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THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME
FRACTIONAL ADVECTION-DISPERSION EQUATION

F. HUANG AND F. LIU

Abstract. A space-time fractional advection-dispersion equation (ADE)

is a generalization of the classical ADE in which the first-order time de-
rivative is replaced with Caputo derivative of order α ∈ (0, 1], and the

second-order space derivative is replaced with a Riesz-Feller derivative of
order β ∈ (0, 2]. We derive the solution of its Cauchy problem in terms of

the Green functions and the representations of the Green function by apply-

ing its Fourier-Laplace transforms. The Green function also can be inter-
preted as a spatial probability density function (pdf) evolving in time. We

do the same on another kind of space-time fractional advection-dispersion

equation whose space and time derivatives both replacing with Caputo
derivatives.
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1. Introduction

An equation commonly used to describe solute transport in aquifers is the
advection-dispersion equation(ADE) (Liu et al., 2002, 2003a, 2004):

∂u

∂t
= −ν

∂u

∂x
+D∂2u

∂x2
, (1)

where u is solute concentration, the positive constants ν, D are represent the
average fluid velocity and the dispersion coefficient, x is the spatial domain, t
is time. The ADE is a deterministic equation describing a probability function
for the location of particles in a continuum. The fundamental solutions of the
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ADE over time will be Gaussian densities with means and variances based on
the values of the macroscopic transport coefficients ν and D.

The classical ADE with a local (or asymptotical constant) dispersion ten-
sor is a very handy predictive equation, since solutions are easily gained. The
fractional-order forms of the ADE are similarly useful. Some partial differen-
tial equations of space-time fractional order were successfully used for modelling
relevant physical processes (Mainardi, 1997; Benson et al., 1998,2000; El-Sayed
and Aly, 2002; Basu and Acharya, 2002). Numerous authors have shown the
equivalence between the transport equations that used fractional-order deriva-
tives and some heavy-tailed motions which extended the predictive capability
of models built on the stochastic process of Brownian motion, which is the ba-
sis for the classical ADE. The motions can be heavy-tailed, implying extremely
long-term correlation and fractional derivatives in time and/or space. For ex-
ample, Benson and his collaborator have derived the application of a fractional
ADE(see Benson et al., 2000; Benson, 1998; Meerschaert et al., 1999). There are
some other authors who considerd the fractional ADE. A space-fractional ADE
with Eulerian derivation was derived by Schumer et al.(2001), which is used
to describe solute plume evolution with a large probability of particles moving
significantly ahead of and behind the mean solute velocity. For example, it can
be used in groundwater hydrology to model the transport of passive tracers car-
ried by fluid flow in a porous medium (see Meerschaert and Tadjeran, where a
Riemann fractional derivation instead of the Eulerian derivation and a practi-
cal numerical method to solve it was developed). Integrodifferential equation
which interpolates the heat equation and the wave equation is considered by
Fujita (1990). He gave the representation of the solution by the fundamental
solotion and showed some properties. The solution of the bi-fractional differ-
ential equation was developed by Kilbas et al. (2004). The fundamental solu-
tion of these problems was established and its moments are calculated. Anh et
al. (2001,2002,2003) considered spectral analysis of fractional kinetic equations
with random data, renormalization and homogenization of fractional diffusion
equations with random data, and harmonic analysis of fractional diffusion-wave
equations, respectively. The time-fractional advection-dispersion equation was
considered by Liu, Anh et al.(2003b) and its complete solution was obtained by
using variable transformation, Mellin and Laplace transforms, and properties of
H-functions. We further extend this work and derived its solutions in half-space
and a bounded space domain (Huang and Liu, 2004).

