
Tohoku Math. J.
47(1995),251-262

THE FUNCTOR OF A SMOOTH TORIC VARIETY

DAVID A. Cox

(Received December 27, 1993, revised February 6, 1995)

Abstract. This paper describes the data needed to specify a map from a scheme 
to an arbitrary smooth tone variety. The description is in terms of a collection of line 
bundles and sections on the scheme which satisfy certain compatibility and nondegeneracy 
conditions. There is also a natural torus action on these collections. As an application , 
we show how homogeneous polynomials can be used to describe all maps from a pro-

jective space (or more generally a toric variety) to a smooth complete toric variety.

A map Y•¨Pnk is determined by a line bundle L on Y together with n+1 sections 

which do not vanish simultaneously. In fact, Pnk is the variety representing the functor

(1) •¬ do not vanish simultaneously •¬

where •` is the obvious equivalence relation. The goal of this paper is to generalize this 

description to the case of an arbitrary smooth toric variety.

We will work with schemes over a field k, and we will fix a smooth n-dimensional 

toric variety X determined by a fan ‡™ in NR=Rn. As usual, M denotes the dual lattice 

of N and ‡™(1) denotes the set of 1-dimensional cones of ‡™. We will use ‡”ƒÏ to mean 

•¬ and similarly for •¬. Each •¬ determines a divisor DƒÏ•¼X and a generator •¬

. Finally, let ‡™max denote the set of maximal cones in ‡™ (i.e., those which are 

not proper faces of cones in ‡™). Basic references for toric varieties are [3], [5] and [7] .

1. ‡™-collections and functors. If a fan ‡™ determines a smooth toric variety X
, 

then we can generalize the data in (1) as follows:

DEFINITION 1.1. Given a scheme Y over k , a ‡™-collection on Y consists of line 

bundles LƒÏ and sections uƒÏ•¸H0 (Y, LƒÏ), indexed by ƒÏ•¸‡™(1), and isomorphisms •¬

, indexed by m•¬M, such that:

(i) (Compatibility) •¬ for all m, m'•¸M.

(ii) (Nondegeneracy) For each y•¸Y, there is •¬ with •¬ for all •¬.

A ‡™-collection on Y is written (LƒÏ, uƒÏ, cm). The compatibility condition on the 

isomorphisms cm implies that •¬ in •¬ However , the triviality of 

this sum is not sufficient: data of the ‡™-collection includes an explicit choice of 

trivialization (the cm's), which is not unique. The examples given below will show why
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this is needed. As for the nondegeneracy condition, note that up •¬ gives 

•¬ which induces •¬. Then nondegeneracy is equivalent to the 

suriectivity of the man

•¬

Finally, when dealing with a toric variety X determined by ‡™, we will sometimes speak 

of X-collections rather than ‡™-collections.

We get a canonical ‡™-collection on the toric variety X as follows. For each ƒÏ, the 

divisor DƒÏ gives a line bundle •¬ since X is smooth. Furthermore, the natural 

inclusion •¬ corresponds to a global section •¬. Finally, given 

m•¸M, the character Xm is a rational function on X such that •¬ 

Thus we get an isomorphism of sheaves

•¬

where the second isomorphism is induced by xm

LEMMA 1.1. •¬ is a ‡™-collection on X.

PROOF. Compatibility is trivial since •¬ for •¬ To prove 

nondegeneracy, take x•¸X. Since •¬ where XƒÐ is the affine toric variety 

determined by ƒÐ, we have x•¸XƒÐ for some ƒÐ•¸‡™max. Then •¬ shows that 

•¬ for all •¬ and nondegeneracy follows.

The ‡™-collection •¬ will be called the universal ‡™-collection. This 

terminology will be justified below.

DEFINITION 1.2. An equivalence •¬ of ‡™-collections on Y 

consists of isomorphisms •¬ which carry uƒÏ to u'ƒÏ and cm to c'm.

To better understand these definitions, let us look at some examples:

EXAMPLE 1.1. Let X=Ank, where the nƒÏ's are the standard basis {e1,...,en} of N. 

