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ABSTRACT

Despite several recent proposals to achieve Blind
Source Separation (BSS) for realistic acoustic signals,
the separation performance is still not enough. In par-
ticular, when the length of an impulse response is long,
the performance is highly limited. In this paper, we
consider the reason for the poor performance of BSS in
a long reverberation environment. First, we show that
it is useless to be constrained by the condition P � T ,
where T is the frame size of FFT and P is the length
of a room impulse response. We also discuss the limi-
tation of frequency domain BSS, by showing that the
frequency domain BSS framework is equivalent to two
sets of frequency domain adaptive beamformers.

1. INTRODUCTION

Blind Source Separation (BSS) is an approach to
estimate original source signals si(t) using only the in-
formation of the mixed signals xj(t) observed in each
input channel. This technique is applicable to the re-
alization of noise robust speech recognition and high-
quality hands-free telecommunication systems. It may
also become a cue for auditory scene analysis.

To achieve BSS of convolutive mixtures, several
methods have been proposed [1, 2]. In this paper, we
consider the BSS of convolutive mixtures of speech in
the frequency domain [3, 4], for the sake of mathemati-
cal simplicity and the reduction of computational com-
plexity.

There have been a lot of proposals to achieve BSS
in a realistic room environment, however, the separa-
tion performance is still not enough. In this paper, we
consider the reason for the poor performance of BSS in
a long reverberation environment.

First, we discuss the frame size of FFT used in fre-
quency domain BSS. It is commonly believed that the
frame size T must be P � T to estimate an unmixing
matrix for a P -point room impulse response [5, 6]. We
point out that this is not the case for BSS, and show
that a smaller frame size is much better, even for long
room reverberation.

Next, we discuss the limitation of frequency domain
BSS, by showing the equivalence between frequency do-
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Figure 1: BSS system configuration.

main BSS framework and two sets of beamformers. To
date, signal separation by using a noise cancellation
framework with signal leakage into the noise reference
has been discussed in [7, 8]. In these papers it is shown
that the least squares criterion is equivalent to the de-
correlation criterion of a noise free signal estimate and
a signal free noise estimate. Inspired by their discus-
sions, but apart from the noise cancellation framework,
we attempt to see the frequency domain BSS problem
with a frequency domain adaptive microphone array,
i.e., Adaptive Beamformer (ABF) framework.

2. FREQUENCY DOMAIN BSS OF
CONVOLUTIVE MIXTURES OF SPEECH

The signals recorded by M microphones are given
by

xj(n) =
N∑

i=1

P∑
p=1

hji(p)si(n−p+1) (j = 1, · · · , M ), (1)

where si is the source signal from a source i, xj is the
received signal by a microphone j, and hji is a P -point
impulse response from source i to microphone j. In this
paper, we consider a two-input, two-output convolutive
BSS problem, i.e., N = M = 2 (Fig. 1).

The frequency domain approach to convolutive mix-
tures is to transform the problem into an instantaneous
BSS problem in the frequency domain [3, 4]. Using
T -point short time Fourier transformation for (1), we
obtain,

X(ω, m) = H(ω)S(ω, m). (2)
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Figure 2: Layout of a room used in experiments.

where S(ω, m) = [S1(ω, m), S2(ω, m)]T . We assume
that a (2×2) mixing matrix H(ω) is invertible, and
Hji(ω) �= 0.

The unmixing process can be formulated in a fre-
quency bin ω:

Y (ω, m) = W (ω)X (ω, m), (3)

where X(ω, m) = [X1(ω, m), X2(ω, m)]T is the observed
signal at frequency bin ω, Y (ω, m) = [Y1(ω, m), Y2(ω, m)]T
is the estimated source signal, and W (ω) represents
a (2×2) unmixing matrix. W (ω) is determined so
that Y1(ω, m) and Y2(ω, m) become mutually indepen-
dent. The above calculations are carried out in each
frequency independently.

3. EXPERIMENTS
It is commonly believed that the frame size T must

be P � T to estimate an unmixing matrix for a P -
point room impulse response [5, 6]. In this section, we
investigate this point for BSS, and show that there is
an optimal frame size for BSS [9].

