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THE FUNDAMENTAL THEOREM OF ALGEBRA MADE EFFECTIVE:
AN ELEMENTARY REAL-ALGEBRAIC PROOF VIA STURM CHAINS
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L'algébre est généreuse ; elle donne souvent plus quibddmande(d’Alembert)

ABSTRACT. Sturm'’s famous theorem (1829/35) provides an elegantittigo to count
and locate the real roots of any given real polynomial. Inreg@due calculus of complex
functions, Cauchy (1831/37) extended this to an algebrathad to count and locate
the complex roots of any given complex polynomial. We givesal-algebraic proof of
Cauchy'’s theorem starting from the axioms of a real closéd fréithout appeal to analysis.
This allows us to algebraically formalize Gauss’ geomediigument (1799) and thus to
derive a real-algebraic proof of the Fundamental Theoredlgébra, stating that every
complex polynomial of degree hasn complex roots. The proof is elementary inasmuch
as it uses only the intermediate value theorem and aritibnoétieal polynomials. It can
thus be formulated in the first-order language of real cldigg#ds. Moreover, the proof is
constructive and immediately translates to an algebratfinding algorithm. The latter
is sufficiently efficient for moderately sized polynomidisit in its present form it still lags
behind Schonhage’s nearly optimal numerical algorith88¢).

“
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Historical origins. Sturm’s theoremi1, 52, announced in 1829 and published in
1835, provides an elegant and ingeniously simple algorithrdetermine for each real
polynomialP € R[X] the number of real roots in any given interjalb] C R. Sturm’s
result solved an outstanding problem of his time and eariradrstant fame.

In his residue calculus of complex functions, outlined ir81&nd fully developed in
1837, Cauchy§, 9] extended Sturm’s method to determine for each complexrfuotjal
F € C[Z] the number of complex roots in any given rectar{gld] x [c,d] ¢ R? = C.
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Unifying the real and the complex case, we give a real-aljelproof of Cauchy'’s theo-
rem, starting from the axioms of a real closed field, withqpeal to analysis. This allows
us to algebraicize Gauss’ geometric argument (1799) ansl tthalerive an elementary,
real-algebraic proof of the Fundamental Theorem of Algebtating that every complex
polynomial of degre@ hasn complex roots. This classical theorem is of theoretical and
practical importance, and our proof attempts to satisfy lagpects. Put more ambitiously,
we strive for an optimal proof, which is elementary, elegand effective.

The logical structure of such a proof was already outline&tym in 1836, but his ar-
ticle [53 lacks the elegance and perfection of his famous 1835 m&m®dhis may explain
why his sketch found little resonance, was not further wdriat, and became forgotten
by the end of the 19th century. The contribution of the presaeticle is to save the real-
algebraic proof from oblivion and to develop Sturm’s idealire rigour. The presentation
is intended for non-experts and thus contains much intrmadyand expository material.

1.2. The theorem and its proofs. In its simplest form, the Fundamental Theorem of Al-
gebra says that every non-constant complex polynomial hésast one complex zero.
Since zeros split off as linear factors, this is equivaleribe following formulation:

Theorem 1.1(Fundamental Theorem of Algebrajor every polynomial
F=2"tc 12" 4+ - +caZ+co
with complex coefficientg s, ..., c,1 € C there exist . 2, ..., z, € C such that
F=(Z-7)Z-2) - (Z-2z).

Numerous proofs of this theorem have been published ovdasihéwo centuries. Ac-

cording to the tools used, they can be grouped into threenfejulies $7):
(1) Analysis, using compactness, analytic functions gragon, etc.;
(2) Algebra, using symmetric functions and the intermehalue theorem;
(3) Algebraic topology, using some form of the winding numbe

The real-algebraic proof presented here is situated bet{@end @) and combines
Gauss’ winding number with Cauchy’s index and Sturm’s &tpar. It enjoys several
remarkable features:

It uses only the intermediate value theorem and arithmétiead polynomials.

It is elementary, in the colloquial as well as the formal geoffirst-order logic.

All arguments and constructions extend verbatim to all ckzded fields.

The proof is constructive and immediately translates toot-finding algorithm.

The algorithm is easy to implement and reasonably efficrentédium degree.
e It can be formalized to a computer-verifiable proof (theoesrd algorithm).

Each of the existing proofs has its special merits. It shdaldemphasized, however,
that a non-constructive existence proof only “announcegtbsence of a treasure, without
divulging its location”, as Hermann Weyl put it: “It is notahexistence theorem that is
valuable, but the construction carried out in its proo83[p. 54—55]

| do not claim the real-algebraic proof to be the shortesttim® most beautiful, nor the
most profound one, but overall it offers an excellent camtddit ratio. A reasonably short
proof can be extracted by omitting all illustrative comngeim the following presentation,
however, | choose to be comprehensive rather than terse.

1.3. The algebraic winding number. Our arguments work over every ordered fi€td
that satisfies the intermediate value property for polyradni.e., aeal closed field§2).

We choose this starting point as the axiomatic foundatioBtafm’s theorem§3). (Only

for the root-finding algorithm in Theorefh11and Sectior must we additionally assume
R to be an archimedian, which amount®Ra- R.) We then deduce that the fieQl= Ri]
with i = —1 is algebraically closed, and moreover establish an ahyuorio locate the roots
of any given polynomiaF € C[Z]. The key ingredient is the construction of an algebraic
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winding number §4-85), extending the ideas of Cauch§, @] and Sturm 52, 53] in the
setting of real algebra:

Theorem 1.2(algebraic winding number)Consider an ordered fiel® and its extension
C =R[i] where f = —1. LetQ be the set of piecewise polynomial logas[0, 1] — C*,
y(0) = y(1), whereC* = C~. {0}. If Ris real closed, then we can construct a map&—
7., calledalgebraic winding numbesatisfying the following properties:

(WO0) Computation: wy) is defined as half the Cauchy index%f,, recalled below, and
can thus be calculated by Sturm’s algorithm via iteratedligi@an division.

(W1) Normalization: ify parametrizes the boundagf” C C* of a rectanglel’ C C,
positively oriented as in Figurg, then

1 ifOelntr,
W) =9,
0 if0eCNT.

(W2) Multiplicativity: for all y1,y» € Q we have Wy - o) = w(y1) +w(y2).
(W3) Homotopy invariance: for aljp, 1 € Q we have Wy) = w(y1) if yo ~ w1, that s,
wheneverng andy; are (piecewise polynomially) homotopic@.

The geometric idea is very intuitivev(y) counts the number of turns thpperforms
around O (see Figurt). Theoreml.2turns the geometric idea into a rigorous algebraic
construction and provides an effective calculation viai@tahains.

Remarkl.3. The algebraic winding number is slightly more general thatesl in Theorem
1.2 The algebraic definitionW/0) of w(y) also applies to loopy that pass through O.
Normalization (V1) extends tov(y) = 3 if 0 is in an edge of, andw(y) = 1 is 0 is one

of the vertices of . Multiplicativity (W2) continues to hold provided that O is not a vertex
of y1 or y». Homotopy invarianceW{/3) applies only ify does not pass through 0.

Remarkl.4. The existence of the algebraic winding number dveelies on the interme-
diate value theorem for polynomials. (Such an map does rist exerQ, for example.)
Conversely, its existence implies tHat= R|i] is algebraically closed and henBeis real
closed (see Rematk6). More precisely, given any ordered fiddd Theorenil.2holds for
the real closur® = K€ (see Theorer2.5): properties Y0), (W1), (W2) restrict to loops
overK, and it is the homotopy invariance/3) that is equivalent t& being real closed.

Remarkl.5. Over the real numbel®, several alternative constructions are possible:

(1) Covering theory, applied to exf®> — C* with covering groug.
(2) Fundamental groupy: 13 (C*,1) = Z via Seifert—van Kampen.
(3) Homologyw: H;(C*) = Z via Eilenberg—Steenrod axioms.
(4) Complex analysis, analytic winding numbvety) = ﬁfyd{ via integration.
(5) Real algebra, algebraic winding numiperQ — 7 via Sturm chains.
Each of the first four approaches uses some characterisfiefy of the real numbers
(such as local compactness, metric completeness, or ceumess). As a consequence,

these topological or analytical constructions do not exterreal closed fields.

Remarkl.6. OverC thealgebraic winding numbecoincides with theanalytic winding
numbergiven by Cauchy’s integral formula

1 rdz 1 [ly(t)
1.1 LI e N AR AN
(2.1) W) =55 ), 2 27Ti/o vo &

This is called theargument principleand is intimately related to the covering map
exp: C — C* and the fundamental group (C*,1) = Z. Cauchy’s integralX.1) is the
ubiquitous technigue of complex analysis and one of the mpogular tools for proving
the Fundamental Theorem of Algebra.
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In this article we develop an independent, purely algebpaiof avoiding integrals,
transcendental functions, and covering spaces. Seen fnogteasated viewpoint, our ap-
proach interweaves real-algebraic geometry and effeatyebraic topology. In this gen-
eral setting Theorerh.2and its real-algebraic proof seem to be new.

1.4. The Fundamental Theorem of Algebra. | have highlighted Theorerh.2in order to
summarize the real-algebraic approach, combining gegraatt algebra. The first step in
the proof ¢4) is to study the algebraic winding numhe(t|0I") of a polynomiaF € C|Z]
along the boundary of a rectandle_ C, positively oriented as in Figurk

Examplel.7. Figurel (right) displaysF (aT) for F = Z° — 574 — 273 - 27? 37 — 12 and
I =[—1,+1] x [-1,+1]. Here the winding number is seen tower |0T) = 2.

Im 4 Im
d <t < c F(b)
\v yA F(a)
Re Re
v 7 % F(d)
are b F(©)

FIGURE 1. The winding numbew(F|dT") of a polynomialF € C[Z]
with respect to a rectanglec C

We then establish the algebraic generalization of Cauthgsrem foiIC = R]i] over a
real closed fieldR, extending Sturm’s theorem from real to complex polynomial

Theorem 1.8. If F € C[Z] does not vanish in any of the four vertices of the rectangle
I" C C, then the algebraic winding numbe(®|JdI") equals the number of roots of F In

e Each root of F in the interior of counts with its multiplicity.

e Each root of F in an edge df counts with half its multiplicity.

Remark1.9. The hypothesis that # 0 on the vertices is very mild and easy enough
to check in every concrete application. Unlike the intedoaimula (1.1), the algebraic
winding number behaves well if zeros lie on (or close to) theridary. This is yet another
manifestation of the oft-quoted wisdom of d’Alembert thigebra is generous; she often
gives more than we ask of hekpart from its aesthetic appeal, the uniform treatmentlof a
configurations simplifies theoretical arguments and pratimplementations alike.

The second step in the prodfs) formalizes the geometric idea of Gauss’ dissertation
(1799), which becomes perfectly rigorous and nicely gdiatiie in the algebraic setting:

Theorem 1.10. For each polynomial F= co+ ¢1Z + -+ + ¢,_1Z" 1 + ¢c,Z" in C[Z] of
degree n> 1 we define its Cauchy radius to Ipe := 1+ max{|col, |C1],..,|Ch-1|}/|Cnl.
Then every rectangle containing the diskz< C | |7 < r} satisfies Wi |dl") =n.

Theoremsdl.8and1.10together imply thaC is algebraically closed: each polynomial
F € C[Z] of degreen hasn roots inC, each counted with its multiplicity; more precisely,
the squard = [—pr, pr]? C C containsn roots ofF.

Applied to the fieldC = R]i] of complex numbers, this result is traditionally called the
Fundamental Theorem of Algehrf@llowing Gauss, although nowadays it would be more
appropriate to call it the “fundamental theorem of complaribers”.

We emphasize that the algebraic approach via Cauchy indioees much more than
mere existence of roots. It also establishes a root-findongyithm (§6.2):
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Theorem 1.11(Fundamental Theorem of Algebra, effective versioR)r every polyno-
mial F € C[Z] of degree n> 1 there exist ¢z,...,z, € C such that

F=cZ-z) - (Z—1z).

The algebraic winding number provides an explicit algamitko locate all roots z ... ., z,
of F: starting from some rectangle containing all n roots, insTheorem1.10 we can
subdivide and keep only those rectangles that actuallyainmbots, using Theorerh.8.
All computations can be carried out using Sturm chains adicgy to Theorenl.2 By
iterated bisection we can thus approximate all roots to aesikd precision.

Once sufficient approximations have been obtained, onemitchdo Newton’s method,
which converges much faster but vitally depends on gootisgavalues §6.3).

Remarkl.12 In the real-algebraic setting of this article we consider field operations
(a,b)— a+b,a— —a, (a,b)+— a-b, a— a!in R and the comparisors= b, a < b
as primitive operations. In this sense our proof yields agodthm overR. Over the
real numbersR this point of view was advanced by Blum—Cucker—Shub—-Sn&jléy
extending the notion of Turing machines to hypotheticahlrumber machines”.

In order to carry out the required real-algebraic operatiom a Turing machine, how-
ever, a more careful analysis is necessg6yl). At the very least, in order to implement
the required operations for a given polynonfai= co+ c1Z+ - - - + ¢,Z", we have to as-
sume that for the ordered fiel@(re(cp),im(cop),...,re(cn),im(cy)) the above primitive
operations are computable in the Turing sense.s8éer a more detailed discussion.

1.5. Why yet another proof? There are several lines of proof leading to the Fundamental
Theorem of Algebra, and literally hundreds of variants hagen published over the last
200 years (seg7). Why should we care for yet another proof?

The motivations for the present work are three-fold:

First, on a philosophical level, it is satisfying to minimithe hypotheses and the tools
used in the proof, and simultaneously maximize the conafusi

Second, when teaching mathematics, it is advantageousvi diierent proofs to
choose from, adapted to the course’s level and context.

Third, from a practical point of view, it is desirable to hawe&onstructive proof, even
more so if it directly translates to a practical algorithm.

In these respects the present approach offers severaitizttrieatures:

(1) The proof is elementary, and a thorough treatment of timeptex case§4—§5) is
of comparable length and difficulty as Sturm'’s treatmentefrieal case5e—53).

(2) Since the proof uses only first-order properties (andaotpactness, for example)
all arguments hold verbatim over any real closed figRIJ).

(3) The proofis constructive in the sense that it estabdisttt only existence but also
provides a method to locate the rootg0(§6.2).

(4) The algorithm is fairly easy to implement on a computeat anfficiently efficient
for medium-sized polynomial$§6.4).

(5) Its economic use of axioms and its algebraic charact&erttas approach ideally
suited for a formal, computer-verified prod6(6).

(6) Since the real-algebraic proof also provides an allgorjtthe correctness of an
implementation can likewise be formally proved and compugzified.

1.6. Sturm’s forgotten proof. Attracted by the above features, | have worked out the real-
algebraic proof for a computer algebra course in 2008. Tha &kems natural, or even
obvious, and so | was quite surprised not to find any such protife modern literature.
While retracing its history§7), | was even more surprised when | finally unearthed very
similar arguments in the works of Cauchy and Stugh4). Why have they been lost?
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Our proofis, of course, based on very classical ideas. Theng#ic idea goes back to
Gauss in 1799, and all algebraic ingredients are preseheiworks of Sturm and Cauchy
in the 1830s. Since then, however, they have evolved in viffigrent directions:

Sturm’s theorem has become a cornerstone of real algebrach@a integral is the
starting point of complex analysis. Their algebraic metfmdcounting complex roots,
however, has transited from algebra to applications, whem@nceptual and algorithmic
simplicity are much appreciated. Since the end of the 19tkucg it is no longer found in
algebra text books, but is almost exclusively known as a ecgatnal tool, for example
in the Routh—Hurwitz theorem on the stability of motion. &fiSturm’s outline of 1836,
this algebraic tool seems not to have been employgdaeethe existence of roots.

In retrospect, the proof presented here is thus a forturegtiegovery of Sturm’s alge-
braic vision §7.5). This article gives a modern, rigorous, and complete pitasien, which
means to set up the right definitions and to provide elemgnizal-algebraic proofs.

1.7. How this article is organized. Section2 briefly recalls the notion of real closed
fields, on which Sturm’s theorem and the theory of Cauchygxare built.

Section3 presents Sturm’s theorerfd] counting real roots of real polynomials. The
only novelty is the extension to boundary points, which isdes in Sectiod.

Sectiond proves Cauchy'’s theorerl][counting complex roots of complex polynomials,
by establishing the multiplicativit{/2) of the algebraic winding number.

Section5 establishes the Fundamental Theorem of Algebra via horgdtsariance
(W3), recasting the classical winding number approach in rgeksa.

Sectionb discusses algorithmic aspects, such as Turing compuyatilé efficient com-
putation of Sturm chains and the cross-over to Newton'd loehod.

Section?, finally, provides historical comments in order to put thal+algebraic ap-
proach into a wider perspective.

The core of our real-algebraic proof is rather shit(5). It seems necessary, however,
to properly develop the underlying tools and to arrange #tait$ of the real cas€¢2—53).
Algorithmic and historical aspect§§-57) complete the picture. | hope that the subject
justifies the length of this article and its level of detail.

