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1. Introduction

This article proposes a modern introduction to point, fluid and wave dynamics, within

the context of the theory of projective relativity developed by L. Fantappié (1901-1956)

and later by G. Arcidiacono (1927-1998). We are actually dealing with two distinct

theories: the theory of projective special relativity (PSR) and the theory of projective

general relativity (PGR). The former is a generalization of the ordinary theory of special

relativity (SR), postulating the invariance of physical laws with respect to the De Sitter

group rather than to the Poincaré group, which is a local limit of it [1,2,3,4,5,6,7]. The

latter is the corresponding generalization of the ordinary theory of general relativity (GR)

[8,9].
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The relation between PGR and PSR is the same as that between GR and SR. This

article will deal exclusively with PSR, which has been restated by various authors un-

der the name of “De Sitter relativity”; it has been discussed in various recent works

[10,11,12,13,14,15,16].

PSR coincides locally with SR and its only difference from it lies in the predictions

relating to the observation of objects that are very distant in space or events that are very

distant in time; thus, crucial experiments (or, rather, observations) capable of confuting

or verifying PSR can only be carried out in a cosmological context.

In this article, the Fantappié-Arcidiacono transformations that generalize ordinary SR

Poincaré transformations will not be derived; for these preliminary aspects, the reader is

referred to other works [17,18,19,20,21]. After an introduction recalling the kinematics

of PSR (Sect. 2, 3), the fundamental equations of point (Sect. 4), perfect incompressible

fluid (Sect. 5, 7) and wave (Sect. 8) dynamics will be introduced. Compared to the

original Italian-language works, various deductions have been simplified and some errors

have been corrected; also, the physical meaning of equations has been discussed in greater

depth. Some comments on the physical meaning of quantities in PSR (Sect. 6, 9) have

also been added; indeed, this is a topic which can give rise to misunderstandings.

2. PSR Metric

In PSR, five projective coordinates, x 0, x 1, x 2, x 3, x 5, are used, which are linked to the

physical coordinates x0, x1, x2, x3, x5, by the relation:

xi = (xi/x5)r i = 0, 1, 2, 3. (1)

From here on, we shall use the indices i, j, k, l, m... for the values 0, 1, 2, 3 and the

indices a, b, A, B,... for the values 0, 1, 2, 3, 5; the Greek indices μ, ν will be used when

referring only to the spatial coordinates 1, 2, 3. The coordinate x0 is ict, where t is the

chronological distance from an observer, c is the maximum speed of propagation and i2

= -1. The constant r, having the dimensions of one length, is the radius of the De Sitter

Universe2; the coordinates x1, x2, x3 are the usual spatial coordinates, having their origin

in the observer.

Equation (1) does not fix the value of x 5; the Weierstrass condition is assumed:

xax
a = r2. (2)

2 This radius is a new fundamental constant in addition to c and its introduction deserves comment.

The invariance, with respect to inertial transformations, of the maximum propagation speed c can be

assumed as a postulate (Einstein’s approach), or can be explained by the contact action of the “aether”

on rulers and on clocks, in a Newtonian Galileo-invariant context (Lorentz-Poincaré approach). However,

in order to explain the appearance of r with this second mechanism, one would have to assume a non-local

action by the aether on rulers of cosmic size, and this makes this approach decidedly less credible than

the Einstein group approach. Thus, by adopting a group approach, one can pose oneself the problem

of determining the largest four-dimension global invariance group that admits the Poincaré group as a

local limit. This group is in fact the De Sitter group [1,2]. From this point of view, therefore, the PSR

is the more general formulation of special relativity and ordinary SR is its limit case r → ∞.
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Thus, if we pose:

A2 = 1 + α2 − γ2 = 1 + αiα
i, (3)

with αi = xi/r, γ = ct/r = t/t0, it follows from equation (1) that:

xi = xi/A; x5 = r/A. (4)

Equations (1), (4) allow a coordinate x5 = r to be introduced; obviously, this is not a

physical coordinate in the proper sense of the term, because it is not used by the observer

to coordinate events [which occur in the continuum (x0, x1, x2, x3)]. The introduction

of this coordinate facilitates expression of the correlation between data measured by

different observers on the PSR chronotope; it must therefore be viewed in the sense of

the intrinsic geometry of this chronotope rather than, extrinsically, as a manifestation of

its curvature in an “external” five-dimensional space.

The projective metric is:

ds2 = dxadx
a. (5)

We observe that rx i = xix 5, a relation which, when differentiated, gives:

rdxi = xidx5 + x5dxi. (6)

By substituting equation (6) into (5) we obtain:

r2ds2 = (dxidx
i)x25 + (r2 + xix

i)dx25 + 2(xidx
i)x5dx5,

and since x 5 = r/A it follows that:

dx5 = αi dx
i/A3 (7)

A4ds2 = A2(dxidx
i)− (αidx

i)2. (8)

Equation (8) expresses equation (5) in terms of the physical coordinates; it is the metric

on the geodetic representation of the De Sitter chronotope (known as the “Castelnuovo

chronotope”, [22,23,24]). The fundamental tensor associated to this metric is

gik = (A2δik − αiαk)/A
4, (9)

to which corresponds the counter-variant tensor

gik = A2(δik + αiαk), (10)

as it can be verified that:

gik = A2(δik + αiαk), (11)

gisg
ks = δki . (12)

With a tedious but elementary calculation one has:

g = Det(gik) = A−10. (13)
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The projective D’Alembert operator is thus obtained by using the general formula of

mathematical analysis:

�φ = g−1/2∂i(g1/2 gik∂kφ), (14)

from which we have:

r2�φ = A2(r2∂k∂
k + xixk∂i∂k + 2xi∂i)φ. (15)

For r → ∞, � → � = ∂i∂
i . Wave propagation is described, in PSR, by equations as

�φ = 0; this subject will be addressed later from a different viewpoint.