3.1. Conditions for experiments
3.1.1. Learning algorithm

For the calculation of the unmixing matrix W (ω)
in (3), we use an algorithm based on the minimization
of the Kullback-Leibler divergence [3, 10]. The opti-
mal W (ω) is obtained by using the following iterative
equation:
W i+1(ω) =W i(ω)

+η
[
diag

(
〈Φ(Y )Y H〉

)
−〈Φ(Y )Y H〉

]
W i(ω),(4)

where Y =Y (ω,m), 〈·〉 denotes the averaging operator,
i is used to express the value of the i-th step in the
iterations, and η is the step size parameter. In addition,
we define the nonlinear function Φ(·) as

Φ(Y ) =
1

1 + exp(−Y (R))
+ j

1

1 + exp(−Y (I))
, (5)

where Y (R) and Y (I) are the real part and the imagi-
nary part of Y , respectively.
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Figure 3: An example of measured impulse response h11

used in experiments (TR = 300 ms).

3.1.2. Conditions for experiments
Separation experiments were conducted using speech

data convolved with impulse responses recorded in three
environments specified by different reverberation times:
TR = 0 ms, 150 ms (P = 1200), and 300 ms (P =
2400).

The layout of the room we used to measure the
impulse responses is shown in Fig. 2. We used a two-
element array with inter-element spacing of 4 cm. The
speech signals arrived from two directions, −30◦ and
40◦. An example of a measured room impulse response
used in our experiments is shown in Fig. 3.

In these experiments, we changed the frame size
T from 32 to 2048 and investigated the performance
for each condition. The sampling rate was 8 kHz, the
frame shift was half of frame size T , and the analysis
window was a Hamming window. To solve the permu-
tation problem, we used the blind beamforming algo-
rithm proposed by Kurita et al [10].

3.1.3. Evaluation measure
In order to evaluate the performance for different

frame sizes T with different reverberation times TR, we
used the noise reduction rate (NRR), defined as the
output signal-to-noise ratio (SNR) in dB minus the in-
put SNR in dB.

NRRi = SNROi − SNRIi

SNROi = 10 log

∑
ω
|Aii(ω)Si(ω)|2∑

ω
|Aij(ω)Sj(ω)|2 (6)

SNRIi = 10 log

∑
ω
|Hii(ω)Si(ω)|2∑

ω
|Hij(ω)Sj(ω)|2 (7)

where A(ω) = W (ω)H(ω) and i �= j. These val-
ues were averaged for the whole six combinations with
respect to the speakers, and NRR1 and NRR2 were
averaged for the sake of convenience.
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Figure 4: Results of NRR for different frame sizes. The
solid lines are for 8 seconds learning, and the dotted lines
are for 3 seconds learning. Separation was executed for the
8 seconds long data.

3.2. Experimental results
The experimental results are shown in Fig. 4. The

lengths of the mixed speech signals were about eight
seconds each. We used the beginning three seconds
(dotted lines) or entire eight seconds (solid lines) of
the mixed data for learning according to (4), and the
entire eight seconds data for separation.

In the case of the three seconds learning, the max-
imum NRR was obtained when T = 128 [Fig. 4(a)] in
non-reverberant tests. In reverberant tests, the maxi-
mumNRRwas obtained using T=512 when TR=150 ms
[Fig. 4(b)], and TR=300 ms [Fig. 4(c)]. A short frame
was found to function far better than a long frame,
even for long room reverberation.

For the longer learning data, i.e., the eight seconds
data, the results were slightly different. In this case,
we obtained a better separation performance than the
three seconds learning case. Furthermore, in compari-
son with the three seconds learning case, the peak per-
formance appeared when we used a longer frame size
T . With an overly long frame size, however, the perfor-
mance become poor even when we used longer learning
data.

Even for long room reverberation, the condition
P � T is useless, and a shorter frame size T is best.
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Figure 5: Relationship between T and the correlation co-
efficient. The solid lines are for data of 8 seconds, and the
dotted lines are for data of 3 seconds. TR=0 ms.

4. DISCUSSION
4.1. Optimum frame size for frequency domain
BSS

In the previous section, we showed that a longer
frame size T fails. In this section, we discuss the reason
why both a short frame and a long frame fail.

