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Abstract

Givental’s Lagrangian cone LX is a Lagrangian submanifold of a symplectic vector

space which encodes the genus-zero Gromov–Witten invariants of X . Building on

work of Braverman, Coates has obtained the Lagrangian cone as the push-forward of

a certain class on the moduli space of stable maps to X ×P
1. This provides a conceptual

description for an otherwise mysterious change of variables called the dilaton shift. We

recast this construction in its natural context, namely the moduli space of stable maps

to X ×P
1 relative the divisor X ×∞. We find that the resulting push-forward is another

familiar object, namely the transform of the Lagrangian cone under the action of the

fundamental solution matrix. This hints at a generalisation of Givental’s quantisation

formalism to the setting of relative invariants. Finally, we use a hidden polynomiality

property implied by our construction to obtain a sequence of universal relations for

the Gromov–Witten invariants, as well as new proofs of several foundational results

concerning both the Lagrangian cone and the fundamental solution matrix.

Keywords Gromov–Witten invariants · Quantisation formalism · Relative

Gromov–Witten invariants

Mathematics Subject Classification 14N35 · 53D45

1 Introduction

The Gromov–Witten invariants of a smooth projective variety X are defined as certain

intersection numbers on moduli spaces of stable maps to X . They can be thought of as
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1068 N. Nabijou

counting curves of specified genus and degree passing through specified cycles in X .

Their intrinsic interest aside, Gromov–Witten invariants have connections to numerous

other areas of mathematics, from representation theory to symplectic topology. In

algebraic geometry they have been used in the proofs of classification theorems, as a

tool for distinguishing non-deformation-equivalent varieties.

Many results in Gromov–Witten theory are expressed most cleanly via generating

functions, that is, formal functions (usually polynomials or power series) whose coeffi-

cients are given by Gromov–Witten invariants. Oftentimes, a simple identity involving

generating functions is all that is needed to express a relationship which, on the level of

individual invariants, is extremely complicated. There is an underlying reason for this:

Gromov–Witten theory has deep connections to theoretical physics, through which the

aforementioned generating functions appear as the “partition functions” of physical

theories. This circle of ideas has been extremely influential for the development of

the subject, with the first major result in this direction being the celebrated Mirror

Theorem [3,17,18].

In keeping with this spirit, Givental describes in [19] a quantisation formalism

for Gromov–Witten invariants. In the genus-zero setting (when no “quantisation” is

actually required), this amounts to encoding the Gromov–Witten invariants of X in a

Lagrangian cone

LX ⊆ H

inside a certain symplectic vector space H, now called the Givental space. The data of

the cone LX is equivalent to the data of the generating functions discussed earlier, but

it turns out to be a good idea to treat LX as a geometric object in its own right; many

statements in Gromov–Witten theory can then be translated into statements about how

LX transforms under certain symplectomorphisms of H.

The benefits of this quantisation formalism are twofold. From a theoretical view-

point, it can be used to make rigorous sense of a number of deep predictions coming

from physics. On the other hand, from a practical point of view, it has proven to be

an extremely versatile framework in which to formulate and prove statements about

Gromov–Witten invariants. Indeed, there are many results in Gromov–Witten theory

which would be difficult to even state without the quantisation formalism: examples

include the quantum Riemann–Roch formula [8], the crepant transformation conjec-

ture [10], the Virasoro conjecture and various versions of the “genus zero implies

higher genus” principle [20].

Building on work of Braverman [2], Coates shows in [7] that LX can be obtained

as a (C∗-localised) push-forward from the moduli space of stable maps to X ×P
1

(usually called the graph space). This is motivated by Givental’s heuristic description

of H as the S1-equivariant cohomology of the loop space of X [16], and gives a natural

geometric interpretation for a mysterious change of variables, called the “dilaton shift”,

which is essential to the quantisation formalism.

Coates’ construction requires restricting to a certain open substack of the moduli

space of stable maps to X ×P
1, before localising to a proper fixed locus (with respect

to the natural C
∗-action on the moduli space) in order to push forward. With hindsight,
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this is really the push-forward from one of the C
∗-fixed loci in the moduli space of

relative stable maps to the pair (X ×P
1, X ×∞).

A natural question to ask is then: what happens if we sum over all the fixed loci?

In this article we provide the answer (see Proposition 2.4): the result is the transform

of the Lagrangian cone under the action of the fundamental solution matrix. The main

tools used in the proof are the relative virtual localisation formula [23, Theorem 3.6],

a virtual push-forward theorem for relative stable maps to the non-rigid target [15,

Theorem 5.2.7] and a comparison lemma for psi classes, which we prove in Sect. 3.2.

Because we are now summing over all fixed loci, we know that the resulting class

must actually belong to the non-localised equivariant cohomology. In practice, this

means the following: we push forward and obtain a class which, a priori, looks like a

rational function in z; however we know that, after performing suitable cancellations,

we must end up with a polynomial (here z denotes the C
∗-equivariant parameter). We

use this observation to give new and simple proofs of a number of foundational results

belonging to the quantisation formalism theory.

Future directions. This construction provides a hint as to how one might obtain a

quantisation formalism for relative (or logarithmic) Gromov–Witten invariants; see

Remark 2.3. This was in fact the original motivation for this work.

User’s guide. Readers familiar with Gromov–Witten theory and the quantisation for-

malism may skip straight to Sect. 2.6 where we give the statement of the main result.

For the uninitiated, we provide in Sects. 2.1–2.5 a brief introduction to Gromov–Witten

invariants, the Lagrangian cone and relative Gromov–Witten theory. The proof of the

main result is given in Sect. 3; this is mostly a computation, with the only geometric

content being a lemma on psi classes which we prove in Sect. 3.2. Finally in Sect. 4

we provide examples of how the “hidden polynomiality” implied by our construction

can be used to obtain universal relations for the Gromov–Witten invariants, as well as

new proofs of a number of standard results concerning the Lagrangian cone and the

fundamental solution matrix.

