guide.

Capture libraries were then sequenced on the 454 FLX/

Titanium platform using standard vendor emPCR,

enrichment and sequencing methods (GS FLX Titanium

Sample Preparation Manual).

Broad Institute

Single-stranded RNA ‘bait’ was produced using the Agilent

microarray-based method. Genomic DNA was sheared

and ligated to Illumina sequencing adapters. This ‘pond’ of

DNA was hybridized with an excess of bait in solution.

The sequencing was done using the Illumina GA-II

sequencers to produce either 36-bp fragment reads or

76-bp paired-end reads.

Sanger Institute

A custom Nimblegen 385-K array was used following the

manufacturer’s protocols (Roche/Nimblegen, Madison,

Wisconsin, USA), with the modification that no pre-

hybridization PCR was performed. Captured libraries

were sequenced on the Illumina GA platform as paired-

end 37-bp reads.

Washington University in St Louis

Whole genome shotgun libraries for Illumina sequencing

were prepared according to the manufacturer’s instruc-

tions. The pool of synthetic oligos was amplified by PCR

and incorporated biotin-14-dCTP to produce a biotiny-

lated capturing library. Each target library was hybridized

with the biotinylated capturing library, isolated using

streptavidin magnetic beads, and then amplified by PCR.

The captured library fragments were reclaimed by dena-

turation and sequenced as fragment end reads on the

Illumina GAIIx sequencer.

Derivation of a consensus capture target list

A substantial amount of technological heterogeneity

existed among different centers’ production pipelines.

The Exon Pilot initially selected 1,000 genes as targeted

sequences. However, the capture target designs used in

the four production centers were significantly different.

To account for the heterogeneity introduced by different

capture designs, we defined a set of consensus exon tar-

get sequences by intersecting the initial designs (the indi-

vidual .bed files) with the exonic sequences based on the

CCDS database to create the consensus exon target

sequences (Figure S2 in Additional file 1), which form

the basis of all the analyses described in this study. The

consensus has approximately 1.43 Mb of exonic

sequence, covering 86.1% of the coding regions in the

initial 1,000 genes (the consensus target definition file is

available through the 1000 Genomes Project technical

release ftp directory [23].

Data processing and SNP calling procedures

The SNP calls were a result of intersecting SNP calls from

the BI using the GATK [13] and from BC using the

MOSAIK [24] read mapper and the GigaBayes variant

detection algorithm [25] (a new version of the PolyBayes

SNP discovery program [26]). The BC call set was
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generated by calling all 697 individuals together, and per-

population call sets were generated by a straightforward

projection algorithm: a variant was called in a population

if at least one individual in the population carried a non-

reference allele (Figure 1a). The BI calls were made sepa-

rately within each of the seven populations and a superset

call set was generated as the union of all seven individual

population call sets (Figure 1a). Variants were only called

in the consensus target regions.

Boston College SNP calling pipeline

Read mapping MOSAIK hash size was 15 with mini-

mum mismatches of 4, 6, and 12 for 36-, 51-, and 76-/

101-mer read lengths. MOSAIK parameters for Roche

454 reads were set to 15 with at least 70% of the read

being aligned with a 5% mismatch rate.

Duplicate marking MOSAIK Illumina alignments were

duplicate-marked using the MarkDuplicates program from

the Picard software suite [27]. MOSAIK Roche 454 align-

ments were duplicate-marked with BCMRemoveDupli-

cates program (M Bainbridge, personal communication).

Base quality value recalibration MOSAIK Illumina

alignments were re-calibrated using GATK [13] (with

the CountCovariates and TableRecalibration com-

mands). Roche 454 reads aligned with MOSAIK were

not recalibrated.

Bayesian SNP calling GigaBayes was used at BC for SNP

calls. Briefly, it calculates genotype likelihoods, excluding

reads with a mapping quality of <20 and nucleotides with

a base quality <20. It then calculates genotypes using the

previously calculated genotype likelihoods and a prior on

variant frequency. Summing the probabilities of sample

genotypes with at least one non-reference allele generates

the posterior probability.

