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Is it reasonable to do constructive mathematics without
the axiom of countable choice? Serious schools of construc-
tive mathematics all assume it one way or another, but the
arguments for it are not compelling. The fundamental theo-
rem of algebra will serve as an example of where countable
choice comes into play and how to proceed in its absence.
Along the way, a notion of a complete metric space, suitable
for a choiceless environment, is developed.

By constructive mathematics I mean, essentially, mathematics that is de-
veloped along the lines proposed by Errett Bishop [1]. More precisely, I
mean mathematics that is done in the context of intuitionistic logic — with-
out the law of excluded middle. My reasons for identifying these notions
are discussed in [9] and [10], the basic contention being that constructive
mathematics has the same subject matter as classical mathematics.

Ruitenburg [11] treated the fundamental theorem of algebra in a choice-
less environment. He proved the theorem for real numbers that are defined
by Cauchy sequences of rational numbers. An awkward feature of restrict-
ing to this class of real numbers is that, absent countable choice, Cauchy
sequences of real numbers need not converge — the space is not sequen-
tially complete. This seems a little bizarre: We introduce the real numbers
because the rational numbers are not complete, but then neither are the
real numbers! I would suggest that a proper treatment of the real numbers
should not be based on Cauchy sequences — that the essence of a real num-
ber is that it can be approximated by rational numbers, not that it is a limit
of a sequence of rational numbers.

In this paper I develop a general theory of completions of metric spaces
that is suited to operating without countable choice. I also take a different
view of what it means to construct the spectrum of a polynomial — its set
of roots. Such a shift is essential because we can’t even solve quadratics,
in the customary sense, without countable choice. The idea is that the
spectrum of a polynomial of degree n is an element of the completion of
the set of n-multisets of complex numbers in an appropriate metric. Such
an element manifests itself by producing, for each ε > 0, an n-multiset of
complex numbers {r1, . . . , rn} so that

∏n
i=1(X − ri) is within ε of the given
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monic polynomial p(X). I believe that this notion captures the real meaning
of being able to calculate the roots of p(X).

It’s a little trickier to find the roots of an arbitrary nonconstant polyno-
mial of formal degree n. The set of roots of such a polynomial naturally
lie on the Riemann sphere, the complex projective line. That is, we want
to construct the spectrum of the corresponding homogeneous polynomial
Y np(X/Y ). In the last section I indicate how to do that.

1. Countable choice.

Let N denote the natural numbers. For X a set and S a subset of X ×N,
consider the following two statements.

(1) For all n ∈ N there exists x ∈ X such that (x, n) ∈ S.
(2) There exists a sequence of elements xn ∈ X such that (xn, n) ∈ S for

all n ∈ N.
Clearly (2) implies (1). The axiom of countable choice says that (1) implies
(2). Thus the axiom of countable choice asserts the existence of certain
sequences in X.

This axiom is accepted as valid by all serious schools of constructive math-
ematics. Basically the justification comes down to analyzing the meaning
of (1). Here is an argument by intuitionists [14, p. 189] adapted to our
notation: “A proof of (1) should provide us with a method to find, for each
n ∈ N, an x ∈ X such that (x, n) ∈ S; such a method is nothing else but
the description of a function assigning the required x to n.”

Why doesn’t this argument justify the full axiom of choice in which we
replace N by an arbitrary set Y ? The difference is that the result of the
procedure may depend on the way the element y in Y is presented. For
example, for each real number y there is an integer m such that y < m,
but the procedure for passing from y to m is not a function on the real
numbers—indeed this would violate Brouwer’s principle that every function
on the real numbers is continuous, and would entail a countable form of
the law of excluded middle. We can get a function from regular Cauchy
sequences of rational numbers, but this function may assign different inte-
gers to sequences that represent the same real number. Presumably that
problem does not arise with natural numbers because they have canonical
presentations. But Lebesgue said, in a letter to Borel [8], “I agree com-
pletely with Hadamard when he states that to speak of an infinity of choices
without giving a rule presents a difficulty that is just as great whether or
not the infinity is denumerable.” I am inclined to go along with Hadamard
and Lebesgue—the arguments against choice do not seem to disappear when
one restricts to the natural numbers.

In Russian constructive mathematics, everything is a natural number. A
function from a subset S of N to N is given by a partial recursive function
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that converges on S, and possibly elsewhere. Partial recursive functions can
be coded as natural numbers — the Russians actually use Markov algorithms
rather than partial recursive functions. The expression “for all x ∈ X there
is y ∈ Y such that P (x, y)” is taken to be synonymous with “there is a
partial recursive function that converges on the elements of X, takes X into
Y , and P (x, f(x)) holds for all x ∈ X.” See [6, p. 19]. In this setting, if X
is the set of all natural numbers with the usual equality, then the function
f is total and provides the choice function.

Bishop also seems to be thinking of a more structured model of this
kind. The role of the partial recursive functions in Russian constructive
mathematics is played by Bishop’s notion of an operation, which can be
thought of as a function from presentations to presentations. In [1] he
says, “choice is implied by the very meaning of existence.” I take this to be
referring to the presentation level — Bishop was very aware of the distinction
between a function that is merely onto, and one that admits a cross section
(a choice function), calling the former a surjection and only the latter onto.