2 Background and statement of themain result

2.1 Gromov–Witten invariants

Throughout we fix a smooth projective variety X over the complex numbers. The

genus-zero Gromov–Witten invariants of X are defined as certain integrals over moduli

spaces of stable maps to X [25]. Fixing a number n � 0 of marked points and a curve

class β ∈ H+
2 (X) (where H+

2 (X) ⊆ H2(X) is the submonoid of effective classes, i.e.,

those which can be represented by algebraic curves), the moduli space of stable maps

M0,n(X , β)

parametrises holomorphic maps f : C → X of class β, where C is a nodal curve of

arithmetic genus zero with n distinct non-singular marked points. There is a stability

condition which stipulates that f can only have finitely many automorphisms; this is
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1070 N. Nabijou

equivalent to requiring that every component of C which is contracted by f contains at

least three special points (either marked points or nodes). The resulting moduli space

is a proper Deligne–Mumford stack, with virtual dimension (sometimes also referred

to as the expected dimension):

vdim M0,n(X , β) = dim X − 3 − K X ·β + n.

Although it is not in general smooth or even irreducible, and can contain components in

excess of the virtual dimension, it admits a virtual fundamental class of pure dimension

equal to the virtual dimension: this should be thought of as the fundamental class of

some suitably generic perturbation of the moduli space. The Gromov–Witten invariants

are then defined as:

〈

γ1ψ
k1

1 , . . . , γnψkn
n

〉X

0,n,β
..=

∫

[M0,n(X ,β)]virt

n
∏

i=1

ev∗
i (γi ) ·ψ

ki

i .

In the above formula each γi ∈ H∗(X) is a class on the target, while each ψi is a class on

the moduli space itself which has to do with the complex structure of the source curve

near the i th marked point. Ignoring these latter terms (whose geometric interpretation is

somewhat more involved [22]) the Gromov–Witten invariant 〈γ1, . . . , γn〉X
0,n,β should

be thought of as a “virtual” count of rational curves in X of class β which pass through

(representatives of) the classes γ1, . . . , γn . For a more detailed discussion of stable

maps and Gromov–Witten invariants, see [14], [11, Section 7], [15, Section 1].

2.2 Givental space

The Lagrangian cone LX is a geometric object which encodes all the genus-zero

Gromov–Witten invariants of X . It can be viewed as the graph of a certain generating

function for these invariants. This generating function must keep track, through its

formal variables, of both the cohomological insertions γi and the exponents ki of

the classes ψi . We begin by defining a vector space H whose co-ordinates will give

precisely these formal variables; the Lagrangian cone will then be a submanifold of H.

We set H∗(X) = H∗(X;�) where � is some (unspecified) field of characteristic

zero; for the moment it is safe to take � = C, but later we will need to consider larger

fields. We assume (for notational simplicity) that X has only even cohomology, and

choose a homogeneous basis ϕ0, . . . , ϕN such that ϕ0 = 1X is the unit element. We let

ϕ0, . . . , ϕN denote the dual basis with respect to the Poincaré pairing ( · , ·), so that:

(ϕα, ϕβ) = δβ
α .

The Givental space H is a certain infinite-dimensional symplectic vector space (over

�) associated to X . It is defined as the space of formal Laurent series in a single

variable z−1 with coefficients in H∗(X):
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The fundamental solution matrix and relative stable maps 1071

H ..= H∗(X)[z, z−1� =

{

∑

−∞<k�m

qk zk : qk ∈ H∗(X)

}

.

The notation above is meant to indicate that each series has only finitely many positive

powers of z, but can have infinitely many negative powers. The powers of z−1 will

keep track of the exponents of the psi classes.

There is a symplectic form 	 on H defined as follows:

	 : H×H → �

( f (z), g(z)) 	→ Resz=0( f (− z), g(z)) dz

where ( f (− z), g(z)) is the Poincaré pairing (extended linearly from H∗(X) to H),

and Resz=0 simply means that we take the coefficient of z−1 in the resulting Laurent

series. A straightforward computation verifies that 	 is indeed a symplectic form.

Example 2.1 Take X = pt so that H∗(X) = �. Then H = �[z, z−1� and 	 is given

by:

	

(

∑

k

ak zk,
∑

l

bl z
l

)

= Resz=0

(

∑

k

∑

l

(−1)kakbl z
k+l

)

=
∑

k+l=−1

(−1)kakbl .

Notice that this sum is finite since the terms which appear must have either k or l

non-negative, and there are only finitely many such values for which ak and bl are

both non-zero.

Thus (H,	) is an infinite-dimensional symplectic vector space. We will now write

down Darboux co-ordinates. It is clear that the following defines a basis for H:

Ak
α

..= ϕαzk, k � 0, α = 0, . . . , N ,

B
γ

l
..= ϕγ (− z)−1−l, l � 0, γ = 0, . . . , N .

It is also easy to see that these give Darboux co-ordinates, i.e. that we have:

	
(

Ak
α, Ak′

α′

)

= 0, 	
(

B
γ

l , B
γ ′

l ′

)

= 0, 	
(

Ak
α, B

γ

l

)

= − δγ
α δk

l .

Using these canonical co-ordinates we can define linear subspaces H+ and H− to be

the spans, respectively, of the Ak
α and B

γ

l inside H:

H+
..= H∗(X)[z] =

{

∑

k�0

qα
k ϕαzk : qα

k ∈ �

}

,

H−
..= z−1H∗(X)�z−1� =

{

∑

l�0

pl
γ ϕγ (− z)−1−l : pl

γ ∈ �

}

.
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1072 N. Nabijou

Here, and in what follows, we adopt the Einstein summation convention when dealing

with Greek letters, i.e., when summing over cohomology classes ϕα and ϕγ. It is clear

that both H+ and H− are Lagrangian subspaces, in the sense that:

H
⊥
± =

{

v ∈ H : 	(v,w) = 0 for all w ∈ H±

}

= H±.

Thus we think of H+ and H− as being “half-dimensional” or “semi-infinite” (since

in the finite-dimensional setting a Lagrangian subspace is always half-dimensional).

Furthermore this splitting gives an identification of symplectic vector spaces

H = T∗
H+

which means that H− gets identified with the cotangent fibre; in terms of the co-

ordinates qα
k , pl

γ above, the identification is:

pk
α =

∂

∂qα
k

.