Annotation 1.1. (Organization) | have tried to keep the exposition as elementary as possibiis requires to
strike a balance between terseness and verbosity — in chdesld | have opted for the latter: in this annotated
student version, some complementary remarks are incluskgdwiill most likely not appear in the published
version. They are set in small font, as this one, and numispdrately in order to ensure consistent references.
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2. REAL CLOSED FIELDS

There can be no purely algebraic proof of the FundamentabiEme of Algebra in the
sense that ordered fields and the intermediate value pyapfgrblynomials must enter the
picture (see Remark.6 below). This is the natural setting of real algebra, and ttutss
precisely the minimal hypotheses that we will be using.

We shall use only elementary properties of ordered fields;hware well-known from
the real numbers (see for example Colhfh ;8.6-£8.7]). In order to make the hypotheses
precise, this section sets the scene by recalling the nofiarreal closed field, on which
Sturm’s theorem is built, and sketches its analytic, algieband logical context.

Annotation 2.1. (Fields)We assume that the reader is familiar with the algebraiconati afield. In order to
highlight the field axioms formulated in first-order logicewecall that a fieldR,+,-) is a setR equipped with
two binary operations-: R x R — R and-: R x R — R satisfying the following three groups of axioms:

First, addition enjoys the following four properties, saythat(R,+) is an abelian group:

(A1) associativity: For alla,b,c € R we have(a+b)+c=a+ (b+c).

(A2) commutativity: For alla,b € R we havea+b=b+a.

(A3) neutral element:  There exists @& R such that for ala € R we have G-t a=a.

(A4) opposite elements: For eacha € R there existd € R such that+b = 0.
The neutral element @ R whose existence is required by axiom (A3) is unique by (AjisEnsures that axiom
(A4) is unambiguous. The opposite elemengaaf R required by axiom (A4) is unique and denoted-bg.

Second, multiplication enjoys the following four propestj saying thatR™ {0}, -) is an abelian group:

(M1) associativity: For alla,b,c € R we have(a:-b)-c=a-(b-c).

(M2) commutativity: For alla,b € Rwe havea-b=Db-a.

(M3) neutral element:  There exists £ R, 1 0, such that for ala € R we have 1a=a.

(M4) inverse elements: For eacha € R, a+# 0, there exist® € R such thaiab= 1.
The neutral elementd R whose existence is required by axiom (M3) is unique by (M2)isEnsures that axiom
(M4) is unambiguous. The inverse elementaf R required by axiom (M4) is unique and denotedaoy.

Third, multiplication is distributive over addition:

(D) distributivity: For alla,b,c € R we havea: (b+c) = (a-b) + (a-c).

Annotation 2.2. (Ordered fields) An ordered fieldis a field R with a distinguished set of positive elements,
denotedx > 0, compatible with the field operations in the following sens

(01) trichotomy: For eachx € R we have eithek > 0 orx =0 or —x > 0.
(02) addition: For allx,y € R the conditionsx > 0 andy > 0 imply x+y > 0.
(O3) multiplication: For allx,y € R the conditions< > 0 andy > 0 imply xy > 0.

From these axioms follow the usual properties, see CahrgB.6], Jacobson2pb, §5.1] or Lang P8, §XI.1].
We define the ordering >y by x—y > 0. The weak ordering >y meansx >y or x=y. The inverse ordering
x < yis defined byy > x, and likewisex <y is defined byy > x. Intervals inR will be denoted, as usual, by

[ab] = {xeR[a<x<b}, Jab] = {xeR|a<x<b},
lab[={xeR|a<x<Db}, [ab[={xeR|Ja<x<b}.

Every ordered fielR inherits a natural topology generated by open intervaluibsetU C R is open if for
eachx € U there exist®d > 0 such thafx— d,x+ 6] € U. We can thus apply the usual notions of topological
spaces and continuous functions. Addition and multighcaare continuous, and so are polynomial functions.

For everyx € R we havex? > 0 with equality if and only ifx = 0. The polynomialX? — a can thus have a
rootx € R only for a > 0; if it has a root, then among the two roatx we can choos& > 0, denoted,/a := x.
Forx € R we define the absolute value to bé:= x if x > 0 and|x| := —x if x < 0. We remark thax| = v/%2.

We record the following properties, which hold for aly € R:

(1) x| >0, and|x| =0if and only ifx= 0.
(2) x4yl < |x/+]y| forall x,y € R.
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(3) |x-y| =I[x|-]y| forallx,y € R.

Annotation 2.3. (Rings)A ring (R,+,-) is only required to satisfy axioms (A1-A4), (M1-M3), and (Byt not
necessarily (M4). This is sometimes calledeammutative ring with unifor emphasis, but we will have no need
for this distinction. For every rin@R we denote byR* = R ~. {0} the set of its non-zero elements. A rifg
is calledintegral if for all a,b € R* we haveab € R*. Every integral ringR can be embedded into a field; the
smallest such field is unique and thus called fielel of fractionsof R. Every ordered ring is integral, and the
ordering uniquely extends to its field of fractions. For exdenthe ring of integer& has as field of fractions the
field of rational number&). In this article we will study the rin@R[X] polynomials over some ordered figR] as
explained below, which has as field of fractions the field gbreal functionsR(X).

2.1. Real numbers. As usual we denote L the field of real numbers, that is, an ordered
field (R, +,-, <) such that every non-empty bounded sul#setR has a least upper bound
in R. This is a very strong property, and in fact it characterizes

Theorem 2.1. For every ordered fieldR the following conditions are equivalent:

(1) The ordered sefR, <) satisfies the least upper bound property.

(2) Each intervalla,b] C R is compact as a topological space.

(3) Eachintervalla,b] C R is connected as a topological space.

(4) The intermediate value property holds for all continuousctions f: R — R.

Any two ordered fields satisfying these properties are isptrio by a unique field iso-
morphism. The construction of the real numbers shows thatanoh field exists. O

Annotation 2.4. (Sketch of proof)Existence and uniqueness of the fiaf real numbers form the foundation
of any analysis course. Most analysis books prdye=- (2) = (4), while (3) < (4) is essentially the definition
of connectedness. Here we only she = (1), in the form—(1) = —(4).

Let A C R be non-empty and bounded above. DeffneR — {£1} by f(x) =1if a<xforallac A, and
f(x) = —1if x < afor someac A. In other words, we havé(x) = 1 if and only ifx is an upper bound. If
is discontinuous irx, thenf(x) = +1 but f(y) = —1 for all y < x, whencex = supA. If A does not have a least
upper bound irR, then f is continuous but does not satisfy the intermediate valopeity.

2.2. Real closed fields.The fieldR of real numbers provides the foundation of analysis.
In the present article it appears as the most prominent ebeamfithe much wider class of
real closed fields. The reader who wishes to concentratesotldlssical case may skip the
rest of this section and assuiRe= R throughout.

Annotation 2.5. (Polynomials)In the sequel we shall assume that the reader is familiar théhpolynomial
ring K [X] of some ground rind<, see Jacobsor2$, §2.9-§2.12] or Lang 8, §l1.2, §IV.1]. We briefly recall
some notation. LeK be aring, that is, satisfying axioms (A1-A4), (M1-M3), argl) (of Annotation2.2, but not
necessarily (M4). There exists a rifgX] characterized by the following two properties: Fit§{X] containsK

as a subring and as an element. Second, every non-zero eleenk [X] can be uniquely written as

P=cop+CiX+---+cyX" where ncNandcp,cCy,...,Ch €K,cn#0.

In this situationK [X] is called thering of polynomialsoverK in the variableX, and each elemei € K [X]
is called apolynomialoverK in X. In the above notation we call dBg= n thedegreeand IcP := ¢, theleading
coefficientof P. The zero polynomial is special: we set deg0- and Ic0 = 0.

Annotation 2.6. (Polynomial functions) The ringK [X] has the following universal property: for every rig
containingK as a subring and every element K’ there exists a unique ring homomorphism K[X] — K’
such thatb|x =idx and®(X) = x. Explicitly, ® sendsP = cp+ 1 X + - -- + X" to P(X) = Co+ C1X+ - - - + CnX".

In particular each polynomid € K [X] defines a polynomial functiofie: K — K, x+— P(x). If K is an infinite
integral ring, for example an ordered ring or field, then tfepi— fp is injective, and we can thus identify each
polynomial P € K [X] with the associated polynomial functida: K — K.

Annotation 2.7. (Roots)We shall mainly deal with polynomials over ordered — hendiaite — fields. In partic-
ular we can identify polynomials and their associated patgial functions. Traditionally equations hax@ots
and functions haveeros In this article we use both words “roots” and “zeros” synoysly.

Definition 2.2. An ordered fieldR,+, -, <) is real closedif it satisfies the intermediate
value property for polynomials: whenever a polynonitat R[X] satisfiesP(a)P(b) < 0
for somea < bin R, then there exists € Ja, b[ such thaP(x) = 0.
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Example2.3. The fieldR of real numbers is real closed by Theor2r above. The field
Q of rational numbers is not real closed, as shown by the examp! X? -2 on[1,2].
The algebraic closur@° of Q in R is a real closed field. In fac® is the smallest real
closed field, in the sense th@f is contained in any real closed field. Notice tlizf is
much smaller thaiR, in factQ° is countable whered® is uncountable.

Remark2.4. The theory of real closed fields originated in the work of Ar&ind Schreier
[3, 4]. Excellent textbook references include JacobstB €hapters 1.5 and 11.11], Cohn
[11, chapter 8], and Bochnak—Coste—R@yg¢hapter 1]. For the present article, Definition
2.2 above is the natural starting point because it capturessbenéal geometric feature.
It deviates, however, from Artin—Schreier’s algebraic wigfin [3], which says that an
ordered field is real closed if no proper algebraic extensambe ordered. For a proof of
their equivalence sed f, Prop.8.8.9] or7, §1.2].

Every archimedian ordered field can be embeddedinsee L1, §8.7]. The fieldR(X)
of rational functions can be ordered (in many different waee [, §1.1]) but does not
embed intdR. Nevertheless it can be embedded into some real closure:

Theorem 2.5(Artin—Schreier B, Satz 8]) Every ordered field admits a real closure,
i.e., areal closed fieliR O K that extends the ordering and is algebraic o%er Any two
real closures oK are isomorphic via a unique field isomorphism fixiKig O

The real closure is thus much more rigid than the algebraguck. In areal closed field
R every positive element has a square root, and so the ordamiRgcan be characterized
in algebraic termsx > 0 if and only if there exists € R such that? = x. In particular, if
a fieldR is real closed, then it admits precisely one ordering.

Remark2.6. Artin and Schreier3, Satz 3] have shown that if a fieRlis real closed, then
C =R{i] is algebraically closed, recasting the classical algelmaiof of the Fundamental
Theorem of Algebra§7.8.2. Conversely 4, if C is algebraically closed and contains a
subfieldR such that 1< dimr(C) < =, thenR is real closed an€ = R[i]. We shall not
use this striking result, but it underlines that we have ehasinimal hypotheses.

Annotation 2.8. (Finiteness conditions)in the sequel we will not appeal to the least upper bound ptype
nor compactness nor connectedness. In particular we willuge analytic methods such as integration, nor
transcendental functions such as exp, sin, cos, .... Theediate value property for polynomials is a suffi-
ciently strong hypothesis. In order to avoid compactnessifficient finiteness condition will be the fact that a
polynomialP = ¢yX" 4+ cn_1 X" + - .- 4+ c1X + co of degreen over a fieldK can have at most roots inK .

In generalP can havdessthann roots, of course, as illustrated by the classical exargle- 1 overR. The
fact thatP cannot havenorethann roots relies on commutativity (M2) and invertibility (M4fror examplex? — 1
has four roots in the non-integral rirfy 87 of integers modulo 8, namek¢1 and+3. On the other han&? + 1
has infinitely many roots in the skew fielfil= R + Ri + R j + Rk of Hamilton’s quaternionsi4, chap. 7], namely
every combinatiorai +bj + ck with a,b,c € R such thai? 4+ b? +¢® = 1. The limitation on the number of roots
makes the theory of fields very special. We will repeatedlyitias a crucial finiteness condition.

2.3. Elementary theory of ordered fields. The axioms of an ordered fiel®R,+,-, <)
are formulated in first-order logic, which means that we difjaover elements oR, but
not over subsets, functions, etc. By way of contrast, theattearization of the fiel®R of
real numbers (Theorethl) is of a different nature: here we have to quantify over stsse
of R, or functionsR — R, and such a formulation requires second-order logic.

The algebraic condition for an ordered field to be real clased first order. It is given
by an axiom scheme where for each degreeN we have one axiom of the form

(2.1) Va,b,co,Cy,...,Cn € R[(Co+Cra+ - +cua")(Co+Cib+ -+ cnb”) <0
= IxeR((x—a)(x—b) <0 A co+Cix+--+cnx" = 0)].

First-order formulae are customarily callementaryFor a given ordered fielg, the
collection of all first-order formulae that are true owriis called theelementary theory
of R. Tarski's theorem25, 7] says that all real closed fields share the same elementary



10 MICHAEL EISERMANN

theory: if an assertion in the first-order language of orddields is true over one real
closed field, for example the real numbers, then it is true eng other real closed field.
(This no longer holds for second-order logic, whi&és singled out.) Tarski's theorem is
a vast generalization of Sturm'’s technique, and so is iecéffe formulation, calledquan-
tifier elimination which provides explicit decision procedures. We will ngeurarski’'s
theorem; it only serves to situate our approach in its [dgioatext.

From Tarski's meta-mathematical viewpoint it is not suspry that thestatemenof the
Fundamental Theorem of Algebra generalizes to an arbiteslyclosed field, because in
each degreeitis of first order. Itis remarkable, howeverpttstruct a first-ordgsroof that
is as direct and elegant as the second-order version. Thalgedraic proof presented here
achieves this goal and, moreover, is geometrically appgalnd algorithmically effective.

Annotation 2.9. (Geometry)Tarski’s theorem implies that euclidean geometry, seeardssian geometry mod-
eled on the vector spa@, remains unchanged if the fieRlof real numbers is replaced by any other real closed
field R. This is true as far as its first-order properties are corezkrand these comprise all of classical geometry.

Annotation 2.10. (Decidability) The elementary theory of real closed fields can be recuysasdbmatized, as
seen above. By Tarski's theorem it is complete in the serateathy two models of it share the same elementary
theory. This implies decidability. This also shows that fingt-order theory of euclidean geometry is decidable.

3. STURM’S THEOREM FOR REAL POLYNOMIALS

This section recalls Sturm'’s theorem for polynomials oveza closed field — a gem of
19th century algebra and one of the greatest discoveriégitheory of polynomials.

Remark3.1 It seems impossible to surpass the elegance of the origiealaines by Sturm

[52] and Cauchy9]. One technical improvementof our presentation, howesesms note-
worthy: The inclusion of boundary points streamlines tlguarents so that they will apply
seamlessly to the complex settingg#. The necessary amendments render the develop-
ment hardly any longer nor more complicated. They pervadegeher, all statements and
proofs, so that it seems worthwhile to review the classiogliaents in full detail.

3.1. Counting sign changes.For every ordered fiel® we define signR — {—1,0,+1}

by signx) = +1 if x> 0, signx) = —1if x < 0, and sig0) = 0. Given a finite sequence
s=(%,---,%) In R, we say that the paifsc_1,5) presents a&ign changef s, 15 < 0.
The pair presentsalf a sign changdé one element is zero while the other is non-zero. In
the remaining cases there is no sign change. All cases carbbarsed by the formula

(3.1) V(s1,%) = 3|sign(s¢_1) — sign(sc) |.

Definition 3.2. For a finite sequence= (s, . ..,S) in R thenumber of sign changés

n

V(sc1,%) = Y 3[sign(sc 1) —sign(so)|.
1 k=1

%E

(3.2) V(s):=
K

For a finite sequendey, . .., S,) of polynomials inR[X] anda € R we set
(3.3) Va(So,-, &) =V (S(@), -, S(@).
For the difference at two pointsb € R we use the notatio? := Va — V.

Annotation 3.1. The numbeWV (s,...,s,) does not change if we multiply &), ..., s, by some constarf € R*.
Likewise, V(S,...,S,) remains unchanged if we multiply &, ..., S, by some polynomia € R[X]* that
does not vanish iga,b}. Such operations will be used repeatedly later on.