Let {e1,...,en} be the dual basis of M. Now suppose we have an Ank-collection (Li, ui, cm) 

on Y (we write Li instead of Lei for •¬). Then cei is an isomorphism •¬ 

This maps ui to •¬ and one can check that setting •¬ in Definition 1.2 

gives an equivalence (Li, ui, cm)•`(•¬Y, vi, 1). Furthermore, •¬ if and 

only if vi=v'i for all i. Since the nondegeneracy condition is vacuous in this case, we 

see that equivalence classes of Ank-collections on Y correspond exactly to n-tuples in 

•¬ As is well-known, such n-tuples are classified by morphisms Y•¨Ank.

EXAMPLE 1.2. Let X=Pnk, where the nƒÏ's are e1,...,en and •¬ Now 

let (Li, ui, cm) be a Pnk-collection on Y (where •¬). Here, cei is an isomorphism
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•¬ This induces •¬ which takes ui to •¬ One can 

check that the ƒÁi's give an equivalence (Li, ui, cm) •` (L0, vi, 1). Thus we get the line bundle 

L0 and n+1 sections. Since the fan for Pnk has n+1 maximal cones (depending on which 

of e0,...,en is omitted), the nondegeneracy condition says that the vi never vanish 

simultaneously. Thus equivalence classes of Pnk-collections on Y correspond exactly to 

the equivalence classes in (1) and hence are classified by morphisms Y•¨Pnk.

EXAMPLE 1.3. Let •¬ In this case, there are no nƒÏ's, and for m•¸M, 

•¬ reduces to •¬, so that a Gnm-collection on Y consists of •¬ The 

notions of equivalence and nondegeneracy are vacuous in this case, so that equivalence 

classes of Gnm-collections on Y correspond to homomorphisms •¬. Such 

homomorphisms are classified by morphisms Y•¨HomZ(M,Gm)=Gnm.

Returning to the general case, it is easy to see that the pull-back of a ‡™-collection 

is again a ‡™-collection. Thus we get a functor C‡™:k-Schemes•‹•¨Sets defined by

C‡™(Y)={all ‡™-collections (LƒÏ, uƒÏ, cm) on Y}/•`.

Furthermore, the universal ‡™-collection •¬ gives a natural transformation

Homk(Y,X)•¨C‡™(Y)

by sending f:Y•¨X to the pull-back of •¬ by f. The main result of this 

paper is the following theorem:

THEOREM 1.1. If X is a smooth toric variety, then the above map Homk(Y,X)•¨

C‡™(Y) is a bijection for all k-schemes Y. Thus the toric variety X represents the functor C‡™.

PROOF. First assume that the nƒÏ's span NR. In this case, we know by [2] that X 

is a geometric quotient •¬ where •¬ Z is defined by the 

vanishing of •¬ for •¬ and G= Homz(Pic(X),Gm).

We will construct an inverse map C‡™(Y)•¨Homk(Y,X). Let (LƒÏ, uƒÏ, cm) be a 

‡™-collection on Y
, and let U•¼Y be an open subset such that the LƒÏ are trivial on U. 

If we choose isomorphisms •¬ then we get an equivalence •¬ 

where •¬ and •¬ can be regarded as a homomorphism •¬

Since the nƒÏ's span NR and X is smooth, we have an exact sequence

(2)

 •¬

where ƒ¿ is defined by •¬ Since Pic(X) is torsion tree, the above map 

•¬ extends to •¬ which means that there are 

•¬ such that •¬ for all m•¸M. Then the isomorphisms 

•¬ give an equivalence •¬ where •¬

Now define •¬ The nondegeneracy condition implies
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that •¬ so that composing with the quotient •¬ gives 

•¬ In the argument below, let •¬

We need to see how the choices made in the above construction affect the map fU

•EA different set of choices would lead to a ‡™-collection •¬ This 

equivalence is given by •¬ such that •¬ and for all 

m•¸M (because the •¬ must preserve the trivializations •¬ It follows 

from (2) that we get a homomorphism •¬ such that •¬ 

for all ƒÏ. If we evaluate this at a closed point x•¸U, we get an element •¬

 Then the points (wƒÏ(x)) and •¬ are related by 

gx and hence give the same point in X.

This shows that fu:U•¨X depends only on the equivalence class of •¬ 

From here, it follows easily that the fU patch together to give a morphism f:Y•¨X.

