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THE FUNDAMENTAL THEOREM OF ALGEBRA MADE EFFECTIVE:
AN ELEMENTARY REAL-ALGEBRAIC PROOF VIA STURM CHAINS

MICHAEL EISERMANN

L’algèbre est généreuse ; elle donne souvent plus qu’on lui demande.(d’Alembert)

ABSTRACT. Sturm’s famous theorem (1829/35) provides an elegant algorithm to count
and locate the real roots of any given real polynomial. In hisresidue calculus of complex
functions, Cauchy (1831/37) extended this to an algebraic method to count and locate
the complex roots of any given complex polynomial. We give a real-algebraic proof of
Cauchy’s theorem starting from the axioms of a real closed field, without appeal to analysis.
This allows us to algebraically formalize Gauss’ geometricargument (1799) and thus to
derive a real-algebraic proof of the Fundamental Theorem ofAlgebra, stating that every
complex polynomial of degreen hasn complex roots. The proof is elementary inasmuch
as it uses only the intermediate value theorem and arithmetic of real polynomials. It can
thus be formulated in the first-order language of real closedfields. Moreover, the proof is
constructive and immediately translates to an algebraic root-finding algorithm. The latter
is sufficiently efficient for moderately sized polynomials,but in its present form it still lags
behind Schönhage’s nearly optimal numerical algorithm (1982).
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Historical origins. Sturm’s theorem [51, 52], announced in 1829 and published in
1835, provides an elegant and ingeniously simple algorithmto determine for each real
polynomialP ∈ R[X] the number of real roots in any given interval[a,b] ⊂ R. Sturm’s
result solved an outstanding problem of his time and earned him instant fame.

In his residue calculus of complex functions, outlined in 1831 and fully developed in
1837, Cauchy [8, 9] extended Sturm’s method to determine for each complex polynomial
F ∈ C[Z] the number of complex roots in any given rectangle[a,b]× [c,d]⊂ R2 ∼= C.
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Unifying the real and the complex case, we give a real-algebraic proof of Cauchy’s theo-
rem, starting from the axioms of a real closed field, without appeal to analysis. This allows
us to algebraicize Gauss’ geometric argument (1799) and thus to derive an elementary,
real-algebraic proof of the Fundamental Theorem of Algebra, stating that every complex
polynomial of degreen hasn complex roots. This classical theorem is of theoretical and
practical importance, and our proof attempts to satisfy both aspects. Put more ambitiously,
we strive for an optimal proof, which is elementary, elegant, and effective.

The logical structure of such a proof was already outlined bySturm in 1836, but his ar-
ticle [53] lacks the elegance and perfection of his famous 1835 mémoire. This may explain
why his sketch found little resonance, was not further worked out, and became forgotten
by the end of the 19th century. The contribution of the present article is to save the real-
algebraic proof from oblivion and to develop Sturm’s idea indue rigour. The presentation
is intended for non-experts and thus contains much introductory and expository material.

1.2. The theorem and its proofs. In its simplest form, the Fundamental Theorem of Al-
gebra says that every non-constant complex polynomial has at least one complex zero.
Since zeros split off as linear factors, this is equivalent to the following formulation:

Theorem 1.1(Fundamental Theorem of Algebra). For every polynomial

F = Zn +cn−1Zn−1 + · · ·+c1Z+c0

with complex coefficients c0,c1, . . . ,cn−1 ∈C there exist z1,z2, . . . ,zn ∈ C such that

F = (Z−z1)(Z−z2) · · · (Z−zn).

Numerous proofs of this theorem have been published over thelast two centuries. Ac-
cording to the tools used, they can be grouped into three major families (§7):

(1) Analysis, using compactness, analytic functions, integration, etc.;
(2) Algebra, using symmetric functions and the intermediate value theorem;
(3) Algebraic topology, using some form of the winding number.

The real-algebraic proof presented here is situated between (2) and (3) and combines
Gauss’ winding number with Cauchy’s index and Sturm’s algorithm. It enjoys several
remarkable features:

• It uses only the intermediate value theorem and arithmetic of real polynomials.
• It is elementary, in the colloquial as well as the formal sense of first-order logic.
• All arguments and constructions extend verbatim to all realclosed fields.
• The proof is constructive and immediately translates to a root-finding algorithm.
• The algorithm is easy to implement and reasonably efficient in medium degree.
• It can be formalized to a computer-verifiable proof (theoremandalgorithm).

Each of the existing proofs has its special merits. It shouldbe emphasized, however,
that a non-constructive existence proof only “announces the presence of a treasure, without
divulging its location”, as Hermann Weyl put it: “It is not the existence theorem that is
valuable, but the construction carried out in its proof.” [63, p. 54–55]

I do not claim the real-algebraic proof to be the shortest, nor the most beautiful, nor the
most profound one, but overall it offers an excellent cost-benefit ratio. A reasonably short
proof can be extracted by omitting all illustrative comments; in the following presentation,
however, I choose to be comprehensive rather than terse.

1.3. The algebraic winding number. Our arguments work over every ordered fieldR
that satisfies the intermediate value property for polynomials, i.e., areal closed field(§2).
We choose this starting point as the axiomatic foundation ofSturm’s theorem (§3). (Only
for the root-finding algorithm in Theorem1.11and Section6 must we additionally assume
R to be an archimedian, which amounts toR⊂ R.) We then deduce that the fieldC = R[i]
with i2 =−1 is algebraically closed, and moreover establish an algorithm to locate the roots
of any given polynomialF ∈ C[Z]. The key ingredient is the construction of an algebraic
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winding number (§4–§5), extending the ideas of Cauchy [8, 9] and Sturm [52, 53] in the
setting of real algebra:

Theorem 1.2(algebraic winding number). Consider an ordered fieldR and its extension
C = R[i] where i2 = −1. Let Ω be the set of piecewise polynomial loopsγ : [0,1]→ C∗,
γ(0) = γ(1), whereC∗= Cr{0}. If R is real closed, then we can construct a map w: Ω→
Z, calledalgebraic winding number, satisfying the following properties:

(W0) Computation: w(γ) is defined as half the Cauchy index ofreγ
imγ , recalled below, and

can thus be calculated by Sturm’s algorithm via iterated euclidean division.
(W1) Normalization: if γ parametrizes the boundary∂Γ ⊂ C∗ of a rectangleΓ ⊂ C,

positively oriented as in Figure1, then

w(γ) =

{

1 if 0∈ IntΓ,

0 if 0∈ C r Γ.

(W2) Multiplicativity: for all γ1,γ2 ∈Ω we have w(γ1 · γ2) = w(γ1)+w(γ2).
(W3) Homotopy invariance: for allγ0,γ1 ∈Ω we have w(γ0) = w(γ1) if γ0∼ γ1, that is,

wheneverγ0 andγ1 are (piecewise polynomially) homotopic inC∗.

The geometric idea is very intuitive:w(γ) counts the number of turns thatγ performs
around 0 (see Figure1). Theorem1.2 turns the geometric idea into a rigorous algebraic
construction and provides an effective calculation via Sturm chains.

Remark1.3. The algebraic winding number is slightly more general than stated in Theorem
1.2. The algebraic definition (W0) of w(γ) also applies to loopsγ that pass through 0.
Normalization (W1) extends tow(γ) = 1

2 if 0 is in an edge ofΓ, andw(γ) = 1
4 is 0 is one

of the vertices ofΓ. Multiplicativity (W2) continues to hold provided that 0 is not a vertex
of γ1 or γ2. Homotopy invariance (W3) applies only ifγ does not pass through 0.

Remark1.4. The existence of the algebraic winding number overR relies on the interme-
diate value theorem for polynomials. (Such an map does not exist overQ, for example.)
Conversely, its existence implies thatC = R[i] is algebraically closed and henceR is real
closed (see Remark2.6). More precisely, given any ordered fieldK , Theorem1.2holds for
the real closureR = K c (see Theorem2.5): properties (W0), (W1), (W2) restrict to loops
overK , and it is the homotopy invariance (W3) that is equivalent toK being real closed.

Remark1.5. Over the real numbersR, several alternative constructions are possible:

(1) Covering theory, applied to exp:C→→C∗ with covering groupZ.
(2) Fundamental group,w: π1(C

∗,1) ∼−→ Z via Seifert–van Kampen.
(3) Homology,w: H1(C

∗) ∼−→ Z via Eilenberg–Steenrod axioms.
(4) Complex analysis, analytic winding numberw(γ) = 1

2iπ
∫

γ
dz
z via integration.

(5) Real algebra, algebraic winding numberw: Ω→ Z via Sturm chains.

Each of the first four approaches uses some characteristic property of the real numbers
(such as local compactness, metric completeness, or connectedness). As a consequence,
these topological or analytical constructions do not extend to real closed fields.

Remark1.6. OverC the algebraic winding numbercoincides with theanalytic winding
numbergiven by Cauchy’s integral formula

(1.1) w(γ) =
1

2π i

∫

γ

dz
z

=
1

2π i

∫ 1

0

γ ′(t)
γ(t)

dt.

This is called theargument principleand is intimately related to the covering map
exp: C→→ C∗ and the fundamental groupπ1(C

∗,1) ∼= Z. Cauchy’s integral (1.1) is the
ubiquitous technique of complex analysis and one of the mostpopular tools for proving
the Fundamental Theorem of Algebra.
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In this article we develop an independent, purely algebraicproof avoiding integrals,
transcendental functions, and covering spaces. Seen from an elevated viewpoint, our ap-
proach interweaves real-algebraic geometry and effectivealgebraic topology. In this gen-
eral setting Theorem1.2and its real-algebraic proof seem to be new.

1.4. The Fundamental Theorem of Algebra. I have highlighted Theorem1.2in order to
summarize the real-algebraic approach, combining geometry and algebra. The first step in
the proof (§4) is to study the algebraic winding numberw(F |∂Γ) of a polynomialF ∈C[Z]
along the boundary of a rectangleΓ⊂ C, positively oriented as in Figure1.

Example1.7. Figure1 (right) displaysF(∂Γ) for F = Z5−5Z4−2Z3−2Z2−3Z−12 and
Γ = [−1,+1]× [−1,+1]. Here the winding number is seen to bew(F |∂Γ) = 2.

Im

Re

d c

ba

F(b)

F(a)

F(d)

F(c)

Im

Re

FIGURE 1. The winding numberw(F |∂Γ) of a polynomialF ∈ C[Z]
with respect to a rectangleΓ⊂C

We then establish the algebraic generalization of Cauchy’stheorem forC = R[i] over a
real closed fieldR, extending Sturm’s theorem from real to complex polynomials:

Theorem 1.8. If F ∈ C[Z] does not vanish in any of the four vertices of the rectangle
Γ⊂ C, then the algebraic winding number w(F |∂Γ) equals the number of roots of F inΓ:

• Each root of F in the interior ofΓ counts with its multiplicity.
• Each root of F in an edge ofΓ counts with half its multiplicity.

Remark1.9. The hypothesis thatF 6= 0 on the vertices is very mild and easy enough
to check in every concrete application. Unlike the integralformula (1.1), the algebraic
winding number behaves well if zeros lie on (or close to) the boundary. This is yet another
manifestation of the oft-quoted wisdom of d’Alembert thatalgebra is generous; she often
gives more than we ask of her. Apart from its aesthetic appeal, the uniform treatment of all
configurations simplifies theoretical arguments and practical implementations alike.

The second step in the proof (§5) formalizes the geometric idea of Gauss’ dissertation
(1799), which becomes perfectly rigorous and nicely quantifiable in the algebraic setting:

Theorem 1.10. For each polynomial F= c0 + c1Z + · · ·+ cn−1Zn−1 + cnZn in C[Z] of
degree n≥ 1 we define its Cauchy radius to beρF := 1+ max{|c0|, |c1|, . . . , |cn−1|}/|cn|.
Then every rectangleΓ containing the disk{z∈ C | |z|< r} satisfies w(F |∂Γ) = n.

Theorems1.8and1.10together imply thatC is algebraically closed: each polynomial
F ∈ C[Z] of degreen hasn roots inC, each counted with its multiplicity; more precisely,
the squareΓ = [−ρF ,ρF ]2⊂ C containsn roots ofF .

Applied to the fieldC = R[i] of complex numbers, this result is traditionally called the
Fundamental Theorem of Algebra, following Gauss, although nowadays it would be more
appropriate to call it the “fundamental theorem of complex numbers”.

We emphasize that the algebraic approach via Cauchy indicesproves much more than
mere existence of roots. It also establishes a root-finding algorithm (§6.2):
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Theorem 1.11(Fundamental Theorem of Algebra, effective version). For every polyno-
mial F ∈ C[Z] of degree n≥ 1 there exist c,z1, . . . ,zn ∈C such that

F = c(Z−z1) · · · (Z−zn).

The algebraic winding number provides an explicit algorithm to locate all roots z1, . . . ,zn

of F: starting from some rectangle containing all n roots, asin Theorem1.10, we can
subdivide and keep only those rectangles that actually contain roots, using Theorem1.8.
All computations can be carried out using Sturm chains according to Theorem1.2. By
iterated bisection we can thus approximate all roots to any desired precision.

Once sufficient approximations have been obtained, one can switch to Newton’s method,
which converges much faster but vitally depends on good starting values (§6.3).

Remark1.12. In the real-algebraic setting of this article we consider the field operations
(a,b) 7→ a+ b, a 7→ −a, (a,b) 7→ a · b, a 7→ a−1 in R and the comparisonsa = b, a < b
as primitive operations. In this sense our proof yields an algorithm overR. Over the
real numbersR this point of view was advanced by Blum–Cucker–Shub–Smale [6] by
extending the notion of Turing machines to hypothetical “real number machines”.

In order to carry out the required real-algebraic operations on a Turing machine, how-
ever, a more careful analysis is necessary (§6.1). At the very least, in order to implement
the required operations for a given polynomialF = c0 + c1Z+ · · ·+ cnZn, we have to as-
sume that for the ordered fieldQ(re(c0), im(c0), . . . , re(cn), im(cn)) the above primitive
operations are computable in the Turing sense. See§6 for a more detailed discussion.

1.5. Why yet another proof? There are several lines of proof leading to the Fundamental
Theorem of Algebra, and literally hundreds of variants havebeen published over the last
200 years (see§7). Why should we care for yet another proof?

The motivations for the present work are three-fold:
First, on a philosophical level, it is satisfying to minimize the hypotheses and the tools

used in the proof, and simultaneously maximize the conclusion.
Second, when teaching mathematics, it is advantageous to have different proofs to

choose from, adapted to the course’s level and context.
Third, from a practical point of view, it is desirable to havea constructive proof, even

more so if it directly translates to a practical algorithm.
In these respects the present approach offers several attractive features:

(1) The proof is elementary, and a thorough treatment of the complex case (§4–§5) is
of comparable length and difficulty as Sturm’s treatment of the real case (§2–§3).

(2) Since the proof uses only first-order properties (and notcompactness, for example)
all arguments hold verbatim over any real closed field (§2.3).

(3) The proof is constructive in the sense that it establishes not only existence but also
provides a method to locate the roots ofF (§6.2).

(4) The algorithm is fairly easy to implement on a computer and sufficiently efficient
for medium-sized polynomials (§6.4).

(5) Its economic use of axioms and its algebraic character make this approach ideally
suited for a formal, computer-verified proof (§6.6).

(6) Since the real-algebraic proof also provides an algorithm, the correctness of an
implementation can likewise be formally proved and computer-verified.

1.6. Sturm’s forgotten proof. Attracted by the above features, I have worked out the real-
algebraic proof for a computer algebra course in 2008. The idea seems natural, or even
obvious, and so I was quite surprised not to find any such proofin the modern literature.
While retracing its history (§7), I was even more surprised when I finally unearthed very
similar arguments in the works of Cauchy and Sturm (§7.4). Why have they been lost?
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Our proof is, of course, based on very classical ideas. The geometric idea goes back to
Gauss in 1799, and all algebraic ingredients are present in the works of Sturm and Cauchy
in the 1830s. Since then, however, they have evolved in very different directions:

Sturm’s theorem has become a cornerstone of real algebra. Cauchy’s integral is the
starting point of complex analysis. Their algebraic methodfor counting complex roots,
however, has transited from algebra to applications, whereits conceptual and algorithmic
simplicity are much appreciated. Since the end of the 19th century it is no longer found in
algebra text books, but is almost exclusively known as a computational tool, for example
in the Routh–Hurwitz theorem on the stability of motion. After Sturm’s outline of 1836,
this algebraic tool seems not to have been employed toprovethe existence of roots.

In retrospect, the proof presented here is thus a fortunate rediscovery of Sturm’s alge-
braic vision (§7.5). This article gives a modern, rigorous, and complete presentation, which
means to set up the right definitions and to provide elementary, real-algebraic proofs.

1.7. How this article is organized. Section2 briefly recalls the notion of real closed
fields, on which Sturm’s theorem and the theory of Cauchy’s index are built.

Section3 presents Sturm’s theorem [52] counting real roots of real polynomials. The
only novelty is the extension to boundary points, which is needed in Section4.

Section4proves Cauchy’s theorem [9] counting complex roots of complex polynomials,
by establishing the multiplicativity (W2) of the algebraic winding number.

Section5 establishes the Fundamental Theorem of Algebra via homotopy invariance
(W3), recasting the classical winding number approach in real algebra.

Section6 discusses algorithmic aspects, such as Turing computability, the efficient com-
putation of Sturm chains and the cross-over to Newton’s local method.

Section7, finally, provides historical comments in order to put the real-algebraic ap-
proach into a wider perspective.

The core of our real-algebraic proof is rather short (§4–§5). It seems necessary, however,
to properly develop the underlying tools and to arrange the details of the real case (§2–§3).
Algorithmic and historical aspects (§6–§7) complete the picture. I hope that the subject
justifies the length of this article and its level of detail.

Annotation 1.1. (Organization) I have tried to keep the exposition as elementary as possible. This requires to
strike a balance between terseness and verbosity – in cases of doubt I have opted for the latter: in this annotated
student version, some complementary remarks are included that will most likely not appear in the published
version. They are set in small font, as this one, and numberedseparately in order to ensure consistent references.
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2. REAL CLOSED FIELDS

There can be no purely algebraic proof of the Fundamental Theorem of Algebra in the
sense that ordered fields and the intermediate value property of polynomials must enter the
picture (see Remark2.6below). This is the natural setting of real algebra, and constitutes
precisely the minimal hypotheses that we will be using.

We shall use only elementary properties of ordered fields, which are well-known from
the real numbers (see for example Cohn [11, §8.6–§8.7]). In order to make the hypotheses
precise, this section sets the scene by recalling the notionof a real closed field, on which
Sturm’s theorem is built, and sketches its analytic, algebraic, and logical context.