I want to argue here for dropping appeals to countable choice in con-
structive mathematics. Among “appeals to countable choice” I include any
immediate passage from an instance of (1) to the corresponding instance of
(2). On this view, one may appeal to countable choice without considering
oneself to be doing that. When Bishop [1, p. 26] defines what it means for
a sequence {xn} of real numbers to converge to a real number x0, he says “if
for each k in Z+ there exists Nk in Z+ with |xn − x0| ≤ 1/k for all n ≥ Nk.”
The wording indicates that this is meant to be an instance of (1), but the
notation implies that we may think of the Nk as forming a sequence that
satisfies (2). Indeed, Bishop wants us to think that way.

I prefer a black-box metaphor for (1). I don’t think it natural to consider
how we might come to know (1), or how (1) might have been proved. Rather
I consider (1) to mean simply that we can demand an x such that (x, n) ∈ S
for any n ∈ N that we choose. There is no guarantee that the x we get will
be determined by n — it may depend on some other quantity that we are
not even aware of, and the next time we ask we may get a different x for
the same n. This is the minimalist interpretation of (1) — assuming more
is contrary to how I actually think of (1) in practice.

In a completely computational model we can think of a black box as a
library routine that is only guaranteed to return a suitable x. It’s none of
our business how the routine is implemented. If the code looks at an internal
clock to decide what to do, that’s fine. Or it can look at the status of some
other memory location. All we can count on is that it will return a suitable x.
In the computational model everything can be thought of as being a natural
number—real numbers correspond to Gödel numbers of programs, and so
on. Thus all function are partially defined functions from N to N. This still
allows libraries to contain nondeterministic or noncomputable functions —
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oracles — which are the models for our black boxes. Indeed, if we do not
allow black boxes, it is difficult to justify rejecting Church’s thesis, which is
classically false in its constructive formulation: Every function from N to N
is recursive. The adoption of Church’s thesis in constructive mathematics
results in constructive proofs of theorems that are classically refutable—
an undesirable state of affairs to my mind because I think of constructive
mathematics as a generalization of classical mathematics.

I have long felt uncomfortable with arguments that use countable choice.
Such arguments are employed in proving the Baire category theorem, the
existence of a point in a compact set C whose distance to a given point p
is positive only if the distance from p to C is positive, and the intermediate
value theorem for real polynomials. In each case you are supposed to be
constructing a definite sequence, but it looks like you are just verifying the
possibility of continuing at each step. Initially I thought that my antipathy
to these arguments stemmed from the fact that they rely on completeness,
but now I suspect that it has to do with choice.

2. What’s the problem with the FTA?

Countable choice is required just to construct a root of the polynomial X2−a
for arbitrary complex a. Consider the following very weak countable-choice
principle.

Let An be a sequence of sets, each of which is either {0} or
consists of a pair of antipodal points on the unit circle. Suppose
that if An 6= {0}, then An = An+1. Then there exists a sequence
an such that an ∈ An for all n.

Do we really need countable choice to do that? Well, it’s well known that
we can’t construct a function that chooses one point out of each pair of
antipodal points on the circle. If we could, then by Brouwer’s principle of
continuity, the function would give a uniformly continuous function from
the circle to itself that takes each pair of antipodes to one of them—but
that’s clearly impossible. Of course a discontinuous choice function can be
constructed, using the law of excluded middle, by choosing the antipode
whose angle is in [0, π). But given that we can’t make all those choices
simultaneously, it seems pretty unlikely that we can make a generic one
at some unknown point in a sequence, as in the above principle, without
something like countable choice.

So we may tentatively assume that this principle cannot be derived with-
out either choice or excluded middle. But the existence of a complex square
root of every complex number implies this principle, as we can easily see.
Let cn be the square of any element in An (the squares of antipodal points
are equal). Let bn = 0 unless cm 6= 0 for some m ≤ n, in which case
bn = cm/m2. Then the sequence bn converges to some complex number b.
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Let r2 = b. Then we can let an = nr if cn 6= 0, and 0 otherwise. Intuitively,
the problem is that if we have a complex number b that is very near zero, we
have no mechanism for choosing, in advance, between its two square roots
should it turn out that b 6= 0.

What about finding complex roots of real cubic polynomials? Suppose
we have a cubic polynomial with real coefficients, and we get the following
roots to within one-half: 3, 1, and 1. Then we calculate some better approx-
imations, and get, to within one-eighth: 11

4 , 31
4 , and 3

4 . Now clearly the 31
4

is the same root as the 3. But which 1 does the 11
4 go with? One is tempted

to answer this with a question, or rather two questions: “Who knows?” and
“Who cares?” However, this is exactly the kind of question we must answer
if we are to calculate a specific root of the polynomial in the neighborhood
of 1.

In this particular case we could resolve the ambiguity by computing the
(necessarily real) root near 3 and reducing the polynomial to a real qua-
dratic. For a real quadratic X2 + 2bX + c we can pick out a complex root
r continuously by setting

r =

 −b + i
√

c− b2 if b2 ≤ c

−b +
√

b2 − c if b2 ≥ c.