SNP filtering Variant calls were filtered out if they did

not meet the criteria of a PHRED scaled quality score of at

least 40 with at least one individual with a non-reference

genotype with a genotype quality score of at least 10.

Broad Institute SNP calling pipeline

The Broad Institute employed a five-step protocol con-

sisting of alignment, PCR duplicate marking, base qual-

ity score recalibration, application of the SNP calling

algorithm, and filtration of the results.

Alignment with MAQ/SSAHA2 Reads were aligned by

the Sanger Institute using MAQ and SSAHA2 for Illu-

mina and Roche 454 data, respectively. All aligned reads

and metadata (sequencing center, sequencing technology,

run identifier, lane identifier, library identifier, and so on)

were written in BAM format.

Duplicate marking We applied the Picard [27] MarkDu-

plicates algorithm. This algorithm locates reads from the

same sequencing library with precisely the same starting

position on the genome. When more than one read is

found to have the same start position, all but one are

flagged as duplicates in the BAM file and therefore

ignored in downstream processing.

Base quality score recalibration To correct for inac-

curacies in the base quality scores, we developed and

applied a base quality score recalibrator. Comparison of

the estimated quality scores to the empirical quality

scores allowed us to compute corrected quality scores,

which were recorded in the BAM files.

SNP calling We developed a multi-sample Bayesian SNP

calling algorithm, now part of the GATK package [13].

This algorithm considers reads from the provided samples

simultaneously, attempting to ascertain the likelihood of a

site harboring an alternative allele with a frequency of at

least 1/N, where N is the number of samples provided.

Once the presence of a variant is established, the likeli-

hood for each sample’s genotype is determined by a greedy

combinatorial search algorithm (approximately behaving

like Expectation-Maximization).

SNP calls were generated per population. The specific

parameters used were: minimum base quality, 10; mini-

mum mapping quality, 10; minimum confidence thresh-

old, 50.

SNP filtering The SNP calling stage provided a list of any

site in the target region that may plausibly be variant.

These sites were then filtered to identify a set of true var-

iants, discarding the ones deemed to be false-positives. To

this end, we developed several heuristic filters by compar-

ing the behavior of different covariates for known variants

versus novel variants. Putative variants failing the follow-

ing filters were ignored in downstream analysis: QD (dis-

covery confidence of the variant/depth of coverage) ≥5;

HRun (length of adjacent, allele-sharing homopolymer

run) >3; AB (allele balance of variant, averaged over all

heterozygous samples, polarized for the reference allele)

≥75%; SnpCluster (N or more variants found within M

bases of each other) 3, 10.

Intersecting the Boston College and Broad Institute call sets

Next, we intersected the BC and BI SNP call sets within

the target consensus regions (Figure 1a). This intersect-

ing operation greatly improved the SNP call accuracy

(Table 2), and the calls within the intersection were used

in our official Exon Pilot release in March 2010. Table 2

presents the SNP calls of the seven population-specific

call sets (that is, CEU, TSI, CHB, CHD, JPT, LWK, and

YRI) that were generated by BC and BI pipelines inde-

pendently. Across each of the seven populations, the

intersection calls (BC ∩ BI) range from 50 to 79% of the

total SNP calls made by BC and BI; more than 50% of the

calls were in dbSNP (build 129), and show a high transi-

tion/transversion ratio (Ts/Tv) above 3.00. The large

fraction of overlapping SNPs, with a high fraction of

dbSNP entries and high Ts/Tv ratio, indicated high qual-

ity in the intersection call sets. These call sets were thus
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highly confident due to being generated from two inde-

pendent pipelines with quite different and complemen-

tary algorithms. Several iterations of comparisons and

tuning of the pipelines led to convergence of these call

sets. In addition, the intersection call sets have yielded

high validation rates (Table 3; Table S2 in Additional

file 1).