Annotation 2.1. (Fields)We assume that the reader is familiar with the algebraic notion of afield. In order to
highlight the field axioms formulated in first-order logic, we recall that a field(R,+, ·) is a setR equipped with
two binary operations+ : R×R→ R and· : R×R→ R satisfying the following three groups of axioms:

First, addition enjoys the following four properties, saying that(R,+) is an abelian group:

(A1) associativity: For all a,b,c∈ R we have(a+b)+c = a+(b+c).
(A2) commutativity: For all a,b∈ R we havea+b = b+a.
(A3) neutral element: There exists 0∈ R such that for alla∈ R we have 0+a = a.
(A4) opposite elements: For eacha∈ R there existsb∈ R such thata+b = 0.

The neutral element 0∈R whose existence is required by axiom (A3) is unique by (A2). This ensures that axiom
(A4) is unambiguous. The opposite element ofa∈ R required by axiom (A4) is unique and denoted by−a.

Second, multiplication enjoys the following four properties, saying that(Rr{0}, ·) is an abelian group:

(M1) associativity: For all a,b,c∈ R we have(a·b) ·c = a· (b·c).
(M2) commutativity: For all a,b∈ R we havea·b = b·a.
(M3) neutral element: There exists 1∈ R, 1 6= 0, such that for alla∈ R we have 1·a = a.
(M4) inverse elements: For eacha∈ R, a 6= 0, there existsb∈ R such thatab= 1.

The neutral element 1∈R whose existence is required by axiom (M3) is unique by (M2). This ensures that axiom
(M4) is unambiguous. The inverse element ofa∈ R required by axiom (M4) is unique and denoted bya−1.

Third, multiplication is distributive over addition:

(D) distributivity: For all a,b,c∈ R we havea· (b+c) = (a·b)+(a·c).

Annotation 2.2. (Ordered fields)An ordered fieldis a fieldR with a distinguished set of positive elements,
denotedx > 0, compatible with the field operations in the following sense:

(O1) trichotomy: For eachx∈ R we have eitherx > 0 orx = 0 or−x > 0.
(O2) addition: For all x,y∈ R the conditionsx > 0 andy > 0 imply x+y > 0.
(O3) multiplication: For all x,y∈ R the conditionsx > 0 andy > 0 imply xy> 0.

From these axioms follow the usual properties, see Cohn [11, §8.6], Jacobson [25, §5.1] or Lang [28, §XI.1].
We define the orderingx > y by x− y > 0. The weak orderingx≥ y meansx > y or x = y. The inverse ordering
x < y is defined byy > x, and likewisex≤ y is defined byy≥ x. Intervals inR will be denoted, as usual, by

[a,b] = {x∈ R | a≤ x≤ b}, ]a,b] = {x∈ R | a < x≤ b},
]a,b[ = {x∈ R | a < x < b}, [a,b[ = {x∈ R | a≤ x < b}.

Every ordered fieldR inherits a natural topology generated by open intervals: a subsetU ⊂ R is open if for
eachx ∈U there existsδ > 0 such that]x−δ ,x+δ [ ⊂U . We can thus apply the usual notions of topological
spaces and continuous functions. Addition and multiplication are continuous, and so are polynomial functions.

For everyx∈ R we havex2 ≥ 0 with equality if and only ifx = 0. The polynomialX2−a can thus have a
root x∈ R only for a≥ 0; if it has a root, then among the two roots±x we can choosex≥ 0, denoted

√
a := x.

For x∈ R we define the absolute value to be|x| := x if x≥ 0 and|x| :=−x if x≤ 0. We remark that|x| =
√

x2.
We record the following properties, which hold for allx,y∈ R:

(1) |x| ≥ 0, and|x| = 0 if and only if x = 0.
(2) |x+y| ≤ |x|+ |y| for all x,y∈ R.
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(3) |x·y| = |x| · |y| for all x,y∈ R.

Annotation 2.3. (Rings)A ring (R,+, ·) is only required to satisfy axioms (A1-A4), (M1-M3), and (D)but not
necessarily (M4). This is sometimes called acommutative ring with unit, for emphasis, but we will have no need
for this distinction. For every ringR we denote byR∗ = R r{0} the set of its non-zero elements. A ringR
is calledintegral if for all a,b ∈ R∗ we haveab∈ R∗. Every integral ringR can be embedded into a field; the
smallest such field is unique and thus called thefield of fractionsof R. Every ordered ring is integral, and the
ordering uniquely extends to its field of fractions. For example, the ring of integersZ has as field of fractions the
field of rational numbersQ. In this article we will study the ringR[X] polynomials over some ordered fieldR, as
explained below, which has as field of fractions the field of rational functionsR(X).

2.1. Real numbers. As usual we denote byR the field of real numbers, that is, an ordered
field (R,+, ·,<) such that every non-empty bounded subsetA⊂R has a least upper bound
in R. This is a very strong property, and in fact it characterizesR:

Theorem 2.1. For every ordered fieldR the following conditions are equivalent:

(1) The ordered set(R,<) satisfies the least upper bound property.
(2) Each interval[a,b]⊂ R is compact as a topological space.
(3) Each interval[a,b]⊂ R is connected as a topological space.
(4) The intermediate value property holds for all continuous functions f: R→R.

Any two ordered fields satisfying these properties are isomorphic by a unique field iso-
morphism. The construction of the real numbers shows that one such field exists. �

Annotation 2.4. (Sketch of proof)Existence and uniqueness of the fieldR of real numbers form the foundation
of any analysis course. Most analysis books prove(1)⇒ (2)⇒ (4), while (3)⇔ (4) is essentially the definition
of connectedness. Here we only show(4)⇒ (1), in the form¬(1)⇒¬(4).

Let A⊂ R be non-empty and bounded above. Definef : R→ {±1} by f (x) = 1 if a≤ x for all a∈ A, and
f (x) = −1 if x < a for somea∈ A. In other words, we havef (x) = 1 if and only if x is an upper bound. Iff
is discontinuous inx, then f (x) = +1 but f (y) =−1 for all y < x, whencex = supA. If A does not have a least
upper bound inR, then f is continuous but does not satisfy the intermediate value property.

2.2. Real closed fields.The fieldR of real numbers provides the foundation of analysis.
In the present article it appears as the most prominent example of the much wider class of
real closed fields. The reader who wishes to concentrate on the classical case may skip the
rest of this section and assumeR = R throughout.

Annotation 2.5. (Polynomials) In the sequel we shall assume that the reader is familiar withthe polynomial
ring K [X] of some ground ringK , see Jacobson [25, §2.9–§2.12] or Lang [28, §II.2, §IV.1]. We briefly recall
some notation. LetK be a ring, that is, satisfying axioms (A1-A4), (M1-M3), and (D) of Annotation2.2, but not
necessarily (M4). There exists a ringK [X] characterized by the following two properties: First,K [X] containsK
as a subring andX as an element. Second, every non-zero elementP∈ K [X] can be uniquely written as

P = c0 +c1X + · · ·+cnXn where n∈N andc0,c1, . . . ,cn ∈ K ,cn 6= 0.

In this situationK [X] is called thering of polynomialsoverK in the variableX, and each elementP∈ K [X]
is called apolynomialoverK in X. In the above notation we call degP := n thedegreeand lcP := cn the leading
coefficientof P. The zero polynomial is special: we set deg0 :=−∞ and lc0 := 0.

Annotation 2.6. (Polynomial functions)The ringK [X] has the following universal property: for every ringK ′

containingK as a subring and every elementx ∈ K ′ there exists a unique ring homomorphismΦ : K [X]→ K ′

such thatΦ|K = idK andΦ(X) = x. Explicitly, Φ sendsP= c0 +c1X+ · · ·+cnXn to P(x) = c0 +c1x+ · · ·+cnxn.
In particular each polynomialP∈ K [X] defines a polynomial functionfP : K → K , x 7→ P(x). If K is an infinite
integral ring, for example an ordered ring or field, then the mapP 7→ fP is injective, and we can thus identify each
polynomialP∈ K [X] with the associated polynomial functionfP : K → K .

Annotation 2.7. (Roots)We shall mainly deal with polynomials over ordered – hence infinite – fields. In partic-
ular we can identify polynomials and their associated polynomial functions. Traditionally equations haveroots
and functions havezeros. In this article we use both words “roots” and “zeros” synonymously.

Definition 2.2. An ordered field(R,+, ·,<) is real closedif it satisfies the intermediate
value property for polynomials: whenever a polynomialP∈ R[X] satisfiesP(a)P(b) < 0
for somea < b in R, then there existsx∈ ]a,b[ such thatP(x) = 0.
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Example2.3. The fieldR of real numbers is real closed by Theorem2.1above. The field
Q of rational numbers is not real closed, as shown by the example P = X2− 2 on [1,2].
The algebraic closureQc of Q in R is a real closed field. In fact,Qc is the smallest real
closed field, in the sense thatQc is contained in any real closed field. Notice thatQc is
much smaller thanR, in factQc is countable whereasR is uncountable.

Remark2.4. The theory of real closed fields originated in the work of Artin and Schreier
[3, 4]. Excellent textbook references include Jacobson [25, chapters I.5 and II.11], Cohn
[11, chapter 8], and Bochnak–Coste–Roy [7, chapter 1]. For the present article, Definition
2.2 above is the natural starting point because it captures the essential geometric feature.
It deviates, however, from Artin–Schreier’s algebraic definition [3], which says that an
ordered field is real closed if no proper algebraic extensioncan be ordered. For a proof of
their equivalence see [11, Prop. 8.8.9] or [7, §1.2].

Every archimedian ordered field can be embedded intoR, see [11, §8.7]. The fieldR(X)
of rational functions can be ordered (in many different ways, see [7, §1.1]) but does not
embed intoR. Nevertheless it can be embedded into some real closure:

Theorem 2.5(Artin–Schreier [3, Satz 8]). Every ordered fieldK admits a real closure,
i.e., a real closed fieldR ⊃ K that extends the ordering and is algebraic overK . Any two
real closures ofK are isomorphic via a unique field isomorphism fixingK . �

The real closure is thus much more rigid than the algebraic closure. In a real closed field
R every positive element has a square root, and so the orderingon R can be characterized
in algebraic terms:x≥ 0 if and only if there existsr ∈ R such thatr2 = x. In particular, if
a fieldR is real closed, then it admits precisely one ordering.

Remark2.6. Artin and Schreier [3, Satz 3] have shown that if a fieldR is real closed, then
C = R[i] is algebraically closed, recasting the classical algebraic proof of the Fundamental
Theorem of Algebra (§7.8.2). Conversely [4], if C is algebraically closed and contains a
subfieldR such that 1< dimR(C) < ∞, thenR is real closed andC = R[i]. We shall not
use this striking result, but it underlines that we have chosen minimal hypotheses.

Annotation 2.8. (Finiteness conditions)In the sequel we will not appeal to the least upper bound property,
nor compactness nor connectedness. In particular we will not use analytic methods such as integration, nor
transcendental functions such as exp, sin, cos, . . . . The intermediate value property for polynomials is a suffi-
ciently strong hypothesis. In order to avoid compactness, asufficient finiteness condition will be the fact that a
polynomialP = cnXn +cn−1Xn−1 + · · ·+c1X +c0 of degreen over a fieldK can have at mostn roots inK .

In generalP can havelessthann roots, of course, as illustrated by the classical exampleX2 + 1 overR. The
fact thatP cannot havemorethann roots relies on commutativity (M2) and invertibility (M4).For exampleX2−1
has four roots in the non-integral ringZ/8Z of integers modulo 8, namely±1 and±3. On the other hand,X2 +1
has infinitely many roots in the skew fieldH = R+Ri +R j +Rk of Hamilton’s quaternions [14, chap. 7], namely
every combinationai+b j +ck with a,b,c∈ R such thata2 +b2 +c2 = 1. The limitation on the number of roots
makes the theory of fields very special. We will repeatedly use it as a crucial finiteness condition.

2.3. Elementary theory of ordered fields. The axioms of an ordered field(R,+, ·,<)
are formulated in first-order logic, which means that we quantify over elements ofR, but
not over subsets, functions, etc. By way of contrast, the characterization of the fieldR of
real numbers (Theorem2.1) is of a different nature: here we have to quantify over subsets
of R, or functionsR→ R, and such a formulation requires second-order logic.

The algebraic condition for an ordered field to be real closedis of first order. It is given
by an axiom scheme where for each degreen∈N we have one axiom of the form

(2.1) ∀a,b,c0,c1, . . . ,cn ∈R
[

(c0 +c1a+ · · ·+cnan)(c0 +c1b+ · · ·+cnbn) < 0

⇒∃x∈R
(

(x−a)(x−b) < 0 ∧ c0 +c1x+ · · ·+cnxn = 0
)]

.

First-order formulae are customarily calledelementary. For a given ordered fieldR, the
collection of all first-order formulae that are true overR is called theelementary theory
of R. Tarski’s theorem [25, 7] says that all real closed fields share the same elementary
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theory: if an assertion in the first-order language of ordered fields is true over one real
closed field, for example the real numbers, then it is true over any other real closed field.
(This no longer holds for second-order logic, whereR is singled out.) Tarski’s theorem is
a vast generalization of Sturm’s technique, and so is its effective formulation, calledquan-
tifier elimination, which provides explicit decision procedures. We will not use Tarski’s
theorem; it only serves to situate our approach in its logical context.

From Tarski’s meta-mathematical viewpoint it is not surprising that thestatementof the
Fundamental Theorem of Algebra generalizes to an arbitraryreal closed field, because in
each degree it is of first order. It is remarkable, however, toconstruct a first-orderproof that
is as direct and elegant as the second-order version. The real-algebraic proof presented here
achieves this goal and, moreover, is geometrically appealing and algorithmically effective.

Annotation 2.9. (Geometry)Tarski’s theorem implies that euclidean geometry, seen as cartesian geometry mod-
eled on the vector spaceRn, remains unchanged if the fieldR of real numbers is replaced by any other real closed
field R. This is true as far as its first-order properties are concerned, and these comprise all of classical geometry.

Annotation 2.10. (Decidability) The elementary theory of real closed fields can be recursively axiomatized, as
seen above. By Tarski’s theorem it is complete in the sense that any two models of it share the same elementary
theory. This implies decidability. This also shows that thefirst-order theory of euclidean geometry is decidable.

3. STURM’ S THEOREM FOR REAL POLYNOMIALS

This section recalls Sturm’s theorem for polynomials over areal closed field – a gem of
19th century algebra and one of the greatest discoveries in the theory of polynomials.

Remark3.1. It seems impossible to surpass the elegance of the original mémoires by Sturm
[52] and Cauchy [9]. One technical improvement of our presentation, however,seems note-
worthy: The inclusion of boundary points streamlines the arguments so that they will apply
seamlessly to the complex setting in§4. The necessary amendments render the develop-
ment hardly any longer nor more complicated. They pervade, however, all statements and
proofs, so that it seems worthwhile to review the classical arguments in full detail.

3.1. Counting sign changes.For every ordered fieldR we define sign:R→{−1,0,+1}
by sign(x) = +1 if x > 0, sign(x) = −1 if x < 0, and sign(0) = 0. Given a finite sequence
s= (s0, . . . ,sn) in R, we say that the pair(sk−1,sk) presents asign changeif sk−1sk < 0.
The pair presentshalf a sign changeif one element is zero while the other is non-zero. In
the remaining cases there is no sign change. All cases can be subsumed by the formula

(3.1) V(sk−1,sk) := 1
2

∣

∣sign(sk−1)−sign(sk)
∣

∣.

Definition 3.2. For a finite sequences= (s0, . . . ,sn) in R thenumber of sign changesis

(3.2) V(s) :=
n

∑
k=1

V(sk−1,sk) =
n

∑
k=1

1
2

∣

∣sign(sk−1)−sign(sk)
∣

∣.

For a finite sequence(S0, . . . ,Sn) of polynomials inR[X] anda∈ R we set

(3.3) Va
(

S0, . . . ,Sn
)

:= V
(

S0(a), . . . ,Sn(a)
)

.

For the difference at two pointsa,b∈ R we use the notationVb
a := Va−Vb.

Annotation 3.1. The numberV(s0, . . . ,sn) does not change if we multiply alls0, . . . ,sn by some constantq∈R∗.
Likewise, Vb

a (S0, . . . ,Sn) remains unchanged if we multiply allS0, . . . ,Sn by some polynomialQ ∈ R[X]∗ that
does not vanish in{a,b}. Such operations will be used repeatedly later on.

Remark3.3. There is no universal agreement how to count sign changes because each
application requires its specific conventions. While thereis no ambiguity forsk−1sk < 0
andsk−1sk > 0, some arbitration is needed to take care of possible zeros.Our definition
has been chosen to account for boundary points in Sturm’s theorem, as explained below.
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The traditional way of counting sign changes, following Descartes and Budan–Fourier,
is to extract the subsequence ˆsby discarding all zeros ofsand to definêV(s) :=V(ŝ). (This
counting rule is non-local whereas in (3.2) only neighbours interact.) As an illustration we
recall Descartes’ rule of signs Budan–Fourier’s generalization [40, chap. 10]:

Theorem 3.4(Descartes’ rule of signs). For every polynomial P= c0 +c1X + · · ·+cnXn

over an ordered fieldR, the number of positive roots, each counted with its multiplicity,
satisfies the inequality

#
mult

{

x∈ R>0
∣

∣ P(x) = 0
}

≤ V̂(c0,c1, . . . ,cn).

Theorem 3.5(Budan–Fourier). Let P∈R[X] be a polynomial of degree n. The number of
roots in]a,b]⊂ R, each counted with its multiplicity, satisfies the inequality

#
mult

{

x∈ ]a,b]
∣

∣ P(x) = 0
}

≤ V̂b
a (P,P′, . . . ,P(n)).

If R is real closed, then the difference(r.h.s.− l.h.s.) is always an even integer.
Equality holds for every interval]a,b]⊂ R if and only if P has n roots inR.

The upper bounds are very easy to compute but they often overestimate the number of
roots. This was the state of knowledge before Sturm’s ground-breaking discovery in 1829.

3.2. The Cauchy index. Index theory is based on judicious counting. Instead of counting
zeros ofP

Q it is customary to count poles ofQ
P , which is of course equivalent.

Definition 3.6. We denote by lim+a f and lim−a f the right and left limit, respectively, of a
rational functionf ∈ R(X)∗ in a pointa∈ R. TheCauchy indexof f in a is defined as

(3.4) inda( f ) := ind+
a ( f )− ind−a ( f ) where indεa( f ) :=











+ 1
2 if lim ε

a f = +∞,

− 1
2 if lim ε

a f =−∞,

0 otherwise.

Less formally, we have inda( f ) = +1 if f jumps from−∞ to +∞, and inda( f ) = −1
if f jumps from+∞ to −∞, and inda( f ) = 0 in all other cases. For example, we have
ind0(

1
x) = +1 and ind0(− 1

x) =−1 and ind0(± 1
x2 ) = 0.

