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Abstract. Accuracy levels of metres per second require the fundamental concept of “radial velocity” for stars and other distant
objects to be examined, both as a physical velocity, and as measured by spectroscopic and astrometric techniques. Already in
a classical (non-relativistic) framework the line-of-sight velocity component is an ambiguous concept, depending on whether,
e.g., the time of light emission (at the object) or that of light detection (by the observer) is used for recording the time coordi-
nate. Relativistic velocity effects and spectroscopic measurements made inside gravitational fields add further complications,
causing wavelength shifts to depend, e.g., on the transverse velocity of the object and the gravitational potential at the source.
Aiming at definitions that are unambiguous at accuracy levels of 1 m s−1, we analyse different concepts of radial velocity and
their interrelations. At this accuracy level, a strict separation must be made between the purely geometric concepts on one hand,
and the spectroscopic measurement on the other. Among the geometric concepts we definekinematic radial velocity, which
corresponds most closely to the “textbook definition” of radial velocity as the line-of-sight component of space velocity; and
astrometric radial velocity, which can be derived from astrometric observations. Consistent with these definitions, we propose
strict definitions also of the complementary kinematic and astrometric quantities, namely transverse velocity and proper mo-
tion. The kinematic and astrometric radial velocities depend on the chosen spacetime metric, and are accurately related by
simple coordinate transformations. On the other hand, the observational quantity that should result from accurate spectroscopic
measurements is thebarycentric radial-velocity measure. This is independent of the metric, and to first order equals the line-of-
sight velocity. However, it is not a physical velocity, and cannot be accurately transformed to a kinematic or astrometric radial
velocity without additional assumptions and data in modelling the process of light emission from the source, the transmission of
the signal through space, and its recording by the observer. For historic and practical reasons, the spectroscopic radial-velocity
measure is expressed in velocity units asczB, wherec is the speed of light andzB is the observed relative wavelength shift
reduced to the solar-system barycentre, at an epoch equal to the barycentric time of light arrival. The barycentric radial-velocity
measure and the astrometric radial velocity are defined by recent resolutions adopted by the International Astronomical Union
(IAU), the motives and consequences of which are explained in this paper.

Key words. techniques: radial velocities – techniques: spectroscopic – astrometry – reference systems – stars: kinematics –
methods: data analysis

1. The need for stringent definitions

Radial velocityis an omnipresent concept in astronomy, and
a quantity whose precision of determination has improved
significantly in recent years. Its meaning is generally under-
stood as the object’s motion along the line of sight, a quantity
normally deduced from observed spectral-line displacements,
interpreted as Doppler shifts. However, despite its ubiquity,
there has not existed any physically stringent definition of “ra-
dial velocity” with an accuracy to match currently attainable
measuring precisions. Two first such definitions – one for the
result of spectroscopic observations, and one for the geomet-
ric (astrometric) concept of radial velocity – were adopted at
the General Assembly of the International Astronomical Union
(IAU), held in 2000. The purpose of this paper is to explain
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their background, the need for such definitions, and to elabo-
rate on their consequences for future work. Thus, the paper is
not about the detailed interpretation of observed spectral-line
displacements in terms of radial motion, nor about the actual
techniques for making such measurements; rather, it is the def-
inition of “radial velocity” itself, as a geometric and spectro-
scopic concept, that is discussed.

The need for a strict definition has become urgent in re-
cent years as a consequence of important developments in the
techniques for measuring stellar radial velocities, as well as the
improved understanding of the many effects that complicate
their interpretation. We note in particular the following circum-
stances:

Precision and accuracy of spectroscopic measurements:
spectroscopic measurement precisions are now reaching (and
surpassing) levels of metres per second. In some applications,
such as the search for (short-period) extrasolar planets or stellar
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oscillations, it may be sufficient to obtain differential measure-
ments of wavelength shifts, in which case internal precision is
adequate and there is no need for an accurate definition of the
zero point. However, other applications might require the com-
bination of data from different observatories, recorded over ex-
tended periods of time, and thus the use of a common reference
point. Examples could be the study of long-term variations due
to stellar activity cycles and searches for long-period stellar
companions. Such applications call for data that are not only
precise, but also accurate, i.e., referring to some “absolute”
scale of measurements. However, the transfer of high-precision
measurements to absolute values was previously not possible,
partly because there has been no agreement on how to make
such a transfer, or even on which physical quantity to transfer.

In the past, a classical accuracy achieved for measuring
stellar radial velocities has been perhaps 1 km s−1, at which
level most of these issues did not arise, or could be solved
by the simple use of “standard stars”. With current methods
and instrumentation, the accuracy by which measured stel-
lar wavelengths can be related to absolute numbers is largely
set by the laboratory sources used for spectrometer calibra-
tion (lines from iodine cells, lasers, etc.). An accuracy level
of about 10 m s−1 now seems reachable. Since any fundamen-
tal definition should be at least some order of magnitude better
than current performance, the accuracy goal for the definition
was set to 1 m s−1. This necessitates a stringent treatment of the
radial-velocity concept.

Ambiguity of classical concepts: a closer inspection even
of the classical (non-relativistic) concepts of radial velocity
reveals that these are ambiguous at second order in velocity rel-
ative to the speed of light. For instance, if radial velocity is de-
fined as the rate of change in distance, one may ask whether the
derivative should be with respect to the time of light emission
at the object, or of light reception at the observer. Depending
on such conventions, differences exceeding 1 m s−1 would be
found already for normal stellar velocities.

Intrinsic stellar spectroscopic effects: on accuracy levels
below∼1 km s−1, spectral lines in stars and other objects are
generally asymmetric and shifted in wavelength relative to the
positions expected from a Doppler shift caused by the mo-
tion of their centres-of-mass. Such effects are caused e.g. by
convective motions in the stellar atmosphere, gravitational red-
shift, pressure shifts, and asymmetric emission and/or absorp-
tion components. As a consequence, the measured wavelengths
do not correspond to the precise centre-of-mass motion of the
star.

Relation between Doppler shift and velocity: even if we
agree to express the observed wavelength shift (whatever its
origin) as a velocity, it is not obvious how that transformation
should be made. Should it use the classical formulavr = cz
(where c is the speed of light andz = (λobs − λlab)/λlab

the dimensionless spectral shift), or the relativistic version (in
which case the transverse velocity must either be known or as-
sumed to be negligible)? Differences are of second order inz,
thus exceeding 1 m s−1 already for “normal” stellar velocities
(>∼20 km s−1), and 100 m s−1 for more extreme galactic veloci-
ties (>∼200 km s−1).

The role of standard stars: practical radial-velocity mea-
surements have traditionally relied on the use of standard stars
to define the zero point of the velocity scale. While these have
aimed at accuracies of the order 100 m s−1, it has in reality
been difficult to achieve consistency even at this level due to
poorly understood systematic differences depending on spec-
tral type, stellar rotation, instrumental resolution, correlation
masks used, and so on. Standard stars will probably continue to
play a role as a practical way of eliminating, to first order, such
differences in radial-velocity surveys aiming at moderate ac-
curacy. However, their relation to high-accuracy measurements
needs to be clearly defined.

Gravitational redshifts: the gravitational potential at the
stellar surface causes all escaping photons to be redshifted
by an amount that varies from∼30 m s−1 for supergiants,
∼30 km s−1 for white dwarfs, and much greater values for neu-
tron stars and other compact objects. Even for a given star, the
precise shift varies depending on the height at which the spec-
tral lines are formed. The observed shift also depends on the
gravitational potential at the observer, and therefore on the ob-
server’s distance from the Sun.

Astrometric determination of radial motion: current and
expected advances in astrometry enable the accurate deter-
mination of stellar radial motions without using spectroscopy
(Dravins et al. 1999), i.e., based on purely geometric measure-
ments such as the secular change in trigonometric parallax.
Comparison of such velocities with spectroscopic measure-
ments could obviously give a handle on the intrinsic stellar ef-
fects mentioned above, but how should such a comparison be
made? How does the astrometric radial velocity differ concep-
tually from the spectroscopically determined velocity?

Accurate reference systems for celestial mechanics and as-
trometry: the rapid development of observational accuracies
in astrometry and related disciplines has made it necessary to
introduce new conventions and reference systems, consistent
with general relativity at sub-microarcsecond levels (Johnston
et al. 2000). Radial velocity, regarded as a component of space
velocity, obviously needs to be considered within the same
framework.

Cosmology: ultimately, spectroscopic measurements of dis-
tant stars are also affected by cosmological redshift. To what
extent does also the local space to nearby stars take part in
the general expansion of the Universe? What is an actual
“velocity”, and what is a change of spatial coordinates? Since
such factors are generally not known to the spectroscopic ob-
server, it is impossible to convert the observed shift into a pre-
cise kinematic quantity.

From these examples it should be clear that the naive con-
cept of radial velocity, as the line-of-sight component of the
stellar velocity vector measured by the Doppler shift of the
spectral lines, is far too simplistic when aiming at accuracies
much better than 1 km s−1. To arrive at a consistent set of
definitions applicable to the various classes of observations,
it is necessary to consider all the phases of an astronomical
event (Fig. 1). These include the motion of the star; the emis-
sion of a light signal from the star and its propagation to the
observer through varying gravitational fields and possibly ex-
panding space; the motion of the observer; and the reception
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Fig. 1. Whether a radial velocity is measured spectroscopically or ge-
ometrically, the relevant astronomical event consists of several parts:
the motion of the observed object; the emission of an electromagnetic
signal from the object, symbolised by the open circle; the propagation
of the signal through space; the motion of the observer; and the recep-
tion of the signal by the observer, symbolised by the black dot (figure
partially adapted from Klioner 2000a).

and measurement of the signal by the observer1. The observer
has detailed knowledge only of the last two phases of the event
(symbolised by the black dot in Fig. 1), while the interpretation
of the previous phases requires additional assumptions or mod-
elling. The result of a measurement should ideally be specified
in a way that is neutral with respect to such interpretation. As
we shall see (Sect. 5), this leads to the definition ofbarycentric
radial-velocity measureas the desired result of a spectroscopic
measurement. However, to relate this quantity to physical mo-
tion in even simple situations, a model is required which in-
corporates all phases of the event as illustrated in the figure.
This, in turn, leads to the introduction of additional geometric
quantities, viz.kinematic radial velocityandastrometric radial
velocity(Sect. 4).

The remainder of this paper is organised as follows.
Section 2 contains a preliminary heuristic discussion of the
radial-velocity concept as such; the purpose is to point out the
inadequacy and ambiguity of standard notions, without pro-
viding a solution. Section 3 then gives an overview of spec-
troscopic radial-velocity determinations, highlighting effects
other than trivial stellar motion that influence the outcome of
such measurements. The accurate meaning of the geometric
and spectroscopic quantities is evaluated in the more techni-
cal Sects. 4 and 5, leading up to the IAU resolutions, whose
practical implications are considered in Sect. 6. Some unsolved
issues, beyond the scope of the present definitions, are briefly
discussed in Sect. 7. The Appendix contains the full text of the
two IAU resolutions.