It remains to show that this map is the inverse of the map Homk (Y,X)•¨C‡™(Y) 

obtained by pulling back the universal ‡™-collection •¬ First suppose that 

(LƒÏ, uƒÏ, cm) on Y determines f:Y•¨X. We need to show that

(3) •¬

An easy argument shows that the natural map •¬ is injective whenever 

•¬ is an open cover of Y. Thus it suffices to prove (3) on an open set U•¼Y where 

each LƒÏ is trivial on U. On such a U, we know that •¬ and 

•¬ where •¬ We first observe that

(4) •¬

where •¬ is as above. To prove (4), note that •¬ so that 

multiplication by xƒÏ gives an isomorphism •¬ Hence •¬

 is multiplication by xƒÏ, and since •¬ (4) follows immediately. Then, 

returning to •¬ we conclude from (4) that

(5) •¬

since •¬ and (3) follows.

Finally, suppose we have f:Y•¨X. This gives •¬ which in turn 

determines f':Y•¨X. We need to show that f'=f. First suppose that f factors •¬ 

for some map •¬ Then f can be written •¬ where •¬ 

From (5) and the construction of f', it follows immediately that f'=f. In the general 

case, note that G acts freely on •¬ since X is smooth (this is easy to prove), so that 

•¬ is smooth. Then standard results about smoothness imply that f:Y•¨X lifts 

locally to •¬ in the etale topology. Since Homk(-,X) is a sheaf in the etale topology 

on Y, we obtain f'=f, and the theorem is proved in the case when the nƒÏ's span NR.

We next study what happens when the nƒÏ's do not span NR. Let N1=N•¿SpanR(nƒÏ). 

The fan ‡™ can be regarded as a fan ‡™1 in N1, which gives a smooth toric variety X1 

of dimension d=rank (N1). The inclusion N1•¼N induces an inclusion X1•¼X, and the
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projection N•¨N/N1 induces a surection •¬ where •¬

 is the annihilator of N1.

Since N/N1 is torsion free, we can write •¬ for some complement N2•¼N. 

Then d is the product fan ‡™1•~{0}, which implies that X is (noncanonically) the product 

X1•~kT1. If M1, is the dual of N1, then the projection N•¨N1 determines an inclusion 

ƒ¿:M1•¨M such that •¬

Now suppose that (LƒÏ, uƒÏ, cm) is a ‡™-collection on Y. Then, for every •¬ we 

have <m,nƒÏ>=0 for all ƒÏ. Thus cm is an isomorphism •¬ which gives a 

homomorphism •¬ Since this map depends only on the equivalence class 

of (LƒÏ, uƒÏ, cm), we have a natural transformation

•¬

Further, if we define •¬ for •¬ then (LƒÏ, uƒÏ,cƒ¿m1) is a ‡™1-collection on Y, 

and it follows easily that we have a natural transformation

•¬

Combining these maps, we obtain

(6) •¬

Since •¬ it is straightforward to show that the map (6) is a bijection. 

Now consider the following diagram:

Homk(Y,X)•¨C‡™(Y)

Homk •¬

The vertical maps come from (6) and •¬ and note that both are bijections. 

The map on the bottom is the product of the bijections •¬ 

(since the nƒÏ's span (N1)R) and •¬ (since 

•¬).

It follows that the map on top will be a bijection (and the theorem will be proved) 

provided the diagram commutes. By general nonsense, we only have to prove com-

mutivity for 1x•¸Homk(X,X). Going down and over, 1x maps to •¬ 

where •¬ is the projection and •¬ is defined by •¬ for 

•¬ Going the other way, we need to study what happens to •¬ under 

the map

•¬

Let us start with the second factor. Here, note that for •¬ is multi-

plication by xm. Hence the induced map •¬ is exactly the above map ƒÓ. 

As for the first factor, we get •¬ where •¬ for •¬ How-
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ever, since ƒÎ:X•¨X1, is a toric map taking nƒÏ•¸N to nƒÏ•¸N1, it follows easily that 

•¬ in a way that preserves the section •¬ (this follows, for example, 

by looking at line bundles as determined by support functions and studying how ƒÎ1, 

affects support functions). For m1•¸M1, we have •¬ and it follows 

immediately that •¬ This proves commutivity, and 

the theorem follows.