+ /21

/21−

+ /21 + /21 + /21

/21− /21−/21−
a a a a

Ind=0Ind=0Ind=−1Ind=+1

FIGURE 2. A polea and its Cauchy index inda( f ) = ind+
a ( f )− ind−a ( f )

Remark3.7. The limits lim±a f are just a convenient notation for purely algebraic quanti-
ties: we can factorf = (X−a)mg with m∈ Z andg∈ R(X)∗ such thatg(a) ∈R∗.

• If m> 0, then limε
a f = 0 for bothε ∈ {+,−}.

• If m= 0, then limε
a f = g(a) for bothε ∈ {+,−}.

• If m< 0, then limε
a f = εm ·signg(a) · (+∞).

In the first casef has a zero of orderm in a; for m≥ 0 we have limε
a f ∈ R and thus

indε
a( f ) = 0. In the last casef has a pole of order|m| in a, and indεa( f ) = 1

2εm ·signg(a).
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Annotation 3.2. (Rational functions as maps)Here we wish to interpret rational functionsf ∈ R(X) as maps.
The right way to do this is to extend the affine lineR to the projective linePR = R∪{∞}.

We constructPR = (R2 r{0})/∼ as the quotient ofR2 r{0} by the quivalence(p,q)∼ (s,t) defined by the
condition that there existsu∈ R∗ such that(p,q) = (ur,us). The equivalence class of(p,q) is denoted by[p : q]
and repesents the line passing through the origin(0,0) and(p,q) in R2. The affine lineR can be identified with
{[p : 1] | p∈ R}; this covers all points ofPR except one: the point at infinity,∞ = [1 : 0].

Likewise we constructPR(X) = (R(X)2r{0})/∼ as the quotient ofR(X)2 r{0} by the quivalence(P,Q)∼
(R,S) defined by the condition that there existsU ∈ R(X)∗ such that(P,Q) = (UR,US). The equivalence class
of (P,Q) is denoted by[P : Q]. HereR(X) can be identified with{[P : Q] | P,Q ∈ R[X],Q 6= 0} using only
polynomials. Again this covers all points ofPR(X) except one: the point at infinity,∞ = [1 : 0].

Considerf = [P : Q]∈PR(X) with P,Q∈R[X]. We can assume gcd(P,Q) = 1 and setm=: max{degP,degQ}.
We then construct homogenous polynomialsP̂,Q̂∈R[X,Y] by Xk 7→XkYm−k. We have(P̂(x,y),Q̂(x,y)) 6= (0,0)

for all (x,y) 6= (0,0) in R2, and the map̂f : PR→ PR given by f̂ ([x : y]) = [P̂(x,y),Q̂(x,y)] is well-defined.
This construction allows us to interpret everyf ∈ PR(X) and in particular every rational fractionf ∈ R(X)

as a mapf̂ : PR→ PR. In the sequel most constructions forP/Q resp.[P : Q] are slightly easier in the generic
case whereP,Q∈ R[X]∗, and are then extended to the exceptional cases whereP = 0 or Q = 0.

Annotation 3.3. (Oriented line and circle)We can present the ordered fieldR as an oriented line, the two ends
being denoted by−∞ and+∞. It is sometimes convenient to formally adjoin two further elements±∞ and to
extend the order ofR to R̄ := R∪{±∞} such that−∞ < x< +∞ for all x∈R. This turnsR̄ into a closed interval.

− +
−1 0 +1

0

−1 +1

We can think of the projective linePR = R∪{∞} as an oriented circle. In the above picture this is obtained
by identifying +∞ and−∞ in R̄. Even though we cannot extend the ordering ofR to PR, we can nevertheless
define a sign functionPR→{−1,0,+1} by sign([p : q]) = sign(pq), which simply means that sign(∞) = 0.

The intermediate value property now takes the following form: if f ∈ R(X) satisfiesf (a) f (b) < 0 for some
a < b in R, then there existsx∈ ]a,b[ such that signf (x) = 0, that is f (x) = 0 or f (x) = ∞.

Definition 3.8. For a < b in R we define the Cauchy index off ∈ R(X)∗ on the interval
[a,b] by

(3.5) indb
a( f ) := ind+

a ( f )+ ∑
x∈]a,b[

indx( f )− ind−b ( f ).

The sum is well-defined because only finitely manyx∈ ]a,b[ contribute.
Forb < a we define indba( f ) :=− inda

b( f ), and fora = b we set indaa( f ) := 0.
Finally, we set indba(

R
S) := 0 in the degenerate case whereR= 0 orS= 0.

Remark3.9. We opt for a more comprehensive definition (3.5) than usual, in order to take
care of boundary points. We will frequently bisect intervals, and this technique works best
with a uniform definition that avoids case distinctions. Moreover, we will have reason to
consider piecewise rational functions in§4.

Proposition 3.10. The Cauchy index enjoys the following properties (which formally re-
semble the properties of integration):

(a) bisection: indb
a( f )+ indc

b( f ) = indc
a( f ) for all a,b,c∈R.

(b) invariance: indb
a( f ◦ τ) = indτ(b)

τ(a)( f ) for every linear fractional transformation
τ : [a,b]→ R, τ(x) = px+q

rx+s where p,q, r,s∈R, without poles on[a,b].

(c) addition: indb
a( f +g) = indb

a( f )+ indb
a(g) if f ,g have no common poles.

(d) scaling: indb
a(g f) = σ indb

a( f ) if g|[a,b] is of constant signσ ∈ {±1}. �

Annotation 3.4. (Winding number) The Cauchy indexPR(X)→ 1
2Z, f 7→ indb

a( f ), counts the number of
times thatf crosses∞ from − to + (clockwise in the figure of Annotation3.3) minus the number of times that
f crosses∞ from + to − (counter-clockwise in the above figure). This geometric interpretation anticipates the
winding number of loops in the plane constructed in§4.
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Annotation 3.5. (Cauchy functions)Following Cauchy [9] we can define the index indb
a( f ) not only for f ∈

R(X) but more generally for functionsf : [a,b]→ PR = R∪{∞} satisfying two natural conditions:

(1) f does not change sign without passing through 0 or∞.

This allows us to define local indices for isolated poles: we set ind+
a ( f ) = 1

2 sign f (b) wheneverf (a) = ∞ and
there existsb> a such thatf (]a,b])⊂ R∗: This means that the polea is isolated on the right. We define ind−a ( f )
in the same way if the polea is isolated on the left, and set ind±a ( f ) = 0 in all other cases.

(2) f has only a finite number of (semi-)isolated poles in[a,b].

This is needed to define indb
a( f ) by a finite sum as in Equation (3.5) above. Examples include fractionsf = r/s

wherer,s: [a,b]→ R are continuous piecewise polynomial functions as in§4.

Example. Over the real numbersR we can consider functionsf : [a,b] → R∪ {∞} such that for each point
x0 ∈ [a,b] there exist one-sided neighbourhoodsU = [x0,x0 + ε ] resp.U = [x0− ε ,x0] with ε > 0, on which we
have f (x) = (x− x0)

mg(x) with m∈ Z and some continuous functiong: U → R∗. Such a functionf satisfies
conditions (1) and (2), so that we can define its Cauchy index indb

a( f ) as above. Examples include fractions
f = R/SwhereR,S: [a,b]→ R are piecewise real-analytic functions.

For emphasis we spell out the following definition:

Definition. We call f : [a,b]→ PR aCauchy functionif there exists a subdivisiona= t0 < t1 < · · · < tn = b such
that on on each interval[tk−1,tk] we havef (x) = (x− tk−1)

m(x− tk)ngk(x) with m,n ∈ Z and some continuous
functiongk : [tk−1,tk]→ R∗ of constant sign. We can then define indb

a( f ) as in Definition3.8above.

Annotation 3.6. (Nash functions)The notion of Cauchy function captures the requirements forcounting poles
as in Equation (3.5) above. If we also want to consider the derivativef ′, as in§3.3 below, then it suffices to
assume each of the local functionsgk to be differentiable. The set of Cauchy functions is stable under taking
products and inverses, but not sums. If we want aring, then we should restrict attention to piecewiseC∞ Cauchy
functions. This leads us to the classical analytic-algebraic setting:

Example(Nash functions). Let R be a real closed field. ANash functionis a mapf : [a,b]→ R that isC∞ and
semi-algebraic [7, chap. 8]. Over the real numbersR this coincides with the class of real-analytic functions that
are algebraic overR[X]. Quotients of piecewise Nash functions are Cauchy functions, and thus seem to be a
convenient and natural setting for defining and working withCauchy indices over real closed fields.

3.3. Counting real roots. The ringR[X] is equipped with a derivationP 7→ P′ sending
each polynomialP = ∑n

k=0 pkXk to its formal derivativeP′ = ∑n
k=1kpkXk−1. This extends

in a unique way to a derivation on the fieldR(X) sendingf = R
S to f ′ = R′S−RS′

S2 . This is
anR-linear map and satisfies Leibniz’ rule( f g)′ = f ′g+ f g′. For f ∈ R(X)∗ the quotient
f ′/ f is called thelogarithmic derivativeof f ; it enjoys the following property:

Proposition 3.11. For every f∈ R(X)∗ we haveinda( f ′/ f ) = +1 if a is a zero of f , and
inda( f ′/ f ) =−1 if a is a pole of f , andinda( f ′/ f ) = 0 in all other cases.

Proof. We havef = (X−a)mg with m∈Z andg∈R(X)∗ such thatg(a)∈R∗. By Leibniz’

rule we obtain f ′
f = m

X−a + g′
g . The fractiong′

g does not contribute to the index because it
does not have a pole ina. We conclude that inda( f ′/ f ) = sign(m). �

Corollary 3.12. For every f∈ R(X)∗ and a< b in R the indexindb
a( f ′/ f ) is the number

of roots minus the number of poles of f in[a,b], counted without multiplicity. Roots and
poles on the boundary count for one half. �

The corollary remains true forf = R
S whenR = 0 or S= 0, with the convention that

we count onlyisolated roots and poles. PolynomialsP ∈ R[X] have no poles, whence
indb

a(P
′/P) simply counts the number of (isolated) roots ofP in [a,b].

3.4. The inversion formula. While the Cauchy index can be defined over any ordered
field R, the following results requireR to be real closed. The intermediate value property
of polynomialsP ∈ R[X] can then be reformulated quantitatively as indb

a(
1
P) = Vb

a (1,P).
More generally, we have the following result of Cauchy [9, §I, Thm. I]:

Theorem 3.13. Let R be a real closed field, and consider a< b in R. If P,Q∈ R[X] do
not have common zeros in a nor b, then

(3.6) indb
a

(Q
P

)

+ indb
a

( P
Q

)

= Vb
a

(

P,Q
)

.
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The inversion formula of Theorem3.13will follow as a special case from the product
formula of Theorem4.6. Its proof is short enough to be given separately here:

Proof. The statement is true ifP = 0 or Q = 0, so we can assumeP,Q∈ R[X]∗. Equation
(3.6) remains valid if we divideP,Q by a common factorU ∈R[X], because our hypothesis
ensures thatU(a) 6= 0 andU(b) 6= 0. We can thus assume gcd(P,Q) = 1.

Suppose first that[a,b] contains no pole. On the one hand, both indices indb
a

(Q
P

)

and
indb

a

(

P
Q

)

vanish in the absence of poles. On the other hand, the intermediate value property
ensures that bothP andQ are of constant sign on[a,b], whenceVa(P,Q) = Vb(P,Q).

Suppose next that[a,b] contains at least one pole. Formula (3.6) is additive with respect
to bisection of the interval[a,b]. It thus suffices to treat the case where[a,b] contains
exactly one pole. Bisecting once more, if necessary, we can assume that this pole is either
a or b. Applying the symmetryX 7→ a+b−X, if necessary, we can assume that the pole
is a. Since Formula (3.6) is symmetric inP andQ, we can assume thatP(a) = 0.

By hypothesis we haveQ(a) 6= 0, whenceQ has constant sign on[a,b] and indba
(

P
Q

)

= 0.

Likewise,P has constant sign on]a,b] and indba
(Q

P

)

= ind+
a

(Q
P

)

. On the right hand side we
find Va(P,Q) = 1

2, and forVb(P,Q) two cases occur:

• If Vb(P,Q) = 0, thenQ
P > 0 on]a,b], whence lim+

a

(Q
P

)

= +∞.
• If Vb(P,Q) = 1, thenQ

P < 0 on]a,b], whence lim+
a

(Q
P

)

=−∞.

In both cases we find ind+a
(Q

P

)

= Vb
a (P,Q), whence Equation (3.6) holds. �

Annotation 3.7. (Local and global arguments)Reexamining the previous proof we can distinguish a local
argument around a polea, in the neighbourhoods[a,a+ ε ] and [a− ε ,a] for some chosenε > 0, and a global
argument, for a given interval[a,b], say without poles. The local argument only uses continuityand is valid for
polynomials over any ordered field. It is in the global argument that we need the intermediate value property.
This interplay of local and global arguments is a recurrent theme in the proofs of§4.5and§5.1.

Annotation 3.8. (Reducing fractions)For arbitraryP,Q∈ R[X]∗ the inversion formula can be restated as

indb
a

( Q
P

)

+ indb
a

( P
Q

)

= Vb
a

(

1, Q
P

)

= 1
2

[

sign
( Q

P

∣

∣ b
)

−sign
( Q

P

∣

∣ a
)]

with the convention sign(∞) = 0. This formulation has the advantage to depend only on the fraction Q
P and not

on the polynomialsP,Q representing it. For reduced fractions we recover the formulation of Theorem3.13.

Annotation 3.9. (Cauchy functions)The inversion formula holds more generally for all Cauchy functions, as
defined in Annotation3.5. Instead of dividing by gcd(P,Q), which is in general not defined, we simply divide by
common roots or poles, so as to ensure thatP,Q have no common roots nor poles on[a,b].

3.5. Sturm chains. In the rest of this section we exploit the inversion formula of Theorem
3.13, and we will thus assumeR to be real closed. We can then calculate the Cauchy index
indb

a(
R
S) by iterated euclidean division (§3.6). The crucial condition is the following:

Definition 3.14. A sequence of polynomials(S0, . . . ,Sn) in R[X] is a Sturm chainwith
respect to an interval[a,b]⊂ R if it satisfies Sturm’s condition:

(3.7) If Sk(x) = 0 for 0< k < n andx∈ [a,b], thenSk−1(x)Sk+1(x) < 0.

We will usually not explicitly mention the interval[a,b] if it is understood from the
context, or if(S0, . . . ,Sn) is a Sturm chain on all ofR. For n = 1 Condition (3.7) is void
and should be replaced by the requirement thatS0 andS1 have no common zeros.

Theorem 3.15. If (S0,S1, . . . ,Sn−1,Sn) is a Sturm chain inR[X], then

(3.8) indb
a

(S1

S0

)

+ indb
a

(Sn−1

Sn

)

= Vb
a

(

S0,S1, . . . ,Sn−1,Sn
)

.

Proof. The Sturm condition ensures that two consecutive functionsSk−1 andSk have no
common zeros. Forn= 1 Formula (3.8) reduces to the inversion formula of Theorem3.13.
Forn = 2 the inversion formula implies that

(3.9) indb
a

(S1

S0

)

+ indb
a

(S0

S1

)

+ indb
a

(S2

S1

)

+ indb
a

(S1

S2

)

= Vb
a

(

S0,S1,S2
)

.
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This is a telescopic sum: contributions to the middle indices arise at zeros ofS1, but at each
zero ofS1 its neighboursS0 andS2 have opposite signs, which means that the middle terms
cancel each other. Iterating this argument, we obtain (3.8) by induction onn. �

The following algebraic criterion will be used in§3.6and§5.1:

Proposition 3.16. Consider a sequence(S0, . . . ,Sn) in R[X] such that

(3.10) AkSk+1 +BkSk +CkSk−1 = 0 for 0 < k < n,

with Ak,Bk,Ck ∈ R[X] such that Ak > 0 and Ck ≥ 0 on [a,b]. Then(S0, . . . ,Sn) is a Sturm
chain on[a,b] if and only if the terminal pair(Sn−1,Sn) has no common zeros in[a,b].

Proof. We assume thatn≥ 2. If (Sn−1,Sn) has a common zero, then the Sturm condition
(3.7) is obviously violated. Suppose that(Sn−1,Sn) has no common zeros in[a,b]. If
Sk(x) = 0 for x∈ [a,b] and 0< k < n, thenSk+1(x) 6= 0. Otherwise Condition (3.10) would
imply thatSk, . . . ,Sn vanish inx, which is excluded by our hypothesis. Now the equation
Ak(x)Sk+1(x)+Ck(x)Sk−1(x) = 0 with Ak(x)Sk+1(x) 6= 0 impliesCk(x)Sk−1(x) 6= 0. Using
Ak(x) > 0 andCk(x) > 0 we conclude thatSk−1(x)Sk+1(x) < 0. �

Annotation 3.10. (Cauchy functions)Nothing so far is really special to polynomials: Definition3.14, Theorem
3.15, and Proposition3.16extend verbatim to all Cauchy functions as defined in Annotation 3.5.

Annotation 3.11. (Mean value property)AssumingAk,Ck > 0 on [a,b], the linear relation (3.10) resembles
the mean value property of harmonic functions, here discretized to a graph in form of a chain. Is there a useful
generalization of Conditions (3.7) or (3.10) to more general graphs?

Annotation 3.12. (A historic example)For many applications the caseAk = Ck = 1 suffices, but the general
setting is more flexible:Ak andCk can absorb positive factors and thus purge the polynomialsSk+1 andSk−1 of
irrelevancy. The following example is taken from Kronecker(1872) citing Gauss (1849) in his courseTheorie der
algebraischen Gleichungen. [Notes written by Kurt Hensel, archived at the University of Strasbourg, available at
num-scd-ulp.u-strasbg.fr/429, page 165.]

Example. We considerP0 = X7−28X4 + 480 and its derivativeP1 = P′0 = 7X2(X4−16X). We setS0 = P0 and

S1 = X4− 16X, neglecting the positive factor 7X2. We wish to calculate indba(
P1
P0

) = indb
a(

S1
S0

) by constructing

a suitable Sturm chain. Euclidean division yieldsP2 = (X3− 12)S1−S0 = 192X − 480, which we reduce to
S2 = 2X−5. LikewiseP3 = 1

16(8X3 + 20X2 + 50X−3)S2−S1 = 15
16 is reduced toS3 = 1. We thus obtain a

judiciously reduced Sturm chain(S0,S1,S2,S3) of the formAkSk+1 +BkSk +CkSk−1 = 0 with Ak,Ck > 0.

Annotation 3.13. (Orthogonal polynomials)Sturm sequences naturally occur for realorthogonal polynomials
P0,P1,P2, . . . , where degPk = k for all k∈ N. Here is a concrete and simple example:

Example. The sequence ofLegendre polynomials P0,P1,P2, . . . starting withP0 = 1 andP1 = X satisfies the
recursion(k+1)Pk+1− (2k+1)XPk +kPk−1 = 0 for all k≥ 1, and so(P0, . . . ,Pn) is a Sturm chain.