1 For conciseness, we will from here on use the word “star” to de-
note any observed object far outside the solar system, and “light” to
denote electromagnetic radiation from that object.

2. What is meant by “radial velocity”?

In this section we examine the common notions of “radial ve-
locity” from a somewhat naive viewpoint, in order to highlight
some of the difficulties associated with this apparently simple
concept. Additional complications in the interpretation of spec-
troscopic shifts are discussed in Sect. 3.

2.1. Geometric concepts

The Encyclopedia of Astronomy and Astrophysicsdefines the
radial velocity of a star as “the component of its motion
along the line of sight of the observer” (Latham 2001). The
Explanatory Supplement to the Astronomical Almanacgives an
alternative definition, “the rate of change of the distance to an
object” (Seidelmann 1992). Both agree with common notions
about radial velocity, but are they equivalent? Let us start by
examining this question in a purely classical framework, with-
out the complications of relativity, but taking into account the
finite speed of light (c).

In a Euclidean metric with origin at the solar-system
barycentre and witht denoting coordinate time, letr∗(t) be the
motion of the star,u∗ = dr∗/dt its barycentric space velocity,
r∗ = |r∗| the barycentric distance, andu = r∗/r∗ the barycen-
tric direction to the star. Following the first of the two defini-
tions quoted above, the radial velocityvr is the component ofu∗
alongu, or

vr = u′u∗ , (1)

where the prime (′) denotes scalar multiplication of vectors.
From r∗ = ur∗ we can write the space velocity

u∗ ≡ dr∗
dt
=

du
dt

r∗ + u
dr∗
dt
· (2)

Taking the scalar product withu we have, sinceu′u = 1 and
u′(du/dt) = 1

2d(u′u)/dt = 0,

u′u∗ =
dr∗
dt
· (3)

The right member apparently corresponds to the second def-
inition quoted above. Comparing Eqs. (1) and (3) it there-
fore appears that we have proved the equivalence of the two
definitions.

However, the situation is more complex when the finite
speed of light is considered. The observation involves (at least)
two different times, viz. the time of light emission at the star (t∗)
and the time of light reception at the observer (tobs), cf. Fig. 1.
The second definition, “the rate of change of the distance”, is
in fact ambiguous because it is not specified which time is used
to compute the time derivative. Clearly thet in Eq. (3) must
be the same as used in describing the motion of the star,r∗(t),
which should be independent of the observer and therefore cor-
responding to the time of light emission. However, when de-
scribing an observed phenomenon, such as a measurement of
the line-of-sight velocity of a star, it is more natural to refer it
to the time of light receptiontobs

2.

2 There is an analogous problem in the definition of proper motion,
i.e. the rate of change in directionu, but the consensus is that proper
motion means du/dtobs, not du/dt∗; cf. Sect. 4.5.
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The two instantst∗ and tobs are related by the light-time
equation, which for an observer at the solar-system barycentre
(and ignoring gravitational time delay) is simply

r∗ = c(tobs− t∗) . (4)

Depending on whicht is used to compute the “rate of change”
in the second definition, we obtain by means of the light-time
equation two different expressions forvr:

v′r ≡
dr∗
dt∗

= c

(
dtobs

dt∗
− 1

)

v′′r ≡
dr∗
dtobs

= c

(
1− dt∗

dtobs

)


· (5)

The difference,v′r − v′′r = v′rv′′r /c ' v2r /c, exceeds 1 m s−1 for
|vr| >∼ 20 km s−1 and 100 m s−1 for |vr| >∼ 200 km s−1. Since rel-
ative velocities in our Galaxy are typically tens of km s−1, and
may reach several hundred km s−1, the ambiguity has practical
relevance in the context of precise stellar radial velocities.

It is seen from Eq. (5) that the ambiguity arises when
the quantity dtobs/dt∗ is transformed into a velocity, i.e. when
a model is used to interpret the data. dtobs/dt∗, on the other
hand, is a direct, model-independent relation between the basic
events of light emission and reception. From an observational
viewpoint, we could therefore regard the dimensionless quan-
tity dtobs/dt∗ as more fundamental than eitherv′r or v′′r .

2.2. Doppler shift

The result of a spectroscopic line-shift measurement may be
expressed by means of the dimensionless redshift variable

z=
λobs− λ0

λ0
=
ν0 − νobs

νobs
, (6)

whereλ0 (ν0) is the rest-frame wavelength (frequency). The
redshift is often converted to a conventional velocity using
some standard formula, the simplest being

v(1)
r = c

λobs− λ0

λ0
= cz. (7)

However, an alternative conversion is obtained by considering
the relative shift in frequency rather than in wavelength, viz.:

v(2)
r = c

ν0 − νobs

ν0
=

cz
1+ z

· (8)

This last expression has traditionally been used in radio as-
tronomy (e.g. Walker 1987), although the practice is discour-
aged due to the risk of confusion with the earlier expression
(Contopoulos & Jappel 1974; M¨uller & Jappel 1977).v(1)

r is
sometimes called the “optical velocity” andv(2)

r the “radio ve-
locity” (Greisen et al. 2003).

For use with large velocities, the following formula is often
recommended (e.g. Lang 1974):

v(3)
r = c

(1+ z)2 − 1
(1+ z)2 + 1

· (9)

The expression is derived from the special-relativistic Doppler
formula by assuming purely radial motion (cf. below).

Thus we have at least three different conventions for trans-
formingz into vr that are more or less “standard” in astronomy.
From the series expansions

v(1)
r = cz

v(2)
r = c (z− z2 + z3 − z4 + · · ·)
v(3)

r = c (z− 1
2z2 + 1

4z4 − · · ·)


(10)

it is seen that the differences between the three conventions are
of second order (cz2 ∼ v2r /c).

Equation (9) ignores the star’s transverse velocity (vt). The
complete Doppler formula from special relativity reads (Lang
1974):

1+ z=
1+ vr/c√
1− v2/c2

, (11)

wherev = (v2r + v
2
t )1/2 is the total velocity relative the observer.

Solving for vr and expanding in powers ofz andu = vt/c we
obtain a fourth expression forvr:

v(4)
r = c

[
z− 1

2(z2 + u2) + 1
4zu2 + 1

4(z4 − u4) − · · ·
]
. (12)

Comparing with the third variant of Eq. (10) it is seen that the
transverse Doppler effect is∼v2t /2c, i.e. typically of a similar
size as the differences among the expressions in Eq. (10).

Thus, various conventions exist for converting the observed
Doppler shift into a radial velocity; the differences are of or-
derv2/c, exceeding 1 m s−1 for normal galactic stellar velocities
and 100 m s−1 for high-velocity stars. Within the framework
of special relativity (thus ignoring the many other effects dis-
cussed below), a “rigorous” transformation fromz to vr is possi-
ble, but only if the transverse velocity of the star is also known.

2.3. Astrometric determination of radial motion

Astrometry specialises in measuring thedirectionsto objects,
and in particular the directional changes caused by the motions
of the object (proper motion) and observer (parallax). Although
such measurements primarily yield the distances and transverse
velocities of the objects, they are in principle sensitive also to
the radial motion of the objects through various second-order
effects. Although the principles have been known for a long
time, it is only with the high accuracies realised with space
techniques that astrometry has become a practical possibility
for radial-velocity measurements.

Different methods exist for the determination of astromet-
ric stellar radial velocities (Dravins et al. 1999). The most di-
rect method, measuring the rate of parallax change as a star
approaches or recedes, is still beyond realised accuracies (e.g.,
even for the nearby high-velocity Barnard’s star, the expected
parallax rate is only 34µas yr−1), although it is expected to
become measurable in the foreseeable future. Another method
utilises that a star’s proper motion changes as a result of its
changing distance from the Sun (“perspective acceleration”).
By combining high-accuracy proper motions with measure-
ments of stellar positions at different epochs, radial-velocity
values have so far been determined for some 20 stars, though
only with modest accuracies (typically a few tens of km s−1;
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Dravins et al. 1999). However, a third method, applicable to
nearby moving clusters such as the Hyades, whose stars share
the same (average) velocity vector, already permits accuracies
on the sub-km s−1 level, and for several classes of stars has
yielded better data than have been possible to achieve spectro-
scopically. Here, parallaxes and proper motions are combined
to determine the apparent secular expansion or contraction of
the angle subtended by a cluster, as it is approaching or reced-
ing. Using data from the Hipparcos satellite mission, more than
a thousand stars have already been thus studied (Madsen et al.
2002), a number to be increased when data from future astrom-
etry missions become available.

These methods are all based on the same general princi-
ple: letθ be the angular size of an object (the Earth’s orbit as
seen from the star, the distance travelled by the star in a given
time, or the size of a stellar cluster) andr its distance; then
the assumption is thatrθ = constant, from which ˙r = −r θ̇/θ.
While the principle is simple enough, the question still remains
whether the derivative (˙) should be taken with respect to the
time of observation, or the time of light emission. Thus, also
the concept of astrometric radial velocities needs a more pre-
cise definition.

3. Limitations of spectroscopic radial-velocity
measurements

In this section we highlight the various issues that may limit
the achievable accuracy in stellar radial velocities, as deduced
from spectroscopic observations.

3.1. Gravitational redshifts

The gravitational potential induced by a star’s mass causes
redshifts of all photons leaving its vicinity. Across the
Hertzsprung–Russell diagram, the gravitational redshifts
change by three orders of magnitude between white dwarfs
(some 30 km s−1) and supergiants (some 30 m s−1). This grav-
itational redshiftvgrav = GM/rc diminishes with distance from
the stellar centre asr−1. For the Sun, the value is 636.5 m s−1 for
light escaping from the solar photosphere (r = R�) to infinity3,
and 633.5 m s−1 for light intercepted at the Earth’s mean dis-
tance from the Sun (r = 215R�). A solar spectral line instead
formed at chromospheric heights (30 Mm, say;r = 1.04 R�)
will have this redshift decreased by some 20 m s−1, and a coro-
nal line by perhaps 100 m s−1.

For other stars, the shift scales as (M/M�)(R/R�)−1, or
as (g/g�)(R/R�), whereg is the surface gravity. SinceRandM
can rarely be estimated to better than∼5% for single stars
(Andersen 1991), while spectroscopic determinations of logg
have much larger uncertainties (Lebreton 2000), it is normally
not possible to compute the gravitational redshift to better
than 50 m s−1 for individual single stars.