The BC unique SNP call set (BC\BI) or BI unique SNP

call set (BI\BC) accounted for the remaining 30 to 50% of

the SNPs. About 20% of BC unique calls and 8% of BI

unique calls were present in dbSNP build 129. Both unique

call sets had a much lower Ts/Tv of 1.00, indicating rela-

tively lower quality in the unique call sets (Table 2).

SNP call set validations

We designed five series of validation experiments in order

to examine the false positive and false negative rate, both

globally in the officially released call sets, and in the SNP

calls specific to the BC or BI call set, as well as in the rare

and singleton SNPs and almost all the SNPs altering

codons (Table S1 in Additional file 1). The validation

experiments were carried out at the BCM Human Gen-

ome Sequencing Center (BCM-HGSC) and BI, using PCR-

Sanger sequencing and Sequenom genotyping,

respectively.

Series 1 - random sampling

We randomly chose 105 non-dbSNP sites in the intersec-

tion (that is, regardless of the frequency spectrum), and

tested them by Sequenom at BI across the entire sample

set.

Series 2 - population-specific discovery

Approximately 135 non-dbSNP sites were chosen regard-

less of the frequency spectrum from each of CEU, YRI +

LWK, and CHB + CHD + JPT populations. They were

selected to represent both the BC/BI intersection, BC-speci-

fic and BI-specific call sets. The sites were genotyped using

Sequenom at BI across the samples in the populations

where they were discovered.

Series 3 - low frequency sites and false positives

We tested 510 sites at low frequency (1 to 5 alleles/occur-

rences; approximately 300 in the intersection and approxi-

mately 200 in the BC-specific/BI-specific sets) using PCR

and Sanger sequencing at the BCM-HGSC, in the particu-

lar samples where they were discovered. We allocated

approximately 50% of the sites to singletons, and approxi-

mately 50% to sites with alternative allele count 2 to 5.

Series 4 - low frequency sites and false negatives

We chose 33 sites with alternative allele count 2 to 5 and

35 singletons from the intersection call set, and tested

across all samples using Sequenom at BI.

Series 5 - comparative categories

We drew 227 sites at low frequency (singletons and

SNPs with an alternative allele count of 2 to 5) from dif-

ferent functional annotation classes (such as missense,

silent, promoter regions, and so on), and examined

them using PCR-Sanger sequencing at the BCM-HGSC.

SNP validation rate and genotype accuracy estimation

The overall validation rate in the official released data set

(that is, the intersection) was very high at 96.8% (Table 3;

Tables S3 and S4 in Additional file 1), meeting and

exceeding the 1000 Genomes Project goal of >95% valida-

tion. The validation rates at the low-frequency categories

were also high, greater than 93.0% for singletons and SNPs

with alternative allele count 2 to 5 (series 3, 4 and 5 in

Table S2 in Additional file 1). The exceedingly high valida-

tion percentages indicated that 1) the high coverage tar-

geted resequencing methods were effective in accurately

detecting SNPs at both common and rare allele frequen-

cies; and 2) the intersection calls were highly accurate, and

the vast majority of correctly called low frequency alleles

were indeed at low frequency. Most of the non-validated

sites (Table S2 in Additional file 1) were in the unique

fractions of the BC and BI call sets.

The genotype call accuracies were calculated by compar-

ing the called genotypes to the genotype measurements in

the validation assays for all four series (series 1 to 4; Table

S5 in Additional file 1). In total, 33,938 called genotypes

were compared, and the vast majority of the genotypes

agreed with the validation results: 32,532, 1,320 and 12 for

Ref/Ref (Homozygote Reference), Ref/Alt (heterozygote)

and Alt/Alt (Homozygote NonReference) classes, respec-

tively. The accuracy rate for all called genotypes was as

high as 99.8%, with 99.9% accuracy for Homozygote Refer-

ence (HomRef), 97.0% for heterozygote (Het), and 92.3%

for Homozygote NonReference (HomNonRef). The overall

false discovery rate of variant genotypes was <3% and the

missed variant genotype rate was <1% as measured in ser-

ies 1. The variant genotypes in low-frequency categories in

series 3 were confirmed for 133 of 133 (100%) singleton

sites, and 395 of 419 (94.3%) SNPs with alternative allele

count 2 to 5. The accuracy compared to series 4 validated

sites showed the false discovery rate for these categories

was approximately 6.0% with a missed variant genotype

rate of 0.1%.