3. Kinematics of the Material Point

Equation (2) represents the hyper-spherical surface of radius r having its centre at the

origin, in a 5-dimensional Euclidean space {(x 0, x 1, x 2, x 3, x 5)}. Let us consider the 4-

dimensional space tangent to this hyper-sphere in a point that coincides with the observer;

the hyper-spherical surface can be represented on this space by means of a projection

from the centre of the sphere (this is known as a “geodetic” projection). Equation (8) is

thus the Beltrami metric, induced on this space by the projection. This space is called

“Castelnuovo chronotope”, and it is within it that the observer coordinates events.

Each translation of a material point on the Castelnuovo chronotope is the projection

of its motion over the surface (2); in other words, each translation on the “physical”

chronotope actually is, in the 5-dimensional projective space, a rotation around the origin.

Thus, in PSR, translations are a particular class of rotations. This implies that the

equation of motion of a material point, rather than assuming the customary Newtonian

form F = dp/dt, assumes a form which generalizes the equation L = dM /dt valid for

rotational motion (F = force, p = impulse, M = angular momentum, L = torque).

From equation (8), posing ds = icdτ , we have:

A4 dτ 2 =
[
A2

(
1 − β2

)
+ (α × β − γ)2

]
dt2 (16)

where β = (β0, β1, β2, β3), βμ = dxμ/(cdt), β0 = i. From the identity

(α × β)2 + (α ∧ β)2 = α2 β2

it thus follows that:

A4 dτ 2 =
[(
1 − β2

)
+ (α − β γ)2 − (α ∧ β)2

]
dt2 =

[
B2 − (α ∧ β)2

]
dt2 ,

(17)

where B2 = 1 - β2 + (α - βγ)2. We thus obtain the expression of the proper time interval

dτ . 3 Thus, the projective velocity:

uA = dxA/dτ (18a)

3 In the two-dimensional case (x,t) we have, starting from equation (16), A4dτ2 = B2dt2.
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and the projective acceleration:

aA = duA/dτ (18b)

can be introduced.

From equation c2dτ 2 = - dxAdx
A it therefore follows that

uAu
A = −c2. (19)

By deriving equations (2), (3) with respect to τ we obtain the relations:

xAu
A = 0; uAa

A = 0; xAa
A = c2. (20)

The projective impulse is defined as:

p
A
= m0uA = m0dxA/dτ , (21)

where m0 is the local rest mass (i.e. the mass measured by an observer who is at rest

with respect to the body and who occupies the same position as the body). It follows

that:

p
A
pA = −m0c

2. (22)

Let us introduce the physical impulse as:

pi = m0ui = m0dxi/dτ . (23)

From equation xi = rx i/x 5 it immediately follows that:

ui = dxi/dτ = r(x5ui − xiu5)/x
2
5 (24)

and therefore

pi = r(x5pi − xip5)/x
2
5. (25)

The projective angular momentum is defined as:

MAB = xApB − xBpA. (26)

By deriving equations (4) with respect to proper time, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A3ui =
(
A2δik − xixk

r2

)
uk

A3 u5 = −ui x
i

r
.

(27)

By inserting equations (27) in equation (26) we have:

M5i = rpi/A
2; Mik = mik/A

2, (28)
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where mik = xipk – xkpi is the usual physical angular momentum. From equations (26),

(20) we obtain:

MABM
AB = 2r2p

A
pA. (29)

Equation (23) can be expanded, using equations (18), in the form:

− 2m2
0 c2A4 =

mik m
ik

r2
+ 2 pi p

i (30a)

or:

E = ± c

√
p2 + m2

0 c
2 A4 +

mik mik

2 r2
. (30b)

From equations (23), (20), we also obtain:

MABu
AxB = m0c

2r2, (31)

while from equations (27) and from the equation xA xA = r2 one obtains:

A3pi = pi − xkmik/r
2, (32)

which is a relation between the impulse and the angular momentum. Finally, the projec-

tive moment of inertia tensor is introduced:

IAB = m0xAxB. (33)

At small distances from the observer, x i ≈ xi and x 5 ≈ r whereby, within this

limit:

Iik = m0xixk; Ii5 = m0xir; I55 = m0r
2. (34)

In other words, the ordinary moment of inertia, the static moment and the mass of the

body are combined in IAB.

4. Dynamics of the Material Point

The projective torque tensor is defined as:

LAB = xAfB − xBfA; (35)

in this definition, f A is the projective force vector. Based on what has been said in the

previous section, the equation of motion is

dMAB

dτ
= LAB . (36)

The concept of “free material point” requires some attention. According to equation (36)

this type of body is characterized by the condition LAB = 0; now:

dM5i

dτ
= L5i = x5 f i

− xif 5
,
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and for a free point we shall therefore have L5i = 0. This condition in no way implies

that f i and f 5 are simultaneously null, and indeed we shall see that they are not.