Remark3.3. There is no universal agreement how to count sign changesubecach
application requires its specific conventions. While thsreo ambiguity fors,_15 < 0
andsc 1S > 0, some arbitration is needed to take care of possible z&as.definition
has been chosen to account for boundary points in Sturnisehg as explained below.
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The traditional way of counting sign changes, following Betes and Budan—Fourier,
is to extract the subsequergley discarding all zeros afand to definé/(s) :=V(8). (This
counting rule is non-local whereas i8.2) only neighbours interact.) As an illustration we
recall Descartes’ rule of signs Budan—Fourier’s geneaitin [40, chap. 10]:

Theorem 3.4(Descartes’ rule of signs)For every polynomial P= cg+ ¢ X + - - - +cpX"
over an ordered fieldR, the number of positive roots, each counted with its muip|
satisfies the inequality

# {XeR.o|P(X)=0} < V(Co,C1,...,Cn).
mult

Theorem 3.5(Budan—Fourier) Let P R[X] be a polynomial of degree n. The number of
roots in]a, b] C R, each counted with its multiplicity, satisfies the ineqtyali

# {xelab|P(x) =0} < V2(PP,.. P")

mult
If R is real closed, then the differen¢eh.s.—I.h.s) is always an even integer.
Equality holds for every intervdh, b] C R if and only if P has n roots iR.

The upper bounds are very easy to compute but they often stiraege the number of
roots. This was the state of knowledge before Sturm’s greanedking discovery in 1829.

3.2. The Cauchy index. Index theory is based on judicious counting. Instead of tiagn
zeros of% it is customary to count poles (8 which is of course equivalent.

Definition 3.6. We denote by ling f and lim f the right and left limit, respectively, of a
rational functionf € R(X)* in a pointa € R. TheCauchy indexf f in ais defined as
+3 iflimEf = oo,
(3.4) indy(f):=indf(f)—ind;(f) where ind(f):= —% if imgf = —oo
0  otherwise

)

Less formally, we have indf) = +1 if f jumps from—oo to +c0, and ing(f) = —1
if fjumps from+oco to —co, and ind(f) = 0 in all other cases. For example, we have
indy(5) = +1 and ing(—%) = —1 and ing(+%) = 0.

+1/2 +1Y2 +1/2 +12

a a a a
=12 =12 =12 =12

Ind=+1 Ind=-1 Ind=0 Ind=0

FIGURE 2. A poleaand its Cauchy index indf) = ind] (f) —ind; (f)

Remark3.7. The limits lim; f are just a convenient notation for purely algebraic quanti-
ties: we can factof = (X —a)Mgwith m e Z andg € R(X)* such thag(a) € R*.

e If m> 0, then linf f = 0 for bothe € {+,—}.

e If m=0, then linf f = g(a) for bothe € {+,—}.

e If m< O, then linf f = e™-signg(a) - (+o).
In the first casef has a zero of ordem in a; for m > 0 we have linj f € R and thus
ind5(f) = 0. In the last casé has a pole of ordgm| in a, and ing(f) = 3e™- signg(a).
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Annotation 3.2. (Rational functions as mapsHere we wish to interpret rational functioriscs R(X) as maps.
The right way to do this is to extend the affine liReo the projective lindPR = RU {c}.

We construcPR = (R? . {0})/.. as the quotient dR? ~. {0} by the quivalencép,q) ~ (s,t) defined by the
condition that there exists€ R* such that(p,q) = (ur,us). The equivalence class ¢p,q) is denoted byp: q]
and repesents the line passing through the 01i@jd) and(p,q) in R?. The affine lineR can be identified with
{[p: 1] | p€ R}; this covers all points dPR except one: the point at infinityp = [1: 0].

Likewise we construdPR(X) = (R(X)2~. {0})/.. as the quotient dR(X)? ~. {0} by the quivalencéP,Q) ~
(R,S) defined by the condition that there exists= R(X)* such thatP,Q) = (UR US). The equivalence class
of (P,Q) is denoted by[P : Q]. HereR(X) can be identified with{[P : Q] | P.Q € R[X],Q # 0} using only
polynomials. Again this covers all points BR(X) except one: the point at infinitygy = [1 : 0.

Considerf = [P: Q] € PR(X) with P,Q € R[X]. We can assume g@d Q) = 1 and setn=: max{degP, degQ}.
We then construct homogenous polynomRI§ € R[X, Y] by X¥ — XkY™k we have(P(x,y),Q(x,y)) # (0,0)
for all (x,y) # (0,0) in R2, and the magf : PR — PR given by f([x:y]) = [P(x,y),Q(x,y)] is well-defined.

This construction allows us to interpret everiye PR(X) and in particular every rational fractiohe R(X)
as a mapf: PR — PR. In the sequel most constructions #fQ resp.[P : Q] are slightly easier in the generic
case wher® Q € R[X]*, and are then extended to the exceptional cases viher@ orQ =0.

Annotation 3.3. (Oriented line and circle) We can present the ordered fi€das an oriented line, the two ends
being denoted by-co and+o. It is sometimes convenient to formally adjoin two furthégreents+co and to
extend the order dR to R := RU{+} such that-c < x < 4+ for all x € R. This turnsR into a closed interval.

—00 - 400

We can think of the projective linBR = RU {e} as an oriented circle. In the above picture this is obtained
by identifying +c and — in R. Even though we cannot extend the orderindrab PR, we can nevertheless
define a sign functioPR — {—1,0,+1} by sign([p: q]) = sign(pq), which simply means that sig®) =

The intermediate value property now takes the followingrfoif f € R(X) satisfiesf (a) f (b) < 0 for some
a< bin R, then there exists € ]a,b[ such that sigri(x) = 0, that isf(x) = 0 or f(x) = c

Definition 3.8. Fora < b in R we define the Cauchy index dfe R(X)* on the interval
[a,b] by

(3.5) ind(f) :=ind} (f)+ indy(f) —indy (f).
xela,b|
The sum is well-defined because only finitely margy |a, b[ contribute.
Forb < awe define in§(f) := —ind?(f), and fora= bwe setind(f) := 0.
Finally, we set inﬁ(g) =0 in the degenerate case wh&e- 0 orS= 0.

Remark3.9. We opt for a more comprehensive definitidhd) than usual, in order to take

care of boundary points. We will frequently bisect intesyand this technique works best
with a uniform definition that avoids case distinctions. Eaver, we will have reason to

consider piecewise rational functionsg.

Proposition 3.10. The Cauchy index enjoys the following properties (whiclmfalty re-
semble the properties of integration):

(a) bisection: ind2(f) +indS(f) =indS(f) foralla,b,ceR.

(b) invariance: ind3(f o 1) = indf{3)(f) for every linear fractional transformation

T: [a,b] — R, 1(x) = £ where pq,r,s € R, without poles offa, b].

(c) addition: ind3(f 4+ g) =ind3(f)+indd(g) if f,g have no common poles.
(d) scaling:  ind}(gf) = gind3(f) if g|ap is of constant sigw € {£1}. O

Annotation 3.4. (Winding number) The Cauchy indePR(X) — 1Z, f — ind3(f), counts the number of
times thatf crosseso from — to + (clockwise in the figure of Annotatio8.3) minus the number of times that
f crosseso from + to — (counter-clockwise in the above figure). This geometrieriptetation anticipates the
winding number of loops in the plane constructed4n
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Annotation 3.5. (Cauchy functions)Following Cauchy 9] we can define the index ilﬁdf) not only for f €
R(X) but more generally for functions: [a,b] — PR =R U {«} satisfying two natural conditions:

(1) f does not change sign without passing through &.or

This allows us to define local indices for isolated poles: etisd] (f) = 1 signf (b) wheneverf (a) = » and
there existd > a such thatf (Ja,b]) C R*: This means that the poteis isolated on the right. We define ipdf)
in the same way if the polais isolated on the left, and set ifidf ) = 0 in all other cases.

(2) f has only a finite number of (semi-)isolated polesarb.
This is needed to define ifjf) by a finite sum as in Equatior35) above. Examples include fractiofis=r /s
wherer,s: [a,b] — R are continuous piecewise polynomial functions ag4n

Example. Over the real number® we can consider function$: [a,b] — RU {e} such that for each point
Xo € [a,b] there exist one-sided neighbourhoddls= [xg,Xo + €] resp.U = [xo — €, %] with € > 0, on which we
have f(x) = (x—Xo)™g(x) with m € Z and some continuous functian U — R*. Such a functionf satisfies
conditions (1) and (2), so that we can define its Cauchy indei(f) as above. Examples include fractions
f =R/SwhereRS: [a,b] — R are piecewise real-analytic functions.

For emphasis we spell out the following definition:
Definition. We call f : [a,b] — PR aCauchy functiorif there exists a subdivisioa=ty <t; < --- <t, =bsuch
that on on each intervalc_1,t] we havef(x) = (x—tx_1)™(X— t)"gk(X) with m,n € Z and some continuous
functiongy: [tk—1,t%] — R* of constant sign. We can then defineg(lﬁ) as in Definition3.8 above.

Annotation 3.6. (Nash functions)The notion of Cauchy function captures the requirementgdanting poles
as in Equation 3.5 above. If we also want to consider the derivati/e as in§3.3 below, then it suffices to
assume each of the local functiogs to be differentiable. The set of Cauchy functions is stalideu taking

products and inverses, but not sums. If we warihg, then we should restrict attention to piecew@e Cauchy

functions. This leads us to the classical analytic-algelsatting:

Example(Nash functions) Let R be a real closed field. Alash functionis a mapf : [a,b] — R that isC® and
semi-algebraic?, chap. 8]. Over the real numbegsthis coincides with the class of real-analytic functionatth
are algebraic oveR[X]. Quotients of piecewise Nash functions are Cauchy funstiamd thus seem to be a
convenient and natural setting for defining and working W@#uchy indices over real closed fields.

3.3. Counting real roots. The ringR[X] is equipped with a derivatioR — P’ sending
each polynomiaP = 5}, pXX to its formal derivative® = zﬂzlkakal. This extends
in a unique way to a derivation on the figR{X) sendingf = & to ' = RSRS This is
anR-linear map and satisfies Leibniz’ rulég)’ = f'g+ fg'. For f € R(X)* the quotient
f’/f is called thdogarithmic derivativeof f; it enjoys the following property:

Proposition 3.11. For every fe R(X)* we havendy(f'/f) =+1if ais a zero of f, and
inda(f'/f) = —1ifais apole of f, andnd,(f’'/f) = 0in all other cases.

Proof. We havef = (X —a)™gwith me Z andg € R(X)* such thag(a) € R*. By Leibniz’
rule we obtainfT = 3+ %. The fraction% does not contribute to the index because it

does not have a pole @ We conclude that ingd f'/f) = sign(m). O

Corollary 3.12. For every fe R(X)* and a< b in R the indexnd2(f’/f) is the number
of roots minus the number of poles of f[@b], counted without multiplicity. Roots and
poles on the boundary count for one half. O

The corollary remains true fof = % whenR =0 or S= 0, with the convention that
we count onlyisolatedroots and poles. Polynomials e R[X] have no poles, whence
ind2(P’/P) simply counts the number of (isolated) rootsRuin [a, b).

3.4. The inversion formula. While the Cauchy index can be defined over any ordered
field R, the following results requir® to be real closed. The intermediate value property
of polynomialsP € R[X] can then be reformulated quantitatively asgi@%l) =VP(1,P).
More generally, we have the following result of CaucBydl, Thm.1]:

Theorem 3.13. Let R be a real closed field, and considexab in R. If P,Q € R[X] do
not have common zeros in a nor b, then

(3.6) inoﬁ(g) +indg(g) ~VO(PQ).
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The inversion formula of Theore®13will follow as a special case from the product
formula of Theorend.6. Its proof is short enough to be given separately here:

Proof. The statement is true B = 0 or Q = 0, so we can assuni2Q < R[X]*. Equation
(3.6) remains valid if we dividé®,Q by a common factdd € R[X], because our hypothesis
ensures thadtl (a) # 0 andU (b) # 0. We can thus assume ¢&Q) = 1.

Suppose first tha, b] contains no pole. On the one hand, both indiceﬁ@r%j and
indg(%) vanish in the absence of poles. On the other hand, the intkaheesalue property
ensures that both andQ are of constant sign dja, b], whenceva(P,Q) = (P, Q).

Suppose next théa, b] contains at least one pole. FormuBaf) is additive with respect
to bisection of the intervala,b]. It thus suffices to treat the case whéagh] contains
exactly one pole. Bisecting once more, if necessary, we ssimnae that this pole is either
aorb. Applying the symmetrX — a+b— X, if necessary, we can assume that the pole
is a. Since Formula3.6) is symmetric inP andQ, we can assume thB{a) = 0.

By hypothesis we hav®(a) # 0, whence has constant sign de, b] and incg(g) =0.

Likewise, P has constant sign da,b] and ing(2) = ind (2). On the right hand side we
find Va(P,Q) = 3, and forV;,(P, Q) two cases occur:

o If Vb(P,Q) = 0, then¥ > 0 onla, b], whence linf (£) = +co.
o If Vu(P,Q) = 1, then® < 0 onla, b], whence linf (¥) = —w.

In both cases we find ifd¥) = V2(P.Q), whence Equatior8(6) holds. O

Annotation 3.7. (Local and global arguments)Reexamining the previous proof we can distinguish a local
argument around a poke in the neighbourhoodf,a+ €] and [a— €,a] for some choser > 0, and a global
argument, for a given intervad, b], say without poles. The local argument only uses contiraiitg is valid for
polynomials over any ordered field. It is in the global argathat we need the intermediate value property.
This interplay of local and global arguments is a recurrbatie in the proofs of4.5and§5.1

Annotation 3.8. (Reducing fractions)For arbitraryP, Q € R[X]* the inversion formula can be restated as
ind}(8) +ind3(§) =V2(L B) = 3[sian(g | b) —sign( | a)]

with the convention sigfw) = 0. This formulation has the advantage to depend only on #etidn % and not

on the polynomial® Q representing it. For reduced fractions we recover the ftatimn of Theoren8.13

Annotation 3.9. (Cauchy functions)The inversion formula holds more generally for all Cauchydiions, as
defined in Annotatior8.5. Instead of dividing by gc@ Q), which is in general not defined, we simply divide by
common roots or poles, so as to ensure Bx@have no common roots nor poles @nb].

3.5. Sturm chains. In the rest of this section we exploit the inversion formuidlbeorem
3.13 and we will thus assumie to be real closed. We can then calculate the Cauchy index
indg(g) by iterated euclidean divisio33.6). The crucial condition is the following:

Definition 3.14. A sequence of polynomialsS,...,S,) in R[X] is a Sturm chainwith
respect to an intervah, b] C R if it satisfies Sturm’s condition:

(3.7) If S(x) =0for0< k < nandx € [a,b], thenS_1(X)Sc;1(x) <O.

We will usually not explicitly mention the intervad, b] if it is understood from the
context, or if(S,...,S) is a Sturm chain on all oR. Forn= 1 Condition 8.7) is void
and should be replaced by the requirement §a&ndS; have no common zeros.

Theorem 3.15.1f ($,Sy,...,S-1,S) is a Sturm chain irR[X], then

. S\ b/ S1) b
(38) In(ﬁ(so)+lnda( 31 ) *Va (807&,---73171,31)-
Proof. The Sturm condition ensures that two consecutive functifng and S, have no
common zeros. Far= 1 Formula 8.8) reduces to the inversion formula of Theor8r3
Forn = 2 the inversion formula implies that
oSy b SY LS e (S b
(3.9) mog(so) +|nda(sl) +|nda(sl) +|nda(sz) VP (%.5.9).
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This is a telescopic sum: contributions to the middle ingli@gse at zeros @&, but at each
zero ofS; its neighboursy andS; have opposite signs, which means that the middle terms
cancel each other. Iterating this argument, we obt&ig) py induction om. O

The following algebraic criterion will be used §3.6and§5.1

Proposition 3.16. Consider a sequend&y, ..., S,) in R[X] such that

(3.10) ASi1+BS+CSc1=0 for  0<k<n,

with A, Bk,Cx € R[X] such that A> 0and G > 0ona,b]. Then(S,...,S) is a Sturm
chain on[a, b] if and only if the terminal pai(S,-1,S,) has no common zeros ja, bJ.

Proof. We assume that > 2. If (S,_1,S,) has a common zero, then the Sturm condition
(3.7) is obviously violated. Suppose thé®, 1,S,) has no common zeros i@, b]. If
S(x) =0forx e [a,b] and O0< k < n, thenS.;1(x) # 0. Otherwise Condition3.10 would
imply thatS,, ..., S, vanish inx, which is excluded by our hypothesis. Now the equation
AX)Sicr1(X) +Cie(X)Sc-1(X) = O With A(X)Ses1(X) # 0 impliesCy(x)S_1(x) # 0. Using
Ac(x) > 0 andCy(x) > 0 we conclude tha_1(X)Sc1(x) < 0. O

Annotation 3.10. (Cauchy functions)Nothing so far is really special to polynomials: Definiti8ri4 Theorem
3.15 and Propositior8.16extend verbatim to all Cauchy functions as defined in Animte8.5.

Annotation 3.11. (Mean value property) AssumingAy,Cy > 0 on [a,b], the linear relation3.10 resembles
the mean value property of harmonic functions, here dige@tto a graph in form of a chain. Is there a useful
generalization of Conditions3(7) or (3.10 to more general graphs?