Legendre polynomials are orthogonal with respect to the inner product〈 f ,g〉 =
∫ +1
−1 f (x)g(x)dx. More gen-

erally, one can fix a measureµ on the real lineR, say with compact support, and consider the inner product
〈 f ,g〉 =

∫

f (x)g(x)dµ . Orthogonality ofP0,P1,P2, . . . means that〈Pk,Pℓ〉= 0 if k 6= ℓ, and> 0 if k = ℓ. This en-
tails a three-term recurrence relationAkPk+1+BkPk +CkPk−1 = 0 with constantsAk,Ck > 0 and some polynomial
Bk of degree 1, depending onk andµ . Orthogonal polynomials thus form a Sturm sequence. It follows that the
real roots of eachPn are interlaced with those of its predecessorPn−1, and that eachPn hasn distinct real roots,
strictly inside the smallest interval that contains the support of µ .

3.6. Euclidean Sturm chains. In the preceding paragraph we have defined Sturm chains
and applied them to Cauchy indices. Everything so far is fairly general and not limited to
polynomials. The crucial observation for polynomials is that the euclidean algorithm can
be used toconstructSturm chains as follows:

Consider a rational functionf = R
S ∈ R(X)∗ represented by polynomialsR,S∈ R[X]∗.

Iterated euclidean division produces a sequence of polynomials starting withP0 = S and
P1 = R, such thatPk−1 = QkPk−Pk+1 and degPk+1 < degPk for all k = 1,2,3, . . . . This
process eventually stops when we reachPn+1 = 0, in which casePn∼ gcd(P0,P1).

http://num-scd-ulp.u-strasbg.fr/429
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Stated differently, this construction is the expansion off into the continued fraction

f =
P1

P0
=

P1

Q1P1−P2
=

1

Q1−
P2

P1

=
1

Q1−
1

Q2−
P3

P2

= · · ·= 1

Q1−
1

Q2−
...

Qn−1−
1

Qn

.

Definition 3.17. Using the preceding notation, theeuclidean Sturm chain(S0,S1, . . . ,Sn)
associated to the fractionRS ∈ R(X)∗ is defined bySk := Pk/Pn for k = 0, . . . ,n.

By construction, the chain(S0,S1, . . . ,Sn) depends only on the fractionRS and not on the
polynomialsR,Schosen to represent it. Division byPn ensures that gcd(S0,S1) = Sn = 1
but preserves the equationsSk−1 + Sk+1 = QkSk for all 0 < k < n. Proposition3.16then
ensures that(S0,S1, . . . ,Sn) is indeed a Sturm chain.

Annotation 3.14. (The euclidean cochain)The polynomials(Q1, . . . ,Qn) suffice to reconstruct the fractionf .
This presentation is quite economic because they usually have low degree; generically we expect deg(Qk) = 1.

We recover(S0,S1, . . . ,Sn) working backwards fromSn+1 = 0 andSn = 1 by calculatingSk−1 = QkSk−Sk+1

for all k = n−1, . . . ,0. This procedure also provides an economic way to evaluate(S0,S1, . . . ,Sn) at a∈ R.
This indicates that, from an algorithmic point of view, the cochain(Q1, . . . ,Qn) is of primary interest. From

a mathematical point of view it is more convenient to use the chain(S0,S1, . . . ,Sn).

Remark3.18 (euclidean division). If K is a field, then for everyS∈ K [X] andP∈ K [X]∗

there exists a unique pairQ,R∈ K [X] such that

(3.11) S= PQ−R and degR< degP.

Here the negative sign has been chosen for the application toSturm chains. Euclidean
division works over every ringK provided that the leading coefficientc of P is invertible in
K . In general we can carry out pseudo-euclidean division: forall S∈ K [X] andP∈ K [X]∗

over some integral ringK there exists a unique pairQ,R∈ K [X] such that

(3.12) cdS= PQ−R and degR< degP,

wherec is the leading coefficient ofP andd = max{0,1+ degS−degP}. With a view
to ordered fields it is advantageous to chose the exponentd to be even. (This is easy to
achieve: ifd is odd, then multiplyQ andRby c and augmentd by 1.) This will be applied
in §5.1 to the polynomial ringR[Y,X] = K [X] overK = R[Y]. Even forQ[X] it is often
more efficient to work inZ[X] in order to avoid coefficient swell, see [18, §6.12].

Annotation 3.15. (Pseudo-euclidean division)For every ringK , the degree deg:K [X]→ N∪{−∞} satisfies:

(1) deg(P+Q)≤ sup{degP,degQ}, with equality iff degP 6= degQ or lc(P)+ lc(Q) 6= 0.
(2) deg(PQ)≤ degP+degQ, with equality iff P = 0 or Q = 0 or lc(P) · lc(Q) 6= 0.

If K is integral, then deg(PQ) = degP+ degQ and lc(PQ) = lc(P) · lc(Q) for all P,Q ∈ K [X]∗, and the
polynomial ringK [X] is again integral. Moreover, for everyS∈ K [X] andP∈ K [X]∗ there exists a unique pair
Q,R∈ K [X] such thatcdS= PQ−Rand degR< degP, wherec = lc(P) andd = max{0,1+degS−degP}.

Existence:We proceed by induction ond. If d = 0, then degS< degP andQ = 0 andR = S suffice. If
d ≥ 1, then we setM := lc(S) ·XdegS−degP and S̃ := cS−PM. We see that deg(S) = deg(cS) = deg(PM) and
lc(cS) = lc(PM), whence deg̃S< degS. By hypothesis there exists̃Q,R∈ A[X] such thatcd−1S̃= PQ̃+ R. We
conclude thatcdS= cd−1S̃+cd−1PM = PQ+Rwith Q = Q̃+cd−1M.

Uniqueness:For PQ+ R= PQ′+ R′ with degR< degP and degR′ < degP, we find P(Q−Q′) = R′−R,
whence degP+deg(Q−Q′) = deg[P(Q−Q′)] = deg(R−R′) < degP. This is only possible for deg(Q−Q′) < 0,
which meansQ−Q′ = 0. We conclude thatQ = Q′ andR= R′.

Annotation 3.16. (Cauchy functions)The euclidean construction is tailor-made for polynomials, but perhaps
it can be generalized to other classes of Cauchy functions. More explicitly, consider real-analytic functions
S0,S1 : [a,b]→ R or Nash functions[a,b]→ R over some real closed fieldR. Even if a gcd is in general not
defined, we can still eliminate common zeros. Is there some natural way to construct a sequence(S0,S1, . . . ,Sn)
satisfyingAkSk+1 +BkSk +CkSk−1 = 0 as in Proposition3.16such thatSn has no zeros on[a,b]?
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3.7. Sturm’s theorem. Using the euclidean algorithm for constructing Sturm chains, we
can now fix the following notation:

Definition 3.19. For R
S ∈R(X) anda,b∈ R we define theSturm indexto be

Sturmb
a

(R
S

)

:= Vb
a

(

S0,S1, . . . ,Sn
)

,

where(S0,S1, . . . ,Sn) is the euclidean Sturm chain associated toR
S. We include two excep-

tional cases: IfS= 0 andR 6= 0, the euclidean Sturm chain is(0,1) of lengthn = 1. If
R= 0, we take the chain(1) of lengthn = 0. In both cases we obtain Sturmb

a

(

R
S

)

= 0.

This definition is effective in the sense that the Sturm indexSturmb
a

(

R
S

)

can immediately
be calculated. Definition3.8of the Cauchy index indba

(

R
S

)

, however, assumes knowledge of
all roots ofS in [a,b]. This difficulty is overcome by Sturm’s celebrated theorem,equating
the Cauchy index with the Sturm index over a real closed field:

Theorem 3.20(Sturm 1829/35, Cauchy 1831/37). For every pair of polynomials R,S∈
R[X] over a real closed fieldR we have

(3.13) indba
(R

S

)

= Sturmb
a

(R
S

)

.

Proof. Equation (3.13) is trivially true if R= 0 or S= 0, according to our definitions. We
can thus assumeR,S∈ R[X]∗. Let (S0,S1, . . . ,Sn) be the euclidean Sturm chain associated
to the fractionR

S. SinceR
S = S1

S0
andSn = 1, Theorem3.15implies that

indb
a

(R
S

)

= indb
a

(S1

S0

)

+ indb
a

(Sn−1

Sn

)

= Vb
a

(

S0,S1, . . . ,Sn
)

= Sturmb
a

(R
S

)

. �

Remark3.21. Sturm’s theorem can be seen as an algebraic analogue of the fundamental
theorem of calculus (or Stokes’ theorem): it reduces a 1-dimensional counting problem
on the interval[a,b] to a 0-dimensional counting problem on the boundary{a,b}. We are
most interested in the former, but the latter has the advantage of being easily calculable.
Both become equal via the intermediate value property. In§4 we will generalize this to
the complex realm, reducing a 2-dimensional counting problem on a rectangleΓ to a 1-
dimensional counting problem on the boundary∂Γ. This can be further generalized to
arbitrary dimension, leading to an algebraic version of Kronecker’s index [15].

Remark3.22. Sturm’s theorem is usually stated under two additional hypotheses, namely
gcd(R,S) = 1 andS(a)S(b) 6= 0. Our formulation of Theorem3.20does not require any
of these hypotheses, instead they are absorbed into our slightly refined definitions. The
hypothesis gcd(R,S) = 1 is circumvented by formulating Definitions3.8 and3.19 such
that both indices become well-defined onR(X). The caseS(a)S(b) = 0 is anticipated in
Definitions3.2 and 3.6 by counting boundary points correctly. Arranging these details
is not only an aesthetic preoccupation: it clears the way fora uniform treatment of the
complex case in§4 and ensures a simpler algorithmic formulation.

As an immediate consequence we obtain Sturm’s classical theorem [52, §2]:

Corollary 3.23 (Sturm 1829/35). For every polynomial P∈ R[X]∗ we have

(3.14) #
{

x∈ [a,b]
∣

∣ P(x) = 0
}

= indb
a

(P′

P

)

= Sturmb
a

(P′

P

)

,

where roots on the boundary count for one half. �

Remark3.24. The intermediate value property is essential. Over the fieldQ of rational
numbers, for example, the functionf (x) = 2x/(x2−2) has no poles, whence ind2

1( f ) = 0.
A Sturm chain is given byS0 = X2−2 andS1 = 2X andS2 = 2, whenceV2

1 (S0,S1,S2) = 1.
Thus the Sturm index does not count roots resp. poles inQ but in the real closureQc.
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Remark3.25. By the usual bisection method, Formula (3.14) provides an algorithm to
locate all real roots of any given real polynomial. Once the roots are well separated, one
can switch to Newton’s method (§6.3), which is simpler to apply and converges much faster
– but vitally depends on good starting values.

Annotation 3.17. (Transformation invariance) If f ,g∈R(X) andg has no poles in[a,b], then Sturmb
a

(

f ◦g
)

=

Sturmg(b)
g(a)

(

f
)

. If R is real closed, then indba
(

f ◦g
)

= indg(b)
g(a)

(

f
)

. To see this, assumef = R/Sandg = P/Q with

P,Q,R,S∈ R[X] such that gcd(P,Q) = 1 and gcd(R,S) = 1. Sinceg has no poles,Q has no roots in[a,b]. If
(S0,S1, . . . ,Sn) in R[X] is a Sturm chain on[a,b], then so is(P0,P1, . . . ,Pn) defined byPk = QmSk(P/Q) with
m= max{degS0, . . . ,degSn}. Applied to the euclidean Sturm chain(S0,S1, . . . ,Sn) of f = R/S this yields

Sturmg(b)
g(a)

(

f
)

= Sturmg(b)
g(a)

( S1

S0

)

= Vg(b)
g(a)

(

S0,S1, . . . ,Sn
)

= Vb
a

(

S0(P/Q),S1(P/Q), . . . ,Sn(P/Q)
)

= Vb
a

(

P0,P1, . . . ,Pn
)

= Sturmb
a

(P1

P0

)

= Sturmb
a

(

S1(P/Q)

S0(P/Q)

)

= Sturmb
a

(

f ◦g
)

.

We now conclude by Theorem3.20. Again, the intermediate value property is essential. Consider for example

f (x) = 1
x−2 andg(x) = x2 overQ. Then ind21( f ◦g) = 0 differs from indg(2)

g(1)
( f ) = 1.

4. CAUCHY ’ S THEOREM FOR COMPLEX POLYNOMIALS

We continue to work over a real closed fieldR and consider its complex extension
C = R[i] wherei2 = −1. In this section we define the algebraic winding numberw(γ)
for piecewise polynomial loopsγ : [0,1]→ C and study in particular the winding number
w(F |∂Γ) of a polynomialF ∈ C[Z] along the boundary of a rectangleΓ ⊂ C. We then
establish Cauchy’s theorem (Corollary4.10) stating thatw(F |∂Γ) counts the number of
roots ofF in Γ.

Remark4.1. Nowadays the winding number is most often defined via Cauchy’s integral

formulaw(F |∂Γ) = 1
2π i

∫

∂Γ
F ′(z)
F(z) dz. In his residue calculus of complex functions, Cauchy

[8, 9] also described the algebraic calculation presented below. In the present article, we
use exclusively the algebraic winding number and develop anindependent, entirely alge-
braic proof. The real product formula, Theorem4.6, seems to be new. The complex product
formula, Corollaries4.8, is well-known in the analytic setting using Cauchy’s integral, but
the algebraic approach reveals two noteworthy extensions:

• The algebraic construction is not restricted to the complexnumbersC = R[i] but
works forC = R[i] over an arbitrary real closed fieldR.
• Unlike Cauchy’s integral formula, the algebraic winding number can cope with

roots ofF on the boundary∂Γ, as pointed out in the introduction.

4.1. Real and complex fields.Let R be an ordered field. For everyx∈R we havex2≥ 0,
whencex2 + 1 > 0. The polynomialX2 + 1 is thus irreducible inR[X], and the quotient
C = R[X]/(X2+1) is a field. It is denoted byC = R[i] with i2 =−1. Each elementz∈ C
can be uniquely written asz= x+yi with x,y∈R. We can thus identifyC with R2 via the
mapR2→C, (x,y) 7→ z= x+yi, and define re(z) := x and im(z) := y.

Using this notation, addition and multiplication inC are given by

(x+yi)+ (x′+y′i) = (x+x′)+ (y+y′)i,

(x+yi) · (x′+y′i) = (xx′−yy′)+ (xy′+x′y)i.

The ring automorphismR[X]→ R[X], X 7→ −X, fixesX2 + 1 and thus descends to a
field automorphismC→ C that maps eachz= x+yi to its conjugate ¯z= x−yi. We have
re(z) = 1

2(z+ z̄) and im(z) = 1
2i (z− z̄). The productzz̄= x2 +y2 ≥ 0 vanishes if and only

if z= 0. Forz 6= 0 we thus findz−1 = z̄
zz̄ = x

x2+y2 − y
x2+y2 i.

If R is real closed, then everyx∈R≥0 has a square root
√

x≥ 0. Forz∈C we can thus
define|z| :=

√
zz̄, which extends the absolute value ofR. For allu,v∈C we have:

(0) |re(u)| ≤ |u| and|im(u)| ≤ |u|.
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(1) |u| ≥ 0, and|u|= 0 if and only ifu = 0.
(2) |u ·v|= |u| · |v| and|ū|= |u|.
(3) |u+v| ≤ |u|+ |v|.

All verifications are straightforward. The triangle inequality (3) can be derived from the
preceding properties as follows. Ifu+v = 0, then (3) follows from (1). Ifu+v 6= 0, then
1 = u

u+v + v
u+v, and applying (0) and (2) we find

1 = re
(

u
u+v

)

+ re
(

v
u+v

)

≤
∣

∣

u
u+v

∣

∣+
∣

∣

v
u+v

∣

∣ = |u|
|u+v| +

|v|
|u+v| .

4.2. Real and complex variables.Just as we identify(x,y) ∈R2 with z= x+ iy ∈ C, we
considerC[Z] as a subring ofC[X,Y] with Z = X + iY. The conjugation onC extends to
a ring automorphism ofC[X,Y] fixing X andY, so that the conjugate ofZ = X + iY is
Z̄ = X− iY. In this senseX andY are real variables, whereasZ is a complex variable.

Every polynomialF ∈ C[X,Y] can be uniquely decomposed asF = R+ iS with R,S∈
R[X,Y], namelyR= reF := 1

2(F + F̄) andS= imF := 1
2i (F− F̄). In particular we thus

recover the familiar formulaeX = reZ andY = imZ.
For F,G∈ C[X,Y] we setF ◦G := F(reG, imG). The mapF 7→ F ◦G is the unique

ring endomorphismC[X,Y]→C[X,Y] that mapsZ 7→G and is equivariant with respect to
conjugation, becauseZ 7→G andZ̄ 7→ Ḡ are equivalent toX 7→ reG andY 7→ imG.

4.3. The algebraic winding number. Given a polynomialP∈ C[X] and two parameters
a < b in R, the mapγ : [a,b]→ C defined byγ(x) = P(x) describes a polynomial path in
C. We define its winding numberw(γ) to be half the Cauchy index ofreP

imP on [a,b]:

w(P|[a,b]) := 1
2 indb

a

(

reP
imP

)

.

Remark4.2. The definition is geometrically motivated as follows. Assuming thatγ(x) 6= 0
for all x ∈ [a,b], the winding numberw(γ) counts the number of turns thatγ performs
around 0: it changes by+ 1

2 each timeγ crosses the real axis in counter-clockwise di-
rection, and by− 1

2 if the passage is clockwise. Our algebraic definition is slightly more
comprehensive than the geometric one since it does not exclude zeros ofγ.

More generally, we can consider a subdivisiona = x0 < x1 < · · · < xn = b in R and
polynomialsP1, . . . ,Pn ∈ C[X] that satisfyPk(xk) = Pk+1(xk) for k = 1, . . . ,n− 1. This
defines a continuous, piecewise polynomial pathγ : [a,b]→ C by γ(x) := Pk(x) for x ∈
[xk−1,xk]. If γ(a) = γ(b), thenγ is aloop, i.e., a closed path. Its winding number is defined
by

w(γ) :=
n

∑
k=1

w(Pk|[xk−1,xk]).

This is well-defined according to Proposition3.10(a), because the winding numberw(γ)
depends only on the pathγ and not on the subdivision chosen to describe it.

4.4. Rectangles.Given a,b ∈ C, the mapγ : [0,1]→ C defined byγ(x) = a+ x(b− a)
joins γ(0) = a andγ(1) = b by a straight line segment. Its image will be denoted by[a,b].
ForF ∈ C[X,Y] we setw(F |[a,b]) := w(F ◦ γ) or, stated differently,

w(F |[a,b]) := w(F ◦G|[0,1]) where G = a+X(b−a).

This is the winding number of the path traced byF(z) asz runs froma straight tob. For the
reverse orientation we obtainw(F |[b,a]) =−w(F|[a,b]) according to Proposition3.10(b).