By virtue of equations (28), the condition LAB = 0 becomes:

d

dτ

( pi
A2

)
= 0 ;

d

dτ

(mik

A2

)
= 0 . (37)

On the other hand:

LAB =
dMAB

dτ
=

d

dτ

(
xA p

B
− xB p

A

)
= m0 (xA aB − xBaA) ,

whereby

xA aB − xB aA = 0. (38)

By multiplying both members of equation (38) by uA and contracting on index A, we

obtain the identity 0 = 0; whereas, by multiplying them by xB we obtain:

aA = H2xA, (39a)

where H = 1/t0 = r/c. From equation (21) one thus has:

dp
A
/dτ = m0H

2xA. (39b)

Equation (39b) splits into the pair of relations:

dp
i
/dτ = m0H

2xi, dp
5
/dτ = m0H

2x5.

By multiplying the first of these by x 5, the second by x i and subtracting one has:

x5

dp
i

dτ
− xi

dp
5

dτ
=

dM5i

dτ
= m0

(
x5H

2 xi − xi H
2 x5

)
= 0 ,

and from the first of equations (28) one thus obtains the first of equations (37) again.

Recalling equation (17), it takes the form (V = velocity vector):

d

dt

{
m0 V[

1 − β2 + (α − βγ)2 − (α ∧ β)2
]1/2

}
= 0 . (40)

The solution of equation (40) is relatively easy in the two-dimensional case (x, t); it

becomes:

[1 + α (α − βγ)]

(
dV

dt

)
= 0 . (41)

We have two solutions; one is constituted by uniform rectilinear motion V = constant;

the other is expressed by β = (1 + α2)/(αγ), which can easily be rewritten as:

dx

dt
=

(r
t

) (x
r

+
r

x

)
. (42)

Equation (42) is a differential equation with separable variables whose solution is:

x2 − k2t2 + r2 = 0, (43)
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where k is an arbitrary constant. One immediately sees that in the observer’s present (t =

0) one has x = ± ir, an imaginary result. To avoid this singularity of kinematics, one must

impose that these bodies not be simultaneous to any observer, but this is tantamount to

saying that they are not physical. In other words, the solutions of equation (42) are not

physically admissible and must be ruled out; with this exclusion, the only possible free

motion remaining (in the two-dimensional case) is uniform rectilinear motion.

At this point, a digression is necessary. Let us consider equation (30b) again, which

we rewrite in the form

p2 − E2

c2
+

mik m
ik

r2
= − m2

0 c2A4 . (44)

For a material point at rest, p = 0 and mik = 0, so that:

E = m0 c
2 A2 = m0 c

2

(
1 +

x2

r2
− x2

0

r2

)
= m0 c

2

(
r2

r2
+

xμ x
μ

r2
− x2

0

r2

)
=

= m0 c
2

(
x5 x

5

r2
+

xμ x
μ

r2
− x2

0

r2

)
= m0 c

2 xA xA

r2
= m0H

2 xA xA ,

because x5 = r. This, therefore, is the expression of rest energy in PSR. As regards local

rest energy, it is expressed by:

m0 c
2 =

E

A2
= m0 H

2 xA xA

A2
= m0H

2 xA xA .

Let us therefore assume the following expression for the energy tensor of the free material

point:

TAB = m0(uAuB −H2xAxB). (45)

In this expression, the term m0H
2 xA xB, whose spur is equal to local rest energy, is

subtracted from the term m0uA uB which comes from the direct generalization of the

similar SR expression. The term m0H
2 xA xB is null in the limit r → ∞, in which SR is

re-obtained.

To verify the validity of equation (45), let us define the projective force as4:

f
A
= ∂BTAB. (46)

For a free material point we therefore have, considering that ∂A xA = 5:

f
A
= −5m0H

2xA (47)

i.e.

f
i
− xi

r
f
5

= −5m0H
2
(
xi − xi

r
x5

)
= 0 , (48)

4 To avoid unduly complex notation from here on until Section 7 inclusive, we shall use the symbol ∂A

to indicate the partial derivative with respect to the variable xA, rather than with respect to the variable

xA. In Section 8 the definition of projective derivation will be made explicit, and the related notation

∂A will be introduced.
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because xi = rx i/x 5 . Now, the relation M5i = dL5i/dτ can be rewritten as:

x5 f i
− xi f 5

=
d

dτ

(
x5 pi − xi p5

)
and, dividing it by x 5:

f
i
− xi

r
f
5
=

1

x5

(
ẋ5 pi + x5 ṗi − ẋi p5 − xi ṗ5

)
= ṗ

i
− xi

r
ṗ
5
+

1

x5

(
ẋ5 pi − ẋi p5

)
.

On the other hand:

ẋ5 pi − ẋi p5 =

(
p
5

m0

)
p
i
− ẋi p5 = p

5

(
p
i

m0

)
− ẋi p5 = p

5
ẋi − ẋi p5 = 0,

so that:

f
i
− xi

r
f
5
= ṗ

i
− xi

r
ṗ
5

.

Thus, from equation (48) we have, for a free material point:

ṗ
i
− xi

r
ṗ
5
= 0 . (49)

As a matter of fact, this equation is certainly valid because it can be derived from equation

(38b), if we recall that xi = rx i/x 5 . We can therefore conclude that equations (45), (46)

are compatible with the dynamics of the free material point.

It is appropriate to point out that, also in the case of a free material point, we have

f A �= 0, as is clearly evidenced by equation (47). In PSR, it is the torque that is null in

the free case, not the force; indeed, the spacetime translations are, in turn, rotations and

therefore only rotations exist in reality. In free motion, the time variation of p5 cancels

that of pi, as is evidenced in equation (49); in the two-dimensional case this implies

uniform rectilinear motion.