Annotation 3.12. (A historic example)For many applications the cagq = Cx = 1 suffices, but the general
setting is more flexibleAy andCy can absorb positive factors and thus purge the polynorialsandS,_; of
irrelevancy. The following example is taken from KroneckE872) citing Gauss (1849) in his courEkeeorie der
algebraischen GleichungeifiNotes written by Kurt Hensel, archived at the Universifystrasbourg, available at
num-scd-ulp.u-strasbg.fr/429, page 165.]

Example. We consideiP, = X7 — 28X*+ 480 and its derivativé®, = P} = 7X?(X* — 16X). We setS = R, and
S = X* — 16X, neglecting the positive factorX?. We wish to calculate irﬁ]{%) = indg(%) by constructing
a suitable Sturm chain. Euclidean division yiels= (X3 —12)§ — § = 192X — 480, which we reduce to
S =2X — 5. LikewisePs = 7(8X% 4 20X2 4+ 50X — 3)S, — S, = 12 is reduced td% = 1. We thus obtain a
judiciously reduced Sturm cha{%, S, S, Ss) of the formA S 1 + BkSc + CSk—1 = 0 with A, Cy > 0.

Annotation 3.13. (Orthogonal polynomials)Sturm sequences naturally occur for reethogonal polynomials
Po,P1,P,,..., where dedk = k for all k € N. Here is a concrete and simple example:

Example. The sequence dfegendre polynomialsobPy,P,,... starting withPy = 1 andP; = X satisfies the
recursion(k+ 1)Rc.1 — (2k+ 1)XR+ kR_1 =0 for allk > 1, and s P, ..., P,) is a Sturm chain.

Legendre polynomials are orthogonal with respect to theripmoduct(f,g) = j‘fll f(x)g(x)dx. More gen-
erally, one can fix a measuge on the real lineR, say with compact support, and consider the inner product
(f,9) = J f(x)9(x)du. Orthogonality ofP, Py, P»,... means tha{R, P;) =0 if k# ¢, and> 0 if k= ¢. This en-
tails a three-term recurrence relatidgh. 1 + BxP + CkP_1 = 0 with constant#y,Cy > 0 and some polynomial
By of degree 1, depending dmand u. Orthogonal polynomials thus form a Sturm sequence. lofadl that the
real roots of eacl®, are interlaced with those of its predecesBgr;, and that eack, hasn distinct real roots,
strictly inside the smallest interval that contains thepmrpof p.

3.6. Euclidean Sturm chains. In the preceding paragraph we have defined Sturm chains
and applied them to Cauchy indices. Everything so far idyfgieneral and not limited to
polynomials. The crucial observation for polynomials iattthe euclidean algorithm can
be used t@onstructSturm chains as follows:

Consider a rational functioh = % € R(X)* represented by polynomiag S € R[X]*.
Iterated euclidean division produces a sequence of poljaisrstarting withPy = Sand
P. = R, such thath_; = QxR — F.1 and ded. 1 < degh for all k=1,2,3,.... This
process eventually stops when we re&gh; = 0, in which casé?, ~ gcd Py, P1).
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Stated differently, this construction is the expansiofi ofto the continued fraction

= = 1 1 1

"R QP-PB P 1 1
Po QiPL—P: Qlisz o
1 Ps
Q-5 Q- —F
2

On-1— on

Definition 3.17. Using the preceding notation, tleeiclidean Sturm chai(S, S, ..., Sh)
associated to the fractio@“ue R(X)* is defined bys, := R/P, fork=0,...,n.

f

By construction, the chaif®, S, ..., S,) depends only on the fracti(%and not on the
polynomialsR, S chosen to represent it. Division B ensures that g¢&,S) =S, =1
but preserves the equatiofs 1 + S 1 = QxS for all 0 < k < n. Proposition3.16then
ensures thalSy, S, ..., Sy) is indeed a Sturm chain.

Annotation 3.14. (The euclidean cochain)The polynomials(Qs,...,Qn) suffice to reconstruct the fractioh
This presentation is quite economic because they usually loav degree; generically we expect ¢@g) = 1.
We recovenS, Si, . .., Sh) working backwards frong,1 = 0 andS, = 1 by calculatingSc_1 = QxS — Sk 1
forallk=n-—1,...,0. This procedure also provides an economic way to evali&t&;,...,S,) atac R.
This indicates that, from an algorithmic point of view, thechain(Qq,...,Qn) is of primary interest. From
a mathematical point of view it is more convenient to use theEre(S, Sy, ..., Sh).

Remark3.18 (euclidean division)If K is a field, then for everg e K[X] andP € K[X]*
there exists a unique pa@, R € K[X] such that

(3.11) S=PQ-R and dedr < degP.

Here the negative sign has been chosen for the applicati®uton chains. Euclidean
division works over every rin& provided that the leading coefficienbf P is invertible in
K. In general we can carry out pseudo-euclidean divisionalid® € K [X] andP € K [X]*
over some integral ring there exists a unique pa@, R € K[X] such that

(3.12) cdS=PQ-R and  dedR< degP,

wherec is the leading coefficient d® andd = max{0,1+ degS— degP}. With a view
to ordered fields it is advantageous to chose the expah&mbe even. (This is easy to
achieve: ifd is odd, then multiplyQ andR by c and augmend by 1.) This will be applied
in §5.1to the polynomial ringR[Y,X] = K[X] overK = R[Y]. Even forQ[X] it is often
more efficient to work irZ[X] in order to avoid coefficient swell, se&§, §6.12].

Annotation 3.15. (Pseudo-euclidean divisionffor every ringK, the degree dedK [X] — NU{—o} satisfies:

(1) dedP+ Q) < sup{degP,degQ}, with equality iff degP # degQ or Ic(P) +Ic(Q) # 0.
(2) dedPQ) < degP + degQ, with equality iff P=0 orQ =0 or Ic(P) - Ic(Q) # 0.

If K is integral, then dedPQ) = degP + degQ and IqPQ) = Ic(P) - Ic(Q) for all P,Q € K[X]*, and the
polynomial ringK [X] is again integral. Moreover, for evefye K[X] andP € K[X]* there exists a unique pair
Q,R e K[X] such that?S= PQ— Rand de@R < degP, wherec = Ic(P) andd = max{0, 1+ degS— degP}.

Existence:We proceed by induction od. If d =0, then de® < degP andQ = 0 andR = S suffice. If
d > 1, then we seM := Ic(S) - X9€95-dedP and§:— cS— PM. We see that dd@) = degcS) = deg PM) and
Ic(cS = Ic(PM), whence de§ < degS. By hypothesis there exis,R € A[X] such that? 5= PQ+R. We
conclude thatdS= ¢ 1§+ @ 1PM = PQ+ Rwith Q = O+ ¢ IM.

Uniqueness:For PQ+ R = PQ + R with degR < degP and ded® < degP, we findP(Q- Q) =R —R,
whence de®+deg Q — Q') = degP(Q— Q)] =deg R—R') < degP. This is only possible for dé@ — Q') < 0,
which mean€) — Q' = 0. We conclude tha® = Q' andR=R..

Annotation 3.16. (Cauchy functions)The euclidean construction is tailor-made for polynomialst perhaps
it can be generalized to other classes of Cauchy functionsreMxplicitly, consider real-analytic functions
S,S1: [a,b] — R or Nash functionga,b] — R over some real closed fiel. Even if a gcd is in general not
defined, we can still eliminate common zeros. Is there sorhealavay to construct a sequent®,S,...,S)
satisfyingAcSc+1 + BkS + CkS—1 = 0 as in Propositior3.16 such thatS, has no zeros ofa, b]?
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3.7. Sturm’s theorem. Using the euclidean algorithm for constructing Sturm chaine
can now fix the following notation:

Definition 3.19. For% € R(X) anda,b € R we define theSturm indexo be

Sturng(g) =V2(S0.S. .S,

where(Sy, Sy, ..., Sh) is the euclidean Sturm chain associate@t(We include two excep-
tional cases: I5S= 0 andR # 0, the euclidean Sturm chain (§,1) of lengthn= 1. If
R= 0, we take the chaifil) of lengthn = 0. In both cases we obtain Stu{(g) = 0.

This definition is effective in the sense that the Sturm irﬁmmg(g) can immediately
be calculated. DefinitioB.80of the Cauchy index irﬁi%), however, assumes knowledge of
all roots ofSin [a,b]. This difficulty is overcome by Sturm’s celebrated theorenuating
the Cauchy index with the Sturm index over a real closed field:

Theorem 3.20(Sturm 1829/35, Cauchy 1831/37or every pair of polynomials & ¢
R[X] over a real closed fiel® we have

(3.13) mdjl(g) = Sturnﬁ(g).

Proof. Equation 8.13) is trivially true if R= 0 or S= 0, according to our definitions. We
can thus assunie Se R[X]*. Let(S,S,...,S) be the euclidean Sturm chain associated
to the fractiong. Since§ = % andS, = 1, TheorenB.15implies that

indg(g) - indg(%) + indg(%) —V(S,8.....S) = Stumg(g). O
Remark3.21 Sturm'’s theorem can be seen as an algebraic analogue ofrtlarfiental
theorem of calculus (or Stokes’ theorem): it reduces a ledsional counting problem
on the intervala, b] to a 0-dimensional counting problem on the boundanb}. We are
most interested in the former, but the latter has the adgandé being easily calculable.
Both become equal via the intermediate value propertys4lwe will generalize this to
the complex realm, reducing a 2-dimensional counting nobbn a rectangl€ to a 1-
dimensional counting problem on the bounda&fy. This can be further generalized to
arbitrary dimension, leading to an algebraic version ofrtatker’s index15].

Remark3.22 Sturm’s theorem is usually stated under two additional tiypges, namely
gcdR,S) = 1 andS(a)S(b) # 0. Our formulation of Theorer8.20does not require any
of these hypotheses, instead they are absorbed into otitlgligfined definitions. The
hypothesis gcR,S) = 1 is circumvented by formulating Definitior&s8 and 3.19 such
that both indices become well-defined BifiX). The caseS(a)S(b) = 0 is anticipated in
Definitions 3.2 and 3.6 by counting boundary points correctly. Arranging theseailtet
is not only an aesthetic preoccupation: it clears the wayafaniform treatment of the
complex case i§4 and ensures a simpler algorithmic formulation.

As an immediate consequence we obtain Sturm'’s classicaleheb2, §2]:
Corollary 3.23 (Sturm 1829/35) For every polynomial = R[X]* we have

/ /
(3.14) #xe [ab] | P(x) =0} :indg(%) :Stumg(%),
where roots on the boundary count for one half. O

Remark3.24 The intermediate value property is essential. Over the fiekof rational
numbers, for example, the functidifx) = 2x/(x* — 2) has no poles, whence ifidf) = 0.
A Sturm chain is given b = X? — 2 andS; = 2X andS, = 2, whence/?(S,S1,S) = 1.
Thus the Sturm index does not count roots resp. poléslint in the real closur@®.
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Remark3.25 By the usual bisection method, Formua.14) provides an algorithm to
locate all real roots of any given real polynomial. Once thets are well separated, one
can switch to Newton’s methog&.3), which is simpler to apply and converges much faster
— but vitally depends on good starting values.

Annotation 3.17. (Transformation invariance) If f,g € R(X) andghas no poles ife, b], then Sturrﬁ(f og) =

Sturrrgg (f). If Ris real closed, then if{f og) = |ndg<a; (f). To see this, assume= R/Sandg = P/Q with
P.Q,R S e R[X] such that gctP,Q) = 1 and gcdR,S) = 1. Sinceg has no polesQ has no roots irja,b]. If
(%,S1,---,S) in R[X] is a Sturm chain ora,b], then so is(Py, P, ...,Py) defined byR = QMS(P/Q) with

m=max{degS, ...,degS,}. Applied to the euclidean Sturm chaify, Sy, ...,S) of f = R/Sthis yields
sturnfl?)(f) = Sturnf'? ( ) =V (0,510, S1) = VE(S(P/Q),81(P/Q).. . S(P/Q)

=VE(R,Pr,...,P) Sturng( ) Stur nﬁ( Zg):Stumﬁ(fog)‘

We now conclude by Theore®20 Again, the intermediate value property is essential. @eandor example
f(x) = 5 andg(x) = x2 overQ. Then ind(f og) = 0 differs from in(ggg(f) =1

4. CAUCHY'S THEOREM FOR COMPLEX POLYNOMIALS

We continue to work over a real closed figRland consider its complex extension
C = RJi] wherei? = —1. In this section we define the algebraic winding numbgy)
for piecewise polynomial loopg: [0,1] — C and study in particular the winding number
w(F|ar) of a polynomialF € C[Z] along the boundary of a rectandleC C. We then
establish Cauchy’s theorem (Corolla4ylQ stating thatw(F|dT") counts the number of
roots ofF inT".

Remark4.1 Nowadays the Winding number is most often defined via Causcimyegral
formulaw(F|dr) = 5= Jar F dz In his residue calculus of complex functions, Cauchy
[8, 9] also described the aIgebralc calculation presented bdiothe present article, we
use exclusively the algebraic winding number and developmdependent, entirely alge-
braic proof. The real product formula, Theordrg, seems to be new. The complex product
formula, Corollariet.8, is well-known in the analytic setting using Cauchy’s irregbut
the algebraic approach reveals two noteworthy extensions:

e The algebraic construction is not restricted to the complexbersC = R]i] but
works forC = R[i] over an arbitrary real closed fieRl

e Unlike Cauchy’s integral formula, the algebraic windingmmoer can cope with
roots ofF on the boundaryl, as pointed out in the introduction.

4.1. Real and complex fields.Let R be an ordered field. For evexys R we havex? > 0,
whencex? + 1 > 0. The polynomiaX? + 1 is thus irreducible irR[X], and the quotient
C =R[X]/(X2+1)is afield. Itis denoted b€ = RJi] with i = —1. Each elemertc C
can be uniquely written as= x+yi with x,y € R. We can thus identifi with R? via the
mapR? — C, (x,y) — z= x+yi, and define r&) := xand in(z) :=y.

Using this notation, addition and multiplication@are given by

(x+yi)+ (X +Yi) = (x+X) + (y+Y)i,
(X+yi) - (X +Yi) = (xX —yy) + (xy +Xy)i.

The ring automorphisrR[X] — R[X], X — —X, fixes X2+ 1 and thus descends to a
field automorphisnﬁ: —C that maps each= x+ Vi to its conjugate = x—yi. We have
re(z) = 3(z+2) and imz) = % (z—2). The producizz— x2 +y? > 0 vanishes if and only
if z=0. Forz+# 0 we thus findz 1 = Z = X2+y2 Xziyzl.

If Ris real closed, then everyc Rzo has a square roqfx > 0. Forz € C we can thus
define|z| := /zz, which extends the absolute valueRfFor allu,v € C we have:

(0) |re(u)| < [ul and|im(u)| < [ul.

|IN|
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(1) |u| >0, and|u| = 0if and only ifu=0.
(2) |u-v| = |u[-|v| and|u] = |u].
(3) Jut V| < [u[+ V.

All verifications are straightforward. The triangle inetjtya(3) can be derived from the
preceding properties as follows. uft- v = 0, then (3) follows from (1). Iu+v# 0, then
1= g5 + o%- and applying (0) and (2) we find

1=re(gly) +re(ghy) < |ats| + |o55] = iy + e
4.2. Real and complex variables.Just as we identifyx,y) € R? with z= x+iy € C, we
considerC[Z] as a subring o€[X,Y] with Z = X 4 iY. The conjugation oi€ extends to
a ring automorphism o€[X,Y] fixing X andY, so that the conjugate &f = X +iY is
Z =X —1iY. In this sens&X andY are real variables, whereZss a complex variable.

Every polynomiaF € C[X,Y] can be uniquely decomposedfas= R+iSwith R, Se
R[X,Y], namelyR=reF := %(F +F)andS=imF := %(F —F). In particular we thus
recover the familiar formula® = reZ andY =imZ.

ForF,G € C[X,Y] we setF o G := F(reG,imG). The mapF — F oG is the unique
ring endomorphisn€[X,Y] — C[X,Y] that mapsZ — G and is equivariant with respect to
conjugation, becausé— G andZ — G are equivalent tX — reG andY — imG.

4.3. The algebraic winding number. Given a polynomiaP € C[X] and two parameters

a< bin R, the mapy: [a,b] — C defined byy(x) = P(x) describes a polynomial path in

C. We define its winding numbev(y) to be half the Cauchy index qﬂﬁ% onJa,bj:
w(P|[a,b]) := 3ind}({75).

Remark4.2. The definition is geometrically motivated as follows. Assngthaty(x) # 0

for all x € [a,b], the winding numbew(y) counts the number of turns thatperforms

around 0: it changes by% each timey crosses the real axis in counter-clockwise di-

rection, and by—% if the passage is clockwise. Our algebraic definition ishgligmore

comprehensive than the geometric one since it does notaxekros of.

