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ABSTRACT The molecular composition of the cell wall is

critical for the biology and ecology of each fungal species.

Fungal walls are composed of matrix components that are

embedded and linked to scaffolds of fibrous load-bearing

polysaccharides. Most of the major cell wall components

of fungal pathogens are not represented in humans, other

mammals, or plants, and therefore the immune systems of

animals and plants have evolved to recognize many of the

conserved elements of fungal walls. For similar reasons the

enzymes that assemble fungal cell wall components are

excellent targets for antifungal chemotherapies and fungicides.

However, for fungal pathogens, the cell wall is often disguised

since key signature molecules for immune recognition are

sometimes masked by immunologically inert molecules.

Cell wall damage leads to the activation of sophisticated

fail-safe mechanisms that shore up and repair walls to

avoid catastrophic breaching of the integrity of the surface.

The frontiers of research on fungal cell walls are moving

from a descriptive phase defining the underlying genes and

component parts of fungal walls to more dynamic analyses

of how the various components are assembled, cross-linked,

and modified in response to environmental signals. This review

therefore discusses recent advances in research investigating

the composition, synthesis, and regulation of cell walls and

how the cell wall is targeted by immune recognition systems

and the design of antifungal diagnostics and therapeutics.

INTRODUCTION

Fungal cell walls are dynamic structures that are essen-
tial for cell viability, morphogenesis, and pathogenesis.
The wall is much more than the outer layer of the fun-
gus; it is also a dynamic organelle whose composition
greatly influences the ecology of the fungus and whose
composition is highly regulated in response to environ-
mental conditions and imposed stresses. A measure of
the importance of the cell wall can be appreciated by the
fact that approximately one-fifth of the yeast genome

is devoted to the biosynthesis of the cell wall (1, 2). Of
these approximately 1,200 Saccharomyces cerevisiae
genes (2), some are concerned with the assembly of the
basic components, others provide substrates for wall
materials, and many regulate the assembly process and
couple this to environmental challenges. They include
genes that encode carbohydrate active enzymes (which
can be found in the CAZy database [http://www.cazy
.org]) (3) and include multigene families of chitin and
glucan synthases as well as remodeling enzymes such as
the glycohydrolases (glucanases, chitinases) and trans-
glycosidases. Many of the building blocks of the cell wall
are conserved in different fungal species (4), while other
components of the wall are species-specific, and there is
perhaps no part of the cell that exhibits more phenotypic
diversity and plasticity than the cell wall.

Walls are built to be both malleable and mechani-
cally robust. The high total solute concentration inside
fungal cells results in the osmotic uptake of water and
the pressing of the cell membrane onto the wall. The
resulting turgor pressure has been estimated to be be-
tween 0.2 and 10 MPa—equivalent to 2 to 20 times at-
mospheric pressure (5). The melanized cell walls of the
appressoria of some plant pathogens such as Magna-
porthe oryzae can withhold an internal turgor of up
to 20 MPa. These cell walls are the most robust of all
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walls found in nature. Turgor pressure generates the
force that enables hyphae to exert mechanical force on
the substrates they are penetrating (5, 6). Hyphal forces
of between 0.01 and 0.1 μN/μm (5) can be exerted at
the hyphal tips which are sufficient to enable most veg-
etative hyphae to penetrate a stiff 8% (wt/vol) agar.
Wall-less cells are invariably spherical, so the cell wall
of fungi also determines their complex shapes and
changes in cell shape underpinning, morphogenesis, and
cellular differentiation. Because the cell wall is also the
natural interface between the fungus and its environ-
ment, it goes a long way to defining the ecology of fungi
by influencing their interactions with substrates and
other organisms.

For fungal pathogens of humans, the wall induces
innate and adaptive immune responses, and the design
of the cell wall sometimes incorporates immune decoys
and shields (7). Similarly, for plant pathogenic fungi
the cell wall is detected by receptors in the plant cell
that induce local and systemic defense responses (8).
The cell wall provides a valuable source of most diag-
nostic antigens that are used to detect human fungal
infections, and it represents a rich source of unique
targets for chemotherapeutic treatment of pathogens.
Therefore, fungi are in no small measure defined by, and
live through, the interface of their cell walls. Recent
progress has been considerable, yet some of the most
important and elusive questions in fungal cell biology
relate to basic aspects of fungal cell wall biosynthesis
and function. This review focuses on the biosynthesis
and functions of fungal cell walls with an emphasis
on model pathogenic species where the most detailed
information is often available.