Although r is not defined for all pairs of real numbers (b, c), it is defined on
a dense set, and is uniformly continuous on bounded sets, so it extends to all
real numbers. The difference here is that the coefficients are real. You can
construct a square root of an arbitrary real number, but not of an arbitrary
complex number.

Presumably you can’t do this with a general real cubic when you have
three roots near zero. You might try to pick out the unique real root, or the
infimum of three real roots. But it looks like you can’t. If <(a) < <(b),<(c),
then a is a real root, but b and c may or may not be complex conjugates. If
=(a) < =(b), say =(a) < 0, then a and ā are complex roots and the other is
real, but you don’t know where it sits.

What seems to be going on is that countable choice is the source of discon-
tinuities — that without it you always have continuous local inverses. This
is somewhat confirmed by looking at a sheaf model of the reals — model-
ing real numbers as continuous functions on a topological space — where
countable choice fails. We can think of the coefficient a in the polynomial
X2 − a as a continuous function (the identity) in a neighborhood of zero of
the complex plane. Then a root of X2 − a would constitute a continuous
inverse of the function z2 in a neighborhood of zero.

The same phenomenon occurs with respect to the intermediate value the-
orem for real polynomials, which implies that any cubic polynomial has a
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real root (see [5]). Fix a small positive number a and consider the polyno-
mial pb(x) = 2x3 + 3ax2 + b which has a local maximum at −a and a local
minimum at 0. Try to construct a continuous function r on (−a, a) so that
r(b) is always a root of pb(x). For b > 0 there is exactly one root of pb(x),
and it is less than −3a/2. For b = 0 there are two roots, −3a/2 and 0. For
−a2(3− 2a) < b < 0 there are three roots, one less than −a, one in (−a, 0),
and one greater than 0. Moreover, the one in (−a, 0) is strictly increasing
in b. So r(b) < −a for −a2(3− 2a) < b < a. But if b < −a2(3− 2a) there is
only one root, and it is positive, so no such continuous function r exists.

An example where you do have continuous local cross sections is the
theorem that for each real number x there is a natural number n with
x < n. Clearly, for x0 real, there is a neighborhood U of x0 and a natural
number n so that x < n for all x in U .

In any event, it is not my purpose to demonstrate conclusively that count-
able choice is required for the fundamental theorem of algebra as normally
stated. I want to see what we can prove without countable choice. In order
to proceed, we have to indicate how to deal with real numbers in a choiceless
environment.

3. Real, complex, and algebraic numbers.

In a choice-free development, we don’t want to define real numbers to be
Cauchy sequences (Cauchy reals). If we did that, we would need choice to
prove that a Cauchy sequence of real numbers converges. The minimum we
want of a real number is to be able to compute ε-approximations for each ε.
This amounts to specifying located Dedekind cuts, as in [1, Chap. 2 Exer.
6] or [13, 2.2] (Dedekind reals).

So define a real number to be a nonempty subset S of the rational numbers
satisfying

(1) If x < y ∈ S, then x ∈ S (lower).
(2) There is an x /∈ S (bounded).
(3) If x < y are rational numbers, then either x ∈ S or y /∈ S (located).
(4) If x ∈ S, then there is y > x also in S (open).
For example, if an is a Cauchy sequence of rational numbers, define S by

x ∈ S if there exists N , and rational y > x, such that y < an for all n ≥ N
(that is, x is eventually bounded below an).

These Dedekind cuts give an internal characterization of the sets {x ∈
Q : x < r}, for r a real number. Alternatively we could use the sets
Sn = {x ∈ Q : |x− r| ≤ 1/n}, for each positive integer n, as a model.
They are nonempty, and have the property that if x ∈ Si and y ∈ Sj , then
|x− y| ≤ 1/i + 1/j. This approach has the virtue that it applies unchanged
to any metric space, so we can complete an arbitrary metric space in the
same way we pass from Q to R.
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Having constructed the real numbers, we construct the complex numbers
in the usual way by considering R2. Neither of these fields is discrete, in the
sense that given x and y, either x = y or x 6= y. The algebraic numbers, on
the other hand, form a discrete field.

An algebraic number is a complex number that satisfies a polynomial
with rational coefficients. If E is any ring with no nilpotent elements other
than 0, and no idempotents other than 0 or 1, and k is a discrete subfield
of E, then the elements in E that are algebraic over k form a discrete
subfield of E [7, Theorem VI.1.9]. In particular, taking k to be the rational
numbers and E to be the complex numbers, the algebraic numbers form a
discrete field—the extra information carried by the polynomial allows you to
distinguish different elements, even though the polynomial is not involved
in the definition of equality. The simplest dense, discrete subfield of the
complex numbers is the field of Gaussian numbers, Q(i).

When we construct a complex root of a polynomial with coefficients in
the algebraic numbers, we want to know that it is an algebraic number.
This follows from very general algebraic considerations: If R ⊂ E ⊂ F are
commutative rings, and E is integral over R (every element of E satisfies
a monic polynomial with coefficients in R), then every element of F that is
integral over E is also integral over R [7, Corollary VI.1.5].