A rectangle(with sides parallel to the axes) is a subsetΓ = [x0,x1]× [y0,y1] in C = R2

with x0 < x1 andy0 < y1 in R. Its interior is IntΓ = ]x0,x1[× ]y0,y1[. Its boundary∂Γ
consists of the four verticesa= (x0,y0), b= (x1,y0), c= (x1,y1), d = (x0,y1), and the four
edges[a,b], [b,c], [c,d], [d,a] between them (see Figure1).

Definition 4.3. Given a polynomialF ∈C[X,Y] and a rectangleΓ⊂C, we define thealge-
braic winding numberasw(F |∂Γ) := w(F |[a,b])+w(F |[b,c])+w(F |[c,d])+w(F |[d,a]).
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Stated differently, we havew(F |∂Γ) = w(F ◦ γ) where the pathγ : [0,4]→ C linearly
interpolates between the verticesγ(0) = a, γ(1) = b, γ(2) = c, γ(3) = d, andγ(4) = a.

Proposition 4.4(bisection property). Suppose that we bisectΓ = [x0,x2]× [y0,y2]

• horizontally intoΓ′ = [x0,x1]× [y0,y2] andΓ′′ = [x1,x2]× [y0,y2],
• or vertically intoΓ′ = [x0,x2]× [y0,y1] andΓ′′ = [x0,x2]× [y1,y2]

where x0 < x1 < x2 and y0 < y1 < y2. Then w(F |∂Γ) = w(F |∂Γ′)+w(F|∂Γ′′).

Proof. This follows from Definition4.3by one-dimensional bisection and internal cancel-
lation using Proposition3.10. �

Proposition 4.5. For a linear polynomial F= Z−z0 with z0 ∈ C we find

w(F |∂Γ) =



















1 if z0 is in the interior ofΓ,
1
2 if z0 is in one of the edges ofΓ,
1
4 if z0 is in one of the vertices ofΓ,

0 if z0 is in the exterior ofΓ.

Proof. By bisection, all configurations can be reduced to the case wherez0 is a vertex ofΓ.
By symmetry, translation, and homothety we can assume thatz0 = a = 0, b = 1, c = 1+ i,
d = i. Here an easy explicit calculation shows thatw(F |∂Γ) = 1

4 by adding

w(F |[a,b]) = w(X|[0,1]) = 1
2 ind1

0(
X
0 ) = 0,

w(F |[b,c]) = w(1+ iX|[0,1]) = 1
2 ind1

0(
1
X ) = 1

4,

w(F |[c,d]) = w(1+ i−X|[0,1]) = 1
2 ind1

0(
1−X

1 ) = 0,

w(F |[d,a]) = w(i− iX |[0,1]) = 1
2 ind1

0(
0

1−X ) = 0. �

Annotation 4.1. (Normalization) The factor1
2 in the definition of the winding number compared to the Cauchy

index is chosen so as to achieve the normalization of Proposition 4.5. It also has a natural geometric interpretation.
Compare the circleS = {z∈ C : |z| = 1} with the projective linePR of Annotation3.3. The winding number
w(γ) of a pathγ : [0,1]→ C∗ is defined using the mapq: C∗ → PR, (x,y) 7→ [x : y]. The quotient mapq is
the composition of the deformation retractionr : C∗ → S, z 7→ z/|z|, and the two-fold coveringp: S→ PR,
(x,y) 7→ [x : y]. This means thatonefull circle in C∗ maps totwo full circles in PR.

Annotation 4.2. (Angles)Proposition4.5generalizes from rectangles to convex polygons, and then toarbitrary
polygons by suitable subdivision. The only subtlety occurswhenz0 is a vertex of the boundary∂Γ: in general, we
find w(F|∂Γ) ∈ {0, 1

4 , 1
2 , 3

4 ,1}, and one can easily construct examples showing that all possibilities are realized:

ind=0 ind=1/4 ind=1/2 ind=3/4 ind=1

These examples illustrate how the result depends on the angle at 0 and its incidence with the real axis. The
reference to the real axis breaks the rotational symmetry, and sow(γ) may differ fromw(cγ) for somec ∈ C,
|c|= 1. OverC the average valuew(γ) =

∫ 1
0 w(e2π it γ) dt ∈ [0,1] measures the angle at 0. ForC = R[i] over a real

closed fieldR we can likewise definew(γ) := limN→∞
1
N ∑N−1

k=0 w(e2π i/Nγ) ∈ R for every piecewise polynomial
loopγ : [0,1]→C. Measuring angles in this way does not follow the paradigm ofeffective calculation expounded
here, but the definition ofw(γ) might be useful in some other context. For the purpose of thisarticle, however, it
is only an amusing curiosity and will not be further developed.

4.5. The product formula. The product of two polynomialsF = P+ iQ andG = R+ iS
with P,Q,R,S∈ R[X] is given byFG = (PR−QS)+ i(PS+ QR). The following result
relates the Cauchy indices ofP

Q and R
S to that of PR−QS

PS+QR.
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Theorem 4.6 (real product formula). Consider polynomials P,Q,R,S∈ R[X] such that
neither(P,Q) nor (R,S) have common roots in a,b∈ R. Then we have

indb
a

(PR−QS
PS+QR

)

= indb
a

( P
Q

)

+ indb
a

(R
S

)

−Vb
a

(

1,
P
Q

+
R
S

)

.(4.1)

Remark4.7. We haveP
Q + R

S = PS+QR
QS =

im(FG)
im(F) im(G) . After simplification we find

Vb
a

(

1, PS+QR
QS

)

= 1
2

[

sign
(PS+QR

QS | X 7→ b
)

−sign
(PS+QR

QS | X 7→ a
)]

.

If a or b is a pole, this is evaluated using the convention sign(∞) = 0. For(P = 0,Q = 1)
or (R= 0,S= 1) Theorem4.6reduces to the inversion formula of Theorem3.13.

Proof. We can assume that gcd(P,Q) = gcd(R,S) = 1. If Q = 0 or S= 0 or PS+QR= 0
then Formula (4.1) trivially holds, so we can assumeQ,S,PS+QR∈R[X]∗. Suppose first
that [a,b] does not contain any poles, that is, roots of the denominators Q, S, PS+ QR.
On the one hand, all three indices vanish in the absence of poles. On the other hand, the
intermediate value property ensures thatQ, S, andPS+ QRare of constant sign on[a,b],
whenceVb

a

(

1, PS+QR
QS

)

= 0.
Suppose next that[a,b] contains at least one pole. Formula (4.1) is additive with respect

to bisection of the interval[a,b]. We can thus assume that[a,b] contains only one pole.
Bisecting once more, if necessary, we can assume that this pole is eithera or b. Applying
the symmetryX 7→ a+b−X, if necessary, we can assume that the pole isa. We thus have
Vb

a = 1
2 sign( P

Q + R
S | X 7→ b) andQ, S, PS+QRare of constant sign on]a,b]. Applying the

symmetry(P,Q,R,S) 7→ (P,−Q,R,−S), if necessary, we can assume thatVb
a = + 1

2, which
means thatPQ + R

S > 0 on]a,b]. We distinguish three cases:
First case. Suppose first that eitherQ(a) = 0 or S(a) = 0. Applying the symmetry

(P,Q,R,S) 7→ (R,S,P,Q), if necessary, we can assume thatQ(a) = 0 andS(a) 6= 0. Then
PS+ QRdoes not vanish ina, whence indba

(PR−QS
PS+QR

)

= indb
a

(

R
S

)

= 0. We have lim+
a

P
Q =

lim+
a

(

P
Q + R

S

)

= +∞, whence indba
(

P
Q

)

= + 1
2 and Formula (4.1) holds.

Second case.Suppose thatPS+ QRvanishes ina, but Q(a) 6= 0 andS(a) 6= 0. Then
indb

a

(

P
Q

)

= indb
a

(

R
S

)

= 0, and we only have to study the pole of

(4.2)
PR−QS
PS+QR

=

P
Q · R

S−1
P
Q + R

S

.

In a the denominator vanishes and the numerator is negative:

P(a)
Q(a)

+ R(a)
S(a)

= 0, whence P(a)
Q(a)
· R(a)

S(a)
−1 =− P2(a)

Q2(a)
−1 < 0.

This implies lim+
a

PR−QS
PS+QR =−∞, whence indba

(PR−QS
PS+QR

)

=− 1
2 and Formula (4.1) holds.

Third case.Suppose thata is a common pole ofPQ and R
S, whence also ofPR−QS

PS+QR. Since
P
Q + R

S > 0 on ]a,b], we have lim+
a

P
Q = +∞ or lim+

a
R
S = +∞. Equation (4.2) implies that

lim+
a

(PR−QS
PS+QR

)

= + lim+
a

(

P
Q

)

· lim+
a

(

R
S

)

. In each case Formula (4.1) holds. �

Corollary 4.8 (complex product formula). If F,G∈ C[X,Y] do not vanish in any of the
vertices of the rectangleΓ⊂ R2, then w(F ·G|∂Γ) = w(F |∂Γ)+w(G|∂Γ).

Proof. This follows from the real product formula of Theorem4.6 and the fact that the
boundary∂Γ forms a closed path. By excluding roots on the vertices we ensure that at
each vertex both boundary contributions cancel each other. �

Remark4.9. The same argument applies to the product of any two piecewisepolynomial
loopsγ1,γ2 : [0,1]→ C, provided that vertices are not mapped to 0. This proves the multi-
plicativity (W2) stated in Theorem1.2: w(γ1 · γ2) = w(γ1)+w(γ2).
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Corollary 4.10 (root counting). Consider a polynomial F∈ C[Z]∗ that splits into linear
factors, such that F= c(Z−z1) · · · (Z−zn) for some c,z1, . . . ,zn ∈ C. If none of the roots
lies on a vertex ofΓ, then w(F |∂Γ) counts the number of roots inΓ. Roots in the interior
count with their multiplicity; roots on the boundary count with half their multiplicity. �

Remark4.11. In the preceding corollaries we explicitly exclude roots onthe vertices in
order to apply the real product formula (Theorem4.6). One might wonder whether this is
an artefact of our proof. While the degree 1 case of Proposition 4.5 is easy (and useful)
there is no such simple rule in degree≥ 2. As an illustration considerΓ = [0,1]× [0,1] and
Ft = Z·(Z−2− it ): hereFt has one rootz1 = 0 on a vertex and one rootz2 = 2+ it outside of
Γ. After a little calculation we findw(F1|∂Γ) = 0 andw(F0|∂Γ) = 1

4 andw(F−1|∂Γ) = 1
2.

This shows that, in this degenerate case, the algebraic winding number depends on the
configuration of all roots and not only on the roots inΓ. We will not further pursue this
question, which is only of marginal interest, and simply exclude roots on the vertices. We
emphasize once again that roots on the edges pose no problem.

Annotation 4.3. (Roots on vertices)Roots on vertices are special because our arbitrary reference to the real
axis breaks the rotational symmetry, as illustrated in Annotation 4.2. The average winding numberw(γ) of a
piecewise polynomial pathγ : [0,1]→C repairs this defect by restoring rotational symmetry, suchthatw(γ1γ2) =
w(γ1) + w(γ2) even if zeros happen to lie on vertices. For every polynomialF ∈ C[Z]∗ and every polygonal
domainΓ ⊂ C, the average winding numberw(F|∂Γ) thus counts the number of roots ofF in Γ, such that each
root counts withα times its multiplicity, whereα ∈ [0,1] measures the angle at the zero inΓ. For example,
α ∈ {1, 1

2 , 1
4} if Γ is a rectangle and the zero lies in IntΓ, in an edge, or on a vertex, respectively.

Remark4.12. If we assume thatC is algebraically closed, theneverypolynomialF ∈C[Z]
factors as required in Corollary4.10. So if you prefer some other existence proof for the
roots, then you may skip the next section and still benefit from root location (Theorem
1.11). This seems to be the point of view adopted by Cauchy [8, 9] in 1831/37, which may
explain why he did not attempt to use his index for a constructive proof of the Fundamental
Theorem of Algebra. (In 1820 he had already given a non-constructive proof, see§7.8.1.)
In 1836 Sturm and Liouville [55, 53] proposed to extend Cauchy’s algebraic method for
root counting so as to obtain an existence proof. This is our aim in the next section.

5. THE FUNDAMENTAL THEOREM OFALGEBRA

We continue to consider a real closed fieldR and its complex extensionC = R[i] where
i2 = −1. In the preceding sections we have constructed the algebraic winding number
w(F |∂Γ) for F ∈ C[Z]∗ andΓ⊂ C, and derived its multiplicativity. We can now establish
our main result: an effective, real-algebraic proof of the Fundamental Theorem of Algebra.

Remark5.1. The proof that we present here is inspired by classical arguments, based on the
winding number of loops in the complex plane. The idea goes back to Gauss’ dissertation
(see§7.2) and has been much elaborated since. ForC = R[i] over a real closed fieldR, the
algebraic proof of Theorem5.3seems to be new.

5.1. The winding number in the absence of zeros.The crucial step is to show that
w(F |∂Γ) 6= 0 implies thatF has a root inΓ. By contraposition, we will show thatw(F |∂Γ)=
0 wheneverF has no zeros inΓ. The local version is easy:

Lemma 5.2(local version). If F ∈C[X,Y] satisfies F(x,y) 6= 0 for some point(x,y) ∈R2,
then there existsδ > 0 such that w(F |∂Γ) = 0 for everyΓ⊂ [x−δ ,x+δ ]× [y−δ ,y+δ ].

Annotation 5.1. A proof can be improvised as follows. Suppose first that imF(x,y) > 0. By continuity there
existsδ > 0 such that imF > 0 on the rectangleU = [x− δ ,x+ δ ]× [y− δ ,y+ δ ]. For everyΓ ⊂U we then
havew(F|∂Γ) = 0. The case imF(x,y) < 0 is analogous. If imF(x,y) = 0 then our hypothesis ensures that
reF(x,y) 6= 0. Again there existsδ > 0 such that reF 6= 0 on the rectangleU = [x− δ ,x+ δ ]× [y− δ ,y+ δ ].
Now Corollary4.8shows thatw(F|∂Γ) = w(iF |∂Γ) = 0 as in the first case. The following detailed proof makes
the choice ofδ explicit and thus avoids case distinctions and the appeal tocontinuity.
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Proof. Let us make the standard continuity argument explicit. For all s,t ∈ R we have
F(x+s,y+ t) = a+ ∑ j+k≥1a jksj tk with a = F(x,y) 6= 0 and certain coefficientsa jk ∈ C.
We setM := max j+k

√

|a jk/a|, so that|a jk| ≤ |a| ·M j+k. Forδ := 1
4M and|s|, |t| ≤ δ we find

(5.1)
∣

∣

∣ ∑
j+k≥1

a jksj tk
∣

∣

∣
≤ ∑

n≥1
∑

j+k=n

|a| ·M j+k · |s| j · |t|k≤ |a|∑
n≥1

(n+1)
(

1
4

)n
= 7

9|a|.

This shows thatF does not vanish onU := [x− δ ,x+ δ ]× [y− δ ,y+ δ ]. Corollary4.8
ensures thatw(F |∂Γ) = w(cF|∂Γ) for every rectangleΓ ⊂U and every constantc∈ C∗.
Choosingc = i/a we can assume thatF(x,y) = i. The Estimate (5.1) then shows that
imF > 0 onU , whencew(F |∂Γ) = 0 for every rectangleΓ⊂U . �

While the preceding local lemma uses only continuity and holds over every ordered
field, the following global version requires the fieldR to be real closed.

Theorem 5.3(global version). LetΓ = [x0,x1]× [y0,y1] be a rectangle inC. If F ∈C[X,Y]
satisfies F(x,y) 6= 0 for all (x,y) ∈ Γ, then w(F |∂Γ) = 0.

We remark that over the real numbersR, a short proof can be given as follows:

Compactness proof.The rectangleΓ = [x0,x1]× [y0,y1] is covered by the family of open
setsU(x,y) = ]x− δ ,x+ δ [× ]y− δ ,y+ δ [ of Lemma5.2, whereδ depends on(x,y).
Compactness ofΓ ensures that there existsλ > 0, called a Lebesgue number of the cover,
such that every rectangleΓ′ ⊂ Γ of diameter< λ is contained in someU(x,y). For all
subdivisionsx0 = s0 < s1 < · · · < sm = x1 andy0 = t0 < t1 < · · · < tn = y1, the bisection
property ensures thatw(F |∂Γ) = ∑m

j=1 ∑n
k=1w(F |∂Γ jk) whereΓ jk = [sj−1,sj ]× [tk−1,tk].

Forsj = x0+ j x1−x0
m andtk = y0+ky1−y0

n with m,n sufficiently large, eachΓ jk has diameter
< λ , so Lemma5.2implies thatw(F |∂Γ jk) = 0 for all j,k, whencew(F |∂Γ) = 0. �

The preceding compactness argument applies only to the fieldC = R[i] of complex
numbers overR (§2.1) and not to an arbitrary real closed field (§2.2). In particular, it is
no longer elementary in the sense that it uses a second-orderproperty (§2.3). We therefore
provide an elementary real-algebraic proof using Sturm chains:

Algebraic proof.EachF ∈ C[X,Y] can be written asF = ∑n
k=0 fkXk with fk ∈ C[Y]. In

this way we considerR[X,Y] = R[Y][X] as a polynomial ring in one variableX overR[Y].
Starting withS0,S1 ∈ R[X,Y] such thatS1

S0
= reF

imF , pseudo-euclidean division inR[Y][X],

as explained in Remark3.18, produces a chain(S0, . . . ,Sn) such thatc2
kSk−1 = QkSk−Sk+1

for someQk ∈R[Y][X] andck ∈R[Y]∗ and degX Sk+1 < degX Sk. We end up withSn+1 = 0
andSn ∈ R[Y]∗ for somen. (If degX Sn > 0, then gcd(S0,S1) in R(Y)[X] is of positive
degree and we can reduce the initial fractionS1

S0
.)

Regular case.Assume first thatSn does not vanish in[y0,y1]. Proposition3.16ensures
that specializing(S0, . . . ,Sn) in Y 7→ y∈ [y0,y1] yields a Sturm chain inR[X], and likewise
specializing(S0, . . . ,Sn) in X 7→ x∈ [x0,x1] yields a Sturm chain inR[Y]. In the sum over
all four edges ofΓ, all contributions cancel each other in pairs:

2w(F |∂Γ) =+ indx1
x0

(

reF
imF

∣

∣ Y 7→ y0
)

+ indy1
y0

(

reF
imF

∣

∣ X 7→ x1
)

+ indx0
x1

(

reF
imF

∣

∣ Y 7→ y1
)

+ indy0
y1

(

reF
imF

∣

∣ X 7→ x0
)

=+Vx1
x0

(

S0, . . . ,Sn
∣

∣ Y 7→ y0
)

+Vy1
y0

(

S0, . . . ,Sn
∣

∣ X 7→ x1
)

+Vx0
x1

(

S0, . . . ,Sn
∣

∣ Y 7→ y1
)

+Vy0
y1

(

S0, . . . ,Sn
∣

∣ X 7→ x0
)

= 0.