Nucleotide diversity estimation

Per-base heterozygosity estimates for the Exon Pilot were

calculated at missense, two-fold, three-fold, and four-fold

degenerate sites, and all base pairs in the autosomal tar-

geted regions. We included only targeted base pairs with

≥10× coverage in at least 100 chromosomes based on the

MOSAIK alignments. The same analysis was performed

on the Low Coverage Pilot, but excluding base pairs that

were masked in the Low Coverage callability files [28].

Base pairs were masked if >20% of Illumina reads had a

mapping quality of 0 and/or read depth was greater than

twice the average depth at HapMap3 sites. Also, a base
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pair had to be callable in all three Low Coverage popula-

tions in order to be included in our analysis. Per-base

estimates of heterozygosity of ENCODE regions in Hap-

Map3 were normalized by the nominal sequence length

of 1 Mbp.

Degeneracy was calculated based on the hg18 refer-

ence sequence and the Gencode gene model annotations

[23]. Note that some base pair positions may have been

counted in multiple categories due to differing reading

frames in alternative splice variants at a locus, but this

number was less than 1% in each category and should

have negligible effects on the resulting analyses.

Spectrum analysis

In the Exon Pilot SNP data set, not all variant sites had

the same number of genotypes in each of the seven popu-

lations studied. In order to make comparisons of spectra

from different populations easier, the unfolded AF spec-

trum (using orthologous bases from the panTro2 assem-

bly as the ancestral alleles) for each population was

projected to a common sample size of 100 chromosomes

using the software Dadi [29]. The projection is based off

the hyper-geometric distribution, without correcting for

ancestral misidentifications.

Analysis of predicted impact on gene function

Functional prediction

SIFT and PolyPhen-2 were used to predict possible

impacts of missense SNPs on the function of human pro-

teins. Both programs utilize sequence and/or structure

information in prediction. SIFT uses sequence homology

to build a position-specified scoring matrix with Dirichlet

priors, whereas PolyPhen-2 uses both phylogenetic and

structural features combined with machine learning. In

total, 3,708 and 5,990 missense SNPs in the Exon Pilot

were evaluated by either SIFT or PolyPhen-2. We evalu-

ated 3,176 missense SNPs by both SIFT and PolyPhen-2,

which had a concordance rate in functional prediction of

55%.

Functional analyses of Exon Pilot variants found in the

HGMD

The overlaps of the Exon Pilot SNP and INDEL sets with

the HGMD Professional 2009.4 version missense/non-

sense SNPs, small insertions, small deletions and small

INDELs were identified based on their locations in the

reference genome sequence (build 36). There were no

overlapping insertions, deletions or INDELs; however, 99

overlapping SNPs within the HGMD-DM class were

found, and these were used in subsequent analyses. Four

led to premature stop codons and the remaining 95 to

missense amino acid changes; the consequences of these

for protein structure were predicted using SIFT and Poly-

Phen-2. The predicted consequences were combined into

three classes: (1) Benign: ‘benign’ from PolyPhen-2 + ‘tol-

erated’ from SIFT, or one of these plus no prediction

from the other program; (2) Possibly damaging: ‘possibly

damaging’ from PolyPhen-2 plus ‘damaging (low confi-

dence)’ from SIFT, or a conflict between the predictions;

(3) Damaging: ‘probably damaging’ from PolyPhen-2 plus

‘damaging’ from SIFT, or one of these plus no prediction

from the other program. AFs were determined in each

population from the number of disease and non-disease

allele calls, excluding individuals with missing data.

These AFs were averaged across all populations.