In the frequency domain BSS framework, the signal
we can use is not x(n) but X(ω, m). If the frame size
T is long, the number of data in each frequency bin
becomes few. This causes assumptions to collapse, like
the zero mean assumption.

As an example of such a collapse, we observed that
the independency of two original signals went down
when the frame size became longer. Figure 5 shows
the relationship between the frame size T and the cor-
relation coefficient:

J(T ) =
1

T

T∑
ω

|rω|, (8)

where

rω =

∑
m

(U1(ω,m) − U1(ω))(U2(ω,m) − U2(ω))√∑
m

[U1(ω, m) − U1(ω)]2
√∑

m
[U2(ω,m) − U2(ω)]2

.

(9)

where U represents a mean value, and U is original
signal S, observed signal, X or separated signal Y .
Although a correlation coefficient does not show inde-
pendency directly, we use this measure as an index of
independency. As Fig. 5 shows, the independency de-
creases when the frame size T becomes longer. In these
cases, because the data length gets shorter, the assump-
tion of independency does not hold for the two original
sources. This is a reason why the long frame failed.

On the other hand, if we use a short frame, the
frame cannot cover the reverberation, therefore, the
separation performance is limited.

In frequency domain BSS, the optimum frame size
is decided by the trade-off between maintaining the as-
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sumption of independency and covering the whole re-
verberation.

4.2. Length of learning data and separation per-
formance

In 3.2, we obtained a better performance using
eight seconds data than using three seconds data. The
reason for this result is also explained by Fig. 5. With
eight seconds data, independency is better maintained
than with three seconds data. Therefore, we can obtain
a better performance using the former. Furthermore,
the optimum frame size changes when we use learning
data of different length, because the optimum frame
size is decided by the trade-off we mentioned in 4.1.

5. EQUIVALENCE BETWEEN
FREQUENCY DOMAIN BSS AND

FREQUENCY DOMAIN ABF

In this section, in order to discuss the fundamen-
tal limitation of frequency domain BSS, we show that
frequency domain BSS is equivalent to two sets of fre-
quency domain adaptive beamformers (ABF). From
the equivalence between BSS and ABF, we can con-
clude that the performance of BSS is upper bounded
by that of ABF [11].

5.1. Frequency domain BSS of convolutive mix-
tures using Second Order Statistics (SOS)

In this section, we use a second order statistics
(SOS) BSS algorithm for convenience. It is well known
that a decorrelation criterion is insufficient to solve
problems. In [8], however, it is pointed out that non-
stationary signals can provide enough additional infor-
mation to estimate all Wij . Some authors have utilized
SOS for convolutively mixed speech signals [5, 6].

Source signals S1(ω, m) and S2(ω, m) are assumed
to be zero mean and mutually uncorrelated:

RS(ω, k) =
1

M

M−1∑
m=0

S(ω, Mk + m)S∗(ω,Mk + m)

= Λs(ω, k), (10)

where ∗ denotes the conjugate transpose, and Λs(ω, k)
is a different diagonal matrix for each block k.

In order to determine W (ω) so that Y1(ω, m) and
Y2(ω, m) become mutually uncorrelated, we seek a W (ω)
that diagonalizes the covariance matrices RY (ω, k) si-
multaneously for all k,

RY (ω, k) = W (ω)RX(ω, k)W ∗(ω)

= W (ω)H(ω)Λs(ω, k)H∗(ω)W ∗(ω)

= Λc(ω, k), (11)

where RX is the covariance matrix of X(ω) as follows,

RX(ω, k) =
1

M

M−1∑
m=0

X(ω, Mk + m)X∗(ω,Mk + m), (12)

and Λc(ω, k) is an arbitrary diagonal matrix.
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Figure 6: Two sets of ABF system configurations.

The diagonalization of RY (ω, k) can be written as
an overdetermined least-squares problem,

arg min
W (ω)

∑
k

||off-diagW (ω)RX(ω, k)W ∗(ω)||2 (13)

s.t.,
∑

k

diag||W (ω)RX(ω, k)W ∗(ω)||2 �= 0,

where ||x||2 is the squared Frobenius norm.