COMPOSITION AND STRUCTURE

Structural Organization and Cell Wall Layers
Fundamentally, fungal walls are all engineered in a sim-
ilar way. The wall structure directly affects wall func-
tion and interactions with the environment including
immune recognition by plants and animals. Fibrous
and gel-like carbohydrate polymers form a tensile and
robust core scaffold to which a variety of proteins and
other superficial components are added that together
make strong, but flexible, and chemically diverse cell
walls. Most cell walls are layered, with the innermost
layer comprising a relatively conserved structural skel-
etal layer and the outer layers more heterogeneous and
tailored to the physiology of particular fungi. In most
fungal species the inner cell wall consists of a core of

covalently attached branched β-(1,3) glucan with 3 to
4% interchain and chitin (9, 10). β-(1,3) Glucan and
chitin form intrachain hydrogen bonds and can assemble
into fibrous microfibrils that form a basket-like scaffold
around the cell. This exoskeleton represents the load-
bearing, structural component of the wall that resists the
substantial internal hydrostatic pressure exerted on the
wall by the cytoplasm and membrane. This branched
β-(1,3):β-(1,6) glucan is bound to proteins and/or other
polysaccharides, whose composition may vary with the
fungal species (Fig. 1). However, yeast cells have bud
scars that tend to have fewer outer cell wall layers
covering them and therefore have exposed inner wall
chitin and β-(1,3) glucan (11). The inner walls of many
fungal spores and so-called black yeasts contain com-
plex amorphous polymerized phenolic compounds
called melanins, which also add protection—particularly
from oxidants and some exoenzymes.

The outer layers of fungi vary much more than the
inner skeletal layer (Fig. 1). Yeasts such as Candida and
Saccharomyces species and the human pathogen Pneu-
mocystis jiroveci have an outer cell wall comprising
highly mannosylated glycoproteins that covers the inner
wall. In the yeast cells of some polymorphic fungi such
as the human pathogen Histoplasma capsulatum, the
outer wall has a layer of α-(1,3) glucan that prevents
dectin-1-mediated immune recognition of the underlying
β-(1,3) glucan by immune cells (12).

α-(1,3) Glucan plays a prominent role in the organi-
zation of the cell wall of many human pathogens but
is absent from the Candida and Saccharomyces cell
walls. In Aspergillus, an α-(1,3) glucan along with some
other amorphous polysaccharides is represented in the
alkali-soluble cell wall fraction (13). The basidiomyce-
tous yeast Cryptococcus has a cell wall that is enveloped
by a gelatinous capsule composed of glucuronoxylo-
mannan (GXM) and galactoxylomannan (Fig. 1) and
that is anchored to the main wall via α-(1,3) glucan
(14). The GXM (∼90% of the mass of the capsule) is
composed of α-(1,3)-linked mannan with glucuronic
acid, xylose, and O-acetyl branches. The galactoxylo-
mannan is composed of an α-(1,6) galactomannan
(GM) backbone with GM side chains substituted with
variable numbers of xylose residues (Fig. 1). The syn-
thesis of the Cryptococcus neoformans capsule poly-
saccharides remains incompletely understood, and few
transglycosidases involved in this process have been
characterized (15, 16). Interestingly, it has been shown
that capsule polysaccharides are synthesized intracellu-
larly and secreted via exocytosis through the cell wall
(17).
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FIGURE 1 Structural organization of the cell walls of fungal pathogens. The upper panels show transmission electronmicrograph

sections of the cell walls, revealing mannoprotein fibrils in the outer walls of C. albicans, the fibril-free cell wall of an A. fumigatus

hypha, and the elaborate capsule of C. neoformans. The cartoons (below) show the major components of the wall and current

hypotheses about their interconnections. Most fungi have a common alkali-insoluble core of branched β-(1,3) glucan, β-(1,6)

glucan, and chitin but differ substantially in the components that are attached to this. In C. albicans, the outer wall is heavily

enriched with highly mannosylated proteins that are mostly attached via glycosylphosphatidylinositol remnants to β-(1,6) glucan

and to the β-(1,3) glucan-chitin core. In A. fumigatus, typical of many filamentous fungi, mannan chains are of lower molecular

weight and are modified with β-(1,5) galactofuran. These mannans are not components of glycoproteins but are attached directly

to the cell wall core. The cell wall core polysaccharides of A. fumigatus are β-(1,3)-β-(1,4) glucans and are attached to an outer

layer of alkali-soluble linear α-(1,3)(1,4) glucan. Conidial walls of Aspergillus have an outer hydrophobin rodlet layer of highly

hydrophobic portions (hydrophobins) and a melanin layer; hyphae of Aspergillus have α-(1,3) glucan GM, and galactos-

aminoglycan (GAG) in the outer cell wall and limited glycosylated proteins. In C. neoformans, an outer capsule is composed of

glucuronoxylomannan (GXM) and lesser amounts of galactoxylomannan (GalXM). The capsule is attached to α-(1,3) glucan in the

underlying wall, although peptides or other glycans may also be required for anchoring the capsule to the cell wall. The inner wall

has a β-(1,3) glucan-β-(1,6) glucan-chitin core, but most of the chitin is deacetylated to chitosan, and some of the chitosan/chitin

may be located further from the membrane. C. neoformans also has a layer of melanin whose precise location is not known, but

it may be incorporated into several cell wall polysaccharides and may assemble close to the chitin/chitosan layer. Pneumocystis

cell walls may lack chitin and the outer chain N-mannans but retain core N-mannan and O-mannan modified proteins (56).