3 Using R� = (6.95508± 0.00026)× 108 m for the solar photo-
spheric radius (Brown & Christensen-Dalsgaard 1998) andGM� =
1.327124× 1020 m3 s−2 (Standish 1995) we getGM�/Rc= 636.486±
0.024 m s−1.

3.2. Effects inside stellar atmospheres

It is well known that photospheric absorption lines in the solar
spectrum are blueshifted by about 400 m s−1 (after correction
for the known gravitational redshift) as a result of convective
motions in the solar atmosphere. In the photospheric granula-
tion, hot (bright) and rising (blueshifted) convective elements
contribute more photons than the cooler (darker) and sink-
ing (redshifted) gas, thus causing a net blueshift of the ab-
sorption lines (Dravins 1982; Allende Prieto & Garc´ıa López
1998). Detailed modelling of stellar atmospheres involving
3-dimensional and time-dependent hydrodynamics is capable
of producing synthetic spectral lines whose intensity profiles
and patterns of wavelength displacements closely match ob-
servations for at least solar-type stars (e.g. Asplund et al.
2000; Allende Prieto et al. 2002). For main-sequence stars,
the predicted convective blueshifts range between approxi-
mately 1000 m s−1 for F-type stars and 200 m s−1 for cooler
K-types.

The shift is however not the same for all the lines in a spec-
trum. The precise amount of shift depends on the strength of
the absorption line (and hence on the stellar metallicity), since
different lines are formed at different atmospheric depths and
thus experience different granulation contrasts. For the Sun
such (observed and modelled) differential shifts between dif-
ferently strong lines in the visual amount to some 200 m s−1,
but reach 1000 m s−1 for the hotter F-type star Procyon
(Allende Prieto et al. 2002). The shifts further depend on ex-
citation potential and ionisation level (due to different con-
ditions of line formation), and on wavelength region (due to
varying granulation contrast). Actually, in some wavelength
regions, where the lines may originate in atmospheric layers
characterised by convective overshoot (with an inverted veloc-
ity/temperature correlation), the lineshifts may change sign to
become convective redshifts. For the Sun this can be observed
in cores of very strong lines in the optical or generally in the
far ultraviolet (Samain 1991).

Line profiles are also asymmetric, making the determina-
tion of accurate lineshifts a matter of convention – where in
the line should the shift be measured? Asymmetries are caused
not only by convective motions on the stellar surface but also
by asymmetric emission and/or absorption components (e.g.,
due to chromospheric emission or stellar-wind absorption), by
microscopic processes causing wavelength shifts on the atomic
level (e.g., pressure shifts), or macroscopic circumstances (e.g.,
gravitational redshift). Further complications enter for pulsat-
ing stars, those with expanding atmospheres, or such with de-
viant isotopic compositions.

Since many physical effects thus contribute to the observed
wavelength shifts (e.g. Dravins 2003), it is not possible to de-
duce an accurate centre-of-mass motion simply from the ob-
served differences between wavelengths in the source and those
measured in the laboratory.

3.3. The role of standard stars

Radial-velocity standards, with a supposedly known “true”
velocity, have long been used as objects against which to
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calibrate observations of other stars. Indeed, a goal of the
IAU Working Group on Radial Velocity Standard Stars has
been “to provide a list of such standard stars whose velocities
are known with an accuracy of 100 m s−1”. Overviews of the
work by this and other groups are in Stefanik et al. (1999),
Udry et al. (1999), Fekel (1999), and in various triennial re-
ports from IAU Commission 30 on radial velocities, published
in the IAU Transactions (e.g. Bergeron 1994; Andersen 1999;
Rickman 2001).

In practical application, however, a number of dependences
on the 0.5 km s−1 level have been found, in particular on the
stellar colour index, differences among different radial-velocity
instruments, between different spectrum correlation masks ap-
plied on the same stellar spectrum, etc. The best agreement is
normally found for stars of spectral type close to that of the
Sun – naturally so, since the instruments and data reductions
are normally calibrated against the solar spectrum e.g. as re-
flected offminor planets, whose motions are accurately known
through other methods, and the procedures set up to produce
consistent results at least for such a solar spectrum.

However, not even very elaborate calibrations are likely
to produce any “true” standards to a much better precision
than 0.5 (or, perhaps, 0.3) km s−1, unless a detailed physical
model of the observed star is developed. The reason is sim-
ply the physical nature of stellar spectra and the practical im-
possibility to obtain noise-free measurements. Apart from the
physical effects of stellar surface convection and gravitational
redshifts mentioned above, the wavelengths of stellar spectral
lines depend on, i.e., factors such as the stellar rotation rate,
the angle under which the stellar rotation axis is observed, the
phase in a possible magnetic stellar activity cycle, and the spec-
tral resolution and instrumental profile of the observer’s instru-
ment. Here, we give examples of such effects that are likely
to limit the ultimate achievable precision for radial-velocity
standard-stars to levels not much better than 0.5 km s−1.

3.3.1. Effects of stellar rotation

The influence of stellar rotation has been realised, especially
for earlier-type stars with their often rapid rotation (Andersen
& Nordström 1983; Verschueren & David 1999; Griffin et al.
2000). The effects caused by the mismatch between a spectrum
template for a slow-rotation star and a rapidly rotating A-type
star may exceed 1 km s−1 (Verschueren & David 1999). The
origin of these effects is the rotational line-broadening and the
ensuing blending of spectral lines, significant when a given star
is observed equator-on, but disappearing when viewed pole-on.

Even very modest rotational velocities in sharp-lined late-
type stars may cause significant wavelength displacements of
the spectral-line bottoms and other parts of the line profiles
used for radial-velocity determinations. Naively, one might ex-
pect that increased stellar rotation would merely smear out the
line profiles and perhaps straighten out the bisectors which de-
scribe the line asymmetry. Actually, for more rapid rotation,
when the asymmetric line components originating near the stel-
lar limbs begin to affect the wings of the profile integrated over
the stellar disk, the line asymmetries may become enhanced.

This phenomenon was suggested by Gray & Toner (1985) and
by Gray (1986) and studied in more detail for a simulated
rapidly rotating Sun by Smith et al. (1987). Detailed line profile
calculations from hydrodynamic model atmospheres for stars
of different types (Dravins & Nordlund 1990) show that this
effect may easily displace photospheric line-bottoms by a few
hundred m s−1 already in solar-type stars rotating withV sini
less than 10 km s−1. Also, stars may rotate not as rigid bodies,
and rotation may be differential with respect to stellar latitude,
atmospheric height, or between magnetic and non-magnetic el-
ements. The existence of differential rotation is suggested both
from studies of starspots (e.g., Weber & Strassmeier 2001;
Collier Cameron et al. 2002), and from analyses of line pro-
files (Reiners et al. 2001).

3.3.2. Effects of stellar activity cycles

On levels of perhaps 10–100 m s−1, at least cooler stars undergo
apparent radial-velocity variations during a stellar activity cy-
cle, when differently large fractions of the stellar surface are
covered by active regions with magnetically “disturbed” gran-
ulation (e.g., Gray et al. 1996). Magnetic flux that becomes en-
tangled among the convective features limits the sizes and the
temperature and velocity amplitudes to which these features
develop. For solar observations, see Spruit et al. (1990, their
Fig. 1) and Schmidt et al. (1988); for theory, see Bercik et al.
(1998). The resulting spectral line asymmetries are changed in
the sense of smaller asymmetries and smaller wavelength shifts
in the active regions (e.g. Immerschitt & Schr¨oter 1989; Brandt
& Solanki 1990, and references therein).

Livingston et al. (1999) followed the full-disk asymmetries
of Fe lines during a full 11-year solar activity cycle, finding
cyclic variations in the line asymmetry with an amplitude of
about 20 m s−1; presumably the corresponding absolute shifts
are (at least) of a similar size. Indeed, variations on this order
can be predicted from spatially resolved observations of line
profiles in active regions, weighted with the cyclically changing
area coverage of active regions during an activity cycle. The
effects can be expected to increase (to perhaps 50 m s−1) for
younger and chromospherically more active stars, e.g., F- and
G-type ones in the Hyades (Saar & Donahue 1997).

Since the amount of convective lineshift differs among dif-
ferent types of spectral lines and between different spectral
regions, also the activity-induced changes in this shift must
be expected to differ. While the identification of such differ-
ences could be important to find lines whose sensitivity to
stellar activity is smaller (thus being better diagnostics for
exoplanet signatures) or greater (being better diagnostics for
magnetic activity), such data are not yet available (and may
indeed require a stringent definition of the radial-velocity mea-
sure to permit intercomparisons between observations at differ-
ent epochs).

Besides these cyclic changes, there are shorter-term fluctu-
ations (on a level of perhaps 20–30 m s−1) in the apparent radial
velocity of stars, which often are greater in stars with enhanced
chromospheric activity. Presumably, this reflects the evolution
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and changing area coverages of active regions (e.g. Saar et al.
1998; Saar & Fischer 2000; Santos et al. 2000).

3.3.3. Effects caused by starspots and surface
inhomogeneities

Greater effects are present in spotted stars whose photometric
variability indicates the presence of dark spots across the stel-
lar surface. The amplitude of variations expected from photo-
metrically dark spots is on the order of 5 m s−1 for solar-age
G-type stars, increasing to perhaps 30–50 m s−1 for younger
and more active stars (Saar & Donahue 1997; Hatzes 2002). In
more heavily spotted stars (such already classically classified
as variables), the technique of Doppler imaging exploits the
variability of spectral-line profiles to reconstruct stellar surface
maps (e.g., Piskunov et al. 1990), but obviously any more accu-
rate deduction of the radial motion of the stellar centre-of-mass
from the distorted spectral lines is not a straightforward task.

Surface inhomogeneities causing such line distortions need
not be connected to photometrically dark (or bright) spots, but
could be chemical inhomogeneities across the stellar surface
(with locally different line-strengths) or just patches of granu-
lation with different structure (Toner & Gray 1988).

3.3.4. Effects caused by the finite number of granules

Even the spectrum of a hypothetical spot-less and non-rotating
star with precisely known physical and chemical properties will
probably still not be sufficiently stable to serve as a “stan-
dard” on our intended levels of accuracy. One reason is the
finite number of convective features (granules) across the stel-
lar surface. For the Sun, a granule diameter is on the order
of 1000 km, and there exist, at any one time, on the order
of 106 such granules on the visible solar disk. The spectrum
of integrated sunlight is made up as the sum of all these contri-
butions: to make an order-of-magnitude estimate, we note that
each granule has a typical velocity amplitude of 1–2 km s−1.
Assuming that they all evolve at random, the apparent ve-
locity amplitude in the average will be this number divided
by the square root of 106, or 1–2 m s−1. This “astrophysical
noise” caused by the finite number of granules is a quantity
that is becoming measurable also in solar-type stars in the form
of an excess of the power spectrum of spectral-line variabil-
ity at temporal frequencies of some mHz, corresponding to
granular lifetimes on the order of ten minutes (Kjeldsen et al.
1999). Although it can also be modelled theoretically (e.g.
Trampedach et al. 1998), such modelling can only predict the
power spectrum and other statistical properties, not the instan-
taneous state of any star.