5.2. Frequency domain adaptive beamformer

Here, we consider frequency domain adaptive beam-
formers (ABF), which can remove jammer signals. Since
our aim is to separate two signals S1 and S2 with two
microphones, two sets of ABF are used (Fig. 6). Note
that an ABF can be adapted only when a jammer exists
but a target does not exist.

5.2.1. ABF null towards S2

First, we consider the case of target S1 and jammer
S2 [Fig. 6(a)]. When target S1 = 0, output Y1(ω, m)
is expressed as

Y1(ω,m) = W (ω)X(ω,m), (14)

where
W (ω) = [W11(ω),W12(ω)],X(ω,m) = [X1(ω, m),X2(ω,m)]T .

To minimize jammer S2(ω, m) in output Y1(ω, m)
when target S1 = 0, mean square error J(ω) is intro-
duced as

J(ω) = E[Y 2
1 (ω,m)]

= W (ω)E[X(ω, m)X∗(ω, m)]W ∗(ω)

= W (ω)R(ω)W ∗(ω), (15)

where E is the expectation and
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R(ω) = E
[

X1(ω, m)X∗
1 (ω,m) X1(ω, m)X∗

2 (ω,m)
X2(ω, m)X∗

1 (ω,m) X2(ω, m)X∗
2 (ω,m)

]
. (16)

By differentiating cost function J(ω) with respect to
W and setting the gradient equal to zero

∂J(ω)

∂W
= 2RW ∗ = 0, (17)

we obtain the equation to solve as follows [(ω, m), etc.,
are omitted for convenience],

E
[

X1X
∗
1 X1X

∗
2

X2X
∗
1 X2X

∗
2

] [
W∗

11

W∗
12

]
=

[
0
0

]
. (18)

Using X1 = H12S2, X2 = H22S2, we get

W11H12 + W12H22 = 0. (19)

With (19) only, we have trivial solutionW11=W12=0.
Therefore, an additional constraint should be added to
ensure target signal S1 in output Y1. With this con-
straint, output Y1 is expressed as

Y1 = W11X1 + W12X2

= W11H11S1 + W12H21S1 = c1S1, (20)

which leads to

W11H11 + W12H21 = c1, (21)

where c1 is an arbitrary complex constant. Since H12

and H22 are unknown, the minimization of (15) with
adaptive filters W11 and W12 is used to derive (19) with
constraint (21). This means that the ABF solution is
derived from simultaneous equations (19) and (21).

5.2.2. ABF null towards S1

Similarly for target S2, jammer S1, and output Y2

[Fig. 6(b)], we obtain

W21H11 + W22H21 = 0 (22)
W21H12 + W22H22 = c2. (23)

5.2.3. Two sets of ABF
By combining (19), (21), (22), and (23), the simul-

taneous equations for the two sets of ABF are summa-
rized as[

W11 W12

W21 W22

] [
H11 H12

H21 H22

]
=

[
c1 0
0 c2

]
. (24)

5.3. Equivalence between BSS and ABF

As we showed in (13), the SOS BSS algorithm
works to minimize off-diagonal components in

E
[

Y1Y
∗
1 Y1Y

∗
2

Y2Y
∗
1 Y2Y

∗
2

]
, (25)

[see (11)]. Using H and W , outputs Y1 and Y2 are
expressed in each frequency bin as follows,

Y1 = aS1 + bS2 (26)
Y2 = cS1 + dS2, (27)

where[
a b
c d

]
=

[
W11 W12

W21 W22

] [
H11 H12

H21 H22

]
. (28)

5.3.1. When S1 �= 0 and S2 �= 0

We now analyze what is going on in the BSS frame-
work. After convergence, the expectation of the off-di-
agonal component E[Y1Y

∗
2 ] is expressed as

E[Y1Y
∗
2 ]

= ad∗E[S1S
∗
2 ] + bc∗E[S2S

∗
1 ] + (ac∗E[S2

1 ] + bd∗E[S2
2 ])

= 0. (29)