4. The FTA for algebraic numbers.

Bishop called a set {x1, x2, . . . , xn} a subfinite set. Such a set differs from
a finite set in that it need not be discrete — it is characterized as being
an image of a finite set. Ray Mines suggested the more descriptive phrase
finitely enumerable set. We will change the point of view a little and consider
{x1, x2, . . . , xn} to be a finite multiset, or an n-multiset. The difference is
that two finite multisets x1, x2, . . . , xn and y1, y2, . . . , ym are equal if m = n
and there exists a permutation σ of {1, 2, . . . , n} such that xi = yσ(i) for
each i. The finitely enumerable sets {1, 1, 2} and {1, 2, 2} are equal; the
finite multisets {1, 1, 2} and {1, 2, 2} are not.

We can define the distance between two n-multisets x1, x2, . . . , xn and
y1, y2, . . . , yn in a metric space to be infσ supi d(xi, yσ(i)), where σ ranges
over the permutations of {1, 2, . . . , n}. The set of n-multisets in a metric
space, equipped with this distance, forms a metric space. There is a problem
here with equality because the distance between two multisets could be zero
without their being equal. The classic example is {a, b} and {a ∨ b, a ∧ b}
in the real numbers, the problem being that proving the equality of those
two sets requires the law of excluded middle. That’s annoying. However
if we restrict ourselves to discrete metric spaces—like the set of algebraic
numbers—then this problem does not arise. For the general case, we must be
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content that the set of n-multisets in a metric space forms a pseudo-metric
space.

Let Mn(A) be the set of n-multisets of algebraic numbers A, and πn(A)
the set of monic polynomials of degree n over the algebraic numbers. Put any
of the equivalent standard metrics on πn(A), which is simply An. Given an
n-multiset {r1, . . . , rn} in Mn(A), we can form the polynomial

∏n
i=1(X−ri)

in πn(A). We want to show that this map gives a one-to-one correspondence
between Mn(A) and πn(A) that is uniformly continuous in both directions
on bounded subsets.

That the map is one-to-one follows from an easy inductive argument us-
ing the fact that the algebraic numbers form a discrete field. That the
map is onto is the fundamental theorem of algebra for polynomials over the
algebraic numbers. Choiceless proofs of this theorem are available in the
literature [7, Corollary XII.3.3, p. 296], although one must go back and
verify that choice was not involved — countable choice is a blind spot for
constructive mathematicians in much the same way as excluded middle is
for classical mathematicians. The uniform continuity is necessary in order
to give a choiceless version of the fundamental theorem of algebra for monic
polynomials over the complex numbers.

How do you show that any nonconstant polynomial over a discrete sub-
field k of the complex numbers has a complex root? First reduce to the case
where the polynomial is separable — relatively prime to its formal deriva-
tive. Because k is discrete, we can repeatedly use the Euclidean algorithm
to write the polynomial as a product of separable polynomials, hence the
polynomial itself may be assumed separable. This is exactly where things
go wrong if k is not discrete: It’s the possibility of indistinguishable roots
that causes problems. If a separable polynomial is small at some point, then
its derivative is bounded away from zero there. Thus if you can find a place
where it is small enough, you can construct a root of it in the completion of k
by Newton’s method [7, Theorem XII.3.1, p. 295]. By considering winding
numbers, you can show that it must get arbitrarily small, as Brouwer and
de Loor did in [3].

Clearly the map from Mn(A) to πn(A) is uniformly continuous on boun-
ded subsets. To prove the uniform continuity in the other direction, we will
use a simple geometric lemma, which we give in a very crude form for ease
of proof.

Lemma 1. Let P be a set of n algebraic numbers in the complex plane.
For each positive rational number ρ, we can cover P with a finite number of
disjoint polygons, each of diameter at most 72nρ, such that each point in P
is at least ρ away from the boundaries of the polygons.

Proof. Tessellate a sufficiently large portion of the complex plane with
squares having Gaussian numbers as vertices and sides of length ρ. Color
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red each square that contains a point of P (we can figure this out because
the vertices of the squares, and the points in P , are algebraic numbers). So
at most 4n squares are red. Now color red each square that touches a red
square. Now at most 36n squares are red. The red squares break up into
connected pieces, each of diameter at most 72nρ. Because we colored those
touching squares red, each point in P is at least ρ away from the bound-
aries of the connected pieces. We can fill in any holes in the connected
pieces without changing their diameters, if we want the polygons to have
connected boundaries. �

Theorem 2. The map from the set Mn(A) of n-multisets of algebraic num-
bers to the set πn(A) of monic polynomials of degree n given by taking
{r1, r2, . . . , rn} to

∏n
i=1(X − ri) is a one-to-one correspondence that is uni-

formly bicontinuous on bounded subsets.