Singular case.In general we have to cope with a finite setY ⊂ [y0,y1] of roots ofSn.
We can change the rôles ofX andY and apply the euclidean algorithm inR[X][Y]; this
leads to a finite set of rootsX ⊂ [x0,x1]. We obtain a finite setZ = X ×Y of singular
points inΓ, where both chains fail. (These points are potential zeros of F .)
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FIGURE 3. Isolating a singular point(x0,y0) within Γ = [x0,x1]× [y0,y1]

By subdivision and symmetry we can assume that(x0,y0) is the only singular point
in our rectangleΓ = [x0,x1]× [y0,y1]. By hypothesisF does not vanish in(x0,y0), so
we can apply Lemma5.2 to Γ1 = [x0,x0 + δ ]× [y0,y0 + δ ] with δ > 0 sufficiently small
such thatw(F |∂Γ1) = 0. The remaining three rectanglesΓ2 = [x0,x0 + δ ]× [y0 + δ ,y1]
andΓ3 = [x0 + δ ,x1]× [y0,y0 + δ ] andΓ4 = [x0 + δ ,x1]× [y0 + δ ,y1] do not contain any
singular points, such thatw(F |∂Γ j ) = 0 by appealing to the regular case.

Summing over all sub-rectangles we conclude thatw(F |∂Γ) = 0. �

Annotation 5.2. The construction of the chain(S0, . . . ,Sn) in R[Y][X] decreases the degree inX but usually
increases the degree inY. HereSn is some crude form of the resultant ofS0 andS1. We are rather careless about
degrees here, and the usual approach via (sub)resultants would give better control. The crucial point in the proof,
however, is that we can specialize(S0, . . . ,Sn) in eitherX orY and obtain a Sturm chain in the remaining variable,
in the sense of Definition3.14, by appealing to the algebraic criterion of Proposition3.16. For subresultants a
similar double specialization argument is less obvious anddeserves further study.

5.2. Counting complex roots. The following result generalizes the real root count (§3.3)
to complex roots.

Theorem 5.4. Consider a polynomial F∈ C[Z]∗ and a rectangleΓ⊂ C such that F does
not vanish in the vertices ofΓ. Then the winding number w(F |∂Γ) counts the number of
roots of F inΓ. Roots on the boundary count for one half.

Proof. We can factorF = (Z−z1) · · · (Z−zm)G such thatG∈C[Z]∗ has no roots inC. The
assertion follows from the product formula of Corollary4.8. Each linear factor(Z− zk)
contributes to the winding number as stated in Proposition4.5. The factorG does not
contribute to the winding number according to Theorem5.3. (We will prove below that
m= degF andG∈C∗.) �

Annotation 5.3. (Hypotheses)This corollary extends Sturm’s theorem counting real roots, see Corollary3.23.
In both cases the intermediate value property ofR is essential, see Remark3.24. As a counterexample consider
R = Q and C = Q[i]. The winding number ofF = Z2− i in C[Z] with respect toΓ = [0,1]× [0,1] ⊂ C is
w(F|∂Γ) = 1. This corresponds to the root1

2

√
2+ i

2

√
2. Of course, this root does not lie inΓ⊂Q[i] but inQc[i].

Annotation 5.4. (Counting roots and poles of rational functions) We have focused on polynomialsF ∈ C[Z],
but Definition4.3of the winding number and the product formula of Corollary4.8immediately extend to rational
functionsF ∈ C(Z). It is then an easy matter to establish the following generalization:

Theorem. Consider a rational function F∈ C(Z) and a rectangleΓ⊂ C such that the vertices ofΓ are neither
roots nor poles of F. Then w(F|∂Γ) counts the number of roots minus the number of poles of F inΓ. Boundary
points count for one half. �

5.3. Homotopy invariance. We wish to show that the winding numberw(Ft |∂Γ) does not
change if we deformF0 to F1. To make this precise we considerF ∈C[Z,T] and denote by
Ft the polynomial inC[Z] obtained by specializingT 7→ t ∈ [0,1].

Theorem 5.5. Suppose that F∈ C[Z,T] is such that for each t∈ [0,1] the polynomial
Ft ∈C[Z] has no roots on∂Γ. Then w(F0|∂Γ) = w(F1|∂Γ).
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Proof. Over the rectangleΓ⊂C with verticesa,b,c,d∈C we consider the cubeΓ× [0,1]
with verticesa0 = (a,0), a1 = (a,1), etc. The bottom rectangleΓ0 = Γ×{0} has vertices
a0,b0,c0,d0, whereas the top rectangleΓ1 = Γ×{1} has verticesa1,b1,c1,d1.

0d 0c

d1 c1

a1 b1

b00a

y

t

x

FIGURE 4. The cubeΓ× [0,1] in C×R

We can consider the polynomialF ∈C[Z,T] as a mapC×R→C. By hypothesisF has
no zero on∂Γ× [0,1]. Over each edge ofΓ, say[a,b], we have a rectanglẽΓ = [a,b]× [0,1].
In the absence of zeros, Theorem5.3ensures thatw(F |∂ Γ̃) = 0, that is,

w(F |[a0,b0])−w(F|[a1,b1]) = w(F |[a0,a1])−w(F|[b0,b1]).

In the sum over all four edges ofΓ the terms on the right hand side cancel each other in
pairs. We conclude thatw(F |∂Γ0)−w(F|∂Γ1) = 0. �

Remark5.6. The same argument holds for every piecewise polynomial homotopyH : [0,1]×
[0,1]→ C∗ whereγt : [0,1]→ C∗, γt(x) = H(x,t), is a closed path for eacht ∈ [0,1]. This
proves the homotopy invariance (W3) stated in Theorem1.2: w(γ0) = w(γ1).

5.4. The global winding number of a polynomial. Having all tools in hand, we can now
prove Theorem1.10, stating thatw(F |∂Γ) = degF for every polynomialF ∈ C[Z]∗ and
every sufficiently large rectangleΓ. This can be quantified by Cauchy’s bound:

Definition 5.7. For F = c0 + c1Z + · · ·+ cn−1Zn−1 + cnZn in C[Z] with cn 6= 0 we set
M = max{0, |c0|, |c1|, . . . , |cn−1|} and define theCauchy radiusto beρF := 1+M/|cn|.
Proposition 5.8. If z∈ C satisfies|z| ≥ ρF , then|F(z)| ≥ |cn|> 0. Hence all roots of F in
C are contained in the Cauchy disk B(ρF) = {z∈C | |z|< ρF}.
Proof. The assertion is true forF = cnZn whereM = 0 andρF = 1. In the sequel we can
thus assumeM > 0 andρF > 1. For allz∈ C satisfying|z| ≥ ρF we find

|F(z)−cnzn|= |c0 +c1z+ · · ·+cn−1z
n−1| ≤ |c0|+ |c1||z|+ · · ·+ |cn−1||zn−1|

≤M +M|z|+ · · ·+M|z|n−1 = M |z|
n−1
|z|−1 ≤ |cn|(|z|n−1).

For the last inequality notice that|z| ≥ ρF implies|z|−1≥ ρF −1 = M/|cn|. We have

|cnzn|= |cnzn−F(z)+F(z)| ≤ |cnzn−F(z)|+ |F(z)|, whence

|F(z)| ≥ |cnzn|− |F(z)−cnzn| ≥ |cn||z|n−|cn|(|z|n−1) = |cn|> 0. �

This proposition holds over any ordered fieldR because it uses only|a+b| ≤ |a|+ |b|
and|a·b| ≤ |a| · |b|. It is not an existence result but only an a priori bound: ifF has roots in
C, then they necessarily lie inB(ρF). Now, over a real closed fieldR, the winding number
allows us to count all roots ofF in C and to establish the desired conclusion:

Theorem 5.9. For every polynomial F∈ C[Z]∗ and every rectangleΓ⊂ C containing the
Cauchy disk B(ρF) we have w(F |∂Γ) = degF.

Proof. Given a polynomialF = cnZn+cn−1Zn−1+ · · ·+c0 with cn 6= 0 we deformF1 = F
to F0 = cnZn via Ft = cnZn+t(cn−1Zn−1+ · · ·+c0). For eacht ∈ [0,1] the Cauchy radius of
Ft is ρt = 1+ tM/|cn|, which shrinks fromρ1 = ρF to ρ0 = 1. By the previous proposition,
the polynomialFt ∈ C[Z] has no roots on∂Γ. We can thus apply Theorems5.5and5.4 to
conclude thatw(F1|∂Γ) = w(F0|∂Γ) = n. �
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This completes the proof of the Fundamental Theorem of Algebra: on the one hand
Theorem5.9says thatw(F |∂Γ) = degF provided thatΓ ⊃ B(ρF), and on the other hand
Theorem5.4says thatw(F |∂Γ) equals the number of roots ofF in Γ⊂ C.

Annotation 5.5. (Degree bounds)The Fundamental Theorem of Algebra, in the form that we have just proven,
states that if the fieldR is real closed, i.e., every polynomialP∈ R[X] satisfies the intermediate value property
over R, then the fieldC = R[i] is algebraically closed, i.e., every polynomialF ∈ C[Z] splits into linear factors
overC. Since we are working exclusively with polynomials, it is natural to study degree bounds.

We call an ordered fieldR real d-closedif every polynomialP∈R[X] of degree≤ d satisfies the intermediate
value property overR. Likewise, we call a fieldC algebraically d-closedif every polynomialF ∈C[Z] of degree
≤ d splits into linear factors overC. It is easy to establish the following implication: ifR is an ordered field such
thatR[i] is algebraicallyd-closed, thenR is reald-closed. The converse seems to be open:

Question. If R is reald-closed, does this imply thatR[i] is algebraicallyd-closed?

This is trivally true ford = 1. The answer is also affirmative ford = 2,3,4 because quadratic, cubic, and
quartic equations can be solved by radicals of degreen≤ d, i.e., roots ofZn−c0 with c0 ∈ C, and these roots can
be constructed inR[i] if R is realn-closed. Quartic equations can be reduced to auxialiary equations of degree
≤ 3, so ifR is real 3-closed, thenR[i] is algebraically 4-closed andR is in fact real 4-closed!

What happens in degree 5 and higher? An affirmative answer would be surprising. . . but a Galois-type
obstruction seems unlikely, too. The arguments of this article immediately extend to refined versions with the
desired degree bounds – the only exception is our algebraic proof of Theorem5.3, where we construct a Sturm
sequence inR[X,Y] with little control on the degrees. It seems to be an interesting research project to investigate
this phenomenon in full depth and to prove optimal degree bounds.

6. ALGORITHMIC ASPECTS

The preceding development shows how to derive Cauchy’s algebraic method for locat-
ing the roots of a complex polynomial, and this section discusses algorithmic questions.

Remark6.1. The algorithm described here is often attributed to Wilf [66] in 1978, but
it was already explicitly described by Sturm [53] and Cauchy [9] in the 1830s. It can
also be found in Runge’sEncyklop̈adiearticle [34, Band I,§I-B3a6] in 1898. Numerical
variants are known asWeyl’s quadtree method(1924) orLehmer’s method(1969), see
§7.9. I propose to call itCauchy’s method, or Cauchy’s algebraic methodif emphasis is
needed to differentiate it from Cauchy’s analytic method using integration. For the theory
of complex polynomials see Marden [33], Henrici [22], and Rahman–Schmeisser [40]; the
latter contains extensive historical notes and an up-to-date guide to the literature.

6.1. Turing computability. The theory of ordered or orderable fields, nowadays called
real algebra, was initiated by Artin and Schreier [3, 4] in the 1920s, culminating in Artin’s
solution [1] of Hilbert’s 17th problem. Since the 1970s real-algebraicgeometry is flourish-
ing anew, see Bochnak–Coste–Roy [7], and with the advent of computers algorithmic and
quantitative aspects have regained importance, see Basu–Pollak–Roy [5]. Sinaceur [49]
presents a detailed history of Sturm’s theorem and its multiple metamorphoses.

Definition 6.2. We say that an ordered field(R,+, ·,<) can be implemented on a Turing
machine if each elementa∈ R can be coded as input/output for such a machine and each
of the field operations(a,b) 7→ a+ b, a 7→ −a, (a,b) 7→ a · b, a 7→ a−1 as well as the
comparisonsa = b, a < b can be carried out by a uniform algorithm.

Example6.3. The field(R,+, ·,<) of real numbers cannot be implemented on a Turing
machine because the setR is uncountable: it is impossible to code all real numbers by finite
strings over a finite alphabet, as required for input/output. This argument is independent
of the chosen representation. If we insist on representing each and every real number, then
this fundamental obstacle can only be circumvented by considering a hypotheticalreal
number machine[6], which transcends the traditional setting of Turing machines.

Example6.4. The subsetRcomp⊂ R of computable real numbers, as defined by Turing
[58] in his famous 1936 article, forms a countable, real closed subfield ofR. Each com-
putable numbera can be represented as input/output for a universal Turing machine by
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an algorithm that approximatesa to any desired precision. This overcomes the obsta-
cle of the previous example by restriction toRcomp. Unfortunately, not all operations of
(Rcomp,+, ·,<) can be implemented: there exists no algorithm that for each computable
real numbera, given in form of an algorithm, determines whethera= 0, or more generally
determines the sign ofa. (This is an instance of the notorious Entscheidungsproblem.)

Example6.5. The algebraic closureQc of Q in R is, by definition, a real closed field; it
is the smallest real closed field in the sense that it is contained in every real closed field.
Unlike the fieldRcomp of computable real numbers, the much smaller field(Qc,+, ·,<)
can be implemented on a Turing machine [44, 43].

6.2. A global root-finding algorithm. We consider a complex polynomial

F = c0 +c1Z+ · · ·+cnZn in C[Z]

that we assume to beimplementable, that is, we require the ordered field

Q(re(c0), im(c0), re(c1), im(c1), . . . , re(cn), im(cn))⊂ R

to be implementable in the preceding sense. We begin with thefollowing preparations:

• We divideF by gcd(F,F ′) to ensure that all roots ofF are simple.
• We determiner ∈ N such that all roots ofF are contained in the diskB(r).

The following notation will be convenient: a 0-cell is a singleton{a} with a ∈ C; a
1-cell is an open line segment, either vertical{x0}× ]y0,y1[ or horizontal]x0,x1[×{y0}
with x0 < x1 andy0 < y1 in R; a 2-cell is an open rectangle]x0,x1[× ]y0,y1[ in C.

It is immediate to check whether a 0-cell contains a root ofF . Sturm’s theorem (Corol-
lary 3.23) allows us to count the roots ofF in a 1-cell]a,b[: for G = F(a+ X(b−a)) in
C[X] calculateP = gcd(reG, imG) in R[X] and count roots ofP in ]0,1[. Cauchy’s the-
orem (Corollary4.10) allows us to count the roots in a 2-cell. In both cases the crucial
subalgorithm is the computation of Sturm chains which we will discuss in§6.4below.

Building on this, the root-finding algorithm successively refines a listL j = {Γ1, . . . ,Γn j }
of disjoint cells such that:

• Each root ofF is contained in exactly one cellΓ ∈ L j .
• Each cellΓ ∈ L j contains at least one root ofF .
• Each cellΓ ∈ L j has diameter≤ 3r ·2− j .

More explicitly, the algorithm proceeds as follows:
We initializeL0 = {Γ} with the squareΓ = ]−r,+r[× ]−r,+r[.
GivenL j we constructL j+1 by treating each cellΓ ∈ L j as follows:

(0) If Γ is a 0-cell, then retainΓ.
(1) If Γ is a 1-cell, then bisectΓ into two 1-cells of equal length.

Retain each new 1-cell that contains a root ofF .
Retain the new 0-cell if it contains a root ofF.

(2) If Γ is a 2-cell, then bisectΓ into four 2-cells of equal size.
Retain each new 2-cell that contains a root ofF .
Retain each new 1-cell that contains a root ofF .
Retain the new 0-cell if it contains a root ofF.

Collecting all retained cells we obtain the new listL j+1. After some initial iterations
all roots will lie in disjoint cellsΓ1, . . . ,Γn, each containing precisely one root. Taking the
midpoint uk ∈ Γk, this can be seen asn approximate rootsu1, . . . ,un each with an error
boundδk ≤ 3

2r ·2− j such that eachuk is δk-close to a root ofF .

6.3. Cross-over to Newton’s local method.For F ∈ C[Z] Newton’s method consists in
iterating the mapΦ : CrZ (F ′)→C given byΦ(z) = z−F(z)/F ′(z). Its strength resides
in the following well-known property:
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Theorem 6.6. The fixed points of Newton’s mapΦ are the simple zeros of F, that is, z0 ∈C

such that F(z0) = 0 and F′(z0) 6= 0. For each fixed point z0 there existsδ > 0 such that
every initial value u0 ∈ B(z0,δ ) satisfies|Φn(u0)−z0| ≤ 21−2n · |u0−z0| for all n ∈N. �

The convergence is thus extremely fast, but the main obstacle is to find sufficiently good
approximationsu0≈ z0 as starting values. Our global root-finding algorithm approximates
all roots simultaneously, and the following simple criterion exploits this information:

Proposition 6.7. Let F ∈ C[Z] be a separable polynomial of degree n. Suppose we have
separated the roots in disjoint disks B(uk,δk) for k = 1, . . . ,n such that

3nδk≤ |uk−u j | for all j 6= k.

Then Newton’s algorithm converges for each starting value uk to the corresponding root
zk ∈ B(uk,δk). More precisely, convergence is at least as fast as

|Φn(uk)−zk| ≤ 2−n|uk−zk| for all n ∈N.

Remark6.8. The hypothesis can be verified directly from the approximations(uk,δk)k=1,...,n

produced by the global root-finding algorithm of§6.2. Newton’s method eventually con-
verges much faster, and Proposition6.7 only shows that right from the start Newton’s
method is at least as fast as bisection.

Proof. ForF = (Z−z1) · · · (Z−zn) we haveF ′/F = ∑n
j=1(Z−zj)

−1. This entailsΦ(z) =

z−1/∑n
j=1(z−zj)

−1, provided thatF(z) 6= 0 andF ′(z) 6= 0, whence

Φ(z)−zk

z−zk
= 1− 1

∑n
j=1
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=
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By hypothesis we have approximate rootsu1, . . . ,un such that|uk−zk| ≤ δk. Consider
z∈ B(zk,δk), which entails|z− uk| ≤ 2δk. The inequality 3nδk ≤ |uk−u j | for all j 6= k
implies(3n−3)δk +2δk + δ j ≤ |uk−u j | and thus

|z−zj | ≥ |uk−u j |−2δk− δ j ≥ (3n−3)δk for all j 6= k.