REMARK 1.1. When the nƒÏ's span NR, we get an alternate description of the 

universal ‡™-collection as follows. By [2], •¬ gives a sheaf •¬ on X, 

which is a line bundle since X is smooth. Furthermore, [2] gives a canonical isomor-

phism •¬ Since •¬ in Pic(X), we have •¬ so that we 

can write •¬ Finally, if m•¸M, then •¬ in Pic(X), which 

gives a canonical isomorphism

•¬

Then •¬ is equivalent to the universal ‡™-collection •¬ This 

follows easily using the isomorphisms •¬ constructed in [2,•˜3].

REMARK 1.2. Using the representability criterion given in Proposition 4.5.4 from 

[4], one can prove directly that C‡™ is representable, without knowing the toric variety 

X. To see how this works, let ƒÐ•¸‡™dmax, and define the functor •¬ by

•¬ is an isomorphism for all •¬.

Using the isomorphisms •¬ one gets an equivalence (LƒÏ, uƒÏ, cm)•`

•¬ where •¬ and •¬ whenever •¬. From here, the techniques of 

Examples 1.1 and 1.3 and Theorem 1.1 can be adapted to show that CƒÐ‡™ is represented 

by •¬ where d is the dimension of ƒÐ. According to Proposition 4.5.4 of [4], 

C‡™ is then representable provided we can show the following:

(i) The natural transformation CƒÐ‡™•¨C‡™ is representable by an open immersion.

(ii) The functor C‡™ is a sheaf when restricted to open subsets of Y.

(iii) C‡™ is the union (as defined in part (iii) of Proposition 4.5.4 of [4]) of the CƒÐ‡™.

The proof of (ii) is completely straightforward, and (iii) follows easily from the 

nondegeneracy condition. For (i), we need to show that given a ‡™-collection (LƒÏ, uƒÏ, cm) 

on Z, the functor •¬ is representable by an 

open subset ZƒÐ•¼Z. This is easy: ZƒÐ is the biggest open subset of Z, where uƒÏ is an 

isomorphism for all •¬. We leave the details to the reader.

By proving that C‡™ is representable, we get an alternate construction of the smooth 

toric variety X. This might be useful for studying toric varieties over more general bases 

(for example, over the integers or over finite fields).

REMARK 1.3. Recently, other authors have used concepts similar to ‡™-collections
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to describe maps from varieties to toric varieties over the complex numbers. For 

example, Oda and Sankaran (unpublished) can describe maps from a normal variety 

Y to a toric variety X such that the image of Y in X has nonempty intersection with 

the torus T•¼X. Every such map is determined by a group homomorphism •¬

 and Weil divisors EƒÏ (one for each •¬ such that

•¬

for all m•¸M (compatibility) and that

•¬

whenever there is no •¬  which contains ƒÏ1,...,ƒÏs (nondegeneracy). This data is 

uniquely determined by f, and conversely, given such data, we get a map f:Y•¨X such 

that f (Y)•¿T is nonempty. This description has the advantage that it applies to all toric 

varieties X, not just smooth ones. On the other hand, it only works when Y is normal, 

and it doesn't describe all possible maps. However, this is sufficient for many ap-

plications, including those given in [6].

Another description of maps to toric varieties, due to Jaczewski in [7], uses the 

notion of a vast divisor on a complete variety Y. One starts with a divisor with normal 

crossings •¬ Let •¬ and let N(B) 

be its dual. For each ƒÏ, the map •¬ determines nƒÏ•¸N(B). For B to be vast, 

there needs to be a smooth complete fan •¬ in N(B) with the nƒÏ as generators of the 

1-dimensional cones. There is also a nondegeneracy condition (about the complements 

of certains unions of the BƒÏ being an open cover of Y) and a compatibility condition 

(that among linear combinations of the BƒÏ, homological equivalence implies linear 

equivalence). Then Theorem 4.5 of [7] shows that this data determines a map from Y 

to the smooth toric variety X determined by •¬. This theory is only stated for complete 

varieties and seems to require some knowledge about homological equivalence on Y.

2. The torus action. We next describe the torus action on X in terms of 

•¬-collections. Since T=HomZ(M,Gm) is the torus of X, we get an action of Ton C•¬(Y) 

as follows: a homomorphism •¬ in T acts on a •¬-collection (LƒÏ, uƒÏ, cm) via

•¬

We still have a •¬-collection since •¬, and this operation 

also preserves equivalence classes. Hence T acts on •¬.