This paper is a continuation of these papers. In this paper we intend to
consider two kinds of space-time fractional advection-dispersion equations. For
both of them, the time fractional derivative is defined in the Caputo sense,
while the space fractional derivatives are Riesz-Feller derivatives and Caputo (or
Riemann-Liouville) derivatives, respectively.
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2. The time-space fractional ADE with Riesz-Feller space derivative

We first consider the equation

tD
α
∗ u(x, t) = −νDxu(x, t) +DDβ

θ u(x, t), x ∈ IR, t ∈ IR+, (2)

with the following initial and boundary conditions

u(x, 0) = g(x), x ∈ IR, u(∓∞, t) = 0, t > 0, (3)

where the real parameters β, θ are always restricted as follows

0 < β ≤ 2, (4)

|θ| ≤ min{β, 2− β}. (5)

We denote tD
α
∗ is the Caputo time-fractional derivative of order α (see Podlubny,

1999; or Appendix B), Dβ
θ is the Riesz-Feller space-fractional derivative of order

β (see Appendix A), and Dx = ∂
∂x , u(x, t) and g(x) are both the (real) field

variable, and sufficiently well-behaved functions.
We can consult the literature of Mainardi et al. (2001) for the properties and

more details about the Riesz-Feller fractional derivative.
By the Fourier-Laplace transform, we represent the solution of the Cauchy

problem by the integral formula in terms of the Green functions. The represen-
tations of the Green functions also are obtained by a composition rule.

2.1 Some properties of the Green function

Applying Laplace and Fourier transforms to Eq. (2) with initial condition (3)
with respect to variable t and x, respectively, by taking into account the Laplace
transform for the Caputo time fractional derivative (52), and the Fourier trans-
form for the Riesz-Feller space fractional derivative (42), we obtain the following
nonhomogeneous differential equation

sαũ(x, s)− sα−1g(x) = −νDxũ(x, s) +DDβ
θ ũ(x, s), (6)

sα̂̃u(k, s)− sα−1ĝ(k) = iνk̂̃u(k, s)−Dψβ
θ (k)̂̃u(k, s). (7)

Where ψβ
θ (k) = |k|βei(signk)θπ/2, and i2 = −1. So we derive

̂̃u(k, s) =
sα−1

sα − (iνk −Dψβ
θ (k))

ĝ(k). (8)

To invert the Laplace transform in (8), we recall the Laplace transform pair,

Eα(ctα) L←→
sα−1

sα − c
, <(s) > |c|1/α, (9)
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with c ∈ CI, 0 < α ≤ 1, where Eα denotes the entire transcendental function,
known as the Mittag-Leffler function of order α, defined in the complex plane
by the power series

Eα(z) :=
∞∑

n=0

zn

Γ(αn + 1)
, α > 0, z ∈ CI. (10)

For detailed informations on the Mittag-Leffler-type functions and their Laplace
transforms, the reader may consult e.g. Erdélyi, Magnus and Oberhettinger,
pp.1953-1954; Djrbashian, 1966; Podlubny, 1999; Gorenflo and Mainardi, 1997.

Going back to the time domain, we have

û(k, t) = Eα[(iνk −Dψβ
θ (k))tα]ĝ(k). (11)

Furthermore, we invert the Fourier transform in above equation to obtain (see
Podlubny, 1999)

u(x, t) =
1
2π

∫ +∞

−∞
e−ikxEα[(iνk −Dψβ

θ (k))tα]ĝ(k)dk

=
1
2π

∫ +∞

−∞
e−ikxEα[(iνk −Dψβ

θ (k))tα]
∫ +∞

−∞
eikyg(y)dydk

=
∫ +∞

−∞

( 1
2π

∫ +∞

−∞
e−ik(x−y)Eα[(iνk −Dψβ

θ (k))tα]dk
)
g(y)dy

=
∫ +∞

−∞
Gθ

α,β(x− y, t)g(y)dy,

(12)

where

Gθ
α,β(x, t) =

1
2π

∫ +∞

−∞
e−ikxEα[(iνk −Dψβ

θ (k))tα]dk.