Proof. The only thing left to prove is the uniform continuity on bounded
subsets for the map from

∏n
i=1(X − ri) to {r1, r2, . . . , rn}. So suppose we

are given B and ε > 0. We must show that there exists δ > 0 such that if

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 =

n∏
i=1

(X − ri)

g(X) = Xn + bn−1X
n−1 + · · ·+ b1X + b0 =

n∏
i=1

(X − si)

are such that |ai| , |bi| < B and |ai − bi| < δ, then there exists a permutation
σ of {1, 2, . . . , n} such that |ri − sσi| < ε for all i.

Let

ht(X) = (1− t)f(X) + tg(X) = Xn + cn−1X
n−1 + · · ·+ c1X + c0

for 0 ≤ t ≤ 1, so h0 = f and h1 = g. Also |ci| ≤ max(|ai| , |bi|) and
|ai − ci| ≤ |ai − bi| .

From the lemma we can cover {r1, r2, . . . , rn} with a finite number of
disjoint polygons, each of diameter at most ε, so that ri is at least ε/72n
away from ∆, the boundaries of the polygons. Thus |f(x)| ≥ (ε/72n)n for
x on ∆. Choose C ≥ 1, depending only on n, ε and B, such that |x| ≤ C if
x is on ∆. Then

|f(x)− ht(x)| ≤ (sup |ai − bi|)nCn−1

if x is on ∆, so if we take

δ =
(ε/72n)n

2nCn−1

then if sup |ai − bi| < δ, we have |f(x)− ht(x)| ≤ (ε/72n)n/2 for x on ∆, so
|ht(x)| ≥ (ε/72n)n/2. As h provides a homotopy between f and g, which
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is bounded away from zero on ∆, the winding numbers 1
2πi

∮
f ′(z)
f(z) dz and

1
2πi

∮
g′(z)
g(z) dz are equal, where the integral is taken counterclockwise around

the boundary of any of the polygons. So if a polygon contains exactly m
roots of f , it must also contain exactly m roots of g. Hence we can construct
a permutation σ of {1, 2, . . . , n} such that ri and sσi lie in the same polygon
for each i, and this σ does the trick. �

5. Completions of metric spaces.

We want to proceed from a multiset of roots of a polynomial with coeffi-
cients in the algebraic numbers, to a multiset of roots of a polynomial with
coefficients in the complex numbers. Of course we know that we can’t quite
do that because we need not be able to construct roots of such polynomi-
als. But while we might not be able to approximate a single root, we can
approximate the entire multiset of roots — if we modify our notion of what
that multiset is. The idea is to think of it as an element of the completion
of the space of multisets of elements of a space X, rather than a multiset in
the completion of X. We need to develop a choiceless theory of completions
because the usual theory uses Cauchy sequences and doesn’t even work for
completing the rational numbers.

Let S be a metric space. By a location in S we mean a real valued function
f on S with the properties

(1) f(x) ≥ |f(y)− d(x, y)| for all x, y ∈ S,
(2) infx∈S f(x) = 0.

Note that (1) is equivalent to d(x, y) ≤ f(x)+f(y) and f(y) ≤ f(x)+d(x, y),
and that it implies f is nonnegative and uniformly continuous. Moreover if
x 6= y, that is, if d(x, y) > 0, then either f(x) > 0 or f(y) > 0, so f vanishes
on at most one point. Every point z in S gives rise to the location f defined
by f(x) = d(x, z).

Note that f(y) = limf(x)→0 d(x, y). This is immediate from the two prop-
erties of a location.

We can define a natural metric on the set Ŝ of locations in S.

Theorem 3. If f and g are locations on a metric space S, then

d(f, g) = sup
y∈S
|f(y)− g(y)| = inf

x∈S
(f(x) + g(x))

exists and defines a metric on Ŝ. The natural map of S into Ŝ is an isometry
onto a dense subset of Ŝ, and every location on Ŝ is given by a point of Ŝ.

Proof. For any x and y we have |f(y)− d(x, y)| ≤ f(x) and |g(y)− d(x, y)|
≤ g(x), so

|f(y)− g(y)| ≤ f(x) + g(x).
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Moreover, by choosing x = y such that g(x) is small, we can make the left
hand side as close to the right as we please. Hence the supremum of the
left hand side, and the infimum of the right hand side, exist and are equal.
Thus d(f, g) exists and is the metric derived of the supremum norm.

As d(y, z) = infx∈S(d(y, x)+d(z, x)), the map from S into Ŝ is an isometry.
If f ∈ Ŝ, then |f(y)− d(x, y)| ≤ f(x) so the distance from f to the image of
x is exactly f(x). As the latter can be made arbitrarily small, the image of
S is dense in Ŝ. Finally suppose ϕ is a location on Ŝ. Then ϕ restricted to
S is a location f on S. As ϕ agrees with the image of f on a dense subset
of Ŝ, it must equal that image. �

We say that Ŝ is the completion of S. A metric space S is complete if
the natural map from S to Ŝ is onto, that is, if every location on S is given
by a point of S. The real numbers R, defined as located Dedekind cuts, are
complete in this sense: If f is a location on R, then

r = {q ∈ Q : there is n such that q < x whenever f(x) < 1/n}
is a located Dedekind cut in the rational numbers such that f(x) = |x− r|.
(See [14, pp. 788-789] for a sheaf model where the Cauchy reals are not
complete, and one where countable choice fails yet the Cauchy reals and the
Dedekind reals coincide.)