2.3 Lagrangian cone

We are now in a position to construct the Lagrangian cone LX . A standard object

in Gromov–Witten theory is the genus-zero descendant potential, which is a formal

generating function for the genus-zero Gromov–Witten invariants:

F
0
X (t(z)) =

∑

β,n

Qβ

n!
〈t(ψ1), . . . , t(ψn)〉X

0,n,β .

Let us explain the notation above. The sum is over all curve classes β ∈ H+
2 (X) and

non-negative integers n � 0. The variable Q is a formal variable, called the Novikov

variable, which keeps track of the curve class. We make sense of this by taking the

ground field � to be the Novikov field:

� = C((H+
2 (X))).

Remember that we defined H∗(X) = H∗(X;�) for some unspecified field �; from

now on we take � to be the Novikov field. The parameter t(z) of the generating

function is a formal power series with coefficients in H∗(X)

t(z) =
∑

k�0

tk zk tk ∈ H∗(X)

=
∑

k�0

tαk ϕαzk tαk ∈ �
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so that the correlators above are interpreted as

〈t(ψ1), . . . , t(ψn)〉X
0,n,β

..=

〈

∑

k1�0

t
α1

k1
ϕα1ψ

k1

1 , . . . ,
∑

kn�0

t
αn

kn
ϕαn ψ

kn
n

〉X

0,n,β

=
∑

k1,...,kn�0

t
α1

k1
· · · t

αn

kn

〈

ϕα1ψ
k1

1 , . . . , ϕαn ψ
kn
n

〉X

0,n,β

(remember that we are using the Einstein summation convention for the Greek letters).

Thus we may rewrite F
0
X in a more transparent (though less convenient) form as:

F
0
X (t(z)) =

∑

β,n

Qβ

n!

∑

k1,...,kn�0

t
α1

k1
· · · t

αn

kn
·
〈

ϕα1ψ
k1

1 , . . . , ϕαn ψ
kn
n

〉X

0,n,β
.

We view this as a formal power series in the variables tαk for k � 0 and α = 0, . . . , N .

Notice that these co-ordinates are indexed by the same set as the co-ordinates qα
k for

H+ defined in Sect. 2.2; the two are related by the following change of variables:

q(z) = t(z) − z1X

called the dilaton shift. In concrete terms this means that qα
k = tαk unless (k, α) =

(1, 0), in which case q0
1 = t0

1 − 1. Under this change of variables, we can view F
0
X as

a function

F
0
X : H+ → �

and hence the derivative dF
0
X defines a section of the cotangent bundle T∗H+. The

Lagrangian cone is defined as the graph of this section:

LX
..=

{

(q(z), p(z)) ∈ H = H+⊕H− : p(z) = dF
0
X (q(z))

}

.

Thus for every point q(z) ∈ H+ there is a unique point of LX lying over q(z). In

concrete terms, this is:

LX |q(z)

= (t(z) − z1X ) +
∑

β,n

Qβ

n!

∑

l�0

〈

t(ψ1), . . . , t(ψn), ϕγ ψ l
n+1

〉X

0,n+1,β
·ϕγ (− z)−l−1

= (t(z) − z1X ) +
∑

β,n

Qβ

n!

〈

t(ψ1), . . . , t(ψn),

(

ϕγ

− z − ψn+1

)〉X

0,n+1,β

· ϕγ.

The first term t(z) − z1X = q(z) specifies the point in the base, while the remaining

terms specify the point in the fibre. The meaning of the fractional insertion in the
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1074 N. Nabijou

third line is that it should be expanded as a power series in z−1, the result of which is

precisely the expression on the second line.

As it has been presented, divorced from its origins in physics, LX may come across

as a mysterious object. Working with it takes some getting used to, but the eventual

payoff is significant, and it is now recognised as a fundamental tool in Gromov–Witten

theory. To give just a taste of this, we state a few basic facts about the Lagrangian cone.

Theorem 2.2 ([8, Proposition 1]) The following basic properties hold:

• LX is a cone (it is preserved under scalar multiplication by elements of �);

• for f ∈ LX , we have (Tf LX ) ∩ LX = z ·Tf LX ⊆ H;

• the set of all tangent spaces to LX forms a finite-dimensional family; thus LX is

ruled by a finite-dimensional family of linear subspaces.

Thus we see that the geometry of LX is very tightly constrained. The above theorem

is actually equivalent [21, Theorem 1] to the following three fundamental results in

Gromov–Witten theory: the string equation, the dilaton equation and the topological

recursion relations. More generally, the Lagrangian cone can be used to conveniently

express statements which would be exceedingly cumbersome to phrase otherwise. For

more on this, see [9,19].

Finally, we note that the dilaton shift q(z) = t(z) − z1X is an essential part of the

theory; for instance, LX is not even a cone in the t(z) co-ordinates.

2.4 Fundamental solutionmatrix

There is one more object in Gromov–Witten theory which we must define. The funda-

mental solution matrix is a family of symplectic operators on the Givental space H (so

named because it encodes a fundamental set of solutions to the quantum differential

equations [12]). For our purposes it depends on a parameter q(z)∈H+, and is given by:

St(z)( f ) = f +
∑

β,n

Qβ

n!

〈(

f

z − ψ0

)

, t(ψ1), . . . , t(ψn), ϕγ

〉X

0,n+2,β

· ϕγ.

Here the insertion f ∈ H is expanded linearly in the z and ϕα , and t(z) is the dilaton-

shifted element corresponding to q(z) (we write St(z) instead of Sq(z) to keep our

notation compatible with standard usage). As with the Lagrangian cone, the funda-

mental solution matrix has deep connections to physics, and has been the focus of

intense study. We will not attempt to say more than this here; the interested reader

should consult [29] and [11, Section 10].

In this article we will view S as a single endomorphism of the trivial H-bundle

over H+

H+×H
S

H+×H

H+
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The fundamental solution matrix and relative stable maps 1075

where the endomorphism H → H over q(z) ∈ H+ is given by St(z). We can also view

the Lagrangian cone as a submanifold of H+×H by doubling the base co-ordinate:

LX =
{

(q(z), q(z), p(z)) : p(z) = dF
0
X (q(z))

}

⊆ H+×H.