Analysis of allele sharing within and across populations

Allele sharing was measured as a function of alternative

allele frequency using the following steps. Singletons,

which cannot be shared, were removed from the catalog

of 12,758 Exon Pilot exonic variants. The remaining

7,137 variants were further filtered using stringent cover-

age requirements (section 9, ‘Allele sharing among popu-

lations’, in Additional file 1) to ensure that coverage

fluctuations between populations would not impact sam-

pling. As a measure of sharing, we considered the likeli-

hood that two minor alleles, when sampled at random

without replacement among all minor alleles, belonged

to the same population, to different populations from the

same continent, or to different continents. In a panmictic

population, every pair of sampled chromosomes is

equally likely to be sampled, and the expected sharing

depends only on the number of pairs of chromosomes in

each sharing category - a combinatorial property of sam-

ple sizes, but independent of allele frequency.

We compared the Exon Pilot data with published data

obtained by resequencing ten 100-kb ENCODE regions as

part of the International HapMap 3 Consortium study.

We extracted 3,618 HapMap SNPs based on a noncoding

annotation. Since the HapMap and Exon Pilot data differ

in their sample sizes, we calculated the expected amount

of sharing for each dataset based on subsampling each

population panel to 90% of the minimum population size

between the two datasets, namely CEU:134, CHB:162,

CHD:54, JPT:152, LWK:108, TSI:98, YRI:170. The prob-

ability of sharing was averaged over all sites, weighted by

the probability that a site had two minor alleles in the

down-sampled set. Confidence intervals were obtained by

bootstrap over the different variant sites.

INDEL detection and analysis

INDELs were called on the Exon Pilot data from both the

Illumina and the Roche 454 platforms, and the results

were merged to create the final call set (Figure 1b). Only

INDELs inside the consensus target regions were

included in the official release. The Illumina data were

processed with two independent pipelines in a parallel
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fashion, by BCM-HGSC and BI (Figure 1b; Table S7 in

Additional file 1). The Roche 454 INDELs were pro-

cessed by BCM-HGSC. The results were combined by

taking the union of the three call sets (Figure 1b; Table

S7 in Additional file 1).

BCM-HGSC Illumina INDEL calling pipeline

Read mapping The BCM-HGSC Illumina INDEL calling

pipeline used the MOSAIK alignments created at BC as

explained in the SNP calling methods.

Duplicate filtering Duplicate reads were marked in the

alignment using the Picard MarkDuplicates tool [27] as

explained in the SNP calling methods.

Base quality recalibration The base qualities reported

by the instrument were recalibrated using GATK as

explained in the SNP calling methods.

INDEL calling INDELs were called using Atlas-Indel2

(Challis et al., submitted), which uses logistic regression

models trained on validated exon capture data to identify

true INDELs and remove false INDELs arising from

sequencing or mapping errors.

INDEL filtering INDEL calls were further filtered to

require at least two variant reads in a sample. We addi-

tionally filtered out all singleton INDELs with a length

of 1, in order to remove the high number of false posi-

tive INDELs in this category.

Broad Institute Illumina INDEL calling pipeline

Read mapping The BI Illumina INDEL calling pipeline

used the MAQ alignments created at Sanger as explained

in the SNP calling methods.

Duplicate filtering Duplicate reads were marked in the

alignment using the Picard MarkDuplicates [27] as

explained in the SNP calling methods.

Base quality recalibration The base qualities reported

by the instrument were recalibrated using GATK as

explained in the SNP calling methods.

Multiple sequence alignment near putative INDELs

Reads in the alignment were realigned by GATK Indel-

Realigner around putative INDELs.

INDEL calling INDELs were called using

IndelGenotyperV2.

INDEL filtering INDEL calls were further filtered based

on local mismatch rate, nearby homopolymer runs,

strand bias and other similar features.

BCM-HGSC Roche 454 INDEL calling pipeline (Figure 1b)

Read mapping The Roche 454 INDEL data were

aligned using BLAT-CrossMatch at the BCM-HGSC.

Duplicate filtering Duplicate reads were removed from

the alignment using the BCMRemoveDuplicates script.