As an illustration of this theory, an integrable function f on [0, 1] is identi-
fied with the function

∫ 1
0 |f(x)− g(x)| dx where g ranges over the uniformly

continuous functions on [0, 1]. So the characteristic function of [0, 1/2] is
given by

∫ 1/2
0 |1− g(x)| dx +

∫ 1
1/2 |g(x)| dx, and (finite) step functions are

defined similarly. What’s an integrable set in general? A location in the
closure of the zero-one valued step functions.

Theorem 4. If ϕ : A → B is uniformly continuous on bounded subsets,
then ϕ extends uniquely to a map from Â to B̂ that is uniformly continuous
on bounded subsets. If A is a closed subset of B, and B is complete, then A
is complete.

Proof. Let f be a location on A. Define a location g on B by g(b) =
limf(a)→0 d(ϕa, b). To see that this limit exists, note that S = {a : f(a) < 1}
is bounded, so for a, a′ ∈ S, if d(a, a′) is small, then d(ϕa, ϕa′) is small. The
result then follows from∣∣d(ϕa, b)− d(ϕa′, b)

∣∣ ≤ d(ϕa, ϕa′) and d(a, a′) ≤ f(a) + f(a′).

The inequality

g(b) ≥
∣∣g(b′)− d(b, b′)

∣∣
follows from the inequality d(ϕa, b) ≥ |d(ϕa, b′)− d(b, b′)|. The map ϕ is
unique because A is dense in Â.
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Now suppose that A is a subset of the complete space B, and f is a
location on A. Let g be the image of f under the inclusion map of A into B.
Then there exists b0 in B such that g(b) = d(b, b0). Hence f(a) = d(a, b0).
But f(a) can be made arbitrarily small. So b0 is in the closure of A, hence
in A if A is closed. �

Instead of using locations to construct the completion of a metric space X,
we could use regular sequences of subsets. A sequence of nonempty subsets
Sn of X is regular if d(x, y) ≤ 1/m + 1/n for each x ∈ Sm and y ∈ Sn. Two
regular sequences S and T are equivalent if d(x, y) ≤ 2/n for each x ∈ Sn

and y ∈ Tn. Given a location f on X we get a (canonical) regular sequence
Sn = {x : f(x) ≤ 1/n}. Conversely, given a regular sequence Sn, and an
element x in X, then the set of q ∈ Q such that q < d(x, y) for all y ∈ Sm

for sufficiently large m, defines a real number f(x) as Dedekind cut, and the
function f is a location.

Stolzenberg [12] suggested a similar way to specify an element ξ of the
completion of a metric space X. Construct a set Σ consisting of pairs (x, c)
where x is in X and c is a nonnegative real number — think of x as approx-
imating ξ to within c. We require that there be elements (x, c) in Σ with
c arbitrarily small (but not necessarily 0), and that Σ satisfy the Cauchy
condition that if (x, c) and (x′, c′) are in Σ, then d(x, x′) ≤ c + c′.

6. The FTA for monic polynomials.

We can now put the pieces together. As before, let Mn(A) denote the set of
n-multisets of algebraic numbers and πn(A) the set of monic polynomials of
degree n over the algebraic numbers. The natural map from Mn(A) to πn(A)
is a one-to-one correspondence that is bicontinuous on bounded subsets.
So this map extends uniquely to a one-to-one correspondence between the
completions M̂n(A) = M̂n(C) and π̂n(A) = πn(C). This is the fundamental
theorem of algebra for monic polynomials over the complex numbers. The
space π̂n(A) = πn(C) is simply the set of monic polynomials of degree n

with complex coefficients. What exactly is the space M̂n(A)?
These are the limit n-multisets of elements of A (or of C). By their ap-

proximations you shall know them. Given a monic polynomial p(X) with
complex coefficients — that is, an element of πn(C) — what is the cor-
responding element µ of M̂n(A)? The approximations to µ are multisets
{r1, r2, . . . , rn} of algebraic numbers such that

∏n
i=1(X − ri) approximates

p(X). That is, µ provides a coherent method of approximately factoring
p(X) into linear factors. In practice, that’s what you do: For any ε > 0, you
calculate a factorization of p(X) to within ε. The issue of coming up with a
specific root, in the sense that you can identify (in advance) the approxima-
tion to it in any of these approximate factorizations, never arises. Thus the
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construction of an element of M̂n(A) from p(X) corresponds more closely
to our numerical practice of the fundamental theorem of algebra than does
constructing roots of p(X).

Even in the presence of countable choice, we can’t quite identify M̂n(C)
with the space Mn(C) of multisets of complex numbers. Recall the multisets
of real numbers {a, b} and {a ∨ b, a ∧ b} (where a and b are very close). We
can’t show that these multisets are equal, in the sense we can say that
a = a∨ b or a = a∧ b, but the distance between them as elements of M̂2(C)
is equal to zero, so they represent the same element of M̂2(C). They are
each a multiset of roots of the polynomial X2 − (a + b)X + ab. So even if
we buy countable choice, there is a virtue to considering the set of roots
of a polynomial to be an element of M̂n(C) — otherwise it is not uniquely
defined.