More generally, we can consider a subdivisiba: Xg < X1 < --- < Xy = b in R and
polynomialsPy,...,P, € C[X] that satisfyR(xx) = Pci1(x) for k=1,....n—1. This
defines a continuous, piecewise polynomial patia,b] — C by y(x) := R(x) for x €
[X—1,%]- If y(a) = y(b), thenyis aloop, i.e., a closed path. Its winding number is defined
by

)= 5 wRlbi1. )

This is well-defined according to PropositiBrl(a), because the winding numbety)
depends only on the pathand not on the subdivision chosen to describe it.

4.4. Rectangles.Givena,b € C, the mapy: [0,1] — C defined byy(x) = a+x(b—a)
joins y(0) = aandy(1) = b by a straight line segment. Its image will be denotedayi).
ForF € C[X,Y] we setw(F|[a,b]) := w(F o y) or, stated differently,

w(F|[a,b]) :=w(F 0 G|[0,1]) where G=a+X(b—a).

This is the winding number of the path tracedmiz) aszruns froma straight tob. For the
reverse orientation we obtamF|[b,a]) = —w(F|[a,b]) according to Propositio8.10(b).

A rectangle(with sides parallel to the axes) is a subBet [Xo,x1] x [yo,y1] in C = R?
with Xg < X3 andyp < y1 in R. Its interior is Intl' = |Xo,X1[ % ]yo,Y1[. Its boundaryol
consists of the four vertices= (Xo, o), b= (X1,Y0), ¢ = (X1,¥1), d = (X0, Y1), and the four
edgeda,b], [b,c], [c,d], [d,a] between them (see Figuig

Definition 4.3. Given a polynomiaF € C[X,Y] and a rectanglE C C, we define thalge-
braic winding numbeasw(F |0T") := w(F |[a,b]) +w(F|[b, c]) +w(F|[c,d]) +w(F|[d,a]).
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Stated differently, we have/(F|dI') = w(F o y) where the patly: [0,4] — C linearly
interpolates between the verticg®) = a, y(1) = b, y(2) =c, y(3) =d, andy(4) = a
Proposition 4.4(bisection property) Suppose that we biselct= [xg, X2] X [Yo, Y2]

e horizontally intol”’ = [Xg, X1] X [Yo,Y2] andl™” = [x1,%2] x [Yo,Y2],
e or vertically intol™ = [Xo,X2] X [Yo,Y1] andl™” = [xo,X2] X [y1,Y2]
where ¥ < X3 < xp and yp < yy < Yy2. Then WF|9l) =w(F|al") +w(F|aT").

Proof. This follows from Definitiond.3by one-dimensional bisection and internal cancel-
lation using PropositioB.10 O

Proposition 4.5. For a linear polynomial F= Z — 7y with z € C we find

1 if zgisinthe interior offl,
l . . .

W(F|r) = { 2 !f Z0 ?s !n one of the edg_es of,
% if zg is in one of the vertices df,
0 if zgis in the exterior of .

Proof. By bisection, all configurations can be reduced to the caszevh is a vertex of.
By symmetry, translation, and homothety we can assumeghat=0,b=1,c=1+i,
d =i. Here an easy explicit calculation shows th&F |dI') = 1 by adding

w(F |[a,b]) =w(X][0,1]) = 3indg(%§) =0,

w(F |[b,c]) = w(1+iX][0,1]) = Findj(x) = 3,

w(F|[c,d]) =w(1+i-X|[0,1]) = 2ind}(:F*) =0,

w(F|[d,a]) = w(i —iX|[0,1]) = 1ind§(%) = 0. O

Annotation 4.1. (Normalization) The factor% in the definition of the winding number compared to the Cauchy

index is chosen so as to achieve the normalization of Pripodi.5. It also has a natural geometric interpretation.

Compare the circl& = {ze C: |z] = 1} with the projective linePR of Annotation3.3. The winding number
w(y) of a pathy: [0,1] — C* is defined using the mag: C* — PR, (x,y) — [x:y]. The quotient mamy is

the composition of the deformation retractionC* — S, z— z/|z|, and the two-fold covering: S — PR,

(x,y) — [x:y]. This means thatnefull circle in C* maps tatwo full circles in PR.

Annotation 4.2. (Angles)Propositiord.5generalizes from rectangles to convex polygons, and tharbitrary
polygons by suitable subdivision. The only subtlety oceulnenz, is a vertex of the boundagi: in general, we
findw(F|dr) € {0, 1, %, 3,1}, and one can easily construct examples showing that alllplitiss are realized:

‘ indzis ind=1

These examples illustrate how the result depends on the an@ and its incidence with the real axis. The
reference to the real axis breaks the rotational symmetg,saw(y) may differ fromw(cy) for somec € C,
|c| = 1. OverC the average valus(y) = fo w(ety) dt € [O 1] measures the angle at 0. For= R[i] over areal
closed fieldR we can likewise defin@(y) := limy_« & N zk Iw(e?/Ny) e R for every piecewise polynomial
loopy: [0,1] — C. Measuring angles in this way does not foIIow the paradigmffefctive calculation expounded
here, but the definition afi(y) might be useful in some other context. For the purpose ofattiisle, however, it
is only an amusing curiosity and will not be further develbpe

ind=0 ind=1/4 ind=1/2

4.5. The product formula. The product of two polynomialg = P+iQ andG = R+iS
with P,Q,R,S € R[X] is given byFG = (PR— QS) +i(PS+ QR). The following result

relates the Cauchy indices éfand R to that of E;Sé
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Theorem 4.6 (real product formula) Consider polynomials ®,R S € R[X] such that
neither(P, Q) nor (R, S) have common roots in b € R. Then we have

o (S8 - 5) rn(S) (2. 5+ )

After simplification we find

Remarkd.7. We have— +B8= PsggR - Imi{:]:g'i:rS()G)'

VP (1, BHER) = 3 [sign(PHeR | X — b) — sign(EHER | X - a)].

If aorbis a pole, this is evaluated using the convention@gn= 0. For(P=0,Q=1)
or (R=0,S= 1) Theoremd.6reduces to the inversion formula of Theor8ri3

Proof. We can assume that gddQ) =gcdR,S) =1. f Q=00rS=00rPS+ QR=0
then Formula4.1) trivially holds, so we can assun@ S, PS+ QRe R[X]*. Suppose first
that [a,b] does not contain any poles, that is, roots of the denomis&p6, PS+ QR
On the one hand, all three indices vanish in the absence e§p@n the other hand, the
intermediate value property ensures tQatS, andPS+ QRare of constant sign ofa, b],
whencev (1, p%gR) =0.

Suppose next théa, b] contains at least one pole. Formudal] is additive with respect
to bisection of the intervala,b]. We can thus assume thiat b] contains only one pole.
Bisecting once more, if necessary, we can assume that tlasgeithera or b. Applying
the symmetryX — a+ b — X, if necessary, we can assume that the po&e e thus have
Vb= %sign(g + 2| X — b) andQ, S, PS+ QRare of constant sign da, b]. Applying the
symmetry(P,Q,R S) — (P,—Q,R, —9S), if necessary, we can assume tifit= -+3, which
means thaf + § > 0 onja,b]. We distinguish three cases:

First case. Suppose first that eithégd(a) = 0 or S(a) = 0. Applying the symmetry
(PQ,R S) — (R, SPQ), if necessary, we can assume tiga) = 0 andS(a) # 0. Then
PS+ QR does not vanish i, whence in§(§5-g5) = ind}(£) = 0. We have linf & =
lim3 (§+ §) = +eo, whence in§(§) = +3 and Formula4.1) holds.

Second caseSuppose thaPS+ QR vanishes im, butQ(a) # 0 andS(a) # 0. Then
ind3(§) = ind2(&) = 0, and we only have to study the pole of

PR-QS g§-s5-1
PS+QR

(4.2) R
ofs
In athe denominator vanishes and the numerator is negative:

P@ , R@ _ Pla) R _ _Pa
(a)+ Sa 0, whence @ Sa) —1= 1<0.

- Q)
This implies limy} E;ggf —o0, whence inﬂ(%&f) = —1 and Formula4.1) holds.

Thlrd case.Suppose that is a common pole og andB, whence also o &83. Since
o &+ 8> 0o0n]a,b], we have linf & g =twor limg § = +e0. Equation 4.2) implies that

I|m+(E§+8§) +lim{ (§) -lim3 (£). In each case Formuld @) holds. O

Corollary 4.8 (complex product formula)If F,G € C[X,Y] do not vanish in any of the
vertices of the rectangle c R?, then WF - G|dT") = w(F|aT) +w(G|ar).

Proof. This follows from the real product formula of Theoreh6 and the fact that the
boundarydl" forms a closed path. By excluding roots on the vertices weirenthat at
each vertex both boundary contributions cancel each other. O

Remark4.9. The same argument applies to the product of any two piecgwils@omial
loopsy, y2: [0,1] — C, provided that vertices are not mapped to 0. This proves thig-m
plicativity (W2) stated in Theorert.2 w(y; - yo) = w(y1) +w(y).
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Corollary 4.10 (root counting) Consider a polynomial Fe C[Z]* that splits into linear
factors, such that =c¢(Z—2z)--- (Z—z,) for some ¢z, ...,z, € C. If none of the roots
lies on a vertex of , then WF|dI") counts the number of roots N Roots in the interior
count with their multiplicity; roots on the boundary counttwhalf their multiplicity. [

Remark4.11 In the preceding corollaries we explicitly exclude rootstba vertices in
order to apply the real product formula (Theordrf). One might wonder whether this is
an artefact of our proof. While the degree 1 case of Propositi5 is easy (and useful)
there is no such simple rule in degree. As an illustration considdr = [0, 1] x [0, 1] and

R =2Z-(Z—-2-it): herek has oneroat; = 0 on a vertex and one ropt= 2+ it outside of
. After a little calculation we finav(F1|9") = 0 andw(Fo|dT") = % andw(F_1|d) = 3.
This shows that, in this degenerate case, the algebraidngimtimber depends on the
configuration of all roots and not only on the rootdin We will not further pursue this
guestion, which is only of marginal interest, and simplylage roots on the vertices. We
emphasize once again that roots on the edges pose no problem.

Annotation 4.3. (Roots on vertices)Roots on vertices are special because our arbitrary referenthe real
axis breaks the rotational symmetry, as illustrated in Aation 4.2 The average winding numb@r(y) of a
piecewise polynomial patp: [0,1] — C repairs this defect by restoring rotational symmetry, shetiw(y;y2) =
W(y1) +W(y2) even if zeros happen to lie on vertices. For every polynorRial C[Z]* and every polygonal
domainl” C C, the average winding numb@i(F |dT") thus counts the number of rootsBfin I', such that each
root counts witha times its multiplicity, wherea € [0,1] measures the angle at the zerdin For example,
a e {1, %, %} if I is a rectangle and the zero lies initin an edge, or on a vertex, respectively.

Remarl4.12 If we assume that is algebraically closed, theverypolynomialF € C[Z]
factors as required in Corollad.10 So if you prefer some other existence proof for the
roots, then you may skip the next section and still benefinfroot location (Theorem
1.11). This seems to be the point of view adopted by Cau&h9][in 1831/37, which may
explain why he did not attempt to use his index for a consiragiroof of the Fundamental
Theorem of Algebra. (In 1820 he had already given a non-cociste proof, se¢7.8.1)

In 1836 Sturm and Liouvilleg5, 53] proposed to extend Cauchy’s algebraic method for
root counting so as to obtain an existence proof. This is oaiimthe next section.

5. THE FUNDAMENTAL THEOREM OFALGEBRA

We continue to consider a real closed fiBlénd its complex extensidd = R]i] where
i = —1. In the preceding sections we have constructed the aligebiading number
w(F|ar) for F € C[Z]* andl" C C, and derived its multiplicativity. We can now establish
our main result: an effective, real-algebraic proof of th@é&famental Theorem of Algebra.

Remarlkbs.1 The proofthat we present here is inspired by classical aegisnbased on the
winding number of loops in the complex plane. The idea goek bmGauss’ dissertation
(see§7.2) and has been much elaborated since.®erR|[i] over a real closed fielR, the
algebraic proof of Theoref.3seems to be new.

5.1. The winding number in the absence of zerosThe crucial step is to show that
w(F|0T) # 0 implies thaf has arootif . By contraposition, we will show that(F |0T") =
0 whenevefF has no zeros ifi. The local version is easy:

Lemma 5.2(local version) If F € C[X,Y] satisfies Fx,y) # 0 for some pointx,y) € R?,
then there existd > 0 such that Wi |d") = 0 for everyl" C [x—0,x+ 0] x [y—0,y+ 9d].

Annotation 5.1. A proof can be improvised as follows. Suppose first thaEixy) > 0. By continuity there
existsd > 0 such that infF > 0 on the rectanglé) = [x— d,x+ ] x [y— d,y+ d|. For everyl C U we then
havew(F|dT') = 0. The case irff(x,y) < 0 is analogous. If inf¥(x,y) = 0 then our hypothesis ensures that
reF(x,y) # 0. Again there exist® > 0 such that r& # 0 on the rectangl®) = [x— d,x+ J| x [y— d,y+ d].
Now Corollary4.8shows thatv(F|d) = w(iF |d") = 0 as in the first case. The following detailed proof makes
the choice o® explicit and thus avoids case distinctions and the appeadiitinuity.
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Proof. Let us make the standard continuity argument explicit. Fosa e R we have
F(X+sy+t)=a+ Zj+k21ajksjtk with a = F(x,y) # 0 and certain coefficientsy < C.
We setM := max 1¥/[ajc/a], so thataj| < |a|-MI**. Foré := z; and|s],|t| < & we find

(5.1) ‘ Z ajksjtk‘ < Z jal - Mk stk < Jal § (n+1)(3)" = §al.

j+k>1 n>1j+ n>1
This shows thaF does not vanish ob := [x— d,X+ ] x [y— 0,y + &]. Corollary4.8
ensures thaw(F|dIN) = w(cF|aTl) for every rectanglé C U and every constamte C*.
Choosingc = i/a we can assume th&(x,y) =i. The Estimate.1) then shows that
imF > 0 onU, whencew(F |dI") = 0 for every rectanglé C U. O

While the preceding local lemma uses only continuity andibalver every ordered
field, the following global version requires the fighito be real closed.

Theorem 5.3(global version) Letl” = [xo,X1] X [Yo, Y1) be arectangleirC. If F € C[X,Y]
satisfies Kx,y) # O for all (x,y) €', then wF|ol) =0

We remark that over the real numbé&tsa short proof can be given as follows:

Compactness proofThe rectangld” = [Xo, x1] X [yo,Y1] IS covered by the family of open
setsU (X,y) = |x—d,x+ [ x Jly— d,y+ 0] of Lemma5.2, whered depends or(x,y).
Compactness df ensures that there exists> 0, called a Lebesgue number of the cover,
such that every rectangl€ c I' of diameter< A is contained in som¥ (x,y). For all
subdivisionsg =S < 5 < - < Sp=Xg andyp =tp < t; < --- < t, = yi, the bisection
property ensures that(F|0T) = 3, 3¢ W(F [T jk) wherer j = [sj-1,Sj] x [tk—1,t]-
Forsj = 20 andty = yo -+ k¥ with m,n sufficiently large, each has diameter
<A, so0 LemmdS 2|mpI|es thatw(F|0FJk) 0 for all j,k, whencew(F |dI") = O

The preceding compactness argument applies only to the@ietdR]i] of complex
numbers oveRR (§2.1) and not to an arbitrary real closed fiekR(2). In particular, it is
no longer elementary in the sense that it uses a secondajerty ¢2.3). We therefore
provide an elementary real-algebraic proof using Sturninsha

Algebraic proof. EachF € C[X,Y] can be written a& = 3j_, fiX* with fx € C[Y]. In
this way we consideR[X,Y] = R[Y][X] as a polynomial ring in one variab}overR[Y].
Starting withS, S; € R[X,Y] such that% = e pseudo-euclidean division R[Y][X],
as explained in Remaik 18 produces a chaiff, ..., S,) such that:ES(,l = QS — S
for someQy € R[Y][X] andck € R[Y]* and deg S, 1 < deg S. We end up with§,,1 =0
and§, € R[Y]* for somen. (If degy S, > 0, then gcdSy,S) in R(Y)[X] is of positive
degree and we can reduce the initial fract%n)

Regular caseAssume first tha§, does not vanish ifyo, y1]. Propositior3.16ensures
that specializindS, ..., S\) in Y — y € [yo,y1] yields a Sturm chain iR[X], and likewise
specializing(Sp, . .., Sh) in X — X € [Xo,x1] yields a Sturm chain iR[Y]. In the sum over
all four edges of ", all contributions cancel each other in pairs:

2w(F|ar) = +ind ( (£ | Y — yo) +indy? ( (£E | X —xq)

imF mF
+indg (i [ Y — y1) +ind® (5 | X —Xo)
=+Vel (S0, S [ Y = ¥0) + V9 (S0, S | X = )
VR0 (S0, S | Y = y1) + V0 (S, ... S | X = X0) =0.
Singular caseln general we have to cope with a finite $&tC [yo, ] of roots ofS,.
We can change the rdles ¥fandY and apply the euclidean algorithm R{X][Y]; this

leads to a finite set of root&™ C [Xo,x1]. We obtain a finite set” = 2" x # of singular
points inl", where both chains fail. (These points are potential zefés)o
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FIGURE 3. Isolating a singular poir(o, o) within I' = [Xo,X1] X [Yo, V1]

By subdivision and symmetry we can assume {txatyo) is the only singular point
in our rectangld” = [Xo,X1] X [Yo,Y1]. By hypothesis does not vanish irfXo, o), SO
we can apply Lemm&.2to I'1 = [xg,Xo + 9] X [Yo,Yo + 0] with & > O sufficiently small
such thatw(F|dl1) = 0. The remaining three rectanglEs = [xo,Xo + 9] X [yo + 0, V1]
andls = [Xo+ 0,X1] X [Yo,Yo+ 0] andl"4 = [Xo + ,X1] X [Yo+ 9,y1] do not contain any
singular points, such thai(F|dI ;) = 0 by appealing to the regular case.