Thus, we can define the transform S(LX ) ⊆ H+×H of LX by S without having to

specify a parameter q(z). This will be important for the statement of our main result.

2.5 Relative stable maps

The final ingredient which we need to explain is the theory of relative stable maps.

Given a smooth projective variety Z and a smooth hypersurface Y ⊆ Z , the moduli

space of relative stable maps parametrises stable maps in Z with fixed tangency orders

to Y at the marked points. If there are n marked points then this tangency information is

encoded in a vector α = (α1, . . . , αn) of non-negative integers. The resulting moduli

space

M0,α(Z |Y , β)

should parametrise stable maps to Z such that the i th marked point has tangency order

αi to the divisor Y (by convention, αi = 0 means that the marked point is not mapped

into the divisor at all, while αi = 1 means it is mapped into the divisor transversely;

as such, the map only truly becomes “tangent” to the divisor when αi � 2). This

data must satisfy the obvious numerical condition
∑

i αi = Y ·β. The question of

how to define these spaces rigorously is a non-trivial one; the problem with the naïve

approach described above is that the deformation theory can become extremely wild

when there are components of the source curve mapping into Y ; this wildness means

that the usual construction of the virtual fundamental class no longer works, so these

spaces cannot be used to define invariants.

The earliest solution to this problem, due to Jun Li and following ideas first devel-

oped in symplectic geometry, is to allow the target Z to degenerate into a so-called

expanded degeneration Z [l] [27,28]. The space Z [l] is constructed from Z by gluing

on a chain of l copies of the projective completion of the normal bundle to Y in Z :

P = PY (NY |Z ⊕OY ).

The picture is as follows (which illustrates the case Z [2]):

Z P P

Y1

Y2

Y∞
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1076 N. Nabijou

The idea is that, whenever a component of the source curve starts to fall into the divisor,

the target “bubbles” off an extra copy of P , and the internal component is then mapped

(transversely) into P .

Y

Y∞

Two such maps into P are identified if they differ by an element of the group C
∗ of

automorphisms of P given by rescalings of the fibre. As illustrated above, the resulting

map to Z [l] is transverse in a very strong sense: the only points of the curve which map

to the infinity divisor are the markings xi , and they do so with the correct tangency

order αi . On the other hand, the curve can only map to the singular locus at a finite

number of isolated nodal points, and for each node the tangency orders of the two

adjacent branches of the curve to the singular locus must be equal. This transversality

condition, usually called predeformability, ensures that the resulting moduli space

has the correct virtual dimension. An extremely careful analysis of the deformation

theory of this new space then shows that a virtual class can be defined [28]. Integrals

against this virtual class are called relative Gromov–Witten invariants of (Z , Y ). In

our applications we will always have Z = X ×P
1 and Y = X ×∞. In this case the

normal bundle of Y in Z is trivial, so P ∼= X ×P
1 = Z and thus all the levels of the

expanded degeneration, including level 0, are isomorphic.

We will assume that the reader is reasonably familiar with relative stable maps; all

the facts which we will use can be found in [23, Sections 2–3], which also serves as a

good introduction to relative Gromov–Witten theory.

Remark 2.3 More recently, the theory of logarithmic stable maps, as developed by

Abramovich, Chen, Gross and Siebert, has provided an alternative (and significantly

more general) approach to relative stable maps [1,4,24]. We expect that the computa-

tions we carry out here will carry over to the log setting, once a suitable localisation

formula has been established for log stable maps. Indeed, log Gromov–Witten theory

relative a simple normal crossings divisor seems to be the correct generality in which

to apply the construction given in this article.

2.6 Statement of themain result

We are finally in a position to state our main result. Let X be a smooth projective

variety. For β ∈ H+
2 (X) and n � 0, consider the moduli space

M0,n,(1)

(

(X ×P
1 | X ×∞), (β, 1)

)
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The fundamental solution matrix and relative stable maps 1077

of relative stable maps to (X ×P
1, X ×∞) of class (β, 1), where the first n marked

points x1, . . . , xn have tangency 0 with the divisor, and the last marked point x∞ has

tangency 1. There is a natural C
∗-action on this moduli space induced by the action

on the target X ×P
1 (acting trivially on the first factor and with weight −1 on the

second). Consider the following class in the equivariant cohomology of the moduli

space:

�β,n(t(z)) = (− z) ·

n
∏

i=1

ev∗
i (t(ψi ))

where z is the equivariant parameter. Here each evi is viewed as mapping into X , via

the composition:

M0,n,(1)

(

(X ×P
1 | X ×∞), (β, 1)

) evi
−−→ X ×P

1 π1
−→ X .

(Note that this morphism is equivariant with respect to the trivial action on X .) We

then have:

Proposition 2.4

(ev∞)∗

(

∑

β,n

Qβ

n!
·�β,n(t(z))

)

= S(LX )|q(z) (1)

where q(z) is the dilaton-shifted co-ordinate corresponding to t(z).

The proof will be given in Sect. 3; for the moment let us explain the statement. We

view ev∞ as a map

ev∞ :
∐

β,n

M0,n,(1)

(

(X ×P
1 | X ×∞), (β, 1)

)

→ X ×∞ = X

so that the target of the push-forward (ev∞)∗ is the equivariant cohomology of X with

respect to the trivial torus action. But this is just:

H∗(X)⊗�[z] = H+ ⊆ H.

On the other hand, S(LX ) naturally lives inside the total space of the trivial bundle

H+×H → H+ (see the discussion at the end of Sect. 2.4 above); therefore when we

write S(LX ) in equation (1), we really mean its projection along π2 : H+×H → H.

Another way to say this is that for a fixed q(z) ∈ H+, with dilaton-shifted co-ordinate

t(z), the push-forward of the left-hand side of (1) is equal to St(z)(LX |q(z)).

An immediate corollary of the above result is that S(LX ) ⊆ z ·H+ rather than

just H. For an application of this, as well as a deeper exploration of the “hidden

polynomiality” arising from our construction, see Sect. 4.