We can obtain the same result by considering equation (45). The term –m0H
2xAxB

depends on the coordinates: its divergence is therefore a force which, by acting on the

point, determines its free motion. This force is precisely the left-hand of the equation

(47).

One should stress that the conventional treatment of the De Sitter chronotope [25]

does not make use of projective coordinates, and therefore p5 does not exist in that

context. Furthermore, the motion equation is assumed to have the form F = dp/dt,

rather than L = dM /dt. In the case of a free material point, this approach leads us to

identify the force with expression (38b) which, for remote events that can be observed

through their light and therefore placed on the observer’s lightcone (α2 = γ2 → A2 = 1

and xA = xA), becomes fμ = m0H
2xμ. In the conventional treatment, one has H2 = λ/3,

where λ is the cosmological constant; thus, fμ is nothing other than the “cosmological

term”. In other words, the disappearance of the “balancing” term p5 leads to a free motion

which is no longer uniform but accelerated, and the force that must be introduced as the

cause of this acceleration is the cosmological term.
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It is possible to make free motion uniform again by suitably re-graduating clocks; this

strategy leads to Milne’s double time scale [26].

Having spoken of how the “cosmological term”, non-existent in PSR, emerges in

conventional theory, we ought now to speak of another important aspect of the De Sitter

chronotope, to see how it is described in PSR: cosmic expansion.

In PSR, cosmic expansion derives from the transformations of coordinates which

change one inertial system into another; these are Fantappié-Arcidiacono transforma-

tions, generalizations of Lorentz-Poincaré transformations. It is therefore a kinematic

and not a dynamic fact; this particular must be borne in mind.

The transformations relevant here are the time translations of parameter T0; under

one of these [17,18,19,20,21], the velocity V of a body located in the event point (x, t) of

the unprimed reference frame becomes V ’, where:

V ′
√

1 − γ2 = V
(
1 + γ t/t0

)
− γ x/t0 (50)

and γ = T0/t0 . If, in the unprimed reference frame, the body moves with uniform motion

according to the law x = Vt + x0 and γ2 �= 1, then

V ′ =
V − γ x0

t0√
1 − γ2

, (51)

which is a constant. Therefore, even in the primed reference frame the motion will be

uniform rectilinear and its velocity will be V ′. This is not a property peculiar to time

translations but a common feature of all the transformations of the De Sitter-Fantappié-

Arcidiacono group: they convert uniform rectilinear motions into uniform rectilinear

motions. On the other hand this is nothing but a consequence of the covariance, with

respect to that group, of equation (37) and its solutions.

From equation (51) it can be seen that for γ → ±1, V ′ → ∞ unless V = ± x0/t0,

a quantity which can assume a multiplicity of values, as the constant x0 is arbitrary; in

this case, equation (51) gives V ′ = 0. The first member of equation (50) thus tends to

zero for γ2 → 1, and we obtain:

V =
γ x/t0

1 + γ t/t0

; (52)

with γ = ± 1 according to the sign of T0. Equation (52) can be verified by directly

substituting x = Vt + x0 and V = γx 0/t0; the identity V = V is obtained for every value

of γ, thus also for γ2 → 1. In the γ = + 1 case (past lightcone) we have V = x0/t0, where

x0 is the position of the body on the observer’s simultaneity plane, and:

V = H(t)x, (53)

where H(t) = H/(1 + t/t0), -t0 ≤ t ≤0, H = 1/t0. Equation (53) expresses the

existence of a velocity field escaping from the observer, whose modulus increases with the

distance from the latter; it is therefore a law of cosmic expansion. In the future lightcone
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(γ = -1), on the other hand, there is a cosmic contraction which is entirely symmetrical

to this expansion, though it is not observable as it is not possible to receive signals from

the future.

The not trivial fact is the compatibility between uniform free rectilinear motion and

cosmic expansion. The field of velocity (53) has been derived from the request for non-

divergence of the transformed velocity V ′; it plays the role held by the “substratum”

in Milne’s kinematic relativity [27]. The dynamic equation (36) determines the local

deviations from the “substratum” caused by the action of the forces. All this is unknown

in ordinary special relativity.

The result obtained can be expressed by saying that the primed reference frame, or

the system of bodies at rest with respect to it (for which V ’=0) exists if these bodies,

in the unprimed reference frame, have velocities distributed in accordance with equation

(53); i.e. if a cosmic expansion exists in this second reference frame. However, given that

the choice of the primed reference frame is arbitrary, this result is equivalent to stating the

existence of a class of observers who observe a cosmic expansion as described by equation

(53); this class constitutes the “substratum”. It is remarkable that the substratum should

appears for merely kinematic (group) reasons, without any physical requirements such as

the introduction of an aether might be.

5. Dynamics of Perfect Incompressible Fluids

In SR the expression of the energy tensor of the perfect incompressible fluid is:

Tik = (μ+ p/c2)uiuk + pδik, (54)

where μ and p are the density and the pressure of the fluid, respectively, and ui is its

quadrivelocity. The PSR generalization of equation (54) is obvious: one must substitute,

in the limit p → 0, the disgregated matter tensor μ uiuk with μ(uA uB – H2 xA xB). One

thus obtains:

TAB = (μ+ p/c2)[uAuB −H2xAxB] + pδAB. (55)

Let:

f 2 = μ+ p/c2, (56)

and recalling that for a perfect incompressible fluid the equation of state5:

p = μc2 (57)

applies, equation (55) becomes:

TAB = f 2uAuB + f 2c2[(1/2)δAB − (1/r2)xAxB]. (58)

5 We recall that μ breaks down into a pure mass term μ0 and into a term dependent upon the specific

internal energy ε of the fluid, in accordance with the relation μ= μ0(1 + ε/c2). The fluid is incompressible

in the sense that in isothermal conditions μ0 is a constant; whereas p obviously depends on the coordinates

through ε. In these circumstances, the spacetime part of the fluid field cA is, in Einstein’s r → ∞ limit

and in the absence of external forces, solenoidal [20, vol. II].