The number of granules across the surfaces of stars of other
spectral types may be significantly smaller than for the Sun,
and the resulting “random” variability correspondingly higher.
For supergiants, it has been suggested than only a very small
number of convective elements (perhaps only a few tens) coex-
ist at any given time, but even a star with 104 granules would
show radial-velocity flickering an order of magnitude greater
than the Sun.

The effects are qualitatively similar for other types of sta-
tistically stable structures across stellar surfaces, e.g.p-mode
oscillations, where various surface regions on the star are
moving with varying vertical velocities. Since their averaging
across the star does not fully cancel, they are detectable as
lineshift variations on a level of several m s−1 (e.g. Hatzes 1996;
Bedding et al. 2001; Frandsen et al. 2002), demonstrating an-
other application of precise radial-velocity measurements, as
well as the limitations to stellar wavelength stability.

3.3.5. Effects caused by exoplanets

Intrinsically stable stars may show variability on the 10–
100 m s−1 level induced by orbiting exoplanets. Of course, this
is a true radial-velocity variation, but it practically limits the se-
lection of such stars as radial-velocity “standards”, since their
use on the m s−1 level would require detailed ephemerides for
their various exoplanets. It can be noted that 51 Peg used to be
a radial-velocity standard star!

3.3.6. Effects of instrumental resolution

A different type of wavelength displacements is introduced
by the observing apparatus, in effect convolving the pris-
tine stellar spectrum with the spectrometer instrumental pro-
file. Since all stellar spectral lines are asymmetric to some
extent, their convolution with even a perfectly symmetric
instrumental profile of an ideal instrument produces a differ-
ent asymmetry, and a different wavelength position e.g. of
the line-bottoms. Quantitative calculations demonstrate how
such effects reach 50 m s−1 and more, even for high-resolution
instruments (Bray & Loughhead 1978; Dravins & Nordlund
1990). Although this is “only” a practical limitation which,
in principle, could be corrected for if full information of the
instrumental response were available, this is not likely to be
possible in practice. For example, differences of many tens
of m s−1 in measured lineshifts may result between spectrome-
ters with identical spectral resolutions (measured as full width
at half-maximum), but which differ only in their amounts of
diffuse scattered light (Dravins 1987). Of course, even greater
lineshifts could be caused by asymmetric instrumental profiles.
Instrumental effects in spectroscopy are reviewed by Dravins
(1994) while methods for calibrating instrumental profiles are
discussed by, e.g., Valenti et al. (1995) and Endl et al. (2000).

3.3.7. Effects of instrumental design

For observational modes not involving analyses of highly re-
solved line profiles, but rather statistical functions such as
the cross-correlation between spectral templates, a series of
other instrumental effects may intermix with stellar ones. For
example, if a detector/template combination predominantly
measures a signal from the blue spectral region, it may be
expected to record a somewhat greater spectral blueshift in
cool stars since convective blueshifts generally increase at
shorter wavelengths (where a given temperature contrast in sur-
face convection causes a relatively greater brightness contrast).
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A red-sensitive system may give the opposite bias, unless it is
sensitive into the infrared, where the generally smaller stellar
atmospheric opacities make the deeper layers visible, with per-
haps greater convective amplitudes.

3.3.8. Conclusions about spectroscopic “standard”
stars

Physical and instrumental effects, such as those listed above
(and others, such as errors in laboratory wavelengths), imply
that there most probably do not exist any stars whose spectral
features could serve as a real standard on precision levels bet-
ter than perhaps 300 m s−1. Of course, for poorer precisions
– perhaps around 0.5 km s−1 – various standard sources, in-
cluding the solar spectrum, may continue to be used as before.
However, in order to deducetruevelocities to high accuracy, all
spectral observations – of “standard” stars and others – must
undergo a detailed physical modelling of their emitted spec-
trum, and of its recording process.

3.3.9. Possible future astrometric standard stars

The recently realised accurate determination of stellar radial
motions through astrometric measurements opens the possibil-
ity of having also radial-velocity standards determined inde-
pendent of spectroscopy. While the ultimate limitations in thus
obtainable accuracies have not yet been explored (e.g., what is
measured in astrometry is the photocentre of the normally un-
resolved stellar disk, whose coordinates may be displaced by
starspots or other features) there appear to be no known effects
that in principle would hinder such measurements to better than
100 m s−1 (or even 10 m s−1), at least for some nearby stars.
This will require astrometric accuracies on the microarcsecond
level, and possibly extended periods of observations, but these
are expected to be reachable in future space astrometry mis-
sions (Dravins et al. 1999).

3.4. Conclusions

From the above discussion it is clear that numerous effects may
influence the precise amount of spectral-line displacements.
Among these, only local effects near the observer (i.e., within
the [inner] solar system) can be reliably calculated and com-
pensated for. In particular, these depend on the motion and
gravitational potential of the observer relative to the desired
reference frame, normally the solar-system barycentre.

Therefore, spectroscopic methods will not be able, in any
foreseeable future, to provide values of stellar radial mo-
tion with “absolute” accuracies even approaching our aim
of 1 m s−1. Of course, this does not preclude that measurement
precisions (in the sense of their reproducibility) may be much
better and permit the detection of very smallvariationsin the
radial velocity of an object (whose exact amount of physical
motion will remain unknown) in the course of searching for,
e.g., stellar oscillations or orbiting exoplanets. In order to en-
able further progress in the many fields of radial-velocity stud-
ies, it seems however that more stringent accuracy targets have

to be defined, so that future observational and theoretical stud-
ies have clear goals to aim at.

Astrometric radial velocities do not appear to have the same
types of limitations as those deduced from spectroscopic shifts,
and more lend themselves to definitions that can be trans-
formed to “absolute” physical velocities. These, however, must
be stringently defined since different plausible definitions differ
by much more than our desired accuracies.

4. Kinematic and astrometric radial velocity

We will now more thoroughly scrutinise the various geomet-
ric effects entering the concept of “radial velocity”, aiming at
definitions that are consistent at an accuracy level of 1 m s−1.
This requires first that a system of temporal and spatial coordi-
nates is adopted; then that the relevant parts of the astronomical
event (Fig. 1) are modelled in this system, consistent with gen-
eral relativity at the appropriate accuracy level; and finally that
suitable conventions are proposed for the parameterisation of
the event.

The modelling of astrometric observations within a
general-relativistic framework has been treated in textbooks
such as Murray (1983), Soffel (1989) and Brumberg (1991),
and various aspects of it have been dealt with in several pa-
pers (e.g. Stumpff 1985; Backer & Hellings 1986; Klioner &
Kopeikin 1992; Klioner 2000b; Klioner 2003). Much of the
mathematical development in this and the next section is di-
rectly based on these treatments, but adapted in order to present
a coherent background for the definition and explanation of the
radial-velocity concepts.

4.1. Coordinate system (BCRS)

Subsequently,t and r ≡ (x, y, z) denote coordinates in the
Barycentric Celestial Reference System (BCRS) adopted by
the IAU 24th General Assembly (Rickman 2001) and discussed
by Brumberg & Groten (2001). The temporal coordinatet is
known as the Barycentric Coordinate Time (TCB). The BCRS
is a well-defined relativistic 4-dimensional coordinate system
suitable for accurate modelling of motions and events within
the solar system. However, it also serves as a quasi-Euclidean
reference frame for the motions of nearby stars and of more
distant objects, thanks to some useful properties: it is asymp-
totically flat (Euclidean) at great distances from the Sun; the
directions of its axes are fixed with respect to very distant ex-
tragalactic objects; and the origin at the solar-system barycen-
tre provides a local frame in which nearby (single) stars appear
to be non-accelerated, as they experience practically the same
galactic acceleration as the solar system. The axes are aligned
with the celestial system of right ascension and declination as
realised, for example, by the Hipparcos and Tycho Catalogues
(ESA 1997).

4.2. The light-time equation

As emphasised in Sect. 2.1, the relation between the events of
light emission and light reception is fundamental for describing
the astronomical event resulting in a geometric or spectroscopic
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observation. The two events are connected by the light-time
equation, from which the required spatial and temporal trans-
formations may be derived.

In the BCRS, letr∗(t) describe the motion of the star
and robs(t) that of the observer. Assume that a light signal
is emitted from the star at timet∗, when the star is at the
spatial coordinater∗ ≡ r∗(t∗) and its coordinate velocity is
u∗ ≡ (dr∗/dt)t=t∗ . Assume, furthermore, that the same light sig-
nal is received by the observer at timetobs, when the observer
is at the spatial coordinaterobs ≡ robs(tobs) and its coordinate
velocity is uobs ≡ (drobs/dt)t=tobs. The light-time equation can
now be written

tobs− t∗ = c−1 |r∗ − robs| + γ (t∗, r∗; tobs, robs) . (13)

Here, c = 299 792 458 m s−1 is the conventional speed of
light, | | denotes the usual (Euclidean) vector norm, andγ is
the relativistic delay of the signal along the path of propaga-
tion from star to observer. The delay term is required to take
into account that the coordinate speed of light in the presence
of a gravitational field is less thanc in the adopted metric, so
that the first term in Eq. (13) gives too small a value for the
light travel time. For present purposes it is sufficient to de-
scribe the gravitational field by means of the total Newtonian
potentialΦ(r) relative to the BCRS. For instance, the gravi-
tational field of the solar system is adequately described by
Φ(r) = G

∑
i Mi |r − r i |−1, whereG is the gravitational constant,

and the sum is taken over the different solar-system bodies hav-
ing (point) massesMi located at coordinatesr i . To first order
in c−2, the coordinate speed of light in the BCRS metric is given
by |dr/dt| = c(1 − 2Φ/c2). The time delay per unit length is
therefore 2Φ/c3. Integrating this quantity along the light path
(which for this calculation can be taken to be a straight line in
the BCRS coordinates) gives4

γ =
∑

i

2GMi

c3
ln

(
k′(r∗ − r i) + |r∗ − r i |

k′(robs− r i) + |robs− r i |
)
· (14)

k is the coordinate direction from the observer to the star,

k = |r∗ − robs|−1 (r∗ − robs) . (15)

Subsequently, we shall mainly consider the gravitational field
of the Sun (index= �), for which 2G M� c−3 ' 9.85 µs.
For objects as distant as the stars we can neglectr� compared
with r∗ in the numerator of the argument to the logarithm in
Eq. (14). Moreover,k is practically parallel withr∗, so the nu-
merator becomes simply 2r∗, wherer∗ = |r∗|. (The error in-
troduced by this approximation is<10−16 s for r∗ > 1 pc.)
The denominator varies depending on the relative positions
of the Sun, observer and star, but is typically of the order of
the astronomical unit (A) for an observer on the Earth. Thus
γ ∼ (10µs) ln(2r∗/A), or∼100µs for the nearest stars,∼200µs
at r∗ = 10 kpc, and∼300µs for objects at cosmological dis-
tances. This slowly varying delay of a few hundred microsec-
onds suffered by the light while propagating from the star to

4 Since the perturbing bodies move during the light propagation,
r i should be taken to be the position at the time of closest approach
of the photon to the perturbing body. For a rigorous treatment, see
Kopeikin & Schäfer (1999).

the solar system is generally ignored. Indeed, it would hardly
make sense to try to evaluate it, since the gravitational delays
caused by other bodies (in particular by the star itself) are not
included.