This relates to the natural action of Ton Homk(Y,X) (coming from the action of 
T on X) as follows:

PROPOSITION 2.1. The natural bijection •¬ from Theorem 1.1 

is a T-equivariant map.
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PROOF. By functorality, it suffices to verify equivariance for the case Y=X and 

for 1x•¸Homk(X,X). This means finding an equivalence

•¬

for all ƒÓ•¸T. However, •¬ so that •¬ Furthermore , if 

we represent the global sections of •¬ as •¬ then 

•¬ is the map sending map f to •¬. Since •¬

 corresponds to the constant function 1, we see that •¬ .

Finally, to see what happens to cxm under ƒÓ, recall that xm:T•¨G m is a homo-

morphism and that ƒÓ•¸T acts on T by translation. Since xm(ƒÓ)=ƒÓ(m), it follows that 

•¬ as functions on T. Thus the rational functions on X given by •¬ 

and xm differ by the constant ƒÓ(m). Hence they have the same divisor •¬, 

though the trivializations •¬ they induce differ by the constant 

ƒÓ(m). This shows that ƒÓ*(cxm)=ƒÓ(m)cxm, which completes the proof.

REMARK 2.1. When the nƒÏ's span NR, there , is another way to view the action of 

T on •¬. If we apply HomZ(-,Gm) to the exact sequence (2) , we get the exact 

sequence

(7) •¬

where G=HomZ(Pic(X), Gm). Then •¬ acts on ‡™-collections via •¬ 

Since equivalence classes are preserved, •¬ acts on C•¬(Y).

To relate this to the action of T, note that the isomorphisms •¬ given by 

multiplication by •¬ induce an equivalence

•¬

But •¬ is the element of T=HomZ(M,Gm) which is the image of (tƒÏ) under 

the map •¬ in (7). Hence the action of •¬ induces the T-action on C‡™(Y) .

3. Maps between toric varieties. As an application of Theorem 1 .1, we will 

describe all maps from Pmk to a smooth toric variety X where the nƒÏ's span NR . In this 

case, recall that X is the geometric quotient •¬

THEOREM 3.1. Let X be a smooth toric variety such that the nƒÏ's span N
R, and 

suppose we have homogeneous polynomials PƒÏ•¸k[to
,...,tm], indexed by •¬ such 

that:

(a) If PƒÏ has degree dƒÏ, then •¬ in N.

(b) •¬ whenever •¬

 If we define •¬ then there is a morphism f:Pmk•¨X 

such that the diagram
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•¬•¬

commutes, where the vertical maps are the quotient maps. Furthermore:

(i) Two sets of polynomials {PƒÏ} and {P'ƒÏ} determine the same morphism f:Pmk•¨X 

if and only if there is g•¸G=HomZ(Pic(X),Gm) such that •¬ for all ƒÏ.

(ii) All morphisms f:Pmk•¨X arise in this way.

PROOF. Given the PƒÏ's satisfying (a) and (b), note that for every m•¸M we have 

•¬ which gives a canonical isomorphism of sheaves

Ccanm •¬

Then •¬ is clearly a ‡™-collection, so that we get a map f:Pmk•¨X. Using 

the arguments from Theorem 1.1, one can show that if •¬ is the quotient 

map, then •¬ From here, the commutivity of the 

diagram follows easily.

Now suppose that two sets of polynomials {PƒÏ} and {P'ƒÏ} give the same map f. 

Then, by Theorem 1.1, we know that •¬ This means 

that there are constants •¬ such that •¬ and  for all m•¸M 

because ccanm is preserved. As in the proof of Theorem 1.1, this implies that there is 

g•¸ G such that •¬ for all ƒÏ, and (i) is proved.

Finally, to prove (ii), let f:Pmk•¨X be a morphism. By Theorem 1.1, we know that 

f is determined by some •¬-collection (LƒÏ, uƒÏ, cm). Since each •¬ for some dƒÏ, 

we get an equivalence •¬ Then •¬ and 

thus, as in the second paragraph of the proof of Theorem 1.1, we can find •¬ such 

that •¬ for all m (this uses our assumption that the nƒÏ's span NR). If 

we set •¬ then •¬ which shows that f is 

determined by the PƒÏ's. It is easy to see that conditions (a) and (b) are satisfied, and 

the theorem is proved.

REMARK 3.1. When X=Pnk, the nƒÏ's are e0,¥¥¥,en as in Example 1.2. One can 

check that •¬ if and only if •¬ and then Theorem 3.1 gives the 

usual description of maps between Pmk and Pnk.