270 Electronic Journal of Theoretical Physics 7, No. 23 (2010) 259–280

Thus, assuming that:

cA = fuA, (59)

the energy tensor becomes:

TAB = cAcB − cScS[(1/2)δAB − (1/r2)xAxB]. (60)

It can be postulated [28,29] that this expression also remains valid in the more general

case:

cA = fuA +QA; QAx
A = 0; QAu

A = 0. (61)

The relations obtained can be written in another form by introducing the generalized

Eckart tensor:

ηAB = δAB + (1/c2)uAuB − (1/r2)xAxB. (62)

This tensor is symmetric, and in the proper reference all its components are locally null

except the spatial ones ηαβ = δαβ . It satisfies the conditions:

ηABx
A = 0; ηABu

A = 0; ΣBηABηBC = ηAC . (63)

Equation (55) becomes:

TAB = μ(uAuB −H2xAxB) + pηAB, (64)

while equation (60) becomes:

TAB = cAcB − cScS[ηAB − (1/2)δAB − (1/c2)uAuB], (65)

an expression which keeps its form when the Einstein’s limit r → ∞ is performed.

From equations (63), (64) one has:

TABx
A = −μc2xB; TABu

A = −μc2uB; (66)

in other words, xA and uA are eigenvectors of TAB with eigenvalue – μc2. Furthermore:

TABx
AxB = TABu

AuB = −μc2r2. (67)

The generalized Euler equations are obtained by equating to zero the divergence of equa-

tion (55); posing f 2 = μ + p/c2 = m one has:

maB + uB ∂A (muA) + ∂Bp − H2mxA ∂AxB − H2xB∂
A (mxA) = 0 .

By multiplying this expression by uB and xB, respectively, two continuity equations are

obtained:

c2 ∂A
(
muA

)
= dp/dτ (68a)

c2 ∂A
(
mxA

)
= dp/dρ (68b)
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where τ is the curvilinear coordinate along the stream line, and ρ is the spatial

distance from the stream line. The expressions of the radial derivative (d/dρ = xA∂
A)

and of the derivative along the stream lime (d/dτ = uA∂
A) have been taken into account.

By substituting equations (68) into the principal equation, the generalized Euler equation

is obtained:

maB + (uB/c
2) dp/dτ − (xB/r

2) dp/dρ + ∂Bp = H2mxB . (69)

All the discussion conducted up to this point is valid for perfect fluids. In the case of

viscous fluids, the term –νV AB, where ν is the viscosity coefficient and VAB is the viscosity

tensor obtained by directly generalizing the SR one [20], must be added to the second

member of equation (65). One has:

2VAB = ηAR ηBS

(
∂RcS + ∂ScR

)
. (70)

6. Digression on the Concept of Temperature in PSR

Before explaining the fundamental equations of fluid with heat exchange in PSR, it is

necessary to stop and discuss the concept of temperature in theories of relativity based

on a global symmetry group. It is necessary to eliminate any ambiguity on the physical

meaning of temperature as a quantity which will appear in those equations. The general

problem of the meaning of physical quantities in PSR will be examined in Sect. 9.

Let us place ourselves in the context of ordinary SR, and let T0 be the temperature

of a gas measured by an observer at rest with respect to it; what is the temperature T

of this same gas measured by a second observer in uniform rectilinear motion at velocity

V with respect to the former? As is well known [30,31] there are, in SR, three distinct

definitions of temperature which correspond to the three distinct laws of transformation:

T = T0γ ; T = T0γ
−1 ; T = T0, (71)

where

β = V /c ; γ = 1
/√

1 − β2 .

The extension of these laws to the PSR domain is simple and obvious. Firstly, T0 is the

temperature measured by an observer who not only is at rest with respect to the gas, but

is also located in the same spacetime region occupied by it. The contraction parameter

γ = dt/dτ is generalized by the corresponding PSR quantity:

Γ =
1 + α2 − γ2√

1 − β2 + (α − βγ)2 − (α ∧ β) 2

, (72)

where β = V /c, α = d/r, γ = t/t0. Here d and t are the parameters of the spacetime

translation which transports the first observer into the second.

The temperature T measured by the second observer is therefore, in accordance with

the three distinct definitions:

T = T0 Γ ; T = T0 Γ
−1 ; T = T0. (73)
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It must be borne in mind [32] that the first “observer” is actually a thermometer, which

must be in thermal equilibrium with the gas. Thus, it must be at rest with respect to

the gas and immersed in it; the reading of this thermometer is therefore T0. Even if the

thermometer is read by an observer in motion with respect to it, or placed at cosmological

distances from it, the result of the reading will always be T0. Thus, if T is understood

as a “thermometer reading”, one must necessarily have T = T0. This supports the third

definition (local proper temperature) and we shall use this one from now on.