Summing over all sub-rectangles we conclude @t|oT) = 0. O

Annotation 5.2. The construction of the chaif,...,S,) in R[Y][X] decreases the degree Xhbut usually
increases the degreeYh HereS, is some crude form of the resultant®f andS;. We are rather careless about
degrees here, and the usual approach via (sub)resultantd giee better control. The crucial point in the proof,
however, is that we can specialig®, ... ,S,) in eitherX orY and obtain a Sturm chain in the remaining variable,
in the sense of Definitiod.14, by appealing to the algebraic criterion of Proposit®t6 For subresultants a
similar double specialization argument is less obviousdewkrves further study.

5.2. Counting complex roots. The following result generalizes the real root coly.9)
to complex roots.

Theorem 5.4. Consider a polynomial = C[Z]* and a rectangld” C C such that F does
not vanish in the vertices éf. Then the winding number(#|dI") counts the number of
roots of F inl". Roots on the boundary count for one half.

Proof. We can factoF = (Z—2)---(Z—zy)G such thaG € C[Z]* has no roots il€. The
assertion follows from the product formula of Corollaty8. Each linear factofZ — z)
contributes to the winding number as stated in Propos#ién The factorG does not
contribute to the winding number according to Theor®® (We will prove below that
m= degF andG € C*.) O

Annotation 5.3. (Hypotheses)This corollary extends Sturm’s theorem counting real ros¢® Corollary3.23
In both cases the intermediate value propertiRo$ essential, see Remadk24 As a counterexample consider
R=Q andC = Q[i]. The winding number ofF = Z? —i in C[Z] with respect tol = [0,1] x [0,1] € C is
W(F|dr) = 1. This corresponds to the rodt/2+ /2. Of course, this root does not lie inc Q[i] but in QC[i].
Annotation 5.4. (Counting roots and poles of rational functons) We have focused on polynomigise C[Z],

but Definition4.3of the winding number and the product formula of Corolldr@immediately extend to rational
functionsF € C(Z). Itis then an easy matter to establish the following gertbn:

Theorem. Consider a rational function Fe C(Z) and a rectangld” C C such that the vertices éf are neither
roots nor poles of F. Then (% |dI") counts the number of roots minus the number of poles ofF Boundary
points count for one half. O

5.3. Homotopy invariance. We wish to show that the winding numbe(F |dI") does not
change if we defornfrg to F1. To make this precise we considee C[Z,T] and denote by
R the polynomial inC[Z] obtained by specializing — t € [0, 1].

Theorem 5.5. Suppose that = C[Z,T] is such that for each & [0, 1] the polynomial
R € C[Z] has no roots o@l". Then Wy|dTm) = w(Fy|dT).
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Proof. Over the rectanglE C C with verticesa, b, c,d € C we consider the cubex [0, 1]
with verticesag = (a,0), a1 = (a,1), etc. The bottom rectangley =T x {0} has vertices
ap, bo, Cop, do, whereas the top rectandlg = I x {1} has verticesy, by, c1,d;.

t d c,

4 i
Y, d C,

2 o

FIGURE4. The cubd x [0,1]inC xR

We can consider the polynomile C[Z,T] as amaj x R — C. By hypothesi$ has
no zero oIl x [0, 1]. Over each edge @f, say|a, b], we have a rectangle= [a, b] x [0, 1].
In the absence of zeros, Theorém ensures thaw(F|dT) = 0, that is,

W(F|[a0,bo]) —w(F |[as, b1]) = W(F|[a0,a1]) — w(F|[bo, bs]).

In the sum over all four edges bfthe terms on the right hand side cancel each other in
pairs. We conclude thai(F|dlg) — w(F|dl1) = 0. O
Remarls.6. The same argument holds for every piecewise polynomial hopyd : [0, 1] x
[0,1] — C* wherey: [0,1] — C*, ®(x) = H(x,t), is a closed path for eac¢te [0,1]. This
proves the homotopy invarianc@/@) stated in Theorert.2 w(y) =w(y1).

5.4. The global winding number of a polynomial. Having all tools in hand, we can now
prove Theoreni.1Q stating thaw(F |dT) = degF for every polynomiaF € C[Z]* and
every sufficiently large rectangle This can be quantified by Cauchy’s bound:
Definition 5.7. For F = cg+ ¢ Z +--- +¢,_1Z" 1 + ¢nZ" in C[Z] with ¢, # 0 we set
M = max{0,|cg|,|c1],.--,|cnh-1|} and define th€auchy radiugo bepg := 1+ M/|cp|.
Proposition 5.8. If z € C satisfiedz| > pr, then|F(z)| > |cn| > 0. Hence all roots of F in
C are contained in the Cauchy disk@ ) = {z€ C | |z < pe}-

Proof. The assertion is true fd¥ = c,Z" whereM = 0 andpr = 1. In the sequel we can
thus assum®l > 0 andpg > 1. For allze C satisfying|Zl > pr we find

F(2) — o] = [Co Crz -+ G 12| < [co + [callZ + -+ + on_/|2"

n_
<M+Mz+---+M|z" 1= M‘fz“—,f <lcl(|7" - 1).

!

For the last inequality notice thi > pr implies|z — 1> pg — 1= M/|c,|. We have
lcn"| = [enZ" — F(2) + F(2)| <|cnZ" —F(2)| +|F(2)], whence
IF(@)| = [en2| = [F(2) = &aZ'| = [eal|Z" — |eal (12" — 1) = [ca| > 0. 0

This proposition holds over any ordered fi@doecause it uses onlg-+b| < |a| + |b|
and|a-b| <|al- |b|. Itis not an existence result but only an a priori bound Has roots in
C, then they necessarily lie B(pr). Now, over a real closed fieR, the winding number
allows us to count all roots d¥ in C and to establish the desired conclusion:

Theorem 5.9. For every polynomial Fe C[Z]* and every rectanglE C C containing the
Cauchy disk Boe) we have W |dT") = degF.

Proof. Given a polynomiaF = ¢,Z"+¢n_1Z" 1+ - -- +co with ¢, # 0 we deformFy, = F
to Fo = cnZ" via R = chZ"+t(cnh_1Z" 1 +--- ). For each < [0, 1] the Cauchy radius of
R is pr = 14+tM/|cp|, which shrinks fronp; = pg to po = 1. By the previous proposition,
the polynomialk € C[Z] has no roots o@l". We can thus apply TheorerBss and5.4to
conclude thatv(Fy|0T) = w(Fo|dT) =n. O
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This completes the proof of the Fundamental Theorem of Algrebn the one hand
Theoremb.9says thatv(F |0 ) = degF provided that™ O B(pg ), and on the other hand
Theorenb.4says thatv(F|dT) equals the number of roots Bfin I C C.

Annotation 5.5. (Degree boundsYhe Fundamental Theorem of Algebra, in the form that we hasegroven,
states that if the fiel®R is real closed, i.e., every polynomiBle R[X] satisfies the intermediate value property
overR, then the fieldC = R]i] is algebraically closed, i.e., every polynomkak C[Z] splits into linear factors
overC. Since we are working exclusively with polynomials, it isumal to study degree bounds.

We call an ordered fiel® real d-closedf every polynomialP € R[X] of degree< d satisfies the intermediate
value property oveR. Likewise, we call a fieldC algebraically d-closedf every polynomialF € C[Z] of degree
< d splits into linear factors ove. It is easy to establish the following implication:Rfis an ordered field such
thatR[i] is algebraicallyd-closed, therR is reald-closed. The converse seems to be open:

Question. If R is reald-closed, does this imply th&(i] is algebraicallyd-closed?

This is trivally true ford = 1. The answer is also affirmative fdr= 2,3,4 because quadratic, cubic, and
quartic equations can be solved by radicals of degreed, i.e., roots ofZ" — ¢y with ¢o € C, and these roots can
be constructed iRR[i] if R is realn-closed. Quartic equations can be reduced to auxialiaratems of degree
<3, soifRis real 3-closed, theR]i] is algebraically 4-closed arid is in fact real 4-closed!

What happens in degree 5 and higher? An affirmative answetdwmei surprising... but a Galois-type
obstruction seems unlikely, too. The arguments of thiglarimmediately extend to refined versions with the
desired degree bounds — the only exception is our algebraaf pf Theorenb.3, where we construct a Sturm
sequence ifk[X,Y] with little control on the degrees. It seems to be an intérgsesearch project to investigate
this phenomenon in full depth and to prove optimal degreentisu

6. ALGORITHMIC ASPECTS

The preceding development shows how to derive Cauchy'dedgemethod for locat-
ing the roots of a complex polynomial, and this section dises algorithmic questions.

Remark6.1 The algorithm described here is often attributed to WaiB][in 1978, but
it was already explicitly described by Sturd3 and Cauchy 9] in the 1830s. It can
also be found in RungeBncyklof@diearticle [34, Band |,51-B3a6] in 1898. Numerical
variants are known agveyl's quadtree metho(l924) orLehmer’'s method1969), see
§7.9. | propose to call itCauchy’s methodor Cauchy’s algebraic methoifl emphasis is
needed to differentiate it from Cauchy’s analytic methoig$ntegration. For the theory
of complex polynomials see Marde8d|, Henrici [22], and Rahman—-Schmeissdd]; the
latter contains extensive historical notes and an up-te-giaide to the literature.

6.1. Turing computability. The theory of ordered or orderable fields, nowadays called
real algebrg was initiated by Artin and SchreieB[4] in the 1920s, culminating in Artin’s
solution [1] of Hilbert's 17th problem. Since the 1970s real-algebggometry is flourish-
ing anew, see Bochnak—Coste—R@j; pnd with the advent of computers algorithmic and
guantitative aspects have regained importance, see Ballak-FRoy B]. Sinaceur 49
presents a detailed history of Sturm’s theorem and its pialthetamorphoses.

Definition 6.2. We say that an ordered fie(®R, +, -, <) can be implemented on a Turing
machine if each elemenate R can be coded as input/output for such a machine and each
of the field operationga,b) — a+b, ar— —a, (a,b) — a-b, a+ a~! as well as the
comparisonga = b, a < b can be carried out by a uniform algorithm.

Example6.3. The field (R, +,-,<) of real numbers cannot be implemented on a Turing
machine because the &ts uncountable: it is impossible to code all real numberstuiefi
strings over a finite alphabet, as required for input/outfiitis argument is independent
of the chosen representation. If we insist on representich and every real number, then
this fundamental obstacle can only be circumvented by denisig a hypotheticaleal
number maching6], which transcends the traditional setting of Turing maelsi

Example6.4. The subseRcomp C R of computable real numbers, as defined by Turing
[58] in his famous 1936 article, forms a countable, real closdtfisld of R. Each com-
putable numbea can be represented as input/output for a universal Turinchina by
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an algorithm that approximatesto any desired precision. This overcomes the obsta-
cle of the previous example by restrictionlfomp Unfortunately, not all operations of
(Reomp, +,-, <) can be implemented: there exists no algorithm that for eachpaitable
real numbem, given in form of an algorithm, determines whetlaet 0, or more generally
determines the sign @f (This is an instance of the notorious Entscheidungsproble

Example6.5. The algebraic closur@° of Q in R is, by definition, a real closed field; it
is the smallest real closed field in the sense that it is coathin every real closed field.
Unlike the fieldRcomp 0f computable real numbers, the much smaller fi@d,+, -, <)
can be implemented on a Turing machidd,[43].

6.2. A global root-finding algorithm. We consider a complex polynomial
F=co+CiZ+---+cpZ" in C[Z]
that we assume to bmplementablgthat is, we require the ordered field

Q(re(co), im(co), re(cy),im(ca), ..., re(cn),im(cn)) C R
to be implementable in the preceding sense. We begin witfottweving preparations:

e We divideF by gcdF,F’) to ensure that all roots & are simple.
e We determine € N such that all roots of are contained in the didk(r).

The following notation will be convenient: a¢&ll is a singleton{a} with a € C; a
1-cell is an open line segment, either vertiab} x |yo,y1[ or horizontal]xp, x| x {Yo}
with xp < x1 andyp < y1 in R; a 2cellis an open rectangleg, x1 [ X ]yo, y1[ in C.

It is immediate to check whether a O-cell contains a rodt oSturm’s theorem (Corol-
lary 3.23 allows us to count the roots &F in a 1-cell]a,b[: for G=F(a+ X(b—a)) in
C[X] calculateP = gcd(reG,imG) in R[X] and count roots oP in ]0,1]. Cauchy’s the-
orem (Corollary4.10 allows us to count the roots in a 2-cell. In both cases theialu
subalgorithm is the computation of Sturm chains which wé dicuss in§6.4 below.

Building on this, the root-finding algorithm successivedfimes alistj = {I'1,...,n; }
of disjoint cells such that:

e Eachroot ofF is contained in exactly one cdllc L;.
e Eachcelll € L; contains at least one root Bt
e Each celll € Lj has diameter 3r-271.

More explicitly, the algorithm proceeds as follows:
We initializeLo = {I"'} with the squaré = ]—r,+r[ x |—r,+r[.
GivenlL; we construct j; by treating each cell ¢ L; as follows:
(0) If I is a O-cell, then retaif.
(1) If I is a 1-cell, then bisedt into two 1-cells of equal length.
Retain each new 1-cell that contains a rooEof
Retain the new 0O-cell if it contains a root Bf
(2) If I is a 2-cell, then bisedt into four 2-cells of equal size.
Retain each new 2-cell that contains a rooEof
Retain each new 1-cell that contains a rooEof
Retain the new O-cell if it contains a root Bf

Collecting all retained cells we obtain the new list. ;. After some initial iterations
all roots will lie in disjoint cellsl 4, ..., I, each containing precisely one root. Taking the
midpointug € Iy, this can be seen asapproximate rootsl, ..., u, each with an error
bounddy < %r .21 such that eachy is d-close to a root of .

6.3. Cross-over to Newton'’s local method.For F € C[Z] Newton’s method consists in
iterating the magp: C~ Z°(F’) — C given by®(z) =z—F(z)/F'(2). Its strength resides
in the following well-known property:
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Theorem 6.6. The fixed points of Newton’s mépare the simple zeros of F, that ig, & C
such that Fzy) = 0 and F(z) # 0. For each fixed pointgthere existd > 0 such that
every initial value g € B(z, &) satisfieg®"(ug) — zo] < 212" |ug—2z| forallneN. [

The convergence is thus extremely fast, but the main olesigtd find sufficiently good
approximationsig = zy as starting values. Our global root-finding algorithm apprates
all roots simultaneously, and the following simple criteriexploits this information:

Proposition 6.7. Let F € C[Z] be a separable polynomial of degree n. Suppose we have
separated the roots in disjoint disk$Wg, &) for k= 1,...,n such that
3nd < |uk — ;] forall j # k.
Then Newton'’s algorithm converges for each starting valy®tuthe corresponding root
z € B(uk, &). More precisely, convergence is at least as fast as
|O"(uk) —z| <2 "uk—2z|  forallneN.

Remarl6.8. The hypothesis can be verified directly from the approxioreiuy, d)k=1....n
produced by the global root-finding algorithm 8.2 Newton’s method eventually con-
verges much faster, and Propositi6ry only shows that right from the start Newton’s
method is at least as fast as bisection.