However, there is also a rapidly varying part ofγ in
Eq. (14), caused by the motion of the observer with respect
to the Sun. In order to separate the rapidly varying part of the
delay from the (uninteresting) long-range delay, we write

γ = γ∗ −
∑

i

2GMi

c3
ln

(
k′(robs− r i) + |robs− r i |

A

)
, (16)

where

γ∗ = 2G
(∑

i Mi

)
c−3 ln

(
2r∗
A

)
(17)

is practically a constant for the star (cf. below). Clearly any
constant length could have served instead ofA to separate the
terms in Eq. (16). Using the astronomical unit for this purpose
is just an arbitrary convention.

From the light-time equation we can now determine the
relation between the coordinate time interval dt∗ (e.g. repre-
senting one period of emitted radiation) and dtobs (the corre-
sponding period of coordinate time at the observer). Writing
|r∗ − robs| = k′(r∗ − robs) we have

dtobs− dt∗ = k′ (dr∗ − drobs) c−1 + dγ , (18)

from which

dt∗
dtobs

=
1+ k′uobsc−1 − dγ/dtobs

1+ k′u∗ c−1
· (19)

From Eqs. (16), (17) it follows that dγ/dtobs is the sum of two
terms, the first of which'(10µs)ρ/r∗, whereρ = dr∗/dtB is the
astrometric radial velocity of the star defined below (Sect. 4.5).
For |ρ| < c andr∗ > 1 pc this term is<10−13 and therefore neg-
ligible. The second term can be evaluated e.g. for an observer
in circular orbit (at 1 AU) around the Sun. It reaches a maxi-
mum value of<10−9 when the observer is behind the Sun so
that the light ray from the object just grazes the solar limb. The
simple expression

dt∗
dtobs

=
1+ k′uobsc−1

1+ k′u∗ c−1
(20)

is therefore always good enough to a relative accuracy better
than 10−9 (<0.3 m s−1 in velocity).

4.3. Barycentric time of light arrival

Since distances to objects beyond the solar system are generally
not known very accurately, it would be inconvenient to use the
time coordinatet∗ for describing observations of phenomena
that occur at such great distances. Instead, it is customary to
relate the observed events to the time scale of the observer. For
very accurate timing, e.g. as required in pulsar observations,
one must take into account both the geometrical (Rømer) delay
associated with the observer’s motion around the solar-system
barycentre, and the relativistic (Shapiro) delay caused by the
gravitational field of bodies in the solar system.
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We define thebarycentric time of light arrivalas

tB = t∗ + r∗ c−1 + γ∗ , (21)

where γ∗ is given by Eq. (17). That is,tB is the time of
light emission delayed by the nominal propagation time to the
barycentre (r∗/c) plus that part of the relativistic delay which
is independent of the observer. By means of Eqs. (14) and (16)
we find that the barycentric time of light arrival becomes

tB = tobs+ (r∗ − R) c−1

+
∑

i

2GMi

c3
ln

[
k′(robs− r i) + |robs− r i |

A

]
, (22)

whereR = |r∗ − robs| is the topocentric coordinate distance to
the star. Withr∗ = ur∗, whereu is the barycentric coordinate
direction to the star, the Rømer delay can be expanded to give

(r∗ − R) c−1 ' u′robs

c
− |u × robs|2

2cr∗
+

(u′ robs)3

2cr2∗
· (23)

For r∗ > 1 pc androbs∼ 1 AU the maximum amplitudes of the
three terms are'500 s, 1 ms, and 4 ns, respectively; neglected
terms are of order<10−13 s.

While Eq. (21) formallydefinesthe barycentric time of
light arrival, it is clear that Eqs. (22), (23) must in practice be
used to calculate it for any given observation. In principle this
also requires that the distancer∗ is known, but only to a moder-
ate precision. In many practical situations, the curvature terms
in Eq. (23) (depending onr−1∗ andr−2∗ ) can be neglected.

4.4. Definition of kinematic parameters

Within the BCRS we define the kinematic parameters of a star
to be its coordinater∗ at time t∗, and the instantaneous coor-
dinate velocity at the same instant,v∗ = dr∗/dt|t=t∗ . In a time
interval aroundt∗ we have

r∗(t) = r∗(t∗) + (t − t∗)u∗ + O(t − t∗)2 . (24)

The six components of the phase-space vector (r∗, u∗) are the
relevant elements for studies of galactic kinematics and dynam-
ics, for example integration of galactic orbits (after transforma-
tion to a galactocentric system).

We define thekinematic radial velocityas the component
of u∗ along the barycentric directionu = r∗r−1∗ :

vr = u′u∗ . (25)

The perpendicular component of the coordinate velocity is the
kinematic tangential velocity,ut = u∗−uvr. The kinematic radial
and tangential velocities are equivalent to the “true” radial and
tangential velocities introduced by Klioner (2000b).

4.5. Definition of astrometric parameters

The six components of (r∗, u∗) are not directly observable but
can in principle be derived from astrometric observations of the
star. There is consequently an equivalent set of sixastrometric
parameters, which we now define. Following the discussion in

Sect. 4.3, the astrometric parameters are considered as func-
tions oftB. Writing the barycentric coordinate of the star as

r∗ = ur∗ (26)

we define the celestial coordinates (α, δ) of the star at the
epochtB by means of the components of the unit vectoru in
the BCRS. This gives the first two astrometric parameters. The
third one is parallax, which we define as

π =
A
r∗

(27)

(cf. Klioner 2000b). The rate of change of the barycentric di-
rection is the proper-motion vector,

µ =
du
dtB
, (28)

from which the proper motion componentsµα∗ = α̇ cosδ
and µδ = δ̇ follow (the dot signifies differentiation with re-
spect totB). These five parameters are practically identical to
the standard astrometric parameters used, for instance, in the
Hipparcos Catalogue5. The sixth astrometric parameter is the
rate of change in barycentric coordinate distance, which we call
theastrometric radial velocity:

ρ =
dr∗
dtB
· (29)

The term is motivated because of the exact analogy with
the definition of the (astrometric) proper motion in Eq. (28).
Observationally, the astrometric radial velocity can in princi-
ple be determined e.g. from the secular change in parallax,
ρ = ∆(A/π)/∆tB (Dravins et al. 1999). The vectorµr∗ may
be called the astrometric tangential velocity. The astrometric
radial and tangential velocities are equivalent to the “apparent”
radial and tangential velocities introduced by Klioner (2000b).

It should be noted that the astrometric radial velocity is con-
ceptually quite different from the spectroscopic radial-velocity
measure to be defined in Sect. 5. The astrometric radial veloc-
ity refers to the variation of the coordinates of the source, and
therefore depends on the chosen coordinate system and time
scale. By contrast, the outcome of a spectroscopic observation
is a directly measurable quantity and therefore independent of
coordinate systems.

4.6. Transformation between kinematic
and astrometric parameters

The barycentric coordinate of the star is immediately derived
from the astrometric parameters by means of Eqs. (26), (27),
viz.:

r∗ = u(A/π) . (30)

5 There is however a subtle difference, in that proper motions in
the Hipparcos Catalogue are formally defined as du/dTB, whereTB

is the barycentric time of light arrival expressed on the Terrestrial
Time (TT) scale. The TT scale is essentially the observer’s proper
time, and differs from the coordinate time (TCB) used in Eq. (28)
by the average factor〈dT/dt〉 ' 1−1.55× 10−8 (Irwin & Fukushima
1999) (cf. Eqs. (39) and (42)). The Hipparcos proper motions should
therefore be multiplied by 0.9999999845 in order to agree with the
present definition.
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Taking the derivative of Eq. (21) with respect totB gives

1 =
dt∗
dtB
+
ρ

c

(
1+

2G
∑

i Mi

c2r∗

)
· (31)

The second term between parentheses is<10−13 for r∗ > 1 pc.
To sufficient accuracy we have therefore

dt∗
dtB
= 1− ρ

c
· (32)

If Eq. (26) is differentiated with respect tot∗ we find

u∗ =
du
dt∗

r∗ + u
dr∗
dt∗
=

(
du
dtB

r∗ + u
dr∗
dtB

)
dtB
dt∗

= (µr∗ + uρ) (1− ρ/c)−1 . (33)

Separating the radial and tangential components we have

vr = ρ (1− ρ/c)−1 (34)

and

ut = µr∗ (1− ρ/c)−1 . (35)

Equations (30) and (33)–(35) provide the complete transfor-
mation from astrometric to kinematic parameters. For the in-
verse transformation, we immediately obtainu andπ from r∗
by means of Eqs. (26) and (27). Multiplying Eq. (33) scalarly
with u gives

ρ =
u′u∗

1+ u′u∗ c−1
= vr(1+ vr/c)−1 , (36)

from which finally

µ =
π

A
u∗ − uu′u∗

1+ u′u∗ c−1
= (π/A) ut (1+ vr/c)−1 . (37)

The kinematic quantitiesv∗, vr andvt are coordinate speeds of
the object and therefore physically bounded by the local coor-
dinate speed of light, which in the BCRS far away from the
Sun is very close toc. The astrometric radial velocityρ and the
astrometric tangential velocityµr∗, on the other hand, are ap-
parent quantities which may numerically exceed the speed of
light. This is so because the denominator 1+ vr/c in Eqs. (36)
and (37) can become arbitrarily small for an object moving at
great speed towards the observer. Thus,ρ < −c if vr < − 1

2c,
while |µr∗| > c if vt > c + vr. The effect is equivalent to the
standard kinematic explanation of the superluminal expansion
observed in many extragalactic radio sources (Blandford et al.
1977; Vermeulen & Cohen 1994).