7. Dynamics of Perfect Incompressible Fluids with Heat Ex-

change

Arcidiacono studied, both in SR and in PSR, the case of a perfect incompressible fluid

(described only by a single index f) subject to heat exchanges. He postulated the relation

[28,29]:

cA = fuA +QA (74)

with QA �= 0, so that the hydrodynamic field cA is no longer parallel to the fluid stream

uA. Precisely:

QA = qA/fc
2, (75)

where qA is the so called “thermal vector”; it satisfies the two conditions:

qAx
A = 0, qAu

A = 0. (76)

The thermal vector is linked to the absolute temperature T , defined in accordance

with the previous section, by the generalized Fourier equation:

qA = −χηAB∂
BT = −χ

[
∂AT +

uA

c2
dT

dτ
− xA

r2
dT

dρ

]
. (77)

In this equation, χ is the thermal conductivity coefficient, which we shall assume to be

constant. By substituting equation (74) into equation (60), the energy tensor is obtained:

TAB = f 2uAuB +
1

c2
(uAqB + uBqA) +

qAqB
f 2c4

+

(
f 2c2 − q2

f 2c4

) (
δAB

2
− xAxB

r2

)
, (78)

in which it has been posed q2 = qAq
A. We note that in the non-thermal case (qA = 0)

one has cAc
A = (fuA) (fu

A) = -f 2c2 = - (μc2 + p) = -2p. Assuming the validity of the

normalization cAc
A = -2p for qA �= 0, as well, one has:

f 2c2 − q2

f 2c4
= 2p. (79)

Recalling that f 2 = m = μ + p/c2 one can eliminate f 2 from equation (79), obtaining:

p2 = μ2c4 − q2/c2, (80)

a relation similar to that which applies in the relativistic hydrodynamics of SR.
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Introducing the tensor QAB by means of the expression:

c2QAB = uAqB + uBqA + qAqB/mc2, (81)

the equation (79) becomes:

TAB = muAuB − (
2p

/
r2
)
xAxB + pδAB +QAB. (82)

By equating to zero the divergence of equation (82) one obtains:

maB + uB∂
A (muA) + ∂Bp− xB∂

A
[(
2p

/
r2
)
xA

]− (
2p

/
r2
)
xB + ∂AQAB = 0. (83)

By multiplying this expression by uB, and bearing in mind that:

uBa
B = 0; uBu

B = −c2; uB∂
Bp = dp/dτ ; xBu

B = 0;

the continuity equation is obtained:

c2 ∂A (muA) = dp/dτ + uB∂AQAB . (84)

Whereas by multiplying equation (83) by xB and recalling that:

xBaB = c2; xBuB = 0; xB∂Bp = dp/dρ;

xBx
B = r2; xA∂Ax

B = xB; 2xB∂AxB = ∂Ar2 = 0,

one obtains:

r2∂A
(
2pxA

/
r2
)
= mc2 + dp

/
dρ+ xB∂AQAB − 2p. (85)

By substituting equations (84), (85) into equation (83) one obtains:

maB + (uB/c
2) dp/dτ−(xB/r

2) dp/dρ+ ∂Bp − ∂AQAB = H2mxB. (86)

This is the Euler equation proposed by Arcidiacono for perfect incompressible fluids with

thermal exchange. When the thermal vector vanishes, this equation is reduced to equation

(69).

8. D’Alembert Equation

In Section 2 the D’Alembert projective operator, which rules free wave propagation, was

introduced starting directly from the metric. In this section, we propose a different and

instructive construction, starting from the projective derivatives [20, vol. II].

By differentiating the equation:

xa = (xa/x5)r (87)

one obtains:
dxa

r
= − xa

x2
5

dx5 +
dxa

x5

,
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i.e.:
∂ xa

∂x5

= −r
xa

x2
5

;
∂ xs

∂xa

=
r

x5

δsa. (88)

Let us define the projective derivation with respect to index a as:

∂aϕ = (∂ϕ/∂xa) =
∑
s

(
∂ϕ

∂ xs

) (
∂ xs

∂xa

)
.

For a �= 5 one has:

∂aϕ =
∑
s

(
∂ϕ

∂ xs

)
δsa

r

x5

=

(
∂ϕ

∂ xa

)
r

x5

= A∂a ϕ , (89)

where A = r/x 5. For a = 5 one has:

∂5ϕ =
∑
s

(
∂ϕ

∂ xs

) (
∂ xs

∂x5

)
=

∑
s

(∂sϕ)

(
− r

xs

x2
5

)
=− A

∑
s

(∂sϕ)

(
xs

x5

)
=− A

r

∑
s

(∂sϕ)

(
r
xs

x5

)
=

= −A

r
xs ∂

sϕ. (90)

In practice, the ordinary partial derivative with respect to the index s = 5 is the derivative

with respect to the constant x5 = r, and therefore it does not exist. The relations (89),

(90) express the projective derivatives as a function of the ordinary ones. For s = 0, 1, 2, 3

one has:

∂s∂
sϕ = (A∂s) (A∂

s) ϕ = A (∂sA) (∂
sϕ) + A2 ∂s∂

sϕ ,

and since ∂sA = xs/(Ar
2),

∂s∂
sϕ =

xs

r2
∂sϕ + A2 ∂s∂

sϕ .

Instead:

∂2
5 ϕ =

(
− A

r
xl∂

l

)(
− A

r
xm∂m

)
ϕ =

A2

r2
xl∂

lϕ +
A2

r2
xlxm∂

l∂mϕ +
xlx

mxl

r4
∂mϕ ,

an expression in which the indices l,m run along 0, 1, 2, 3. Since xlx
l = r2(A2 – 1), one

has:

∂2
5 ϕ =

A2

r2
xl∂

lϕ +
A2

r2
xlxm∂

l∂mϕ +
(A2 − 1)

r2
xm ∂mϕ .