It is the Green function (or fundamental solution), which being the formal solu-
tion of (2) corresponding to g(x) = δ(x)(the Dirac delta function). We therefore
obtain

Ĝθ
α,β(k, t) = Eα[(iνk −Dψβ

θ (k))tα], (13)

̂̃
G

θ

α,β(k, s) =
sα−1

sα − (iνk −Dψβ
θ (k))

. (14)

In view of the conjugate property of the Mittag-Leffler function(Eα(z) =
Eα(z)), we have

Ĝθ
α,β(−k, t) = Eα[(−iνk −Dψβ

θ (−k))tα]

= Eα[(−iνk −Dψβ
θ (−k))tα]

= Eα[(iνk −Dψβ
θ (k))tα]

= Ĝθ
α,β(k, t).

(15)
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Furthermore, we easily recognize

Ĝθ
α,β(0, t) = Eα(0) = 1, t ≥ 0. (16)

Provided that Gθ
α,β(x, t) does exist as inverse Fourier transform of (13), equa-

tions (15)-(16) ensure that Gθ
α,β(x, t) is real and normalized, i.e.

Gθ
α,β(x, t) ∈ IR,

+∞∫

−∞
Gθ

α,β(x, t) = 1.

It remains to prove that Gθ
α,β(x, t) is positive which ensures that the Green

function is the spatial probability density for different values of the relevant
parameters α, β. It can be obtained by deriving its explicit representation as
indicated below, which is also ensures that Gθ

α,β(x, t) does exist as inverse Fourier
transform .

2.2 The explicit representation of the Green function

The space fractional advection-dispersion (α = 1)
Let us first consider α = 1, 0 < β ≤ 2(space fractional advection-dispersion

including standard advection-dispersion for β = 2 with θ = 0). In this case, re-
ducing the MIttag-Leffer function in (13) to the exponential function. To derive
the Green function in the space and time domain, we recover the characteristic
function of a class of Lévy strictly stable densities pθ

β(x)( Mainardi, Luchko, and
Pagnini, 2001), then using the notation introduced in Appendix, we write

Ĝθ
1,β(k, t) = e(iνk−Dψβ

θ
(k))t = eiνtke−Dtψβ

θ
(k)

= P̂ 1
1 (k;−νt)P̂ θ

β (k;Dt),
(17)

where

P̂ θ
β (k; c) = e−cψβ

θ
(k), c ∈ IR. (18)

By using the known scaling rule for the Fourier transform,

f(ax) F←→ |a|−1f̂(k/a), a ∈ IR, (19)

we have

P θ
β (x; c) = |c|−1/βpθ

β(x/c1/β), (20)

which is non negative. We can consult Appendix A for the stable probability
density pθ

β(x). Inverting the Fourier transform of (17), we have

Gθ
1,β(x, t) =

∫ +∞

−∞
P 1

1 (x− y;−νt)P θ
β (y;Dt)dy, (21)

which is also non negative.
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For the standard ADE ( β = 2 with θ = 0), we know

p1
1(x) = δ(x + 1), p0

2(x) =
1

2
√

π
e−x2/4,

then the Green function of standard ADE is

G0
1,2(x, t) =

1
2ν
√
Dπt3

e−(x+νt)2/4Dt (22)

Composition rule for the Green function with 0 < α < 1
To express the general Green function of the space-time fractional ADE for

0 < α < 1, 0 < β ≤ 2, we note that the Fourier-Laplace transform of the
Green function (14) can be re-written in integral form as in Saichev and Za-
slavsky(1997); Mainardi, Luchko and Pagnini(2001)

̂̃
G

θ

α,β(k, s) =
sα−1

sα − (iνk −Dψβ
θ (k))

= sα−1

∫ +∞

0

exp{−u[sα − (iνk −Dψβ
θ (k))]}du

=
∫ +∞

0

exp{u[iνk −Dψβ
θ (k)]}(sα−1e−usα

)du

=
∫ +∞

0

Ĝθ
1,β(k, u)G̃2α(u, s)du,

(23)

where

G̃β(x, s) = sβ/2−1e−|x|s
β/2

, x ∈ IR, <(s) > 0, (24)

with solution

Gβ(x, t) = tβ/2Mβ/2(|x|/tβ/2), x ∈ IR, t ≥ 0, (25)

where Mβ/2 denotes the so-called M function(of the Wright type) of order β/2,
whose general properties can be found in Podlubny(1999); Gorenflo, Luchko and
Mainardi(2000); Mainardi, Luchko and Pagnini(2001).