Remark 2.5 The total transform S(LX ) has a geometric interpretation as a family of

ancestor cones; see [8, Appendix 2].
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Remark 2.6 Notice that for any choice of β, the curve class (β, 1) is non-zero. Hence

the sum in Proposition 2.4 is over all β and n. This is in contrast to the sum which

appears in the definition of the Lagrangian cone in Sect. 2.3, which is only over the

stable range, i.e., excludes the cases (β, n) = (0, 0) and (0, 1). This difference will

become important during the proof of Proposition 2.4.

3 Proof of themain result

We will assume that the reader is familiar with the space of relative stable maps, and in

particular with the torus localisation formula, established in [23] whenever the divisor

is fixed pointwise by the action (as is the case for us). We will write X0 and X∞ for

X ×0 and X ×∞, viewing them either as divisors in X ×P
1 or in X [l], as appropriate.

3.1 Identifying the fixed loci

The proof proceeds by C
∗-localisation. The C

∗-fixed loci of the moduli space are

indexed by graphs of the following form:

X0

β0

xi1

xin0

X∞

β∞

x j1

x jn∞

x∞

These correspond to splittings of the source curve into three pieces: a piece C0 which

maps to X0, a piece C∞ which maps to X∞ (and hence, in general, into the higher

levels of the expanded degeneration), and a rational component joining C0 and C∞,

which maps isomorphically onto a P
1-fibre of X ×P

1. The marking x∞ always belongs

to C∞ since it must map to the infinity divisor X∞. The other choices—of degrees

β0 and β∞ for the two pieces, and of a partition A0 ⊔ A∞ = {x1, . . . , xn} of the non-

relative markings—are free. The fixed locus corresponding to this data is isomorphic

to

M0,A0∪{q0}(X , β0)×X M0,A∞,(1),(1)

(

X ×P
1 | (X0 + X∞), β∞

)

∼
(2)

with virtual fundamental class induced by the virtual classes of the two factors; this

is part of the statement of the virtual localisation theorem in [23]. Here the second

factor

M0,A∞,(1),(1)

(

X ×P
1 | (X0 + X∞), β∞

)

∼

is a moduli space of stable maps to the non-rigid target; see [23, Section 2.4] for a

detailed discussion of this space. The notation here is supposed to indicate that there

is a set A∞ of non-relative markings (so # A∞ = n∞), a single marking q∞ mapping

to X0 with tangency 1, and a single marking x∞ mapping to X∞ with tangency 1.
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The fibre product in (2) is taken with respect to the evaluations at q0 and q∞ on

each side. The Euler class of the virtual normal bundle is equal [23, Theorem 3.6 and

Example 3.7] to

(− z)(− z − ψq0)(z − ψq∞
)

which obviously splits into a product of classes supported on the two factors. We should

briefly explain these: − z arises from the deformations of the map on the rational bridge,

− z − ψq0 arises from the smoothing of the node connecting the rational bridge to C0

and z − ψq∞
is a target psi class, which arises from the smoothing of the target singu-

larity connecting the level 0 piece and the level 1 piece of the expanded degeneration.

Here we have used the identification of the target psi class with a multiple of the psi

class on one of the relative markings [15, Construction 5.1.17]. The term arising from

the smoothing of the node connecting the rational bridge to C∞ is cancelled out by

the local obstruction at that node: see [23, Section 3.8].

Note that for certain choices of (β0, A0 | β∞, A∞) the moduli spaces which we

have written down above do not exist, because the data defining them is not stable.

In these degenerate cases, we still have fixed loci; it is simply that one (or both) of

the factors becomes trivial. Hence we must deal with these separately. The possible

situations are enumerated below.

Case 1: (β, n) = (0, 0). This is the maximally degenerate case. The fixed locus is just

X , which has virtual codimension 0; there is no virtual normal bundle.

Case 2: (β, n) = (0, 1) and n∞ = 0. In this case the fixed locus is again just X , with

a single marked point x1 mapped to X0 and another marked point x∞ mapped to X∞

(there is no expansion of the target). The virtual codimension is 1, and the Euler class

of the virtual normal bundle is − z.

Case 3: n � 1 and (β0, n0) = (0, 0). In this case the fixed locus is a moduli space of

relative maps to the non-rigid target, with n+2 marked points. The virtual codimension

is 1, and the virtual normal bundle contribution is z − ψq∞
.

Case 4: n � 1 and (β0, n0) = (0, 1). Here the fixed locus is the same as the one in the

previous case, but it now has virtual codimension 2 because there is a marked point

at the X0 end of the rational bridge; the Euler class of the virtual normal bundle is

− z(z − ψq∞
).

Case 5: n � 2 and (β∞, n∞) = (0, 0). In this case the fixed locus is just the moduli

space of stable maps to X with n + 1 markings. The virtual codimension is 2, and the

Euler class of the virtual normal bundle is − z(− z − ψq0).

3.2 Comparison lemma for psi classes

We now need to calculate the contributions to the push-forward from each of these

fixed loci. A priori this is difficult, because the fixed loci involve moduli spaces of

relative stable maps to the non-rigid target, which are in general hard to understand.

However, in genus zero, a result of Gathmann says that these moduli spaces are in fact

virtually birational to the underlying moduli spaces of stable maps to X . To be more
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precise: there is a projection map

π : M0,n∞,(1),(1)

(

X ×P
1 | (X0 + X∞), β∞

)

∼
→ M0,n∞+2(X , β∞)

induced by the collapsing map from the non-rigid target to X , and [15, Theorem 5.2.7]

shows that this map respects the virtual classes:

π∗

[

M0,n∞,(1),(1)

(

X ×P
1 | (X0 + X∞), β∞

)

∼

]virt
=

[

M0,n∞+2(X , β∞)
]virt

.

This result goes a long way towards making these invariants computable. However

there is still a problem: the map π may contract many components of the source curve,

and hence does not in general preserve the psi classes. Consequently, descendant

invariants (which certainly appear in our discussion) are still complicated to compute,

because one has to keep track of how psi classes pull back. It turns out, however, that

X ×P
1 is special in this respect.

Lemma 3.1 The map π cannot contract any component of the source curve which

contains a marking.

Proof The components contracted by π are those with two or fewer special points

which are mapped into a fibre of P = X ×P
1 over X . Let C ′ be such a component.