5. The spectroscopic parameter: Barycentric
radial-velocity measure

We have found that the naive notion of radial velocity as the
line-of-sight component of the stellar velocity is ambiguous
already in a classical (non-relativistic) formulation. In a rel-
ativistic framework the observed shift depends on additional
factors, such as the transverse velocity and gravitational po-
tential of the source and, ultimately, the cosmological redshift.
Since these factors are generally not (accurately) known to the

spectroscopic observer, it is impossible to convert the observed
shift z into a precise kinematic quantity.

What can be derived from spectroscopic radial-velocity
measurements is the wavelength shiftzB corrected for the local
effects caused by the motion of the observer and the potential
field in which the observation was made6. For convenience, this
shift may be expressed in velocity units asczB, wherec is the
conventional value for the speed of light. Although this quan-
tity approximately corresponds to radial velocity, its precise in-
terpretation is model dependent and one should therefore avoid
calling it “radial velocity”. The termradial-velocity measure
was proposed by Lindegren et al. (1999), and accepted in the
later IAU resolution, emphasising both its connection with the
traditional spectroscopic method and the fact that it is not quite
the radial velocity in the classical sense.

5.1. The observed spectral shift

In the previous sections the time coordinates of the various
events were all expressed on a single time scalet, i.e. the
Barycentric Coordinate Time (TCB). As we now move on to
consider spectroscopic measurements, it is necessary to include
proper time (τ) in our discussion. The reason for this is that
the atomic transitions generating spectral lines can be regarded
as oscillators or clocks that keep local proper time. The mea-
surement of spectroscopic line shifts is therefore equivalent to
comparing, by means of light signals, the apparent rates of two
identical atomic clocks, one located at the source and the other
at the observer.

Let τ∗ be the proper time at the source of radiation, andτobs

the proper time of the observer. Suppose thatn = ν∗dτ∗ cycles
of radiation are emitted at frequencyν∗ in the interval dτ∗ of
proper time at the source. Let us also suppose that then cycles
are received in the interval dτobs of proper time of the observer,
who consequently derives the frequencyνobs = n/dτobs =

ν∗dτ∗/dτobs. In terms of wavelength (λ = c/ν) the observed
spectroscopic shiftzobs is

1+ zobs≡ λobs

λ∗
=
ν∗
νobs
=

dτobs

dτ∗
, (38)

whereλ∗ (= λlab) is the rest-frame wavelength of the spectral
line. A spectroscopic lineshift measurement is therefore equiv-
alent to a direct comparison of the proper time scales at the
source and observer. We need to relate these proper time scales
to the coordinate timet used in previous sections.

The relation between proper time and coordinate time is
defined by the adopted metric. For the Barycentric Celestial
Reference System the accurate transformation can be found for
instance in Petit (2000). For the present applications we can
ignore terms of orderc−4, leading to the simple transformation

dτ
dt

(t, r, u) = 1− 1
c2

(
Φ(r) +

|u|2
2

)
, (39)

6 The indexB for barycentric signifies that – in contrast to the case in
cosmology – the shift (and velocityczB) is referred to the solar-system
barycentre, not the rest-frame defined by the cosmological microwave
background.
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in whichΦ(r) is the Newtonian potential introduced in Sect. 4.2
andu = dr/dt the coordinate velocity. This transformation ap-
plies both to the source (dτ∗/dt∗) and the observer (dτobs/dtobs).
Thus, using Eq. (20), we have

dτobs

dτ∗
=

dτobs

dtobs

dtobs

dt∗
dt∗
dτ∗

=

(
1− Φobs

c2
− |uobs|2

2c2

)
×

(
1+

k′uobs

c

)−1

×
(
1+

k′u∗
c

)
×

(
1− Φ∗

c2
− |u∗|

2

2c2

)−1

· (40)

According to Eq. (38) this equals the observed wavelength ra-
tio 1+ zobs.

5.2. Reduction to the barycentre

The first two factors on the right-hand side of Eq. (40) depend
on local conditions such as the motion of the observer in the
BCRS and the gravitational potential of the observer. These
vary between different times and locations of observers in the
solar system, but they are also computable to high accuracy
from known data, including the barycentric position and ve-
locity of the observer. The last two factors, on the other hand,
contain several quantities that cannot be uniquely separated
based on spectroscopic observations. They depend on the line-
of-sight component of the star’s coordinate velocity (k′u∗), but
also on the gravitational potential in the light-emitting region
and (through|u∗|2) on the tangential velocity of the star.

Let zB be the spectral shift corrected for the local, ac-
curately computable effects, i.e. reduced to the solar-system
barycentre. In the approximation of Eq. (40) we have:

1+ zB = (1+ zobs)

(
1− Φobs

c2
− |uobs|2

2c2

)−1

×
(
1+

k′uobs

c

)
· (41)

It is important to note that the unit vectork in Eq. (41) is the
coordinate directionto the star given by Eq. (15), not the ob-
served (aberrated and refracted) direction.

We now definebarycentric radial-velocity measureas the
quantityczB, wherec = 299 792 458 m s−1. For convenience,
czB is expressed in velocity units through multiplication with
the constantc. The radial-velocity measure therefore obtains
physical dimensions of SI metres per SI second7. The epoch
of any spectroscopic observation should be given as the corre-
sponding barycentric time of light arrival (Sect. 4.3).

For an observer on the surface of the Earth (index= ⊕) we
have〈Φobs〉 ' GM�/A + GM⊕/R⊕ ' 8.934× 108 m2 s−2 and
〈vobs〉 ' 29 785 m s−1, so that the second factor on the right-
hand side of Eq. (41) is on the average
(
1− Φobs

c2
− |uobs|2

2c2

)−1

' 1+ 1.550× 10−8 . (42)

7 Naturally,czB can be expressed in m s−1 or km s−1 according to
convenience, and for cosmological velocities the dimensionless mea-
surezB may be preferred.

In velocity units, the respective contributions from the solar
gravitational potential, the Earth’s own gravitational potential,
and the Earth’s velocity correspond to 3.0, 0.2 and 1.5 m s−1.
The main variation in this factor comes from the annual vari-
ation in the observer’s speed and distance from the Sun due
to the eccentricity (e ' 0.01671) of the Earth’s orbit. The re-
sulting amplitude is 2eG M�/c2 ' 3.3 × 10−10, or 0.1 m s−1

in velocity units.For an Earth-bound observer, therefore, we
may to sufficient accuracy (∼0.1 m s−1) use the average factor
in Eq. (42) when reducing the observed shift to the barycentre.

5.3. Interpretation of the radial-velocity measure

To first order,czB corresponds to the “classical” spectroscopic
radial velocity. However, we emphasise that the radial-velocity
measure is just a quantification of the spectroscopic shift, not of
physical velocity. Indeed, the interpretation ofczB in terms of a
kinematic or astrometric radial velocity is non-trivial and per-
haps even impossible at the desired accuracy level. This is com-
pounded by the additional effects discussed in Sect. 3, e.g. from
motions in the stellar atmosphere, pressure shifts, and cosmo-
logical redshift. These effects were ignored in Eq. (40) and we
now introduce an extra factor 1+ X to take them into account.
The barycentric radial-velocity measure is then given by

1+ zB =

(
1+

k′u∗
c

) (
1− Φ∗

c2
− |u∗|

2

2c2

)−1

(1+ X) . (43)

Only if X, Φ∗ and the tangential velocityvt are known to suffi-
cient accuracy is it possible to derivek′u∗ from the barycentric
radial-velocity measure. Using also the distance information,
the kinematic radial velocityvr = u′u∗ follows, and hence the
astrometric radial velocity from Eq. (36). Accurate transforma-
tion of czB to vr or ρ is therefore possible only in special cir-
cumstances.

6. The IAU resolutions, and their application

Based on the above discussion, and an interchange of opin-
ions in the community during a few years, two resolutions for
the stringent definition of spectroscopic and astrometric radial-
velocity concepts were adopted at the IAU XXIVth General
Assembly held in Manchester, August 2000 (Rickman 2002).
Their full text is in the Appendix; in this section we comment
on their practical implications.

6.1. “Barycentric radial-velocity measure”: A stringent
definition for spectroscopic measurements

Briefly, the first resolution defines thebarycentric radial-
velocity measure czB as the result of a spectroscopic
measurement of line shifts; herec is the speed of light andzB

the wavelength shift referred to the solar-system barycentre.
The definition avoids any discussion on what the “true” radial
velocity of the object would be. The transformation between
the spectroscopically determined barycentric radial-velocity
measureczB and the physical velocity of the object is model-
dependent and cannot be treated in isolation from, e.g., the tan-
gential motion (cf. Sect. 5.3).
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The definition implies that high-accuracy radial-velocity
observations should be reduced to the solar-system barycen-
tre according to procedures based on general relativity and
using constants and ephemerides consistent with the required
accuracy.

6.2. Practical application of the spectroscopic
definition

For work at modest accuracies, the new definition implies no
change of existing procedures, nor of any published radial-
velocity values. The use of the “barycentric radial-velocity
measure” will only be required when absolute accuracies on
the sub-km s−1 are needed. However, its use permits to exploit
radial-velocity measurements for new classes of tasks, such as
studying the physical processes in stellar atmospheres exempli-
fied in Sect. 3.

6.2.1. Publishing observed wavelength shifts

Traditionally, most published values for (stellar) radial veloci-
ties have been transformed by the observer to some “standard”
system: instrumental; calibrated against standard stars; against
the spectrum of sunlight; or other. The traditionally reached
precision has often been on the order of 1 km s−1 or perhaps
slightly better. However, given that the recently much improved
measuring precisions have begun to reach levels of m s−1, while
absolute calibrations are only some order of magnitude worse,
this procedure should change. The main point in the definition
of the “radial-velocity measure” is that highly precise obser-
vations should be published (also) without the observer try-
ing to calibrate them against purported “standard” objects in
an effort to deduce the objects’ physical velocities. Rather, the
observations should be reduced to the solar-system barycentre,
as detailed in the IAU resolution, and any subsequent inter-
pretation of these observed wavelength or frequency displace-
ments in terms of the object’s motion, or other effects, should
be made separately. The uncertainties in any attempted deduc-
tion of the physical velocity are likely to be much greater than
those currently reachable in measurements of the wavelength
shifts themselves. Therefore, any precise observational data are
likely to become corrupted by applying such model-dependent
“corrections”, rendering the data useless for possible more so-
phisticated analyses in the future.