Proof. ForF = (Z—2z)---(Z—2z,) we haveF'/F =3'_;(Z— zj)~L. This entailsb(z) =
z-1/30 4(z— z))~1, provided thaF (z) # 0 andF’(2) # 0, whence

.
®@-z_, 1 Zix =

— z 2 7

L& Sicizz 3=

By hypothesis we have approximate roois. . ., u, such thafuy — z| < &. Consider
z € B(z, &), which entails|z— uy| < 28 The inequality 8 < |ux —u;j| for all j # k
implies (3n— 3) &+ 28+ &; < |ux — uj| and thus

|z—zj| > |ug—uj| — 28— 0; > (3n—3) & forall j #k.

i - 1 - - 1
This ensures thaﬁl;—fj‘] < (333)@ = ) whencdzj#;—%\ < Z#k\;—z‘\ < 3and
=%
LEE It I
_ = 2| = 1_1 "2
LT I
This shows thaf®"(z) — z| < 27 "|z— z| for all ze B(z, &) and alln € N. In particular
this holds for the starting value= uy in B(z, &). O

As an alternative to our tailor-made Proposit®i7, the following theorem of Smale
[6, chap. 8] provides a general convergence criterion in teriitgcal data. It applies in
particular to polynomials, where it is most easily implertesh

Theorem 6.9(Smale 1986) Let f: C > U — C be an analytic function. Consideg& U
such that f(ug) # 0, and letn = |f(up)/f'(uo)| be the initial displacement in Newton’s
iteration. Suppose that(£) = S, c(z— up) for all z € B(up, 2n). If

loel < (8n) K| forallk > 2,
then f has a unique zerg in B(up,2n), and Newton’s iteration converges as

|®"(Ug) — 20| < 2V Jup—2|  forallneN.
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6.4. Cauchy index computation. In this section we briefly consider bit-complexity. To
simplify we shall work over the rational numbe@s ForR,S< Q[X], with gcdR,S) =1
say, we wish to calculate a Sturm ch&@n= S, =R,...,$=1,5,.1 = 0 such that

(6.1) S 1+ bSe1 = QS with  Q € Q[X] anday, by € Q.

Applying the usual euclidean algorithm to polynomials ofjcee< n, this takesO(n%)
arithmetic operations ifp. This over-simplification, however, neglects the notosipuob-
lem of coefficient swell, which plagues naive implememtasi with exponential running
time. This difficulty can be overcome replacing the euclide=mainder sequence by sub-
resultants, which were introduced by Sylvest&8][ Habicht [21] systematically studied
subresultants and used them to construct Sturm chains vdoesicients are polynomial
functions in the input coefficients, and not rational fuaos as given by euclidean divi-
sion. Subresultants have become a highly developed to@ropater algebra; we refer to
Gathen—GerhardlB, chapters 6 and 11] and the references cited therein. Thiddhe
taken into account when choosing or developing a librarypfdynomial arithmetic.

Annotation 6.1. (Data management)The constructionof the Sturm chain is the most expensive step in the
above root-finding algorithm. In the real case we have to tcoasthis chain only once because we can reuse
it in all subsequent iterations. In the complex case, eagmeat requires a separate computation: it is thus
advantageous to store each segment with its correspondimm $hain, and each square with the four Sturm
chains along the boundary, so as to reuse precious data #isampossible.

Theorem 6.10. Let F = ¢,Z" 4+ ¢p_1Z" 1 + --- + c1Z + o be a polynomial of degree n
with Gaussian integer coefficients such tjraty| < 22 and|imcy| < 22forallk=0,...,n.
Suppose that all roots of F lie in the disk3. The above root-finding algorithm determines
all roots of F to a precisior8r /2P requiring O(n®b(a+ nb)) bit-operations.

Here the asymtotic complexity neglects logarithmic factors.

Proof. Suppose thaR,S< Z[X] are of degreec n and all coefficients are bounded By=
28, According to Lickteig—Roy30] and Gathen—Gerhard, Cor. 11.17] the subresultant
algorithm require@(nza) bit-operations. This has to be iteratedimes; coefficients are
bounded byA = 221b_ Since we assume all roots to be distinct, they ultimatelyobee
separated so that the algorithm has to folloapproximations in parallel. This multiplies
the previous bound by a factab, so we arrive a©(n3b(a+ nb)) bit-operations. O

Annotation 6.2. (Simplicity) The algebraic algorithm is straightforward to implementept for two standard
subalgorithms, namely fast integer arithmetic and fastesuitant computation for integer polynomials. These
subalgorithms are theoretically well-understood, andr tbemplexity bounds are known and nearly optimal.
Their implementation is laborious, but is available in gah@urpose libraries for integer and polynomial arith-
metic. The algebraic algorithm uses exact arithmetic anappooximations. This ensures that we do not have to
worry about error propagation, which simplifies (formalyreztness proofs.

Annotation 6.3. (Parallelization) We can adapt the algorithm to find onbne root of F, and according to

the preceding proof its complexity é(nzb(a-i- nb)), again neglecting terms of order lgy. This approach is
parallelizable: whenever bisection separates the rotdsnion-empty clusters, these can then be processed by
independent computers working in parallel. The parallehptexity thus drops tdf)(nzb(a+ nb)).

6.5. What remains to be improved? Root-finding algorithms of bit-complexil@(nz(nJr
b)) are the world record since the ground-breaking work of 8blage #7] in the 1980s.
Cauchy’s algebraic method is of complexﬁ){n“bz) and thus comes close, but in its cur-
rent form it remains one order of magnitude more expensigkoBhage remarks:

It is not clear whether methods based on Sturm sequencesosaibly
become superior. Lehme29| and Wilf [66] both do not solve the ex-
tra problems which arise, if there is a zero on the test caritcle or
rectangle) or very close to it4f, p. 5]

Notice that we have applied tltivide-and-conqueparadigm in the arithmetic subal-
gorithms, but not in the root-finding method itself. In Sohéage’s method this is achieved
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by approximately factoring of degreen into two polynomiald=;, F, of degrees close to
5. ltis plausible but not obvious that a similar strategy canplot into practice in the
algebraic setting. Some clever idea and a more detailedtigation are needed here.

Our development neatly solves the problem of roots on thenthary. Of course, ap-
proximating the roots of a polynomi&l € C[Z] can only be as good as the initial data,
and we therefore assume thais known exactly. This is important because root-finding
is an ill-conditioned problem, see Wilkinso67. Even if exact arithmetic can avoid this
problem during the computation, it comes back into focusmwie initial data is itself
only an approximation. In this more general situation tre-edgebraic approach requires
a detailed error analysis, ideally in the setting of inttarghmetic and recursive analysis.

6.6. Formal proofs. Inrecentyears the theory and practicéarmal proofsandcomputer-
verified theorembas become a fully fledged enterprise. A prominent and mustiudsed
example is the Four Colour Theorem, see Gontt#6}. [The computer-verified proof com-
munity envisages much more ambitious projects, such addhsification of finite simple
groups. See thblathematical Components Manifesigp Gonthier, Werner, and Bertot at
www.msr-inria.inria.fr/projects/math/manifesto.html.

Such gigantic projects make the Fundamental Theorem oftddglok like a toy ex-
ample, but its formalization is by no means a trivial task. ohstructive proof, along the
lines of Hellmuth Kneser (1940) and Martin Kneser (1981% haen formalized by the
FTA project at Nijmegenwww.cs.ru.nl/~freek/fta) using the ©Q proof assistant
(pauillac.inria.fr/coq). Work is in progress so as to extract the algorithm impiicit
the proof g-corn.cs.ru.nl).

The real-algebraic approach offers certain advantagds)yrts conceptual simplicity
and its algorithmic character. The latter is an additiongddértant aspect: the theorem is
not only an existence statement but immediately transtatas algorithm. A formal proof
of the theoremwill also serve as a formal proof of thieplementation As a first step,
Mahboubi B2] discusses a formal proof of the subresultant algorithm.

Annotation 6.4. (Ongoing debate)Computer-assisted proofs have been intensely debatedhe@indgcope and
mathematical reliability have been questioned. The agpraastill in its infancy compared to traditional view-
points, and its long-ranging impact on mathematics remaite seen.

We should like to emphasize that the formalization of matiggal theorems and proofs and their computer
verification may be motivated by several factors. Some irasr of varying difficulty, have been formalized in
order to show that this is possible in principle and to gaecpical experience. While pedagogically important
for proof formalization itself, the traditional mathen@in will find no added value in such examples.

More complicated theorems, such as the examples abovearwam intrinsic motivation for formalization
and computer-verified proofs, because there is an enormonber of cases to be solved and verified. Whenever
human fallibility becomes a serious practical problem,rathese cases, a trustworthy verification tool clearly
has its merit. This is particularly true if the mathematioaddel is implemented on a computer, and a high level
of security is required. Itis in this realm that computesisted correctness proofs are most widely appreciated.

7. HISTORICAL REMARKS

The Fundamental Theorem of Algebra is a crowning achieverimethe history of
mathematics. In order to place our real-algebraic apprao#ohperspective, this section
sketches its historical context. For the history of the Famdntal Theorem of Algebra |
refer to Remmert41], Dieudonné 13, chap. I1,§lll], and van der WaerdersfL, chap. 5].
The history of Sturm’s theorem has been examined in greahdspSinaceur49].

7.1. Solving polynomial equations. The method to solve quadratic equations was known
to the Babylonians. Not much progress was made until the détitury, when del Ferro
(around 1520) and Tartaglia (1535) discovered a solutiordibic equations by radicals.
Cardano’s student Ferrari extended this to a solution oftguequations by radicals. Both
formulae were published in Cardan@ss Magnain 1545. Despite considerable efforts
during the following centuries, no such formulae could benfd for degree 5 and higher.
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They were finally shown not to exist by Ruffini (1805), Abel 28}, and Galois (1831).
This solved one of the outstanding problems of algebra,ialtéee negative.

The lack of general formulae provoked the question whetbleitions exist at all. The
existence oh roots for each real polynomial of degraevas mentioned by Roth (1608)
and explicitly conjectured by Girard (1629) and Descarie&3{). They postulated these
roots in some extension d& but did not claim that all roots are contained in the field
C =R]i]. Leibniz (1702) even speculated that this is in general nesjble.

The first proofs of the Fundamental Theorem of Algebra wetdiglied by d’Alembert
(1746), Euler (1749), Lagrange (1772), and Laplace (178bhis doctoral thesis (1799)
Gauss criticized the shortcomings of all previous tenéstignd presented his first proof,
which ranks among the monumental achievements of mathesnati

7.2. Gauss'’ first proof. Gauss considets = Z" +¢,_1Z" 1+ --- 4+ ¢1Z 4 ¢o; upon sub-
stitution of Z = X +1iY he obtainsF = R+ iS with R S€ R[X,Y]. The roots ofF are
precisely the intersections of the two curi®s: 0 andS= 0 in the plane. Near a circi&”
with sufficiently large radius around 0, these curves resemhiose 0Z". The latter are 2
straight lines passing through the origin. The cir@lethus intersects each of the curves
R=0andS=0in 2n points placed in an alternating fashion around the circle.
Prolongating these curves into the interiof9fGauss concludes that the curiRs: 0
andS= 0 must intersect somewhere inside the circle. This commiugtlies on certain
(intuitively plausible) assumptions, which Gauss cleatbtes but does not prove.

Satis bene certe demonstratum esse videtur, curvam aigairaeque
alicubi subito abrumpi posse (uti e.g. evenitin curva tsaradente, cuius
aequatioy = 1/logx), neque post spiras infinitas in aliquo puncto se quasi
perdere (ut spiralis logarithmica), quantumque scio neatmu contra
hanc rem movit. Attamen si quis postulat, demonstrationelisrdubiis
obnoxiam alia occasione tradere suscipiafh9, Bd. 3, p. 27]

To modern standards Gauss'’ first proof is thus incomplete.uFtproven assertions are
indeed correct, and have later been rigorously worked o@diyowski B6, 37].

Notice that Gauss’ argument show&= |0l ) = n by an implicit homotopy ~ Z", and
our development of the algebraic winding number exhibits@tsand rigorous path to the
desired conclusion. Our proof can thus be considered asgaralic version of Gauss’
first proof, suitably completed by the techniques of Sturh @auchy, and justified by the
intermediate value theorem.

7.3. Gauss’ further proofs. Gauss gave two further proofs in 1816, and a fourth proof
in 1849 which is essentially an improved version of his firsdgé [61, chap.5]. The
second proofis algebrai§{.8.2, the third proof uses integratiofid.8.3 and foreshadows
Cauchy’s integral formula for the winding number.

When Gauss published his fourth proof in 1849 for his dod¢&ojabilee, the works
of Sturm (1835) and Cauchy (1837) had been known for seveaisy and in particular
Sturm’s theorem had immediately risen to internationaladst In principle Gauss could
have taken up his first proof and completed it by argumentgagito the ones presented
here. This has not happened, however, so we can specule@sihss was perhaps unaware
of the work of Sturm, Cauchy, and Sturm—Liouville on compiewnts of polynomials.
Completing Gauss’ geometric argument, Ostrow&ki] [mentions the relationship with
the Cauchy index but builds his proof on topological arguteen

1 |t seems to have been proved with sufficient certainty thailgebraic curve can neither suddenly break
off anywhere (as happens e.g. with the transcendental eumese equation ig = 1/logx) nor lose itself, so to
say, in some point after infinitely many coils (like the loigfamic spiral). As far as | know, nobody has raised any
doubts about this. Should someone demand it, however, théhundertake to give a proof that is not subject to
any doubt, on some other occasion. (Adapted from Prof. Eff@®dreyer’s translation, Fitchburg State College
Library, Manuscript Collectionsyww. fsc.edu/library/archives/manuscripts/gauss.cfm)
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7.4. Sturm, Cauchy, Liouville. In 1820 Cauchy proved the Fundamental Theorem of
Algebra, using the existence of a global minimagof |F| and a local argument showing
thatF(z) = 0, see§7.8.1 While the local analysis is rigorous, global existenceuiess
some compactness argument, which was yet to be developeResemert41, §1.8].

Sturm’s theorem for counting real roots was announced if® 187 and published in
1835 B2). It was immediately assimilated by Cauchy in his residulewdas [8], based
on complex integration, which was published in 1831 duriigydxile in Turin. In 1837
he published a more detailed expositi®h\yith analytic-geometric proofs, and explicitly
recognizes the relation to Sturm’s theore9ngp. 426—427,431].

In the intervening years, Sturm and Liouvilleq, 53] had elaborated their own proofs
of Cauchy’s theorem, which they published in 1836. (Lo8&][and Sinaceur49, 1.VI]
examine the interaction between Sturm, Liouville, and @auo detail.) As opposed
to Cauchy, their arguments are based on what they call thst ffiinciples of algebra”.
In the terminology of their time this means the theory of céermumbers, including
trigonometric coordinates = r(cosf + isin@) and de Moivre’s formula, but excluding
integration. Furthermore they use sign variations and,oofse, the intermediate value
theorem of real functions, as well as tacit compactnessaegts.

7.5. Sturm’s algebraic vision. Sturm, in his article $3] continuing his work with Liou-
ville [55], presents arguments which closely parallel our realfaigie proof: the argument
principle (Prop. 1, p. 294), multiplicativity (Prop. 2, @%), counting roots of a split poly-
nomial within a given region (Prop. 3, p. 297), the windingmher in the absence of zeros
(Prop. 4, p.297), and finally Cauchy’s theorem (p.299). Oneial step is to show that
w(F|oT) = 0 whenF does not vanish iff. This is solved by subdivision and a tacit com-
pactness argument (pp. 298-299); our compactness prodiedrém5.3 completes his
argument. Sturm then deduces the Fundamental Theorem ebrddpp. 300-302) and
expounds on the practical computation of the Cauchy indé(Jl™) using Sturm chains
as in the real case (pp. 303-308).

Sturm’s exposition strives for algebraic simplicity, bus larguments are ultimately
based on geometric and analytic techniques. It is only orfitfa¢ pages that Sturm em-
ploys his algebraic method for computing the Cauchy indetis Thixed state of affairs
has been passed on ever since, even though it is far lessiatig than Sturm'’s purely
algebraic treatment of the real case. Our proof shows tharf3t algebraic vision of the
complex case can be salvaged and his arguments can be puhardiralgebraic ground.

We note that Sturm and Liouville explicitly exclude zerostba boundary:

Toutefois nous excluons formellement le cas particuligrpmur quelque
point de la courb@BC, on aurait a la foi$> = 0, Q = 0 : ce cas particu-
lier ne jouit d’aucune propriété réguliere et ne peutéer lieu a aucun
theorémé [55, p. 288]

This seems overly pessimistic in view of our Theorgr@ above. In his continuation
[53], Sturm formulates the same problem much more cautiously:

C’est en admettant cette hypothese que nous avons déntetiieoreme
de M. Cauchy; les modifications qu'il faudrait y apporter slécas ou
il aurait des racines sur le contour méARC, exigeraient une discussion
longue et minutieuse que nous avons voulu éviter en faastraction
de ce cas particuli€f{53, p. 306]

2 we formally exclude, however, the case where for some pdittieocurveABC we have simultaneously
P = 0 andQ = 0: this special case does not enjoy any regular property amdat give rise to any theorem.