Since it has two or fewer special points, the map f must be non-constant on C ′ (by

stability), and hence there is at least one point of C ′ which maps to X∞ and at least

one point which maps to X0. Thus, C ′ contains exactly two special points, which must

map to the special divisors of the non-rigid target.

Now suppose for a contradiction that some marking xi belongs to C ′. If xi is a non-

relative marking then we immediately arrive at a contradiction, since such a marking

cannot map into any special divisor. Otherwise, xi = q∞ or x∞ and so is mapped into

X0 or X∞, respectively; without loss of generality we may suppose xi = q∞. By the

stability condition for relative stable maps, there must exist some other component of

the source curve which maps with positive degree into the same level of the non-rigid

target as C ′. But this would necessarily touch X0, which is a contradiction since q∞ is

the only point of the source curve which is allowed to map to X0 (here we are using

the fact that X ×P
1 is a global product; for non-trivial P

1-bundles over X , it is no

longer true that a component of the source curve which touches X∞ must also touch

X0). ⊓⊔

Corollary 3.2 π∗ψi = ψi for any i ∈ {1, . . . , n∞ + 2}. Thus, we can identify any

non-rigid invariant of (X ×P
1, X0 + X∞) with the corresponding invariant of X.

3.3 Calculating the contributions

We are now in a position to calculate the contributions to the push-forward. We fix

(β, n) and look at the fixed loci of the corresponding moduli space. Ignoring the degen-

erate cases for the moment, we must sum over stable splittings (β0, A0 | β∞, A∞) of

(β, n). We may phrase this as summing over splittings (β0, β∞) of β and (n0, n∞) of
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n, with a factor of
(

n
n0

)

=
(

n
n∞

)

introduced to account for the choice of which marked

points to put in A0 and which to put in A∞. Thus the contribution

Qβ

n!
(ev∞)∗

(

(− z) ·

n
∏

i=1

ev∗
i (t(ψi ))

)

from the non-degenerate loci is equal to:

Qβ

n!

∑

β0+β∞=β
n0+n∞=n

(

n

n∞

) 〈

t(ψ1), . . . , t(ψn0),

(

ϕα

− z − ψq0

)〉X

0,n0+1,β0

·

〈(

ϕα

z − ψq∞

)

, t(ψ1), . . . , t(ψn∞
), ϕγ

〉X

0,n∞+2,β∞

· ϕγ

=
∑

β0+β∞=β
n0+n∞=n

(

Qβ0

n0!

〈

t(ψ1), . . . , t(ψn0),

(

ϕα

− z − ψq0

)〉X

0,n0+1,β0

)

·

(

Qβ∞

n∞!

〈(

ϕα

z − ψq∞

)

, t(ψ1), . . . , t(ψn∞
), ϕγ

〉X

0,n∞+2,β∞

· ϕγ

)

.

There are also the contributions from the degenerate fixed loci, enumerated in Sect.

3.1 above. We now calculate these.

Case 1: (β, n) = (0, 0). This gives a single contribution, which is

− z(ev∞)∗(1X ) = − z1X .

Case 2: (β, n) = (0, 1) and n∞ = 0. This also gives a single contribution, which is

(ev∞)∗(ev∗
1t(ψ1)) = t(z)

here we have used the fact that the psi class ψ1 restricts to a trivial class on the fixed

locus with non-trivial weight z, so the equivariant class ψ1 gets identified with z.

Case 3: n � 1 and (β0, n0) = (0, 0). Here we get a contribution for each (β, n) with

n � 1. The contribution is

Qβ∞

n∞!

〈(

− z1X

z − ψq∞

)

, t(ψ1), . . . , t(ψn∞
), ϕγ

〉X

0,n∞+2,β

· ϕγ.

Case 4: n � 1 and (β0, n0) = (0, 1). We get a contribution for each (β, n) with n � 1,

and the contribution is

Qβ∞

n∞!

〈(

t(z)

z − ψq∞

)

, t(ψ1), . . . , t(ψn∞
), ϕγ

〉X

0,n∞+2,β∞

· ϕγ
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where again we have used the fact that the class ψ0 restricts to the pure weight class

z on the fixed locus.

Case 5: n � 2 and (β∞, n∞) = (0, 0). Here we get a contribution for each (β, n)

with n � 2, and the contribution is

Qβ0

n0!

〈

t(ψ1), . . . , t(ψn0),

(

ϕγ

− z − ψq0

)〉X

0,n0+1,β0

· ϕγ.

3.4 Putting everything together

If we sum together all the terms computed in the previous section, we obtain:

(t(z) − z1X ) +
∑

β0,n0

Qβ0

n0!

〈

t(ψ1), . . . , t(ψn0),

(

ϕα

− z − ψq0

)〉X

0,n0+1,β0

· ϕα

+

(

∑

β0,n0

Qβ0

n0!

〈

t(ψ1), . . . , t(ψn0),

(

ϕα

− z − ψq0

)〉X

0,n0+1,β0

)

·

(

∑

β∞,n∞

Qβ∞

n∞!

〈(

ϕα

z − ψq∞

)

, t(ψ1), . . . , t(ψn∞
), ϕγ

〉X

0,n∞+2,β∞

· ϕγ

)

+
∑

β∞,n∞

Qβ∞

n∞!

〈(

t(z) − z1X

z − ψq∞

)

, t(ψ1), . . . , t(ψn), ϕγ

〉X

0,n∞+2,β∞

· ϕγ.

Using q(z) = t(z) − z1X and grouping the final two terms together, we see that this

is equal to:

q(z) +
∑

β0,n0

Qβ0

n0!

〈

t(ψ1), . . . , t(ψn0),

(

ϕα

− z − ψq0

)〉X

0,n0+1,β0

· ϕα

+
∑

β∞,n∞

Qβ∞

n∞!

〈

1
z−ψq∞

·
(

q(z) +
∑

β0,n0

Qβ0

n0!

〈

t(ψ1), . . . , t(ψn0),
(

ϕα

− z−ψq0

)〉X

0,n0+1,β0
·ϕα

)

,

t(ψ1), . . . , t(ψn∞
), ϕγ

〉X

0,n∞+2,β∞

· ϕγ.