REMARK 3.2. Theorem 3.1 applies to all smooth complete toric varieties since the 

nƒÏ's obviously span NR in this case.

REMARK 3.3. When the np's do not span NR, then, as in the proof of Theorem 

1.1, we can write •¬ where •¬ In this case, a map Pmk•¨X is determined
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by maps PMmk•¨X1 and Pmk•¨Gn-dm. The first of these maps can be described by Theorem 

3.1, and the second is obviously constant. Thus we can describe maps from Pmk to an 

arbitrary smooth toric variety X.

REMARK 3.4. When X is a complete simplicial toric variety over C, Morrison and 

Plesser [8,•˜3.7] indicate that Theorem 3.1 is still true, and they also describe a toric 

compactification of the space of all maps P1•¨X of fixed degree.

REMARK 3.5. Over C, Theorem 3.1 has been used by Guest to study the topology 

of the space of rational curves on X (see [6,•˜5]). When X is not smooth, Guest instead 

uses a certain configuration space to study maps P1•¨X (see [6, Proposition 3.1]).

Finally, we will discuss a more general version of Theorem 3.1, where Pmk is replaced 

by an arbitrary complete toric variety Y. If Y is determined by the fan •¬, then by [2], 

Y has a homogeneous coordinate ring •¬ where •¬ The ring SY is graded 

by the Chow group An-1(Y), and we denote the graded pieces by SYƒ¿ for •¬ 

Note also that •¬ By [2], we can also express Y as a categorical quotient 

of •¬ Then we get the following result:

THEOREM 3.2. Let X be a smooth toric variety such that the nƒÏ's span NR, and let 

Y be a complete toric variety with coordinate ring SY. Suppose we have homogeneous 

polynomials •¬ indexed by •¬ such that:

(a) If •¬ then •¬ and •¬ in Pic •¬

(b) •¬ kwhenever •¬ in •¬

If we defne •¬ then there is a morphismf:Y•¨X such that the diagram

•¬•¬

commutes, where the vertical maps are the quotient maps. Furthermore:

(i) Two sets of polynomials {PƒÏ} and {P'ƒÏ} determine the same morphism f:Y•¨X 

if and only if there is •¬ such that •¬ for all ƒÏ.

(ii) All morphisms f:Y•¨X arise in this way.

PROOF. We will only sketch the proof, leaving the details to the reader. The key 

idea is that by [2], •¬ gives a line bundle •¬ such that we have canonical 

isomorphisms •¬ Furthermore, from [2] there 

is a natural isomorphism •¬ Then it is easy to see that the PƒÏ's give a 

•¬-collection •¬ and from here the rest of the proof is identical to what 

we did in Theorem 3.1.
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4. Concluding remarks. Another description of the functor represented by a toric 

variety X is due to Ash, Mumford, Rapoport and Tai (see [1, Chapter I,•˜2]). They 

consider pairs •¬ such that:

(i) •¬ is a sheaf of sub-semigroups of the constant sheaf MY on Y determined 

by M.

(ii) •¬ is a semigroup homomorphism (•¬ is a semigroup under 

multiplication).

Furthermore, they assume that •¬ has the following properties:

(iii) For •¬ is invertible if and only if s is.

(iv) For each y•¸Y, there is some •¬ such that •¬

The main result of [1, Chapter I, •˜2] is that for all Y, there is a natural bijection

Homk •¬ all pairs •¬ on Y satisfying (i)-(iv) above}.

This description of the functor represented by X is clearly related to the usual way of 

constructing X by patching together the affine schemes •¬

In contrast, our description of Homk(Y,X) is more closely tied to the geometric 

quotient •¬ An advantage of our approach is how it generalizes the 

usual description of maps between projective spaces (see Theorem 3.1). The Ash-

Mumford-Rapoport-Tai approach, on the other hand, has the virtue that it applies 

to all toric varieties, not just smooth ones. (The problem with our description in the 

nonsmooth case is that the sheaf •¬ need not be a line bundle, though it is reflexive.) 

It would be interesting to see the analog of Theorem 1.1 for the case of simplicial toric 

varieties.

I am grateful to Martin Guest and Stein Arild Str•¬mme for bringing this problem 

to my attention. The research for this paper was supported by NSF grant DMS-9301161.
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