3 Jtis under this hypothesis that we have proven the theoreMro€auchy; the necessary modifications in
the case where roots were on the contdBC would require a long and meticulous discussion, which weshav
wanted to avoid by neglecting this special case.
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It seems safe to say that our detailed discussion is jusbag ‘@nd meticulous” as the
usual development of Sturm’s theorem. Modulo these dethitscited works of Gauss,
Cauchy, and Sturm contain the essential ideas for the tgabeaic approach. It remained
to work them out. To this end our presentation refines thentgcies in several ways:

e \We purge all arguments of transcendental functions and aotnpss assumptions.
This simplifies the proof and generalizes it to real closdddie

e The product formulagd.5 and homotopy invariancé%.3) streamline the proof
and avoid tedious calculations.

e The uniform treatment of boundary points extends Sturméstbm to piecewise
polynomial functions and leads to straightforward aldoris.

7.6. Further development in the 19th century. Sturm’s theorem was a decisive step in
the development of algebra as an autonomous field, indepeotianalysis, in particular
in the hands of Sylvester and Hermite. For a detailed disonsee Sinaceudp).

In 1869 Kronecker 27] constructed his higher-dimensional index (also calle@-Kr
necker characteristic) using integration. His initial imation was to generalize Sturm’s
theorem to higher dimensions, extending previous work d¥esfer and Hermite, but he
then turned to analytic methods. Subsequent work was lgeWwuilt on analytic meth-
ods overR: one gains in generality by extending the index to smoothvene&ontinuous
functions, but one loses algebraic generality, simplietyd computability.

The problem oftability of motionled Routh 2] in 1878 and Hurwitz 23] in 1895 to

count the number of complex roots having negative real p#ith the celebrated Routh—
Hurwitz theorem, the algebraic index has transited fronelalg to application, where it
survives to the present day. In the 1898cyklofadie der mathematischen Wissenschaften
[34, Band I], Netto’s survey on the Fundamental Theorem of Alg€§i-B1a7) mentions
Cauchy’s algebraic approach only briefly (p. 236), while &eia article on approximation
of complex roots {I-B3a6) discusses Cauchy’s method in greater detail (pf-42R).
In the 1907Encyclogedie des Sciences M&matiqueg35], Netto and le Vavasseur give
an overview of nearly 100 published proofs (tome I, vok&)—88), including Cauchy’s
argument principle§87). The work of Sturm—Liouville§5, 53] is cited but the algebraic
approach via Sturm chains is not mentioned.

7.7. 19th century textbooks. While Sturm’s theorem made its way from 19th century
algebra to modern algebra textbooks and is still taughtytoitlaeems that the algebraic
approach to the complex case has been lost on the way. Letlustrdte this by two
prominent and perhaps representative textbooks.

In his 1877 textboolCours d’algebre sugrieure Serret 18, pp. 118—-132] presents the
proof of the Fundamental Theorem of Algebra following Caueimd Sturm-Liouville,
with only minor modifications. Two decades later, Weber deg@ver 100 pages to real-
algebraic equations in his 1898 textbdo&hrbuch der Algebr&62], where he presents
Sturm’s theorem in great detaf/q1-106). Calling upon Kronecker’s geometric index the-
ory (§100-102), he sketches how to count complex rop1®8-104). Quite surprisingly,
he uses only in@%) and Corollary3.23where the general case i(’@) and Theoren3.20
would have been optimal. Here Cauchy’s algebraic met®pdapparently unknown to
Weber, had gone much further concerning explicit formulasd@ncrete computations.

7.8. Survey of proof strategies. Since the time of Gauss numerous proofs of the Funda-
mental Theorem of Algebra have been developed. We refermmiat 1] for a concise
overview and to Fine—Rosenberg&6] for a text-book presentation. As mentionedin2,

the proof strategies can be grouped into three families:

7.8.1. Analysis. Proofs in this family are based on the existence of a globairmimz, of
|F| and some local argument from complex analysis showingRkzf) = 0 (d’Alembert
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1746, Argand 1814, Cauchy 1820). See Remm&tt §2] for a presentation in its his-
torical context, or Rudin45, chap. 8] in the context of a modern analysis course. In its
most succinct form, this is formulated by Liouville’s thean for entire functions. Such
arguments are in general not constructive; for constractlinements sed], §2.5].

7.8.2. Algebra. Proofs in this family use the fundamental theorem of symimeiwlyno-
mials in order to reduce the problem from real polynomialsedree ¥m with m odd to
degree ¥ In7 with m odd (Euler 1749, Lagrange 1772, Laplace 1795, Gauss 1846, se
[41, appendix]). The argument can be reformulated using Géheisry, see Cohnifl,
Thm. 8.8.7], Jacobsor2h, Thm.5.2], or Lang 28, §VI.2, Ex.5]. The induction is based,
for k=0, on real polynomials of odd degree, where the existenceleat one real root is
guaranteed by the intermediate value theorem. This algeraof thus works over every
real closed field. It is constructive but ill-suited to adtc@mputations.

7.8.3. Topology. Proofs in this family use some form of the winding numbély) of
closed pathy: [0,1] — C* (Gauss 1799/1816, Cauchy 1831/37, Sturm—Liouville 1836).
The winding number appears in various guises, see Ref&rkin each case the diffi-
culty is a rigorous construction and to establish its charéstic properties: normalization,
multiplicativity and homotopy invariance, as stated in dteml.2

Our proof belongs to this last family. Unlike previous predfiowever, we do not base
the winding number on analytical or topological argumenitisdn real algebra.

7.9. Constructive and algorithmic aspects. Sturm’s method is eminently practical, by
the standards of 19th century mathematics as for modernrgalgmentations. As early
as 1840 Sylvestebp] wrote “Through the well-known ingenuity and proferred helf a
distinguished friend, I trust to be able to get a machine nfadeorking Sturm’s theo-
rem (...)". It seems, however, that such a machine was neuktr Balculating machines
had been devised by Pascal, Leibniz, and Babbage; the fedtet ucasian Professor of
Mathematics at Cambridge when Sylvester studied theresid 830s.

The idea of computing machinery seems to have been commamgamid-19th century
mathematicians. In a small note of 1846, Ullh&d@][remarks that the argument principle
leads to a complex root-finding algorithm: “Die bei dem endBeweise gebrauchte Be-
trachtungsart giebt ein Mittel an die Hand, die Wurzeln d&dren Gleichungen mittels
eines Apparates mechanisch zu findémo details are given.

For separating and approximating roots, the state of tret #re end of the 19th century
has been surveyed in Rung&acyklof@diearticle [34, Band |,§1-B3a].

In 1924 Wey! B4] reemphasized that the analytic winding number can be wsédd
and approximate the roots &f. In this vein Weyl formulated his constructive proof of
the Fundamental Theorem of Algebra, which indeed trarskatan algorithm: a careful
numerical approximation can be used to calculate the inte¢le|dl), see Henrici 22,
§6.11]. While Weyl's motivation may have been philosophidgis the practical aspect
that has proven most successful. Variants of Wey!'s aljoriare used in modern computer
implementations for finding approximate roots, and are agrtbe asymptotically fastest
known algorithms. The question of algorithmic complexitgsmpursued by Schonhage
[47] and others since the 1980s. See P28 for an overview.

The fact that Sturm’s and Cauchy'’s theorems together capblésd to count complex
roots seems not to be as widely known as it should be. In th® P86ceedingslZ] on
constructive aspects of the Fundamental Theorem of Alg&aachy’s algebraic method
is not mentioned. LehmeRf] uses a weaker form, the Routh—Hurwitz theorem, although
Cauchy’s general result would have been better suited. lg&imethod reappears in 1978
in a small note by Wilf §6], and is briefly mentioned in Schonhage’s technical reptst

4 The viewpoint used in the first proof provides a method to fimel toots of higher-degree equations by
means of a mechanical apparatus.
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p.5]. Most often the computer algebra literature credityMér the analytic-numeric al-
gorithm, and Lehmer or Wilf for the algebraic-numeric mathbut not Cauchy or Sturm.
Even if Cauchy’s index and Sturm’s algorithm are widely ygbeir algebraic contribu-
tions to complex root location seem to be largely ignored.
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APPENDIXA. APPLICATION TO THEROUTH—HURWITZ STABILITY THEOREM

The algebraic winding number is a versatile tool beyond tlnedamental Theorem of
Algebra. In certain applications it is important to detemmivhether a given polynomial
F € C[Z] has all of its roots in the left half plar®e.o = {z€ C | re(z) < 0}. This question
originated from the theory of dynamical systems and the lprolof stability of motion

ExampleA.1l. Let A € R™" be a square matrix with real coefficients. The differential
equationy’ = Ay with initial conditiony(0) = yp has a unique solutioh: R — R" given

by f(t) = exp(tA)yo. In terms of dynamical systems, the origin= 0 is a fixed point; it

is stableif all eigenvaluesiy, ..., A, € C of A satisfy re\x < 0: in this case expA) has
eigenvalues expAy) of absolute value< 1. The matrix exftA) is thus a contraction for
allt > 0, and every initial value is attrated éo=0, i.e., f(t) — 0 fort — +oo.

ExampleA.2. The previous argument holds locally around fixed points gfdmamical
system given by a differential equatigh= ®(y) where®: R" — R" is continuously dif-
ferentiable. Suppose thats a fixed point, i.e.®(a) = 0. It is stableif all eigenvalues of
the matrixA = @'(a) € R™" have negative real part: in this case there exists a neighbou
hoodV of athat is attracted ta: every trajectoryf : R>o — R", satisfyingf’(t) = ®(f(t))
forallt > 0, starting atf (0) € V satisfiesf (t) — afort — +oo.

GivenF € C[Z] we can determine the number of roots with positive real parply
by considering the rectangle= [0, r] x [—r,r] and calculatingv(F |dI") for r sufficiently
large. (One could use the Cauchy radagsdefined in§5.4) Routh’s theorem, however,
offers a simpler solution by calculating the Cauchy indenglthe imaginary axis. This is
usually proven using complex integration, but here we wilea real-algebraic proof. As
usual we consider a real closed fi@dnd its extensio€ = R[i] with i? = —1.

Definition A.3. For every polynomiaF € C[Z]* we define itsRouth indexas
. i . 1 i
(A1) Routh(F) :=ind; (iﬁFF((Ip)) + 'ndtlﬁ ( i:iFF((Ii//p))
for some arbitrary parametee R-; the result is independent by Propositior8.10(b).

RemarkA.4. We can decompode(iY ) = R+iSwith R, S R[Y] and compare the degrees

m= degSandn = degR. If m> n, then the fractio %3 = i::g((im has no pole in 0, so
the second index vanishes fosufficiently large, and Equatioi\(1) simplifies to

(A.2) Routh{F) = — indfﬁ(iﬁi<(ip)).

ExampleA.5. In general the second index in Equatién) cannot be neglected, as illus-
trated byF = (Z—1)(Z— 2): hereF(iY) = —Y? - 3iY — 2, whence

reF(i/Y) _ 1-2Y2
mEG/Y) — 3Y

Both indices in EquationA.1) contribute+1 such that Rouffir) = +2.

reF(iY) _ v2_2
mev) — av and

Lemma A.6. We haveRouthZ — zy) = sign(rez) for all zo € C.
Proof. ForF =Z — zy we findF(iY) = R+iSwith R= —rezy andS=Y —imz. Thus

Routh(F) = —ind”%(§) = ind*% (v5es;) = sign(rezo). O

Lemma A.7. We haveRouth FG) = Routh'F) 4+ Routh(G) for all F,G € C|Z]*.

Proof. This follows from the real product formula stated in Theo#® O
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RemarkA.8. For everyc € C* we have Routft) = 0, whence RoutftF) = Routh(F).
This can be used to ensure the favourable situation of RedrkwhereS=imF(iY)
has at least the same degredras reF (iY). If degS < degR, then it is advantageous to
pass tdF, that is, to make the replaceméR S) — (—-S R).

We can now deduce the following formulation of the famous tRetlurwitz theorem:

Theorem A.9. The Routh index of every polynomiakFC|Z]* satisfies RoutfF) = p—q
where p resp. q is the number of roots of FGrhaving positive resp. negative real part.

Proof. The Fundamental Theorem of Algebra ensures Ehat c(Z —z;)---(Z —zy) in
C[X], so the Routh index formula follows from the preceding lerama O

RemarkA.10. By a linear transformatiom— az+ b, with a € C* andb € C, we can map
the imaginary line onto any other straight line, so we carlyaihye theorem to count roots
in any half-space irf€. The transformatioz — % mapsRi U {«} onto the unit circle,
and the right half plane to the unit disk. Again by linear sfammation we can thus apply

the theorem to count roots in any given diskdn

Routh’s criterion is often applied to real polynomi&ss R[X], as in the motivating
examples above, which warrants the following more detddechulation:

Corollary A.11. Let P=cp+c1X +--- 4+ ¢, X" be a polynomial of degree n ove;, and
let p resp. g be the number of roots of PGrhaving positive resp. negative real part. Then

= ind*ﬁ(!ﬁi,(gpg) if n is odd,
+indf$(':’;§(i% ) ifniseven.

(A.3) p—qg= RouthP) = {

Both cases can be subsumed into the unique formula

Cnflxnil - Cn73Xn73 + e
Can_Cn,ZXn72+... '

(A.4) q—p=ind"y (

This implies Routh'’s criterion: All roots of P have negatieal part if and only if g=n
and p= 0, which is equivalent to saying that the Cauchy indefi) evaluates to n.

Routh’s formulation via Cauchy indices is unrivaled in itglicity, and can immedi-
ately be calculated using Sturm'’s theorej8.7). Hurwitz’ formulation uses determinants,
which has the advantage to produce explicit polynomial idem in the given coefficients.
See Henrici22, §6.7], Marden B3, chap. IX], or Rahman—-Schmeissdf] chap. 11].

APPENDIXB. BROUWER S FIXED POINT THEOREM

Brouwer’s theorem states that every continuous rhaf0,1]" — [0,1]" of a cube in
R" to itself has a fixed point. While in dimension= 1 this follows directly from the
intermediate value theorem, the statement in dimensien2 is much more difficult to
prove: one employs either sophisticated machinery (difféal topology, Stokes’ theo-
rem, co/homology) or subtle combinatorial techniques (&g@es lemma, Nash’s game of
Hex). All proofs use Brouwer’s mapping degree, in a more 6s lexplicit way, and the
compactness db, 1]" plays a crucial rdle. Such proofs are often non-constaetnd do
not address the question of locating fixed points.

Using the algebraic winding number we can prove Brouwegsthm in a constructive
way over real closed fields, restricting the statement frontiouous to rational functions:

Theorem B.1. LetR be a real closed field and let ® € R(X,Y) be rational functions.
Assume that,® have no polesifi = [xo, X1] x [yo,y1], S0 that they define amap f — R?
by f(x,y) = (P(X,y),Q(x,y)). If f(I) C T, then there existse I such that {z) =z. O
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Proof. The essential properties of the algebraic winding numbeedtin Theoreni.2
extend to rational functions without poles. By translatéord homothety we can assume
thatl’ = [—1,+1] x [-1,+1]. We consider the homotopy = id—tf from gy = id to

g1 =id—f. Forze oI we haveg:(z) = 0 if and only ift = 1 andf(z) = z in this case
the assertion holds. Otherwise, we hayéz) # 0 for all ze dI' andt € [0,1]. We can
then apply homotopy invariance to conclude twéd; |0l ) = w(go|dlN) = 1. Theorenb.3
implies that there existse Intl" such thag;(z) = 0, whencef (z) =z O

RemarkB.2. As for the Fundamental Theorem of Algebra, the algebraiofob Theo-
remB.1 also provides an algorithm to approximate a fixed point to@esired precision.
Here we have to assume the ordered fRRltb be archimedean, or equivalen®yC R.
Beginning withl"g = [—1,+1] x [-1,41] and bisecting successively, we can construct a
sequence of subsquarés=Tg > 1 D --- D Ik such thatf has a fixed point o@l"y or

w(id —f|dTk) # 0. In the first case, a fixed point on the boundaFy, is signalled during

the calculation ofw(id —f|dly) and leads to a one-dimensional search problem. In the
second case, we continue the two-dimensional approximatio

RemarkB.3. Tarski's theorem says that all real closed fields share thee sglementary
theory. This implies that the statement of Brouwer’s fixethptheorem generalizes from
the real numberR to every real closed fielR: as formulated above it is a first-order as-
sertion in each degree. Itis remarkable that there existstedfider proof oveR that is as
direct as the usual second-order proof dRelin this article we concentrate on dimension
n= 2, but the algebraic approach generalizes to any finite dsinarfl5].

RemarkB.4. Over the fieldR of real numbers the algebraic version implies the contisuou
version as follows. SincE = [—1,+1] x [-1,+1] is compact, every continuous function
f: I — I can be approximated by polynomiajs: I — R? such thatg, — f| < % The
polynomialsfn = ;70 satisfy fn(I') C I and|fn — f| < % For eacin there existz, € T
such thatf(z,) = z, according to Theorem.1. Again by compactness 6fwe can extract

a convergent subsequence. Assunang- z, we find

112 -2 <12 = F(z)[ +|F(z) - fa(z0)| +[2n =2 = O,
which provesf (z) =z
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