The “barycentric radial-velocity measure” is a quantity that
may be quite different for different spectral lines in the same
star, or for different portions of the same spectral feature. Nice
examples of this are seen in Allende Prieto et al. (2002), where
weak absorption lines in the spectrum of Procyon are observed
to be systematically blueshifted by almost 1000 m s−1 from
the strong lines. Further, the wavelength positions of the line-
bottoms are blueshifted by some 200 m s−1 relative to those of
the line flanks closer to the continuum. These particular effects
can be well modelled by hydrodynamical model atmospheres,
and are found to be caused by correlations between tempera-
ture and vertical velocity in stellar surface convection. Thus,
precise radial-velocity measures may be used as a novel tool to

diagnose stellar hydrodynamics (Dravins 2003), provided the
data have not been corrupted by futile attempts to “calibrate”
the apparent velocities.

High-precision spectrometers often use some spectral tem-
plate with which the observed spectrum is cross correlated in
order to obtain a wavelength shift. For any one stellar spec-
trum, the resulting wavelength shift will naturally depend on
the exact properties of each different template (which portions
of what types of lines are being selected), in which particular
wavelength region are the measurements being made, as well as
on other parameters (Griffin et al. 2000; Verschueren & David
1999; Gullberg 1999; Gullberg & Lindegren 2002). To retain
the maximum amount of information and permit later physical
modelling, the barycentric radial-velocity measure should be
given together with details of the spectral template and the cor-
relation procedure. Templates may be constructed from both
actual stellar spectra and lists of laboratory wavelengths. Since
the former depend on spectrometer resolution, and the latter are
subject to revision as better laboratory data become available,
all such templates should be fully documented, as should the
software used for the cross correlation (e.g., exactly what is be-
ing correlated: the residual flux, or the line absorption; what is
the weighting of different spectral orders; exactly how are the
observed line shifts converted into velocity values?).

Gullberg & Lindegren (2002) deduced barycentric radial-
velocity measures for some forty stars (using only Fe lines)
with a median internal error of 27 m s−1, and an external error
of 120 m s−1 (the latter mainly coming from uncertainties of the
wavelength scale in the solar spectral atlas used as wavelength
reference). Although the precision achieved is somewhat lower
than otherwise possible, theaccuracyis higher since the proce-
dures involved are fully documented. Such radial-velocity mea-
sures therefore become reproducible by other observers using
different instruments and different techniques, as evidenced by
the good agreement for those stars in common with Nidever
et al. (2002).

With improved measuring precisions, an increasing number
of publications have started to use expressions of “absolute”
velocities, often meaning merely the use of a zero-point on the
radial-velocity scale, obtained through calibrations against the
solar spectrum or otherwise. The use of such a term is some-
what unfortunate since the concept of absolute velocity has
a special physical meaning in relativity, denoting something
rather more fundamental than, e.g., certain modes of calibrat-
ing wavelength-shift measurements.

6.2.2. Data reduction and software

The velocity values obtained as a result from spectroscopic ob-
servations depend not only on instrumental hardware effects,
but increasingly also on the software versions used for reduc-
ing the data.

Detailed procedures for the reduction of spectroscopic ob-
servations to the solar-system barycentre have been developed
e.g. by Stumpff (1977, 1979, 1980, 1985, 1986) and McCarthy
(1995), based on the series of solar-system ephemerides
available from JPL (Standish 1990). The ephemerides and
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related computation services are conveniently available on-line
through JPL’s HORIZONS System8.

At the 1994 IAU General Assembly it was decided to sys-
tematically set up software tools in order to enhance the in-
terchangeability of observational data and theoretical ideas.
This set of tools is called the IAU Standards of Fundamental
Astronomy, SOFA (Fukushima 1995; Wallace 1998). The
SOFA collection of algorithms include such for the accurate
relativistic transformation of observed spectral-line displace-
ments to the solar-system barycentre.

Such algorithms apply to any periodic signals from a dis-
tant source, not only the periodic modulation inherent to an
electromagnetic wave. In particular, the periodic modulation
of pulsar signals follows the same mathematical physics. In
pulsar timing observations, the issues of uniform calibration
of observations from different stations, and their referral to
the solar-system barycentre, have been the topic of detailed
examinations (Hellings 1986a,b). These transformations are
for instance included in software packages such as TEMPO,
a program for the analysis of pulsar timing data, maintained
by Princeton University and the Australia Telescope National
Facility9. Many of these issues (including those of defining ref-
erence frames, timescales, etc.) are directly applicable also to
electromagnetic waves.

The widespread FITS format (Flexible Image Transport
System; Wells et al. 1981) used for the handling of astro-
nomical data is undergoing various modifications and exten-
sions, including a more elaborate representation of spectral
quantities (Greisen et al. 2003). Alternative representations
of spectral coordinates include “radio-convention velocities”
computed from frequency shifts, “optical-convention veloci-
ties” computed from wavelength shifts, “relativistic Doppler
velocities”, and others (cf. Sect. 2.2). While the differences
among such concepts may be small for most ordinary appli-
cations, any work aiming at very high accuracy should care-
fully examine the exact definitions of the various data fields, to
understand how they can be transformed to barycentric radial-
velocity measures. One has to remember that the prime purpose
of standards such as FITS is not the accurate physical interpre-
tation of data, but rather their transportation between different
computers and software environments.

6.3. “Astrometric radial velocity”: A stringent definition
for geometric measurements

The second resolution simply specifies how “distance” and
“time” should be defined in order to provide the geometric
measurement of radial motion calledastrometric radial ve-
locity. Briefly, the resolution states that the appropriate coor-
dinate system is the Barycentric Celestial Coordinate System
(BCRS, Sect. 4.1), with time expressed as the barycentric time
of light arrival (Sect. 4.3) on the barycentric coordinate time
scale (TCB). Analogously, the conventional understanding of
proper motion is generally understood to mean the rate of
change in barycentric direction with respect to the barycentric

8 http://ssd.jpl.nasa.gov/
9 http://pulsar.princeton.edu/tempo/

time of light arrival, although we are not aware of any previous
formal definition to that effect.

7. Unsolved issues

The IAU resolutions were elaborated with the aim to permit
results of spectroscopic and astrometric radial-velocity mea-
surements to be unambiguously quantified on the 1 m s−1 level.
Many known effects on the sub-m s−1 level are also taken care
of in the present definitions. For example, the radial velocity
of any object varies cyclically throughout the year, as the ob-
server orbits the Sun and views the stellar velocity vector under
a slightly different projection angle. Since the radial-velocity
measure is defined relative to the solar-system barycentre, such
ambiguities are removed. However, there do exist other issues,
where the present concepts may be inadequate. A few of them
are highlighted below.

7.1. Effects beyond the (inner) solar system

The definition leaves “uncorrected” all the (largely unknown)
effects originating from outside the (inner) solar system. In
particular, the BCRS describes an asymptotically flat met-
ric at large distances from the Sun, thus ignoring effects of
the gravitational fields from other individual stars and, on a
larger scale, from the Milky Way Galaxy and structures therein
(e.g., spiral arms, dark-matter concentrations). For instance, the
large-scale gravitational potential of the Galaxy causes wave-
length shifts that may be relevant for highly accurate kine-
matic modelling. Over a range of galactocentric distances (R)
the galactic potential is crudely described by that of a singular
isothermal sphere (Binney & Tremaine 1987), leading to a dif-
ferential gravitational redshift between the star and observer of
∆vgrav = (V2/c) ln(Robs/R∗), whereV ' 220 km s−1 is the circu-
lar galactocentric speed. Thus, the spectra of stars in the central
bulge (R∗ ∼ 1 kpc) may be gravitationally redshifted by 300–
400 m s−1, while stars in the Magellanic Clouds (R∗ ' 55 kpc)
might be blueshifted by a similar amount, as seen by an ob-
server near the solar position atRobs' 8.5 kpc.

7.2. Gravitational lensing

Gravitational lensing, i.e., the bending or focusing of light dur-
ing its propagation through gravitational fields may affect the
radial velocity in different ways. In gravitational microlensing,
another (fainter) star or other object passes very nearly in front
of the target star (as seen by the observer), and its gravitational
field focuses light toward the observer. A stellar gravitational
field is too weak to cause resolvable multiple images, so in-
stead a source brightening is observed. The velocities of stars
in the Milky Way (acting as lenses) imply typical timescales
for such events on the order of a few weeks (∼106 s).

The gravitational field of the lens causes a time delay of
the light signal from the target star. This (Shapiro) delay, given
by Eq. (14), is of order (20µs) ln(r/p) for solar-mass lenses,
wherer is the distance to the lens (assumed to be half-way to
the target) andp the impact parameter of the light ray. Thus
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for a ray grazing the stellar limb and observed at 1 kpc dis-
tance the delay is of order 0.5 ms. A variation of the delay
by this amount over a timescale of 106 s would cause an ap-
parent change in the radial-velocity measure of the target star
by ∼0.15 m s−1. Lensing by more massive or compact objects
could thus in principle produce measurable variations. For a
discussion of the corresponding effect on pulsar timing obser-
vations, see Hosokawa et al. (1999). Under certain conditions
additional relativistic effects causing time delays might enter,
such as the Lense–Thirring or Kerr delay caused by the spin of
the gravitational source and the ensuing frame-dragging.

However, quite different effects could cause much more sig-
nificant changes in the observed wavelengths of stellar spectral
lines during a microlensing event. The amount of light amplifi-
cation from the target object depends on the exact geometry of
the target, the lens, and the observer. On this microarcsecond
level, the disk of the target star is an extended object, and dif-
ferent parts of its disk gradually undergo different amounts of
flux magnification, as the lensing object passes by. Since stars
often rotate at a significant rate, portions of the stellar disk that
approach the observer (with a spectrum Doppler-shifted to the
blue) may at some time be differently enhanced from the red-
shifted portions near the opposite stellar limb (receding from
the observer), producing a variable wavelength shift on a level
of up to several km s−1 (Maoz & Gould 1994; Gould 1997).

Gravitational lensing by more massive objects, e.g., clus-
ters of galaxies, often produces multiple or extended images of
the same target object. Each (sub)image corresponds to a differ-
ent light-path to the source, and thus a different Shapiro delay.
For a geometry changing with time, there would be a variable
differential delay, causing each (sub)image to have a different
(spectroscopic) radial velocity. Thus a particular source would
not have one unique radial velocity, but different values de-
pending on which among several light-paths from the source
to the observer that are chosen.

7.3. Gravitational waves

The source of the gravitational lensing need not be stationary,
but could be transient, in the form of a passing gravitational
wave. Although it appears that the effects will be very small,
there might exist specific conditions (such as compact objects
in close binary systems), where the variable time delays in-
troduced by such waves should be taken into consideration,
at least in principle; e.g., Fakir (1994), Kopeikin & Ozernoy
(1999).

7.4. Cosmological effects

A conceptual problem concerns the cosmological redshift:
what is the meaning of “radial velocity” in the context of an
expanding Universe? Is it to be understood as a motion relative
to the general expansion, as represented by the Hubble param-
eterH0 ' 70 km s−1 Mpc−1 = 70 m s−1 kpc−1, or relative to the
local expansion rate? Our accuracy aim of 1 m s−1 corresponds
to the formal expansion velocity at a distance of only 14 pc,
that of very nearby stars.