But this is equal to:

LX |q(z) +
∑

β∞,n∞

Qβ∞

n∞!

〈(

LX |q(z)

z − ψq∞

)

, t(ψ1), . . . , t(ψn∞
), ϕγ

〉X

0,n∞+2,β∞

· ϕγ

= S(LX )|q(z)

as claimed. This completes the proof of Proposition 2.4.
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Remark 3.3 It is perhaps worth comparing our computation to the computation carried

out in [7]. There, the moduli space under consideration is the space of ordinary stable

maps to X ×P
1; Coates restricts to an open substack of this space, consisting of stable

maps such that only a single point of the curve is mapped to X∞. He then applies

torus localisation and pushes forward from the (proper) fixed loci. From our point of

view, the loci from which he pushes forward are the degenerate loci which appear as

Case 5 in Sect. 3.1 above. The special cases which he calls Case 2 and Case 3 are

what we call Case 2 and Case 1, respectively. Our non-special case, which contributes

a product of invariants from stable maps to X and stable maps to the non-rigid target,

does not appear in his setting; nor do our special Cases 3 and 4.

4 Variants and applications

Since an equivariant push-forward must take values in H∗(X)⊗�[z] = H+, an imme-

diate consequence of Proposition 2.4 is the following:

Theorem 4.1 S(LX ) ⊆ z ·H+.

This is somewhat surprising, since a priori we only know that S(LX ) ⊆ H, and indeed

both S and LX involve many non-positive powers of z. What Theorem 4.1 says is that

the coefficients of these non-positive powers cancel out when we take S(LX ); this

translates into a sequence of universal relations for the Gromov–Witten invariants.

Calculating the coefficients of z−k explicitly, we obtain for k � 2 and q(z) ∈ H+

(

〈〈ψk−1
1 q(ψ1),ϕα〉〉X

0,2 + (−1)k〈〈ϕαψk−1
1 〉〉X

0,1

+

k−2
∑

r=0

(−1)1+r 〈〈ϕγ ψr
1 〉〉X

0,1 · 〈〈ϕγ ψk−2−r
1 , ϕα〉〉X

0,2

)

(t(ψ)) ·ϕα = 0

where we have used the correlator notation:

〈〈ϕα1ψ
k1

1 , . . . , ϕαr ψ
kr
r 〉〉X

0,r (t(ψ))

..=
∑

β,n

Qβ

n!

〈

ϕα1ψ
k1

1 , . . . , ϕαr ψ
kr
r , t(ψr+1), . . . , t(ψr+n)

〉X

0,n+r ,β
.

These equations appear to be equivalent to the reconstruction relation [26, Equation

(2)], combined with the dilaton equation.

Remark 4.2 Theorem 4.1 can be viewed as a generalisation of one of the fundamental

results in the quantisation formalism, namely that the J -function is inverse to the

fundamental solution matrix; see Remark 4.4 below.

In this section we will now extend the above line of argument, exploiting the “hidden

polynomiality” implicit in our construction. We obtain new proofs and generalisations

of several foundational results concerning both the fundamental solution matrix and

the Lagrangian cone.
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4.1 The fundamental solutionmatrix and its adjoint

Looking at the definition given in Sect. 2.4, we see that we can regard St(z) as a power

series in z−1 with coefficients in End(H∗(X)):

St(z) ∈ End(H∗(X))�z−1�.

We will write St(z)(z) to emphasise this point of view. The adjoint St(z)
∗(z) is defined

by taking the adjoints, term-by-term, of the coefficients of St(z)(z) (with respect to the

Poincaré pairing on H∗(X)). It is easy to check that, for v ∈ H∗(X):

St(z)
∗(z)(v) = v +

∑

β,n

Qβ

n!

〈

v, t(ψ1), . . . , t(ψn),

(

ϕα

z − ψ

)〉X

0,n+2,β

· ϕα. (3)

An important feature of the theory [17] is that when t(z) = τ , the operators Sτ (z) and

Sτ
∗(− z) are inverse to each other; this is in fact equivalent to the statement that Sτ (z)

is a symplectomorphism [6, Section 3.1]. We now generalise this fact to arbitrary t(z),

based on a slight modification of the construction used in Proposition 2.4.

Proposition 4.3 St(z)
∗(− z) = St(z)(z)

−1.

Proof We first note that it is sufficient to prove:

St(z)(z)◦ St(z)
∗(− z) = IdH∗(X). (4)

Indeed, the operators St(z)(z) and St(z)
∗(− z) can be viewed as finite-dimensional

matrices over the field of Laurent series �((z−1)). If (4) holds then both these matrices

have maximal rank, and therefore we also have:

St(z)
∗(− z)◦ St(z)(z) = IdH∗(X).

Thus it remains to show (4). We consider the following moduli space:

M0,n,(1),(1)

(

X × P
1|(X0 + X∞), (β, 1)

)

which has a single marked point x0 mapping to X0, a single marked point x∞ map-

ping to X∞, and a collection of other markings x1, . . . , xn which carry no tangency

conditions.

Since the divisor is now disconnected, we must be slightly careful about what we

mean by the space above. For our purposes, the allowed automorphisms act separately

on the fibres of the expanded degeneration over X0 and X∞. The stability condition is

also imposed separately. As such, each expansion is now indexed by two integers, l0
and l∞, giving the lengths of the expansion over X0 and X∞ respectively. This is close

to the approach taken in [13]. One can view this moduli space as the fibre product:

M0,n+1,(1)(X ×P
1 |X0, (β, 1))×

M0,n+2(X×P1,(β,1))
M0,n+1,(1)(X ×P

1 |X∞, (β, 1)).
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Taking the definition this way ensures that, when we localise, the fixed loci are fibre

products of moduli spaces of relative stable maps to the non-rigid target. Furthermore

since the stability condition is imposed separately over X0 and X∞, the proof of

Lemma 3.1 still applies. An analogous computation to the one given in Sect. 3 then

shows that, for v ∈ H∗(X):

(ev∞)∗

(

∑

β,n

Qβ

n!
· ev∗

0(v) ·

n
∏

i=1

ev∗
i t(ψi )

)

= St(z)(z)(St(z)
∗(− z)(v)).