At this point, the projective Dalembertian can be introduced:

�φ = ∂a∂
aφ = (∂s∂

sφ+ ∂5∂
5φ); s = 0, 1, 2, 3.

One immediately obtains:

�φ = (A2/r2)(r2∂s∂
s + xlxm∂

l∂m + 2xs∂
s)φ. (91)
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Equation (91) links the projective Dalembertian to the ordinary one ∂s∂
s. The D’Alembert

wave equation thus takes the De Sitter-covariant form:

�φ = 0, (92)

and in this form has been extensively studied by Arcidiacono and Capelas de Oliveira

[33,34].

It is to be noted that the components of the wave number vector ka must be appro-

priately redefined in PSR. The plane wave exp(ikax
a) is a solution of equation (92) only

if kak
a = 0. If k 0 = iω/c is defined as in SR, one must have that k 5 = θ/r, if one wants

this component to disappear in the limit r → ∞. The condition will then be satisfied if

one lets:

kα = nα[(ω/c)
2 − (θ/r)2], α = 1, 2, 3, (93)

with nαn
α = 1. The phase thus becomes kax

a → k•x – ωt + θ for r → ∞.

The static case, in which φ not depends on time (i.e. on x0), is very interesting. In

this case, equation (92) becomes the generalized Poisson equation:

Δφ = [∂α∂
α + (xβxγ/r

2)∂β∂γ + (2xα/r
2)∂α]φ = 0, (94)

where the Greek indices run along the ordinary spatial coordinates. In the case of a

central field φ = φ(ρ), ρ = (xαx
α)1/2, this equation admits of the solution [20,35]:

φ = −kY(ρ)/ρ, (95a)

with

Y (ρ) = (1 + ρ2/r2)1/2{cos[arctg(ρ/r)] + sin[arctg(ρ/r)]}. (95b)

Note that for r → ∞, φ→ −k/ρ, and this allows the constant k to be physically identified.

For example, in the case of the gravitational field it is clearly the mass of the attracting

body, multiplied by the Newton gravitational constant.

9. The Meaning of Physical Quantities in PSR

Let us consider two observers O and O’ and let H(O|O’) be the value of the physical

quantity H in the place occupied by observer O but defined in the reference frame of

observer O’. Let instead H(O’|O) be the value of the same quantity in the place occupied

by observer O’, defined in the reference frame of observer O. Let us then indicate with

H(O|O) the value of H in the place occupied by observer O, as defined in the reference

frame of O, and with H(O’|O’) the value of H in the place occupied by observer O’,

defined in the reference frame of observer O’. The quantity H can be, for example, the

gravitational or the magnetic field, the speed of light in the vacuum, etc.

That which observer O can actually measure, through an interaction, is H(O|O);

similarly, observer O’ can measure H(O’|O’). It is essential to understand that O cannot

measure H(O’|O), nor can O’ measure H(O|O’), because every measurement is an event
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and therefore is local. However, Fantappié-Arcidiacono transformations provide values

of H(O|O’) starting from, say, H(O|O); or the values of H(O’|O) starting from H(O’O’).

What, therefore, is the physical meaning of H(O|O’), H(O|O’) ?

One must bear in mind that the laws of propagation of physical phenomena formulated

in the reference system of O give H(O’|O) as a function of H(O|O); the same laws,

formulated in the system of O’, connect H(O|O’) to H(O’|O’). This is evident is one

takes, as an example of the quantity H, a continuous field - magnetic, gravitational, etc.

- though this restriction is not at all necessary. Thus, the “non measurable” quantity

H(O|O’) is related to the directly measurable quantity H(O’|O’) through the laws of

propagation; but H(O|O’) can in turn be linked to the directly measurable quantity

H(O|O) through Fantappié-Arcidiacono transformations. Thus, there actually is a link

between two directly measurable quantities, namely H(O|O) and H(O’|O’).

The difference between PSR and SR is that the parameter r (or, which is the same,

t0) enters into both the passages which express this relation in PSR (law of propagation

and transformation of the inertial reference frame), and therefore the causal link between

distant events is affected by the global curvature of spacetime. Obviously, local interaction

processes, i.e. those which involve energy exchanges over small distances compared to r

or over brief times compared to t0, are not affected by the curvature. Therefore, physical

quantities such as the dimension of bounded states (atoms, galaxies, etc...), the energy

levels of bounded states, and so on, do not show any variation in PSR, whereas the link

by means of signals between distant events does. For example, there will be a difference

between the frequency of a light wave emitted by a galaxy, measured at the start, and the

frequency of the same wave measured on its arrival in another galaxy. This is precisely

what “red shift” consists of.

Though PGR has not yet been sufficiently investigated from this point of view, it

is plausible that the topics discussed in this section can to a certain extent be relevant

to it. The most important difference is that global reference frames associated with the

observers O and O’ no longer exist: the reference frames introduced by theory are now

local. On the space tangent in O at the manifold X which generalizes the De Sitter

chronotope, laws of propagation similar to those of PSR are still defined, and these

still connect H(O’|O) to H(O|O). Yet, the relation between the quantity H(O’|O) thus

introduced and the quantity H(O’|O’), defined in the origin of the space tangent in O’ to

X, is no longer expressed by global transformations such as the Fantappié-Arcidiacono

ones. This relation is now expressed by the projective connection associated with the

fundamental tensor of the metric which generalizes equation (5) [8,9,20,25].