Going back to the space-time domain we obtain the relation

Gθ
α,β(x, t) =

∫ +∞

0

Gθ
1,β(x, u)G2α(u, t)du, (26)

then we can derive that the Green function is non negative for the non negative
prosperities of Gθ

1,β and G2α.

3. The space-time fractional ADE with Caputo space derivative

Now we consider the space-time fractional AED

tD
α
∗ u(x, t) = −νDxu(x, t) +DDβu(x, t), x ∈ IR, t ∈ IR+, (27)
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with the same initial and boundary conditions (3). Where Dβ is the Riemann-
Liouville or Caputo space fractional derivative of order β with the lower terminal
a = −∞, i.e. Dβ = −∞Dβ = −∞cDβ (see (51)).

Properties and more details about the Riemann-Liouville and Caputo frac-
tional derivative can be found in texts on Fractional Calculus (Podlubny, 1999;
Gorenflo and Mainardi, 1997 or Appendix B). We us the same above technique
to obtain the following results (Podlubny, 1999)

u(x, t) =
∫ +∞

−∞
Gα,β(x− y, t)g(y)dy, (28)

where Gα,β(x, t) is the Green function (or fundamental solution), which being the
formal solution of (27) corresponding to g(x) = δ(x)(the Dirac delta function).
The Green function is characterized by

Ĝα,β(k, t) = Eα[(ν((ik)) +D(−ik)β)tα], (29)

̂̃
Gα,β(k, s) =

sα−1

sα − (ν((ik)) +D(−ik)β)
. (30)

The Green function is also real and normalized, i.e.

Gα,β(x, t) ∈ IR,

+∞∫

−∞
Gα,β(x, t) = 1.

To ensure that the Green function is the spatial probability densities for different
values of the relevant parameters α, β, we must further show that the Green
function is non negative. In fact, we can also obtain their explicit representation.

First, we consider the space fractional AED(α = 1), then

Ĝ1,β(k, t) = e[iνk+D(−ik)β ]t = eiνtke(−ik)βDt

= P̂1(k;−νt)P̂β(k;Dt),
(31)

where

P̂β(k; c) = e(−ik)βc, c ∈ IR. (32)

By the same technique as in Huang and Liu(2004b), we obtain

Pβ(x, c) =

{
(|c|)−1/βp−β

β

(
x

(−c)1/β

)
, 0 < β ≤ 1,

(|c|)−1/βp2−β
β

(
x

c1/β

)
, 1 < β ≤ 2,

(33)

which is non negative. Where p−β
β (x) and p2−β

β (x) are the special stable proba-
bility density functions for pθ

β(x)(see Appendix A). So

G1,β(x, t) =
∫ +∞

−∞
P1(x− y;−νt)Pβ(y;Dt)dy, (34)

which is also non negative.
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For the case 0 < α < 1, we can also obtain a composition rule for the Green
function by using the same technique as above

̂̃
Gα,β(k, s) =

∫ +∞

0

Ĝ1,β(k, u)G̃2α(u, s)du, (35)

where G̃β is defined as (24)-(25). So

Gα,β(x, t) =
∫ +∞

0

G1,β(x, u)G2α(u, t)du. (36)
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Appendix: Preliminaries

Here we present an introduction to the Riesz-Feller and Caputo fractional
derivatives starting from their representation in the Fourier and Laplace trans-
form domain, respectively (Feller, 1952; Mainardi, Luchko and Pagnini, 2001;
Gorenflo and Mainardi, 1997; Podlubny, 1999).