Since this is an equivariant push-forward, we see that St(z)(z)◦ St(z)
∗(− z) is a poly-

nomial in z with coefficients in End(H∗(X)). On the other hand it is obvious from the

definitions that it is also a power series in z−1. Thus St(z)(z)◦ St(z)
∗(− z) is constant

in z, and since the constant term is clearly the identity this completes the proof. ⊓⊔

Remark 4.4 As noted previously, Proposition 4.3 is a generalisation of the following

fundamental fact for τ ∈ H∗(X):

Sτ
∗(− z) = Sτ (z)

−1.

I would like to thank Mark Shoemaker for pointing out that one can also view Theorem

4.1 as a generalisation of this result. Indeed, when t(z) = τ we can use the string

equation to show that

LX |q(z) = Sτ
∗(− z)(− z) (5)

where q(z) = τ − z. Thus we find:

S(LX )|q(z) = Sτ (LX |q(z)) = Sτ (z)◦ Sτ
∗(− z)(− z) = − z ∈ z ·H+.

Our result can be viewed as a generalisation of this to arbitrary t(z). The original proof

does not apply in this more general setting, because it relies on an application of the

string equation which produces additional unwanted terms when t(z) involves higher

powers of z. In particular, the identification (5) no longer holds, which explains why

we end up with two different generalisations.

4.2 Properties of the Lagrangian cone

Here we reprove two fundamental facts concerning the Lagrangian cone. First, we

modify the previous construction to give a concrete proof that LX is Lagrangian

(though it should be noted that this also follows from the general fact that the graph

of any closed 1-form is Lagrangian).

Proposition 4.5 LX is Lagrangian.
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Proof Let q(z) ∈ H+ be a point in the base and let f = LX |q(z) ∈ H be the point on

the cone lying over q(z). We must show that Tf LX is a Lagrangian subspace of H.

First let us describe the points of Tf LX . Recall that f is given by:

f = LX |q(z) = q(z) +
∑

β,n

Qβ

n!

〈

t(ψ1), . . . , t(ψn),

(

ϕγ

− z − ψ

)〉X

0,n+1,β

· ϕγ.

Since LX is the graph of the section dF
0
X , the tangent space Tf LX is spanned by

the partial derivatives of the above expression in the H+-co-ordinates. Given such a

co-ordinate qα
k the corresponding derivative is:

ϕαzk +
∑

β,n

Qβ

n!

〈

ϕαψk, t(ψ1), . . . , t(ψn),

(

ϕγ

− z − ψ

)〉X

0,n+2,β

· ϕγ.

Thus the tangent space consists of vectors in H of the form

r(z) +
∑

β,n

Qβ

n!

〈

r(ψ), t(ψ1), . . . , t(ψn),

(

ϕγ

− z − ψ

)〉X

0,n+2,β

· ϕγ

for r(z) ∈ H+. On the other hand, if we look at the expression (3) given earlier for

St(z)
∗(z) ∈ End(H∗(X))�z−1�, we see that this can be extended in a natural way to

give a map H+ → H via

St(z)
∗(z)(r(z)) = r(z) +

∑

β,n

Qβ

n!

〈

r(ψ), t(ψ1), . . . , t(ψn),

(

ϕγ

z − ψ

)〉X

0,n+2,β

· ϕγ

(note that this is different from the extension of St(z)(z) to an endomorphism of H

which we gave in Sect. 2.4, where we treated the insertion r(z) formally). Under the

above definition, we see that

Tf LX = St(z)
∗(− z)(H+).

Fixing r(z), u(z) ∈ H+, we thus need to show that

	
(

St(z)
∗(z)(r(− z)), St(z)

∗(− z)(u(z))
)

= 0

which is equivalent to

Resz=0

(

St(z)
∗(z)r(− z), St(z)

∗(− z)(u(z))
)

dz = 0.

We take the moduli space

M0,n,(1),(1)

(

X × P
1|(X0 + X∞), (β, 1)

)
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as before and consider the equivariant integral (against the virtual class) of the follow-

ing class:

∑

β,n

Qβ

n!

(

ev∗
0(r(ψ0)) ·

n
∏

i=1

ev∗
i (t(ψi )) ·ev∗

∞(u(ψ∞))

)

.

Then an analogous computation to the one given in Sect. 3 shows that this integral is

equal to

(

St(z)
∗(z)(r(− z)), St(z)

∗(− z)(u(z))
)

.

Thus the above pairing is a polynomial in z, and so in particular the coefficient of z−1

vanishes. But this is precisely the residue that we needed to calculate, and the claim

follows. ⊓⊔

Another fundamental fact about LX , already discussed in Sect. 2.3, is that:

(Tf LX ) ∩ LX = z ·Tf LX .

To finish, we will give a direct proof of one important consequence of this fact.

Proposition 4.6 f ∈ z ·Tf LX .

Proof As noted before, an immediate consequence of Proposition 2.4 is that

St(z)(z)( f ) ∈ z ·H+.

Applying St(z)
∗(− z) to both sides, we find that

f ∈ St(z)
∗(− z)(z ·H+)

where unlike in the proof of Proposition 4.5, the extension of St(z)
∗(− z) from H∗(X)

to H+ = H∗(X)[z] is obtained by expanding linearly in z. A deep fact from the theory

now says that, under this definition:

St(z)
∗(− z)(H+) = Tf LX .

Some care is required here: we also saw this statement in the proof of the previous

proposition, but that was for a different extension of St(z)
∗(− z) which was not linear

in z. Under the new extension used here, which is linear in z, the statement still holds,

though it is much less trivial. Using this, we obtain

f ∈ z · St(z)
∗(− z)(H+) = z ·Tf LX

as required. ⊓⊔
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Remark 4.7 The idea of using torus localisation to prove that certain generating func-

tions are polynomials is not new. It was used by Givental in the proof of the Mirror

Theorem [17] and by Ciocan-Fontanine and Kim in the proof of the wall-crossing for-

mula for quasimap invariants [5]. The disussion above constitutes a small continuation

of this story.
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