In the practical use of PSR it is necessary accurately to define the suitable physical

quantities of a problem, because the global curvature effects associated with spacetime

translations (effects which do not exist in SR) can easily lead to paradoxes. Let us

consider, for example, the case in which the quantity H is the spatial position x of a

material point in an isolated bounded system, and the concerned law of propagation is

the equation of motion x = x (t), solution of equation (36). This equation is valid in

an inertial reference frame whose origin is in the observation pointevent O, and t is the
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chronological distance from O. In this reference frame, the system to which the material

point belongs is bounded and its centre of mass is assumed to be at rest; thus, one would

be tempted to define the notion of “bounded system” by asserting that | x | < R,

where R is a constant of motion. As can easily be seen, this notion of “bounded system”

is inconsistent in PSR, as it is incompatible with that of the inertial observer at rest with

respect to the system. Such an observer evolves from event O to event O’, which is the

origin of a reference frame in which the event (x , t) is simultaneous with O’. From the

general expression of coordinate transformations for time translations (one-dimensional

case) one has [17,18,19,20,21]:

x′ =
x
√
1 − γ2

1 + γ t
t0

; t′ =
t + T0

1 + γ t
t0

, (96)

where γ = T0/t0. It follows, assuming the request for simultaneity t’ = 0, that T0 = -t

and:

x′ =
x√

1 −
(

t
t0

)2
. (97)

One clearly sees that in the translated reference frame the spatial position of the material

point diverges for t → ±t0, and therefore the notion of “bounded system” introduced

above cannot be exported to the new reference frame. Physically, however, the observer

is causally disconnected from events external to his lightcone, and therefore the divergence

expressed by equation (97) does not have any consequences on how he sees the bounded

system. The mistake consists in having introduced a notion of “bounded system” using

a spatial position external to the observer’s lightcone. This mistake can be remedied

by introducing a different notion, which uses quantities internal to the lightcone. For

example, one can say that the system is bounded in the sense that the travel of a ray of

light from any of its parts to the observer have a duration not exceeding R/c, where R is a

constant of motion. As can easily be seen, this definition is invariant for time translations,

i.e. it does not depend on the fact that the observer coincides instantaneously with O or

O’.

One must however pay attention to the fact that while the duration of the light travel

from one part of the system to the observer is invariant for time translations, the duration

of the light travel between a given emission pointevent and a given observation pointevent

such as O is instead changed by the action of transformations (96).

Concluding Notes

Most works concerning PSR are available in Italian, and this fact has probably contributed

to the limited dissemination of this theory among specialists. This work wishes to present

a summary of the fundamental PSR equations that is comprehensible to a wider public

and can lead on to more specialized studies. The fundamental dynamics equations of

material point, perfect incompressible fluid and wave have been summarized and derived
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following more direct reasoning than can be found in the original texts. Some mistakes

have been corrected or eliminated. For example, by generalizing Maxwell’s equations in

the De Sitter-invariant form on the Castelnuovo chronotope, a longitudinal component

of the electromagnetic field appears, because of the finite value of r [40], which satisfies

equations similar to those of perfect fluid hydrodynamics [20]. Arcidiacono was convinced,

on the basis of this purely formal analogy [36,37,38,39], that the longitudinal component

was the hydrodynamic field! In this article, his “cosmic magnetohydrodynamic” model,

based on these principles, has been completely ignored.

As can be seen from the discussion on material point dynamics (Sect. 4) and as con-

firmed by the right-hand members of equations (69), (86), an important difference with

respect to SR is constituted by the dynamic effect of geodetic projection. In the conven-

tional description of the De Sitter chronotope, this effect is, at least in part, recovered

by introducing a “cosmological term” that does not exist in PSR. PSR thus becomes a

useful model, at least to understand the possible kinematic origin of the cosmological

term.

Again, on a kinematic basis, it is possible also to deduce a phenomenon of expansion

of the Universe with a velocity field expressed by equation (53), which disappears in

Einstein’s limit r → ∞. This field diverges at a chronological distance from the observer

which is equal to –t0, but this singularity - as has been discussed in other works [26,41]

- cannot be identified with the big bang. Rather, it is a horizon dependent upon the

observer.

Relation (30b) is very interesting. By applying it to the entire Universe, it would

seem to suggest the possibility not only of inter-conversions of mass and energy but of

angular momentum as well. This subject however is still hypothetical and is unexplored

to date.

The projective effects do not affect interaction phenomena; these are still correctly

described by SR, since they are local. For example, PSR cannot be taken as the basis

to explain a cosmological variation of the fundamental constants. The projective effects,

on the other hand, affect the propagation of signals between events that are distant in

time and/or in space. For example, a discussion of travelling waves which are solutions

of equation (92) shows [20] that they are subject to a Doppler effect that can be related

to cosmic expansion. The frequency of the light wave emitted by a galaxy and measured

in the reference frame of the emitting galaxy in the place of emission differs from the

frequency of the same wave on its arrival in another galaxy, measured in the reference

frame of the galaxy of arrival. This is what the cosmological “red shift” predicted by

PSR consists of; its origin is entirely due to the Doppler effect and not to the variation of

the distance scale (whereas in PGR there is a contribution deriving from this variation,

[41]). This entire topic can be generalized to any quantity H, as illustrated in Sect. 9

and, with reference to temperature, in Sect. 6.

One hopes that this discussion can contribute to solving any doubts about the relation

between “reality” and “appearance” in PSR, facilitating the approach to a theory which,

in our opinion, deserves careful consideration.
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