The extent to which local systems participate in the general
expansion of the Universe is a problem that has been treated
by several authors, beginning with McVittie (1933). It has been
argued that local entities such as the solar system or even the
Milky Way Galaxy should be unaffected by the cosmic expan-
sion since if everything expanded equally, the expansion would
be unobservable. The full problem is quite complex, but there
seems to be no fundamental reason why there should be a spe-
cific scale below which there is no expansion. For detailed dis-
cussions, see, e.g., Cooperstock et al. (1998), and references
therein.

Finally, on cosmological scales of time and space, we can-
not even be certain about the constancy of physical “constants”;
to include such possible effects in the definitions remains a task
for the future.
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Appendix: IAU resolutions

To enable high-accuracy studies of radial velocities, and to
permit accurate comparisons between observers using differ-
ent methods, two resolutions were adopted by a number of
Divisions and Committees of the International Astronomical
Union, at a special session during its XXIVth General
Assembly in Manchester (August 2000). The resolutions de-
fine a spectroscopicbarycentric radial-velocity measure, and
anastrometric radial velocity. The full text of the resolutions
follows (Rickman 2002)10.

Resolution C1 on the definition of a spectroscopic
“barycentric radial-velocity measure”

Divisions I, IV, V, VI, VII, IX and X, and Commissions 8, 27,
29, 30, 31, 33, 34 and 40 of the International Astronomical
Union.

Recognising

1. That recently improved techniques for determining radial
velocities in stars and other objects, reaching and exceeding
precision levels of meters per second, require the definition
of “radial velocity” to be examined;

10 The texts of Resolutions C1 and C2 are also available at
http://www.astro.lu.se/∼dainis/HTML/RADVEL.html and
http://www.astro.lu.se/∼dainis/HTML/ASTRVEL.html
respectively. The resolutions referred to in the Note at the end of
Resolution C2 are found in IAU Transactions XXIV B, pp. 37–43
and 44–49, and at
http://danof.obspm.fr/IAU resolutions/Resol-UAI.htm
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2. That, due to relativistic effects, measurements being made
inside gravitational fields, and alternative choices of coor-
dinate frames, the naive concept of radial velocity being
equal to the time derivative of distance, becomes ambigu-
ous at accuracy levels around 100 m s−1;

Considering

1. That, although many effects may influence the precise shifts
of spectroscopic wavelengths and frequencies, only local
ones (i.e. arising within the solar system, and depending
on the gravitational potential of the observer, and the ob-
server’s position and motion relative to the solar-system
barycenter) can in general be reliably calculated;

2. That, although the wavelength displacement (or frequency
shift) corrected for such local effects can thus be derived
from spectroscopic measurements, the resulting quantity
cannot unambiguously be interpreted as a radial motion of
the object;

Therefore recommend

That, whenever radial velocities are considered to a high accu-
racy, the spectroscopic result from a measurement of shifts in
wavelength or frequency be given as the “barycentric radial-
velocity measure”czB, after correcting for gravitational ef-
fects caused by solar-system objects, and effects by the ob-
server’s displacement and motion relative to the solar-system
barycenter.

Here, c equals the conventional speed of light=
299 792 458 m s−1, andzB = (λ − λ0)/λ0, whereλ0 is the rest-
frame wavelength andλ the wavelength observed by a hypo-
thetical observer at zero gravitational potential, located at, and
being at rest with respect to, the solar-system barycenter. The
epoch of the observation equals the barycentric time of light
arrival.

The radial-velocity measureczB is expressed in velocity
units: to first order inzB it coincides with the classical con-
cept of “radial velocity”, while avoiding the implicit interpre-
tation as physical motion. The solar-system barycenter is de-
fined by Resolution A4 adopted at the IAU XXIst General
Assembly in 1991, and supplemented by Resolution B6 at the
IAU XXIIIrd General Assembly in 1997.

Resolution C2 on the definition of “astrometric
radial velocity”

Divisions I, IV, V, VI, VII, IX and X, and Commissions 8, 27,
29, 30, 31, 33, 34 and 40 of the International Astronomical
Union.

Recognising

That recently improved astrometric techniques may permit the
accurate determination of stellar radial velocities independent
of spectroscopy, thus requiring a definition independent from
spectroscopic measures;

Considering

That the change in the barycentric directionu to objects outside
of the solar system is customarily expressed by the proper-
motion vectorµ = du/dtB, wheretB is the barycentric coordi-
nate time (TCB) of light arrival at the solar system barycenter;

Therefore recommend

That the geometric concept of radial velocity be defined as
dr/dtB, wherer is the barycentric coordinate distance to the
object andtB the barycentric coordinate time (TCB) for light
arrival at the solar system barycenter.

Note: the Barycentric Celestial Reference System (in-
cluding the barycentric coordinate time) is defined in
Resolutions B1.3 and B1.5 adopted at the IAU XXIVth General
Assembly in 2000.
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Allende Prieto, C., & Garc´ıa López, R. J. 1998, A&AS, 129, 41
Andersen, J. 1991, A&ARv, 3, 91
Andersen, J. 1999, Reports on Astronomy, Trans. IAU, XXIII B, 185
Andersen, J., & Nordstr¨om, B. 1983, A&A, 122, 23
Asplund, M., Nordlund, Å., Trampedach, R., et al. 2000, A&A, 359,

729
Backer, D. C., & Hellings, R. W. 1986, ARA&A, 24, 537
Bedding, T. R., Butler, R. P., Kjeldsen, H., et al. 2001, ApJ, 459, L105
Bercik, D. J., Basu, S., Georgobiani, D., Nordlund, Å., & Stein, R. F.

1998, in The Tenth Cambridge Workshop on Cool Stars, Stellar
Systems and the Sun, ed. R. A. Donahue, & J. A. Bookbinder,
ASP Conf. Ser., 154, 568

Bergeron, J. 1994, Rep. Astron., Trans. IAU, XXII A, 319
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton:

Princeton University Press)
Blandford, R. D., McKee, C. F., & Rees, M. J. 1977, Nature, 267, 211
Brandt, P. N., & Solanki, S. K. 1990, A&A, 231, 221
Bray, R. J., & Loughhead, R. E. 1978, ApJ, 224, 276
Brown, T. M., & Christensen-Dalsgaard, J. 1998, ApJ, 500, L195
Brumberg, V. A. 1991, Essential Relativistic Celestial Mechanics

(Bristol: Adam Hilger)
Brumberg, V. A., & Groten, E. 2001, A&A, 367, 1070
Collier Cameron, A., Donati, J.-F., & Semel, M. 2002, MNRAS, 330,

699
Contopoulos, G., & Jappel, A. 1974, Trans. IAU, XV B, 166
Cooperstock, F. I., Faraoni, V., & Vollick, D. N. 1998, ApJ, 503, 61
Dravins, D. 1982, ARA&A, 20, 61
Dravins, D. 1987, A&A, 172, 200
Dravins, D. 1994, in The Impact of Long-Term Monitoring on

Variable Star Research, ed. C. Sterken, & M. De Groot, NATO
ASI C436, 269

Dravins, D. 2003, in Modelling of Stellar Atmospheres, ed. N. E.
Piskunov, W. W. Weiss, & D. F. Gray, IAU Symp., 210, in press

Dravins, D., Lindegren, L., & Madsen, S. 1999, A&A, 348, 1040
Dravins, D., & Nordlund, Å. 1990, A&A, 228, 203
Endl, M., Kürster, M., & Els, S. 2000, A&A, 362, 585
ESA. 1997, The Hipparcos and Tycho Catalogues (ESA SP–1200)
Fakir, R. 1994, Phys. Rev. D, 50(6), 3795
Fekel, F. C. 1999, in IAU Coll., 170, Precise Stellar Radial Velocities,

ed. J. B. Hearnshaw, & C. D. Scarfe, ASP Conf. Ser., 185, 378
Frandsen, S., Carrier, F., Aerts, C., et al. 2002, A&A, 394, L5



Lennart Lindegren and Dainis Dravins: The fundamental definition of “radial velocity” 1201

Fukushima, T. 1995, in Highlights of Astronomy, 10, ed. I.
Appenzeller, 185

Gould, A. 1997, ApJ, 483, 98
Gray, D. F. 1986, PASP, 98, 319
Gray, D. F., Baliunas, S. L., Lockwood, G. W., & Skiff, B. A. 1996,

ApJ, 465, 945
Gray, D. F., & Toner, C. G. 1985, PASP, 97, 543
Greisen, E. W., Valdes, F. G., Calabretta, M. R., & Allen, S. L. 2003,

A&A, submitted
Griffin, R. E. M., David, M., & Verschueren, W. 2000, A&AS, 147,

299
Gullberg, D. 1999, in IAU Coll., 170, Precise Stellar Radial Velocities,

ed. J. B. Hearnshaw, & C. D. Scarfe, ASP Conf. Ser., 185, 286
Gullberg, D., & Lindegren, L. 2002, A&A, 390, 383
Hatzes, A. P. 1996, PASP, 108, 839
Hatzes, A. P. 2002, Astron. Nachr., 323, 392
Hellings, R. W. 1986a, AJ, 91, 650
Hellings, R. W. 1986b, AJ, 92, 1446
Hosokawa, M., Ohnishi, K., & Fukushima, T. 1999, A&A, 351, 393
Immerschitt, S., & Schr¨oter, E. H. 1989, A&A, 208, 307
Irwin, A. W., & Fukushima, T. 1999, A&A, 348, 642
Johnston, K. J., McCarthy, D. D., Luzum, B. J., & Kaplan, G. H.

2000, Towards Models and Constants for Sub-Microarcsecond
Astrometry (Washington, DC: U.S. Naval Observatory)

Kjeldsen, H., Bedding, T. R., Frandsen, S., & Dall, T. H. 1999,
MNRAS, 303, 579

Klioner, S. 2000a, in Towards Models and Constants for Sub-
Microarcsecond Astrometry, ed. K. J. Johnston, D. D. McCarthy,
B. J. Luzun, & G. H. Kaplan, IAU Coll., 180, 265

Klioner, S. 2000b, in Towards Models and Constants for Sub-
Microarcsecond Astrometry, ed. K. J. Johnston, D. D. McCarthy,
B. J. Luzun, & G. H. Kaplan, IAU Coll., 180, 308

Klioner, S. 2003, AJ, 125, 1580
Klioner, S. A., & Kopeikin, S. M. 1992, AJ, 104, 897
Kopeikin, S. M., & Ozernoy, L. M. 1999, ApJ, 523, 771
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