This ensures that
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This shows that|Φn(z)−zk| ≤ 2−n|z−zk| for all z∈ B(zk,δk) and alln∈ N. In particular
this holds for the starting valuez= uk in B(zk,δk). �

As an alternative to our tailor-made Proposition6.7, the following theorem of Smale
[6, chap. 8] provides a general convergence criterion in termsof local data. It applies in
particular to polynomials, where it is most easily implemented.

Theorem 6.9(Smale 1986). Let f : C⊃U →C be an analytic function. Consider u0 ∈U
such that f′(u0) 6= 0, and letη = | f (u0)/ f ′(u0)| be the initial displacement in Newton’s
iteration. Suppose that f(z) = ∑∞

k=0ck(z−u0)
k for all z∈ B(u0,2η). If

|ck| ≤ (8η)1−k|c1| for all k≥ 2,

then f has a unique zero z0 in B(u0,2η), and Newton’s iteration converges as

|Φn(u0)−z0| ≤ 21−2n · |u0−z0| for all n ∈ N.
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6.4. Cauchy index computation. In this section we briefly consider bit-complexity. To
simplify we shall work over the rational numbersQ. For R,S∈ Q[X], with gcd(R,S) = 1
say, we wish to calculate a Sturm chainS0 = S,S1 = R, . . . ,Sn = 1,Sn+1 = 0 such that

(6.1) akSk−1 +bkSk+1 = QkSk with Qk ∈Q[X] andak,bk ∈Q+.

Applying the usual euclidean algorithm to polynomials of degree≤ n, this takesO(n3)
arithmetic operations inQ. This over-simplification, however, neglects the notorious prob-
lem of coefficient swell, which plagues naı̈ve implementations with exponential running
time. This difficulty can be overcome replacing the euclidean remainder sequence by sub-
resultants, which were introduced by Sylvester [56]. Habicht [21] systematically studied
subresultants and used them to construct Sturm chains whosecoefficients are polynomial
functions in the input coefficients, and not rational functions as given by euclidean divi-
sion. Subresultants have become a highly developed tool of computer algebra; we refer to
Gathen–Gerhard [18, chapters 6 and 11] and the references cited therein. This should be
taken into account when choosing or developing a library forpolynomial arithmetic.

Annotation 6.1. (Data management)The constructionof the Sturm chain is the most expensive step in the
above root-finding algorithm. In the real case we have to construct this chain only once because we can reuse
it in all subsequent iterations. In the complex case, each segment requires a separate computation: it is thus
advantageous to store each segment with its corresponding Sturm chain, and each square with the four Sturm
chains along the boundary, so as to reuse precious data as much as possible.

Theorem 6.10. Let F = cnZn + cn−1Zn−1 + · · ·+ c1Z + c0 be a polynomial of degree n
with Gaussian integer coefficients such that|reck| ≤ 2a and|imck| ≤ 2a for all k = 0, . . . ,n.
Suppose that all roots of F lie in the disk B(r). The above root-finding algorithm determines
all roots of F to a precision3r/2b requiringÕ(n3b(a+nb)) bit-operations.

Here the asymtotic complexitỹO neglects logarithmic factors.

Proof. Suppose thatR,S∈ Z[X] are of degree≤ n and all coefficients are bounded byA=
2a. According to Lickteig–Roy [30] and Gathen–Gerhard [18, Cor. 11.17] the subresultant
algorithm requiresÕ(n2a) bit-operations. This has to be iteratedb times; coefficients are
bounded byA = 2a+nb. Since we assume all roots to be distinct, they ultimately become
separated so that the algorithm has to follown approximations in parallel. This multiplies
the previous bound by a factornb, so we arrive at̃O(n3b(a+nb)) bit-operations. �

Annotation 6.2. (Simplicity) The algebraic algorithm is straightforward to implement except for two standard
subalgorithms, namely fast integer arithmetic and fast subresultant computation for integer polynomials. These
subalgorithms are theoretically well-understood, and their complexity bounds are known and nearly optimal.
Their implementation is laborious, but is available in general-purpose libraries for integer and polynomial arith-
metic. The algebraic algorithm uses exact arithmetic and noapproximations. This ensures that we do not have to
worry about error propagation, which simplifies (formal) correctness proofs.

Annotation 6.3. (Parallelization) We can adapt the algorithm to find onlyone root of F , and according to
the preceding proof its complexity is̃O(n2b(a+ nb)), again neglecting terms of order log(n). This approach is
parallelizable: whenever bisection separates the roots into non-empty clusters, these can then be processed by
independent computers working in parallel. The parallel complexity thus drops tõO(n2b(a+nb)).

6.5. What remains to be improved? Root-finding algorithms of bit-complexitỹO(n2(n+
b)) are the world record since the ground-breaking work of Schönhage [47] in the 1980s.
Cauchy’s algebraic method is of complexityÕ(n4b2) and thus comes close, but in its cur-
rent form it remains one order of magnitude more expensive. Schönhage remarks:

It is not clear whether methods based on Sturm sequences can possibly
become superior. Lehmer [29] and Wilf [66] both do not solve the ex-
tra problems which arise, if there is a zero on the test contour (circle or
rectangle) or very close to it. [47, p. 5]

Notice that we have applied thedivide-and-conquerparadigm in the arithmetic subal-
gorithms, but not in the root-finding method itself. In Schönhage’s method this is achieved
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by approximately factoringF of degreen into two polynomialsF1,F2 of degrees close to
n
2. It is plausible but not obvious that a similar strategy can be put into practice in the
algebraic setting. Some clever idea and a more detailed investigation are needed here.

Our development neatly solves the problem of roots on the boundary. Of course, ap-
proximating the roots of a polynomialF ∈ C[Z] can only be as good as the initial data,
and we therefore assume thatF is known exactly. This is important because root-finding
is an ill-conditioned problem, see Wilkinson [67]. Even if exact arithmetic can avoid this
problem during the computation, it comes back into focus when the initial data is itself
only an approximation. In this more general situation the real-algebraic approach requires
a detailed error analysis, ideally in the setting of interval arithmetic and recursive analysis.

6.6. Formal proofs. In recent years the theory and practice offormal proofsandcomputer-
verified theoremshas become a fully fledged enterprise. A prominent and much discussed
example is the Four Colour Theorem, see Gonthier [20]. The computer-verified proof com-
munity envisages much more ambitious projects, such as the classification of finite simple
groups. See theMathematical Components Manifestoby Gonthier, Werner, and Bertot at
www.msr-inria.inria.fr/projects/math/manifesto.html.

Such gigantic projects make the Fundamental Theorem of Algebra look like a toy ex-
ample, but its formalization is by no means a trivial task. A constructive proof, along the
lines of Hellmuth Kneser (1940) and Martin Kneser (1981), has been formalized by the
FTA project at Nijmegen (www.cs.ru.nl/~freek/fta) using the COQ proof assistant
(pauillac.inria.fr/coq). Work is in progress so as to extract the algorithm implicitin
the proof (c-corn.cs.ru.nl).

The real-algebraic approach offers certain advantages, mainly its conceptual simplicity
and its algorithmic character. The latter is an additional important aspect: the theorem is
not only an existence statement but immediately translatesto an algorithm. A formal proof
of the theoremwill also serve as a formal proof of theimplementation. As a first step,
Mahboubi [32] discusses a formal proof of the subresultant algorithm.

Annotation 6.4. (Ongoing debate)Computer-assisted proofs have been intensely debated, andtheir scope and
mathematical reliability have been questioned. The approach is still in its infancy compared to traditional view-
points, and its long-ranging impact on mathematics remainsto be seen.

We should like to emphasize that the formalization of mathematical theorems and proofs and their computer
verification may be motivated by several factors. Some theorems, of varying difficulty, have been formalized in
order to show that this is possible in principle and to gain practical experience. While pedagogically important
for proof formalization itself, the traditional mathematician will find no added value in such examples.

More complicated theorems, such as the examples above, warrant an intrinsic motivation for formalization
and computer-verified proofs, because there is an enormous number of cases to be solved and verified. Whenever
human fallibility becomes a serious practical problem, as in these cases, a trustworthy verification tool clearly
has its merit. This is particularly true if the mathematicalmodel is implemented on a computer, and a high level
of security is required. It is in this realm that computer-assisted correctness proofs are most widely appreciated.

7. HISTORICAL REMARKS

The Fundamental Theorem of Algebra is a crowning achievement in the history of
mathematics. In order to place our real-algebraic approachinto perspective, this section
sketches its historical context. For the history of the Fundamental Theorem of Algebra I
refer to Remmert [41], Dieudonné [13, chap. II,§III], and van der Waerden [61, chap. 5].
The history of Sturm’s theorem has been examined in great depth by Sinaceur [49].

7.1. Solving polynomial equations.The method to solve quadratic equations was known
to the Babylonians. Not much progress was made until the 16thcentury, when del Ferro
(around 1520) and Tartaglia (1535) discovered a solution for cubic equations by radicals.
Cardano’s student Ferrari extended this to a solution of quartic equations by radicals. Both
formulae were published in Cardano’sArs Magnain 1545. Despite considerable efforts
during the following centuries, no such formulae could be found for degree 5 and higher.

http://www.msr-inria.inria.fr/projects/math/manifesto.html
http://www.cs.ru.nl/~freek/fta
http://pauillac.inria.fr/coq
http://c-corn.cs.ru.nl
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They were finally shown not to exist by Ruffini (1805), Abel (1825), and Galois (1831).
This solved one of the outstanding problems of algebra, alasin the negative.

The lack of general formulae provoked the question whether solutions exist at all. The
existence ofn roots for each real polynomial of degreen was mentioned by Roth (1608)
and explicitly conjectured by Girard (1629) and Descartes (1637). They postulated these
roots in some extension ofR but did not claim that all roots are contained in the field
C = R[i]. Leibniz (1702) even speculated that this is in general not possible.

The first proofs of the Fundamental Theorem of Algebra were published by d’Alembert
(1746), Euler (1749), Lagrange (1772), and Laplace (1795).In his doctoral thesis (1799)
Gauss criticized the shortcomings of all previous tentatives and presented his first proof,
which ranks among the monumental achievements of mathematics.

7.2. Gauss’ first proof. Gauss considersF = Zn +cn−1Zn−1 + · · ·+c1Z+c0; upon sub-
stitution of Z = X + iY he obtainsF = R+ iS with R,S∈ R[X,Y]. The roots ofF are
precisely the intersections of the two curvesR= 0 andS= 0 in the plane. Near a circle∂Γ
with sufficiently large radius around 0, these curves resemble those ofZn. The latter are 2n
straight lines passing through the origin. The circle∂Γ thus intersects each of the curves
R= 0 andS= 0 in 2n points placed in an alternating fashion around the circle.

Prolongating these curves into the interior ofΓ, Gauss concludes that the curvesR= 0
andS= 0 must intersect somewhere inside the circle. This conclusion relies on certain
(intuitively plausible) assumptions, which Gauss clearlystates but does not prove.

Satis bene certe demonstratum esse videtur, curvam algebraicam neque
alicubi subito abrumpi posse (uti e.g. evenit in curva transscendente, cuius
aequatioy= 1/ logx), neque post spiras infinitas in aliquo puncto se quasi
perdere (ut spiralis logarithmica), quantumque scio nemo dubium contra
hanc rem movit. Attamen si quis postulat, demonstrationem nullis dubiis
obnoxiam alia occasione tradere suscipiam.1 [19, Bd. 3, p. 27]

To modern standards Gauss’ first proof is thus incomplete. The unproven assertions are
indeed correct, and have later been rigorously worked out byOstrowski [36, 37].

Notice that Gauss’ argument showsw(F |∂Γ) = n by an implicit homotopyF ∼ Zn, and
our development of the algebraic winding number exhibits a short and rigorous path to the
desired conclusion. Our proof can thus be considered as an algebraic version of Gauss’
first proof, suitably completed by the techniques of Sturm and Cauchy, and justified by the
intermediate value theorem.

7.3. Gauss’ further proofs. Gauss gave two further proofs in 1816, and a fourth proof
in 1849 which is essentially an improved version of his first proof [61, chap. 5]. The
second proof is algebraic (§7.8.2), the third proof uses integration (§7.8.3) and foreshadows
Cauchy’s integral formula for the winding number.

When Gauss published his fourth proof in 1849 for his doctorate jubilee, the works
of Sturm (1835) and Cauchy (1837) had been known for several years, and in particular
Sturm’s theorem had immediately risen to international acclaim. In principle Gauss could
have taken up his first proof and completed it by arguments similar to the ones presented
here. This has not happened, however, so we can speculate that Gauss was perhaps unaware
of the work of Sturm, Cauchy, and Sturm–Liouville on complexroots of polynomials.
Completing Gauss’ geometric argument, Ostrowski [37] mentions the relationship with
the Cauchy index but builds his proof on topological arguments.

1 It seems to have been proved with sufficient certainty that analgebraic curve can neither suddenly break
off anywhere (as happens e.g. with the transcendental curvewhose equation isy = 1/ logx) nor lose itself, so to
say, in some point after infinitely many coils (like the logarithmic spiral). As far as I know, nobody has raised any
doubts about this. Should someone demand it, however, then Iwill undertake to give a proof that is not subject to
any doubt, on some other occasion. (Adapted from Prof. Ernest Fandreyer’s translation, Fitchburg State College
Library, Manuscript Collections,www.fsc.edu/library/archives/manuscripts/gauss.cfm)

http://www.fsc.edu/library/archives/manuscripts/gauss.cfm
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7.4. Sturm, Cauchy, Liouville. In 1820 Cauchy proved the Fundamental Theorem of
Algebra, using the existence of a global minimumz0 of |F | and a local argument showing
thatF(z0) = 0, see§7.8.1. While the local analysis is rigorous, global existence requires
some compactness argument, which was yet to be developed, see Remmert [41, §1.8].

Sturm’s theorem for counting real roots was announced in 1829 [51] and published in
1835 [52]. It was immediately assimilated by Cauchy in his residue calculus [8], based
on complex integration, which was published in 1831 during his exile in Turin. In 1837
he published a more detailed exposition [9] with analytic-geometric proofs, and explicitly
recognizes the relation to Sturm’s theorem [9, pp. 426–427,431].

In the intervening years, Sturm and Liouville [55, 53] had elaborated their own proofs
of Cauchy’s theorem, which they published in 1836. (Loria [31] and Sinaceur [49, I.VI]
examine the interaction between Sturm, Liouville, and Cauchy in detail.) As opposed
to Cauchy, their arguments are based on what they call the “first principles of algebra”.
In the terminology of their time this means the theory of complex numbers, including
trigonometric coordinatesz = r(cosθ + i sinθ ) and de Moivre’s formula, but excluding
integration. Furthermore they use sign variations and, of course, the intermediate value
theorem of real functions, as well as tacit compactness arguments.

7.5. Sturm’s algebraic vision. Sturm, in his article [53] continuing his work with Liou-
ville [55], presents arguments which closely parallel our real-algebraic proof: the argument
principle (Prop. 1, p. 294), multiplicativity (Prop. 2, p. 295), counting roots of a split poly-
nomial within a given region (Prop. 3, p. 297), the winding number in the absence of zeros
(Prop. 4, p. 297), and finally Cauchy’s theorem (p. 299). One crucial step is to show that
w(F |∂Γ) = 0 whenF does not vanish inΓ. This is solved by subdivision and a tacit com-
pactness argument (pp. 298–299); our compactness proof of Theorem5.3 completes his
argument. Sturm then deduces the Fundamental Theorem of Algebra (pp. 300–302) and
expounds on the practical computation of the Cauchy indexw(F |∂Γ) using Sturm chains
as in the real case (pp. 303–308).

Sturm’s exposition strives for algebraic simplicity, but his arguments are ultimately
based on geometric and analytic techniques. It is only on thefinal pages that Sturm em-
ploys his algebraic method for computing the Cauchy index. This mixed state of affairs
has been passed on ever since, even though it is far less satisfactory than Sturm’s purely
algebraic treatment of the real case. Our proof shows that Sturm’s algebraic vision of the
complex case can be salvaged and his arguments can be put on firm real-algebraic ground.

We note that Sturm and Liouville explicitly exclude zeros onthe boundary:

Toutefois nous excluons formellement le cas particulier o`u, pour quelque
point de la courbeABC, on aurait à la foisP = 0, Q = 0 : ce cas particu-
lier ne jouit d’aucune propriété régulière et ne peut donner lieu à aucun
théorème.2 [55, p. 288]

This seems overly pessimistic in view of our Theorem1.8 above. In his continuation
[53], Sturm formulates the same problem much more cautiously:

C’est en admettant cette hypothèse que nous avons démontré le théorème
de M. Cauchy ; les modifications qu’il faudrait y apporter dans le cas où
il aurait des racines sur le contour mêmeABC, exigeraient une discussion
longue et minutieuse que nous avons voulu éviter en faisantabstraction
de ce cas particulier.3 [53, p. 306]

2 We formally exclude, however, the case where for some point of the curveABC we have simultaneously
P = 0 andQ = 0: this special case does not enjoy any regular property and cannot give rise to any theorem.

3 It is under this hypothesis that we have proven the theorem ofMr. Cauchy; the necessary modifications in
the case where roots were on the contourABCwould require a long and meticulous discussion, which we have
wanted to avoid by neglecting this special case.
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It seems safe to say that our detailed discussion is just as “long and meticulous” as the
usual development of Sturm’s theorem. Modulo these details, the cited works of Gauss,
Cauchy, and Sturm contain the essential ideas for the real-algebraic approach. It remained
to work them out. To this end our presentation refines the techniques in several ways:

• We purge all arguments of transcendental functions and compactness assumptions.
This simplifies the proof and generalizes it to real closed fields.
• The product formula (§4.5) and homotopy invariance (§5.3) streamline the proof

and avoid tedious calculations.
• The uniform treatment of boundary points extends Sturm’s theorem to piecewise

polynomial functions and leads to straightforward algorithms.

7.6. Further development in the 19th century. Sturm’s theorem was a decisive step in
the development of algebra as an autonomous field, independent of analysis, in particular
in the hands of Sylvester and Hermite. For a detailed discussion see Sinaceur [49].

In 1869 Kronecker [27] constructed his higher-dimensional index (also called Kro-
necker characteristic) using integration. His initial motivation was to generalize Sturm’s
theorem to higher dimensions, extending previous work of Sylvester and Hermite, but he
then turned to analytic methods. Subsequent work was likewise built on analytic meth-
ods overR: one gains in generality by extending the index to smooth or even continuous
functions, but one loses algebraic generality, simplicity, and computability.

The problem ofstability of motionled Routh [42] in 1878 and Hurwitz [23] in 1895 to
count the number of complex roots having negative real part.With the celebrated Routh–
Hurwitz theorem, the algebraic index has transited from algebra to application, where it
survives to the present day. In the 1898Encyklop̈adie der mathematischen Wissenschaften
[34, Band I], Netto’s survey on the Fundamental Theorem of Algebra (§I-B1a7) mentions
Cauchy’s algebraic approach only briefly (p. 236), while Runge’s article on approximation
of complex roots (§I-B3a6) discusses Cauchy’s method in greater detail (pp. 418-422).
In the 1907Encycloṕedie des Sciences Mathématiques[35], Netto and le Vavasseur give
an overview of nearly 100 published proofs (tome I, vol. 2,§80–88), including Cauchy’s
argument principle (§87). The work of Sturm–Liouville [55, 53] is cited but the algebraic
approach via Sturm chains is not mentioned.