INDEL calling INDELs were called using the Atlas-

Indel program at the BCM-HGSC.

INDEL filtering Initial calls were further filtered by

removing lower quality reads, singleton INDELs, 2-bp

low frequency INDELs, and any INDELs that may have

arisen due to flow-space errors.

Merging INDEL call sets (Figure 1b)

The intersection of the BCM-HGSC and BI Illumina

INDEL call sets was taken as the consensus for the Illu-

mina data. The union of the Illumina consensus set and

the Roche 454 call set formed the final call set. When

merging call sets any INDELs of the same type (insertion

or deletion) within 5 bp of each other were considered

equivalent and merged together.

In total, we detected 96 INDELs (21 insertions and 75

deletions) from the 697 individuals (Table S7 in Addi-

tional file 1). The call set had a dbSNP (build 129) con-

cordance rate of 26%. On the Illumina platform, 9

insertions and 39 deletions were called by BCM-HGSC

and 11 insertions and 37 deletions by BI. A total of 10

insertions and 24 deletions were called on the Roche 454

data. The Roche 454 INDEL set appeared to be enriched

with 2-bp INDELs. This is likely due to flowspace errors

on the sequencing platform, which may make 1- or 3-bp

INDELs appear to be 2 bp long.

When combining call sets from BCM-HGSC and BI,

and calculating concordance, INDELs within 5 bp of

each other and of the same type (insertion or deletion)

were considered equivalent. The INDEL call set for each

population was combined by continent for the alternative

allele count analysis, and all seven sets were combined

into one set for the INDEL size analysis (Figures S5 and

S6 in Additional file 1). When INDELs were found to be

equivalent, they were combined to remove the duplica-

tion. When combined to the continental level, 51

INDELs were found in Africa, 46 in Asia, and 30 in Eur-

ope (Figure 1b; Table S7 in Additional file 1).

INDEL validation

The Illumina union INDEL calls were assessed by two

methods (Table S8a in Additional file 1). First, the 31

INDELs called by both centers were validated via Seque-

nom assays for the haplotypes resulting from the INDEL

event. The assays were designed using the GATK, and

dbSNP sites were masked to avoid bias due to nearby

SNPs. The 13 INDELs exclusive to the JPT population

and exclusive to a single center were validated via Seque-

nom assays following the same protocol. Second, the

remaining INDEL sites unique to either center were vali-

dated by targeted resequencing using PCR and the Roche

454 platform.

Sequenom probe design resulted in probes for 31 sites

in the overlapping call set, of which five failed quality

control checks. The remaining 26 sites all validated as

variants, though genotype concordance between sequen-

cing calls and validation was very low (Table S8b in

Additional file 1). Of the 13 probes designed to assess

the unique coding INDEL calls in the JPT population,

10 passed quality control filters, and 6 validated as true

variants.
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Unique INDELs from the Illumina BCM and BI call sets

underwent PCR-Roche 454 validation at BCM-HGSC

(Table S8a in Additional file 1). Some additional low-con-

fidence INDELs that were filtered out of the BCM call set

were also included for software tuning purposes. Equiva-

lent INDELs within any of these sets were merged. A total

of 114 on-target sample-sites were submitted for valida-

tion; 94 INDELs had conclusive results. The BI unique call

set had a confirmation rate of 78.6% and the BCM-HGSC

call set had a confirmation rate of 80.0% (Table S8c in

Additional file 1). In addition to these INDELs, 405 off-tar-

get non-coding sample sites underwent validation. Of

these, 227 gave conclusive results, BI INDELs had a confir-

mation rate of 88.6% and BCM-HGSC had a confirmation

rate of 59.6%. BCM’s low confirmation rate was due to the

exon-specific nature of the Atlas-Indel2 pipeline.

Additional material

Additional file 1: Supplemental information. Additional

methodological details, figures, tables and citations [30].

Additional file 2: 1000 Genomes Project members. List of the

member of the pilot phase of the 1000 Genomes Project.
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