As a variation on this theme of completing a space of finite sets, observe
that a compact subset of a complete metric space X may be identified with
an element of the completion F̂ of the set of finite subsets of X under the
Hausdorff metric. Clearly any compact subset is arbitrarily close to a finite
subset, and if the distance between two compact subsets is zero, then they
are equal. However, countable choice is needed to pass from an element of
F̂ to a compact subset of X. Indeed the element of M̂2(C) corresponding to
the polynomial X2 − a also defines an element of the completion of M2(C)
in the Hausdorff metric.

These compact sets that we get from F̂ can be approximated by finite sets,
but not necessarily from within. This is similar to what happens classically
in a space that is not complete — we can approximate things that are not in
the space. The subset S of X corresponding to µ in F̂ consists of those points
in X that are close to any finite subset that is close to µ in F̂ . The problem
is that a finite subset may be close to µ in F̂ but not (constructively) close
to S in the Hausdorff metric.

Is it necessary that a compact subset be approximable from within by
finite subsets? We could define a compact subset of X to be an element of
F̂ . If we do that, then the set of (complex) zeros of a polynomial is a compact
subset, even though you may not be able to get hold of any of its elements.
I claim that this is actually not contrary to our intuition regarding the set
of zeros. We can, for any degree of approximation, find a set of approximate
roots, even if we cannot specify a single root.

7. Homogenizing.

What about the restriction to monic polynomials? Bishop, after all, proved
that any nonconstant polynomial with complex coefficients has a complex
root, as did Brouwer [2]. In the general case, where the formal leading



226 FRED RICHMAN

coefficient might be zero, we really need to pass to the complex projective
line (the Riemann sphere), and homogeneous polynomials in two variables.
A polynomial whose formal leading coefficient is zero has a root at infinity.
Indeed, van der Corput [4], following Brouwer [2], showed that you could
factor an arbitrary nonzero polynomial f(X) = a0 + a1X + · · ·+ anXn as

f(X) = a(X − r1) · · · (X − rm)(1− rm+1X) · · · (1− rnX)

where m is any integer between s and t such that as and at are nonzero.
Now the objects of study are nonzero polynomials of formal degree n,

and we don’t particularly want to distinguish between a polynomial and a
nonzero multiple of that polynomial because the two polynomials have the
same roots. So our polynomials live in Pn(C), complex projective space of
dimension n—the set of one-dimensional subspaces of Cn+1. For any norm
on Cn+1, we define a metric on Pn(C) by setting d(U, V ) = inf ‖u− v‖,
where u and v range over the elements of norm 1 of the one-dimensional
subspaces U and V of Cn+1. It is easy to verify that this metric is identical
to the Hausdorff metric on the unit balls of the one-dimensional subspaces.

What about the roots? To accommodate points at infinity, we want to
think of our polynomials as homogeneous polynomials of degree n in two
variables. This is more elegant anyway because we can discard the idea of
a formal degree. The roots will then be elements of P 1(C), and correspond
to homogeneous factors of degree 1.

What norm will we use? On C2 we will work with the `2-norm,
√
|a|2+|b|2.

Then the distance between two unit vectors u and v in C2, viewed as ele-
ments of P 1(C), is given by

√
2− 2 |〈u, v〉|. Note that this norm on C2 is the

same as that obtained by considering an element of C2 as a linear function
f(X, Y ) = aX + bY and taking the supremum of |f(u, v)| over all unit vec-
tors (u, v) in C2. On Cn+1, which we think of as the space of homogeneous
polynomials in two variables of degree n, we will also use this functional
norm, sup{|f(u, v)| : |u|2 + |v|2 = 1} = sup{|f(u, v)| : |u|2 + |v|2 ≤ 1}.

The functional norm on Cn+1 is equivalent to the supremum norm used
in the proof of Theorem 2. Indeed, suppose f(X, Y ) =

∑n
i=0 aiX

iY n−i. Let
N0 = supi |ai| and N1 = sup{|f(u, v)| : |u|2 + |v|2 = 1}. Clearly N1 ≤
(n + 1)N0. To go the other way we note that, for |z| ≤ 1,

|f(z, 1)| =
√

2
n

∣∣∣∣f (
z√
2
,

1√
2

)∣∣∣∣ ≤ √2
n
N1

while, by the Cauchy integral formula,

|ak| =
∣∣∣∣ 1
2πi

∮
f(z, 1)
zk+1

dz

∣∣∣∣ ≤ sup
|z|=1
|f(z, 1)|

so N0 ≤
√

2
n
N1.
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We have the commutative diagram

(C2)n → Cn+1

↓ ↓
P 1(C)n → Pn(C)

the top map being the n-fold product, where we think of C2 as consisting
of homogeneous linear polynomials, and Cn+1 as consisting of homogenous
polynomials of degree n. The two side maps are the natural ones, and the
bottom map is induced from the top one. If we restrict to algebraic numbers,

(A2)n → An+1

↓ ↓
P 1(A)n → Pn(A)

then we know that the top map is onto.
Now consider the left column of this diagram to be symmetrized—that

is, the objects there are n-multisets of elements of A2 and P 1(A). Because
the top map is multiplication, this makes sense. Our task is to show that
the bottom map is uniformly bicontinuous.