7.7. 19th century textbooks. While Sturm’s theorem made its way from 19th century
algebra to modern algebra textbooks and is still taught today, it seems that the algebraic
approach to the complex case has been lost on the way. Let me illustrate this by two
prominent and perhaps representative textbooks.

In his 1877 textbookCours d’alg̀ebre suṕerieure, Serret [48, pp. 118–132] presents the
proof of the Fundamental Theorem of Algebra following Cauchy and Sturm–Liouville,
with only minor modifications. Two decades later, Weber devoted over 100 pages to real-
algebraic equations in his 1898 textbookLehrbuch der Algebra[62], where he presents
Sturm’s theorem in great detail (§91-106). Calling upon Kronecker’s geometric index the-
ory (§100-102), he sketches how to count complex roots (§103-104). Quite surprisingly,
he uses only ind

(

P′
P ) and Corollary3.23where the general case ind

(

R
S) and Theorem3.20

would have been optimal. Here Cauchy’s algebraic method [9], apparently unknown to
Weber, had gone much further concerning explicit formulae and concrete computations.

7.8. Survey of proof strategies.Since the time of Gauss numerous proofs of the Funda-
mental Theorem of Algebra have been developed. We refer to Remmert [41] for a concise
overview and to Fine–Rosenberger [16] for a text-book presentation. As mentioned in§1.2,
the proof strategies can be grouped into three families:

7.8.1. Analysis.Proofs in this family are based on the existence of a global minimumz0 of
|F | and some local argument from complex analysis showing thatF(z0) = 0 (d’Alembert
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1746, Argand 1814, Cauchy 1820). See Remmert [41, §2] for a presentation in its his-
torical context, or Rudin [45, chap. 8] in the context of a modern analysis course. In its
most succinct form, this is formulated by Liouville’s theorem for entire functions. Such
arguments are in general not constructive; for constructive refinements see [41, §2.5].

7.8.2. Algebra. Proofs in this family use the fundamental theorem of symmetric polyno-
mials in order to reduce the problem from real polynomials ofdegree 2km with m odd to
degree 2k−1m′ with m′ odd (Euler 1749, Lagrange 1772, Laplace 1795, Gauss 1816, see
[41, appendix]). The argument can be reformulated using Galoistheory, see Cohn [11,
Thm. 8.8.7], Jacobson [25, Thm. 5.2], or Lang [28, §VI.2, Ex. 5]. The induction is based,
for k = 0, on real polynomials of odd degree, where the existence of at least one real root is
guaranteed by the intermediate value theorem. This algebraic proof thus works over every
real closed field. It is constructive but ill-suited to actual computations.

7.8.3. Topology.Proofs in this family use some form of the winding numberw(γ) of
closed pathsγ : [0,1]→ C∗ (Gauss 1799/1816, Cauchy 1831/37, Sturm–Liouville 1836).
The winding number appears in various guises, see Remark1.5: in each case the diffi-
culty is a rigorous construction and to establish its characteristic properties: normalization,
multiplicativity and homotopy invariance, as stated in Theorem1.2.

Our proof belongs to this last family. Unlike previous proofs, however, we do not base
the winding number on analytical or topological arguments but on real algebra.

7.9. Constructive and algorithmic aspects.Sturm’s method is eminently practical, by
the standards of 19th century mathematics as for modern-dayimplementations. As early
as 1840 Sylvester [56] wrote “Through the well-known ingenuity and proferred help of a
distinguished friend, I trust to be able to get a machine madefor working Sturm’s theo-
rem (...)”. It seems, however, that such a machine was never built. Calculating machines
had been devised by Pascal, Leibniz, and Babbage; the latterwas Lucasian Professor of
Mathematics at Cambridge when Sylvester studied there in the 1830s.

The idea of computing machinery seems to have been common among mid-19th century
mathematicians. In a small note of 1846, Ullherr [60] remarks that the argument principle
leads to a complex root-finding algorithm: “Die bei dem ersten Beweise gebrauchte Be-
trachtungsart giebt ein Mittel an die Hand, die Wurzeln der höheren Gleichungen mittels
eines Apparates mechanisch zu finden.”4 No details are given.

For separating and approximating roots, the state of the artat the end of the 19th century
has been surveyed in Runge’sEncyklop̈adiearticle [34, Band I,§I-B3a].

In 1924 Weyl [64] reemphasized that the analytic winding number can be used to find
and approximate the roots ofF . In this vein Weyl formulated his constructive proof of
the Fundamental Theorem of Algebra, which indeed translates to an algorithm: a careful
numerical approximation can be used to calculate the integer w(F |∂Γ), see Henrici [22,
§6.11]. While Weyl’s motivation may have been philosophical, it is the practical aspect
that has proven most successful. Variants of Weyl’s algorithm are used in modern computer
implementations for finding approximate roots, and are among the asymptotically fastest
known algorithms. The question of algorithmic complexity was pursued by Schönhage
[47] and others since the 1980s. See Pan [39] for an overview.

The fact that Sturm’s and Cauchy’s theorems together can be applied to count complex
roots seems not to be as widely known as it should be. In the 1969 Proceedings [12] on
constructive aspects of the Fundamental Theorem of Algebra, Cauchy’s algebraic method
is not mentioned. Lehmer [29] uses a weaker form, the Routh–Hurwitz theorem, although
Cauchy’s general result would have been better suited. Cauchy’s method reappears in 1978
in a small note by Wilf [66], and is briefly mentioned in Schönhage’s technical report[46,

4 The viewpoint used in the first proof provides a method to find the roots of higher-degree equations by
means of a mechanical apparatus.
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p. 5]. Most often the computer algebra literature credits Weyl for the analytic-numeric al-
gorithm, and Lehmer or Wilf for the algebraic-numeric method, but not Cauchy or Sturm.
Even if Cauchy’s index and Sturm’s algorithm are widely used, their algebraic contribu-
tions to complex root location seem to be largely ignored.
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39. V. Y. Pan,Solving a polynomial equation: some history and recent progress, SIAM Rev. 39 (1997), no. 2,

187–220.
40. Q. I. Rahman and G. Schmeisser,Analytic theory of polynomials, London Mathematical Society Mono-

graphs. New Series, vol. 26, Oxford University Press, Oxford, 2002.
41. R. Remmert,The fundamental theorem of algebra, ch. 4 in [14], Springer-Verlag, New York, 1991.
42. E. J. Routh,A treatise on the stability of a given state of motion, Macmillan, London, 1878, Reprinted in

[17], pp. 19–138.
43. M.-F. Roy,Basic algorithms in real algebraic geometry and their complexity: from Sturm’s theorem to the

existential theory of reals, Lectures in real geometry (Madrid, 1994), de Gruyter Exp. Math., vol. 23, de
Gruyter, Berlin, 1996, pp. 1–67.

44. M.-F. Roy and A. Szpirglas,Complexity of computation on real algebraic numbers, J. Symbolic Comput.10
(1990), no. 1, 39–51.

45. W. Rudin,Principles of mathematical analysis, third ed., McGraw-Hill Book Co., New York, 1976.
46. A. Schönhage, The fundamental theorem of algebra in terms of computational complexity,
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52. , Mémoire sur la résolution des équations numériques, Académie Royale des Sciences de l’Institut

de France6 (1835), 271–318, Collected Works [54], pp. 345–390.
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des équations, J. Math. Pures Appl.1 (1836), 279–289, Collected Works [54], pp. 474–485.
56. J. J. Sylvester,A method of determining by mere inspection the derivatives from two equations of any degree,

Philosophical Magazine16 (1840), 132–135, Collected Papers [57], vol. I, pp. 54–57.
57. , Collected Mathematical Papers, Cambridge University Press, Cambridge, 1904–1912.
58. A. M. Turing,On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math.

Soc., II. Ser.42 (1936), 230–265, Collected Works [59], vol. IV, pp. 18–56.
59. , Collected Works, North-Holland Publishing Co., Amsterdam, 1992.
60. J. C. Ullherr,Zwei Beweise für die Existenz der Wurzeln der höhern algebraischen Gleichungen, J. Reine

Angew. Math.31 (1846), 231–234.
61. B. L. van der Waerden,A history of algebra, Springer-Verlag, Berlin, 1985.
62. H. Weber,Lehrbuch der Algebra, second ed., F. Vieweg & Sohn, Braunschweig, 1898, Reprint:Chelsea Pub

Co, New York, 3rd edition, January 2000.
63. H. Weyl, über die neue Grundlagenkrise der Mathematik. (vorträge, gehalten im mathematischen Kollo-
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APPENDIX A. A PPLICATION TO THEROUTH–HURWITZ STABILITY THEOREM

The algebraic winding number is a versatile tool beyond the Fundamental Theorem of
Algebra. In certain applications it is important to determine whether a given polynomial
F ∈C[Z] has all of its roots in the left half planeCre<0 = {z∈C | re(z) < 0}. This question
originated from the theory of dynamical systems and the problem ofstability of motion:

ExampleA.1. Let A ∈ Rn×n be a square matrix with real coefficients. The differential
equationy′ = Ay with initial conditiony(0) = y0 has a unique solutionf : R→ Rn given
by f (t) = exp(tA)y0. In terms of dynamical systems, the origina = 0 is a fixed point; it
is stableif all eigenvaluesλ1, . . . ,λn ∈ C of A satisfy reλk < 0: in this case exp(tA) has
eigenvalues exp(tλk) of absolute value< 1. The matrix exp(tA) is thus a contraction for
all t > 0, and every initial value is attrated toa = 0, i.e., f (t)→ 0 for t→+∞.

ExampleA.2. The previous argument holds locally around fixed points of any dynamical
system given by a differential equationy′ = Φ(y) whereΦ : Rn→ Rn is continuously dif-
ferentiable. Suppose thata is a fixed point, i.e.,Φ(a) = 0. It is stableif all eigenvalues of
the matrixA = Φ′(a) ∈Rn×n have negative real part: in this case there exists a neighbour-
hoodV of a that is attracted toa: every trajectoryf : R≥0→Rn, satisfyingf ′(t) = Φ( f (t))
for all t ≥ 0, starting atf (0) ∈V satisfiesf (t)→ a for t→+∞.

GivenF ∈ C[Z] we can determine the number of roots with positive real part simply
by considering the rectangleΓ = [0, r]× [−r, r] and calculatingw(F |∂Γ) for r sufficiently
large. (One could use the Cauchy radiusρF defined in§5.4.) Routh’s theorem, however,
offers a simpler solution by calculating the Cauchy index along the imaginary axis. This is
usually proven using complex integration, but here we will give a real-algebraic proof. As
usual we consider a real closed fieldR and its extensionC = R[i] with i2 =−1.

Definition A.3. For every polynomialF ∈C[Z]∗ we define itsRouth indexas

(A.1) Routh(F) := ind−r
+r

( reF(iY)
imF(iY)

)

+ ind+1/r
−1/r

( reF(i/Y)
imF(i/Y)

)

for some arbitrary parameterr ∈R>0; the result is independent ofr by Proposition3.10(b).

RemarkA.4. We can decomposeF(iY) = R+ iSwith R,S∈R[Y] and compare the degrees

m= degSandn = degR. If m≥ n, then the fractionR(1/Y)
S(1/Y)

= YmR(1/Y)
YmS(1/Y)

has no pole in 0, so
the second index vanishes forr sufficiently large, and Equation (A.1) simplifies to

(A.2) Routh(F) =− ind+∞
−∞

( reF(iY)
imF(iY)

)

.

ExampleA.5. In general the second index in Equation (A.1) cannot be neglected, as illus-
trated byF = (Z−1)(Z−2): hereF(iY) =−Y2−3iY−2, whence

reF(iY)
imF(iY)

= Y2−2
3Y and reF(i/Y)

imF(i/Y)
= 1−2Y2

3Y .

Both indices in Equation (A.1) contribute+1 such that Routh(F) = +2.

Lemma A.6. We haveRouth(Z−z0) = sign(rez0) for all z0 ∈ C.

Proof. For F = Z− z0 we findF(iY) = R+ iS with R= − rez0 andS= Y− imz0. Thus
Routh(F) =− ind+∞

−∞
(

R
S) = ind+∞

−∞
( rez0

Y−imz0
) = sign(rez0). �

Lemma A.7. We haveRouth(FG) = Routh(F)+Routh(G) for all F,G∈ C[Z]∗.

Proof. This follows from the real product formula stated in Theorem4.6. �
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RemarkA.8. For everyc ∈ C∗ we have Routh(c) = 0, whence Routh(cF) = Routh(F).
This can be used to ensure the favourable situation of RemarkA.4, whereS= imF(iY)
has at least the same degree asR= reF(iY). If degS< degR, then it is advantageous to
pass toiF , that is, to make the replacement(R,S)← (−S,R).

We can now deduce the following formulation of the famous Routh–Hurwitz theorem:

Theorem A.9. The Routh index of every polynomial F∈C[Z]∗ satisfies Routh(F) = p−q
where p resp. q is the number of roots of F inC having positive resp. negative real part.

Proof. The Fundamental Theorem of Algebra ensures thatF = c(Z− z1) · · · (Z− zn) in
C[X], so the Routh index formula follows from the preceding lemmas. �

RemarkA.10. By a linear transformationz 7→ az+b, with a∈C∗ andb∈ C, we can map
the imaginary line onto any other straight line, so we can apply the theorem to count roots
in any half-space inC. The transformationz 7→ z−1

z+1 mapsRi ∪{∞} onto the unit circle,
and the right half plane to the unit disk. Again by linear transformation we can thus apply
the theorem to count roots in any given disk inC.

Routh’s criterion is often applied to real polynomialsP ∈ R[X], as in the motivating
examples above, which warrants the following more detailedformulation:

Corollary A.11. Let P= c0 + c1X + · · ·+ cnXn be a polynomial of degree n overR, and
let p resp. q be the number of roots of P inC having positive resp. negative real part. Then

(A.3) p−q= Routh(P) =

{

− ind+∞
−∞

( reP(iY)
imP(iY)

)

if n is odd,

+ ind+∞
−∞

( imP(iY)
reP(iY)

)

if n is even.

Both cases can be subsumed into the unique formula

(A.4) q− p= ind+∞
−∞

(

cn−1Xn−1−cn−3Xn−3 + . . .

cnXn−cn−2Xn−2+ . . .

)

.

This implies Routh’s criterion: All roots of P have negativereal part if and only if q= n
and p= 0, which is equivalent to saying that the Cauchy index in(A.4) evaluates to n.

Routh’s formulation via Cauchy indices is unrivaled in its simplicity, and can immedi-
ately be calculated using Sturm’s theorem (§3.7). Hurwitz’ formulation uses determinants,
which has the advantage to produce explicit polynomial formulae in the given coefficients.
See Henrici [22, §6.7], Marden [33, chap. IX], or Rahman–Schmeisser [40, chap. 11].

APPENDIX B. BROUWER’ S FIXED POINT THEOREM

Brouwer’s theorem states that every continuous mapf : [0,1]n→ [0,1]n of a cube in
Rn to itself has a fixed point. While in dimensionn = 1 this follows directly from the
intermediate value theorem, the statement in dimensionn≥ 2 is much more difficult to
prove: one employs either sophisticated machinery (differential topology, Stokes’ theo-
rem, co/homology) or subtle combinatorial techniques (Sperner’s lemma, Nash’s game of
Hex). All proofs use Brouwer’s mapping degree, in a more or less explicit way, and the
compactness of[0,1]n plays a crucial rôle. Such proofs are often non-constructive and do
not address the question of locating fixed points.

Using the algebraic winding number we can prove Brouwer’s theorem in a constructive
way over real closed fields, restricting the statement from continuous to rational functions:

Theorem B.1. Let R be a real closed field and let P,Q∈ R(X,Y) be rational functions.
Assume that P,Q have no poles inΓ = [x0,x1]× [y0,y1], so that they define a map f: Γ→R2

by f(x,y) = (P(x,y),Q(x,y)). If f (Γ) ⊂ Γ, then there exists z∈ Γ such that f(z) = z. �
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Proof. The essential properties of the algebraic winding number stated in Theorem1.2
extend to rational functions without poles. By translationand homothety we can assume
that Γ = [−1,+1]× [−1,+1]. We consider the homotopygt = id−t f from g0 = id to
g1 = id− f . For z∈ ∂Γ we havegt(z) = 0 if and only if t = 1 and f (z) = z; in this case
the assertion holds. Otherwise, we havegt(z) 6= 0 for all z∈ ∂Γ andt ∈ [0,1]. We can
then apply homotopy invariance to conclude thatw(g1|∂Γ) = w(g0|∂Γ) = 1. Theorem5.3
implies that there existsz∈ IntΓ such thatg1(z) = 0, whencef (z) = z. �

RemarkB.2. As for the Fundamental Theorem of Algebra, the algebraic proof of Theo-
remB.1 also provides an algorithm to approximate a fixed point to anydesired precision.
Here we have to assume the ordered fieldR to be archimedean, or equivalentlyR ⊂ R.
Beginning withΓ0 = [−1,+1]× [−1,+1] and bisecting successively, we can construct a
sequence of subsquaresΓ = Γ0 ⊃ Γ1 ⊃ ·· · ⊃ Γk such thatf has a fixed point on∂Γk or
w(id− f |∂Γk) 6= 0. In the first case, a fixed point on the boundary∂Γk is signalled during
the calculation ofw(id− f |∂Γk) and leads to a one-dimensional search problem. In the
second case, we continue the two-dimensional approximation.

RemarkB.3. Tarski’s theorem says that all real closed fields share the same elementary
theory. This implies that the statement of Brouwer’s fixed point theorem generalizes from
the real numbersR to every real closed fieldR: as formulated above it is a first-order as-
sertion in each degree. It is remarkable that there exists a first-order proof overR that is as
direct as the usual second-order proof overR. In this article we concentrate on dimension
n = 2, but the algebraic approach generalizes to any finite dimension [15].

RemarkB.4. Over the fieldR of real numbers the algebraic version implies the continuous
version as follows. SinceΓ = [−1,+1]× [−1,+1] is compact, every continuous function
f : Γ→ Γ can be approximated by polynomialsgn : Γ→ R2 such that|gn− f | ≤ 1

n. The
polynomialsfn = n

n+1gn satisfy fn(Γ)⊂ Γ and| fn− f | ≤ 2
n. For eachn there existszn ∈ Γ

such thatfn(zn) = zn according to TheoremB.1. Again by compactness ofΓ we can extract
a convergent subsequence. Assumingzn→ z, we find

| f (z)−z| ≤ | f (z)− f (zn)|+ | f (zn)− fn(zn)|+ |zn−z| → 0,

which provesf (z) = z.
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