Appendix A: The Fourier transform and the Riesz-Feller fractional
derivative

Let

f̂(k) = F{f(x); k} =
∫ +∞

−∞
e+ikxf(x)dx, k ∈ IR, (37)

be the Fourier transform of a well-behaved function f(x), and let

f(x) = F−1{f̂(k);x} =
1
2π

∫ +∞

−∞
e−ikxf̂(k)dk, x ∈ IR, (38)

be the inverse Fourier transform.
The Fourier transform of a convolution of two functions states

F{h(x) ∗ f(x); k} = F{
∫ +∞

−∞
h(x− y)f(y)dy; k} = ĥ(k)f̂(k). (39)

Let

0 < β ≤ 2, |θ| ≤
{

β, if 0 < β ≤ 1,
2− β, if 1 < β ≤ 2,

(40)
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and denote by pθ
β(x) for x ∈R the stable probability density whose characteristic

function(Fourier transform) is

p̂θ
β(k) = e−ψβ

θ
(k), (41)

where ψβ
θ (k) = |k|βei(signk)θπ/2, (see Feller(1952) for the general theory of

stable probability distributions). The explicit representations and properties
of the Riesz-Feller also can be found in Feller(1952); Mainardi, Luchko and
Pagnini(2001). The Riesz-Feller fractional derivative of order β and skewness θ
defines as

F{Dβ
θ f(x); k} = −ψβ

θ (k)f̂(k), (42)

Thus, we recognize that the Riesz-Feller derivative is required to be the pseudo-
differential operator whose symbol −ψβ

θ (k) is the logarithm of the characteristic
function of a general Lévy strictly stable probability density with index of sta-
bility β and asymmetry parameter θ(improperly called skewness) according to
Feller’s(1952) parameterizations, as revisited by Gorenflo and Mainardi(1997).
In fact, for 0 < β < 2 and |θ| ≤ min{β, β − 2}, the Riesz-Feller derivative reads

Dβ
θ f(x) =

Γ(1 + β)
π

{
sin[(β + θ)π/2]

∫ +∞

−∞

f(x + ξ)− f(x)
ξ1+β

dξ

+sin[(β − θ)π/2]
∫ +∞
∞

f(x− ξ)− f(x)
ξ1+β

dξ
}

. (43)

and for β = 2, D2
0 = d2

dx2 .

Appendix B: The Laplace transform and the Caputo fractional derivative

The Laplace transform of a function f(t), 0 < t < ∞, is defined as follows
(Mainardi, 1997; Podlubny, 1999):

f̃(s) = L{f(t); s} =
∫ ∞

0

e−stf(t)dt, (44)

and its inverse is given by the formula

f(t) = L−1{f̃(s); t} =
1

2πi

∫ γ+i∞

γ−i∞
estf̃(s)ds, γ = <(s) > s0. (45)

It follows that

L{tν ; s} =
Γ(ν + 1)

sν+1
, ν > −1. (46)

The Laplace transform of the convolution of two functions is the product of their
Laplace transforms,

L{h(t) ∗ f(t)} = L{
∫ t

0

h(t− τ)f(τ)dτ ; s} = h̃(s)f̃(s). (47)
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Now if f is continuous, the fractional integral of order α of f is

tD
−α
∗ f(t) =

1
Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, α > 0 (48)

which is a convolution integral. From (46)-(48), we have

L{tD
−α
∗ f(t)} =

1
Γ(α)

L{tα−1}L{f(t)} = s−αf̃(s), α > 0. (49)

The fractional derivative of order α is defined in the Caputo sense

tD
α
∗ f(t) =





dnf(t)
dtn

, α = n ∈ N,

1
Γ(n− α)

∫ t

0

(t− τ)n−α−1 dnf(τ)
dτn

dτ, n− 1 < α < n, (50)

It was proposed by Caputo first in his paper(1967). For the lower terminal
a = −∞, we have the relation

−∞Dα
t f(t) = −∞cDα

t f(t). (51)

There are two fundamental formulas

L{ dα

dtα
f(t), p} = sαf̃(s)−

n−1∑

k=0

sα−1−kf (k)(0+), n− 1 < α ≤ n, n ∈ N,
(52)

F{−∞Dα
t f(t), k} = F{−∞cDα

t f(t), k} = (−ik)αf̂(k). (53)
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