Since S1 and S2 are assumed to be uncorrelated, the
first term and the second term become zero. Then,
the BSS adaptation should drive the third term of (29)
to be zero. By squaring the third term and setting it
equal to zero
(ac∗E[S2

1 ] + bd∗E[S2
2 ])

2

= a2c∗2(E[S2
1 ])

2 + 2abc∗d∗E[S2
1 ]E[S2

2 ] + b2d∗2(E[S2
2 ])

2

= 0 (30)

(30) is equivalent to

ac∗ = bd∗ = 0, abc∗d∗ = 0. (31)

CASE 1: a = c1, c = 0, b = 0, d = c2[
W11 W12

W21 W22

] [
H11 H12

H21 H22

]
=

[
c1 0
0 c2

]
(32)

This equation is exactly the same as that of the ABF
(24).

CASE 2: a = 0, c = c1, b = c2, d = 0
[

W11 W12

W21 W22

] [
H11 H12

H21 H22

]
=

[
0 c2

c1 0

]
(33)

This equation leads to the permutation solution which
is Y1 = c2S2, Y2 = c1S1.

Note that the undesirable solutions (i.e., a = 0, c =
c1, b = 0, d = c2 and a = c1, c = 0, b = c2, d = 0) do not
appear, since we assume that H(ω) is invertible and
Hji(ω) �= 0.

If the uncorrelated assumption between S1(ω) and
S2(ω) collapses, the first and second terms of (29) be-
come the bias noise to get the correct coefficients a, b, c, d.

5.3.2. When S1 �= 0 and S2 = 0

The BSS can adapt, even if there is only one active
source. In this case, only one set of ABF is achieved.
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Figure 7: Directivity patterns (a) obtained by an NBF,
(b) obtained by BSS (TR=0 ms), (c) obtained by BSS
(TR=150 ms), and (d) obtained by BSS (TR=300 ms). DOA
means direction of arrival. T=256, three second learning.

5.4. Fundamental limitation of frequency do-
main BSS

Frequency domain BSS and frequency domain ABF
are shown to be equivalent [see (24) and (32)] if the in-
dependent assumption ideally holds [see (29)]. We can
form only one null towards the jammer in the case of
two microphones. Figure 7 shows directivity patterns
obtained by a null beamformer (NBF) and BSS; Fig.
7(a) shows a directivity pattern obtained by an NBF
that forms a steep null directivity pattern towards a
jammer under the assumption of the jammer’s direc-
tion being known. In Fig. 7, (b),(c), and (d) are drawn
by W by BSS: (b) is drawn by W when TR = 0, (c)
is drawn by W when TR = 150 ms, and (d) is drawn
by W when TR = 300 ms. When TR = 0, a sharp
null is obtained like with an NBF. When TR is long,
the directivity pattern is comparatively duller; how-
ever, we can draw a directivity pattern. Although BSS
and ABF can reduce reverberant sounds to some extent
[12], they mainly remove the sounds from the jammer
direction. This understanding clearly explains the poor
performance of BSS in a real room with long reverber-
ation.

Moreover, as we have shown in section 3, a long
frame size works poorly in frequency domain BSS for
speech data of a few seconds. This is because when we
use a long frame, the assumption of independency be-
tween S1(ω) and S2(ω) does not hold in each frequency;
this is caused by the lack of the number of data in each
frequency bin. Therefore, the performance of BSS is
upper bounded by that of ABF.

Our discussion here is essentially also true for BSS
with Higher Order Statistics (HOS), and will be ex-
tended to it shortly.

6. CONCLUSIONS
In this paper, we discuss why the separation per-

formance is poor when there is long reverberation.
First, we show that it is useless to be constrained by

the condition P � T , where T is the frame size of FFT

and P is the length of a room impulse response. This
is because the lack of data causes the collapse of the
assumption of independency between the two original
signals in each frequency bin when the data length is
short, or when a longer frame size T is used.

Next, we show that frequency domain BSS is equiv-
alent to two sets of frequency domain ABF. Because
ABF (and BSS) mainly considers the direct sound by
making a null towards jammer direction, the separa-
tion performance is fundamentally limited. This un-
derstanding clearly explains the poor performance of
BSS in a real room with long reverberation.
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