If α : A2 → A2 is a unitary transformation, then α induces isometries at
all four corners of the diagram (we put the functional norm on An+1). We
will use Theorem 2, together with this ability to move the point at infinity
of P 1(A), to show uniform bicontinuity of the bottom map.

Consider the map from C to P 1(C) given by taking r to (1,−r). This
can be thought of as taking the complex number r to the homogeneous
polynomial X − rY whose corresponding inhomogeneous polynomial X − r
has r as a root. This map takes the closed ball of radius R around 0 in
C uniformly bicontinuously onto the complement of the open ball of radius√

2− 2R

1 + R2
around ∞ = (0, 1) in P 1(C).

Now we have a bigger commutative diagram

An ←→ An

↓ ↓
(A2)n → An+1

↓ ↓
P 1(A)n → Pn(A)

where the first column is symmetrized over n, that is, these are actually
n-multisets of elements of A, A2 and P 1(A).

The top map takes (r1, . . . , rn) to the nonleading coefficients of the monic
polynomial

∏n
i=1(X − ri). This is the correspondence between Mn(A) and

πn(A) that we have seen is uniformly bicontinuous on bounded subsets (The-
orem 2). The map down from An to (A2)n is induced by the map from A
to A2 that takes r to (1,−r). The map down from An to An+1 takes
(c0, c1, . . . , cn−1) to (c0, c1, . . . , cn−1, 1).
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So we know that the bottom map is uniformly bicontinuous if we stay
bounded away from the point at infinity. The idea is to act on P 1(A),
with unitary transformations of C2, so that any n-multiset of roots can
be uniformly bounded away from the point at infinity. As the (algebraic)
unitary group acts transitively on P 1(A), it suffices to find an element in
P 1(A) that is far away from a given n-multiset.

Lemma 5. Let z1, . . . , zn be elements of A2 of norm 1. Then there exists
an element of A2 of norm 1 whose distance to {z1, . . . , zn} in P 1(A) is at
least 1/2n.

Proof. This follows from the fact that P 1(C) is connected, totally bounded,
and has diameter

√
2, and that P 1(A) is dense in P 1(C). If F is a finite δ-

approximation to P 1(A), then either there exists an element of F that is at
least 1/2n from each zi, in which case we are done, or every element of F is
within 1.1

2n of some zi, so the zi form a
(

1.1
2n + δ

)
-approximation to P 1. As P 1

is connected, and has diameter
√

2, we can find a finite sequence of elements
so that the distance between any two adjacent elements is less than δ, and the
distance between the first and last is

√
2. We get a corresponding sequence

of approximating zi’s so that the distance between adjacent elements is less
than 1.1

n + 3δ. By throwing out cycles, we may assume that the i’s are all
distinct. But this would say that

√
2 < 1.1 + 3nδ, and we can choose δ so

that does not happen. �

So, given elements z1, . . . , zn of A2, each of norm 1, we can find a unitary
transformation α of A2 so that αz1, . . . , αzn are bounded away by 1/2n
from the point at infinity in P 1(A).

Here is the full-blown fundamental theorem of algebra.

Theorem 6. Let P j(C) denote the set of nonzero homogeneous polynomials
of degree j in two variables over the complex numbers, viewed as a projective
space of dimension j. The map M̂n(P 1(C))→ Pn(C) from the set of limit
n-multisets of P 1(C) to Pn(C) that is induced by taking (r1X + s1Y, r2X +
s2Y, . . . , rnX + snY ) to

∏n
i=1(siX + riY ), is a uniformly bicontinuous one-

to-one correspondence.

Proof. It suffices to show that the map Mn(P 1(A))→ Pn(A) is a uniformly
bicontinuous one-to-one correspondence. Given the fundamental theorem of
algebra for algebraic numbers, the only problem is the uniform bicontinuity.
Suppose (r1X + s1Y, r2X + s2Y, . . . , rnX + snY ) represents an element of
Mn(P 1(A)). As any unitary transformation of A2 induces an isometry on
P j(A), under the functional norm, we may assume that riX +siY ∈ P 1(A)
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is bounded away by 1/2n from Y , the point at infinity. In the diagram

Mn(A) ←→ An

↓ ↓
Mn(A2) → An+1

↓ ↓
Mn(P 1(A)) → Pn(A)

the top map is uniformly bicontinuous on bounded subsets by Theorem 2.
The image in P 1(A) of the ball {z ∈ A : |z| ≤ R} contains all those points

of P 1(A) that are bounded away from the point at infinity by
√

2− 2R

1 + R2
,

so for suitable R contains all those points bounded away from the point at
infinity by 1/4n. Thus we can find a modulus of bicontinuity for the bottom
map that is independent of the chosen point. �
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