Hyphae of H. capsulatum and Blastomyces dermatitidis have an outer cell wall layer of α-(1,3) glucan that prevents efficient

immune recognition of β-(1,3) glucan in the inner cell wall. (From reference 7, with permission.)
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The conidial spores and aerial hyphae of mold are
often covered by highly hydrophobic proteins called
hydrophobins that form rodlets that protect the spores
from enzymes, oxidants, and foraging phagocytes (18).
For example, the conidial rodlet protein RodA of Asper-
gillus fumigatus prevents alveolar macrophages from
inducing an immune response, which is delayed until
this layer cracks upon spore swelling and germination
(Fig. 1) (19, 20). However, once the integrity of the rod-
let layer of these spores is breached, then the underlying
galactosaminoglycan (GAG) and GM and β-(1,3) glucan
layers can be recognized by alveolar macrophages, en-
abling the innate immune response to be initiated (21).

The individual components of the cell wall are cova-
lently cross-linked to one another. In A. fumigatus, the
branched β-(1,3)(1,6) glucan is covalently bound to chi-
tin, a linear β-(1,3)(1,4) glucan with a [3Glcβ1-4Glcβ1]
repeating unit and a branched galactomannan composed
of a linear α-mannan with a repeating mannose oligo-
saccharide unit [6Manα1-2Manα1-2Manα1-2Manα] and
short chains of β-(1,5) galactofuranose residues (22).
InCandida albicans, β-(1,3) glucan is bound to chitin and
β-(1,6) glucan, a polymer that is absent from A. fumi-
gatus. InC. albicans, β-(1,6) glucan plays an essential role
in the structural organization of the cell wall (23) inter-
connecting β-(1,3) glucan and chitin (Fig. 1). In C. neo-
formans and most other fungi, the covalent linkages
between glucans and the other polymers have not been
investigated.

In C. albicans and S. cerevisiae, β-(1,6) glucan acts
as a linker molecule binding cell wall proteins (CWPs)
to the β-(1,3) glucan-chitin skeleton via a glycosylphos-
phatidyl inositol (GPI) remnant (24). In yeast cells of
these species, the CWPs represent 30 to 50% of the
dry mass of the wall, of which only 10 to 20% is poly-
peptide. A few proteins with internal repeats (Pir) can be
attached directly to β-(1,3) glucan via an alkali-sensitive
O-linkage via a mannose side chain (24). In A. fumi-
gatus, the cell wall has a much reduced glycol protein
content, and galactosylated mannoproteins are not cell
wall-associated and are secreted proteins in transit in the
cell wall.

This general arrangement places the structural ele-
ments of the cell wall close to the membrane to provide
mechanical support, and places the gel-like or hydro-
phobic polymers to the outside where they can protect
the load-bearing elements from degradative enzymes in
the environment or act as adhesins to anchor the cell to
substrata. A major unresolved issue is how the cell wall
polysaccharides and membrane proteins are bound to-
gether to guide the cell wall morphogenesis.

Biofilms
Some of the external gel-like polymers of the outer sur-
face of fungi are extremely well organized, such as in
the capsule of C. neoformans, while other fungi, such as
some Candida species, form biofilms growing on solid
surfaces, where the extracellular matrix has a more loose
structure composed of glucans, chitin, nucleic acids, and
other polymers (25, 26). On top of the C. neoformans
capsule there may also be a superficial biofilm that con-
tains GXM as well as polysaccharides that differ from
those found in the capsule, with significant amounts of
glucose and fucose (27). Biofilms of Pneumocystis carinii
andC. albicans are rich in β-(1,3) glucans and DNA (28–
30), while Candida tropicalis has a biofilm matrix rich
in GlcNAc (31). In C. albicans, growth of the fungus
in a biofilm community results in cell wall architectural
changes. In A. fumigatus, the extracellular matrix plays
an essential role in the organization of the colony by
gluing together mycelial threads and is composed of
25% polysaccharides and 70% monosaccharides with
some hydrophobic proteins and melanin. The extra-
cellular matrix of A. fumigatus contains α-(1,3) glucan,
GM, and GAG, like the outer cell wall layer (32), and in
contrast to other species, lacks β-(1,3) glucan and chitin.
In human pathogens this biofilm material has been im-
plicated in blocking recognition and immune capture
by phagocytic cells.

GENETICS, ENZYMOLOGY,
AND BIOSYNTHESIS

Biosynthesis of the Polysaccharides
Polysaccharides such as chitin and glucan are synthe-
sized at the plasma membrane (PM) by transmembrane
enzymatic complexes that are targeted to the PM in an
inactive form via secretory vesicles and then activated
after insertion into the PM (see below). This is in con-
trast to mannans and other glycoconjugates that are
synthesized in the endoplasmic reticulum and Golgi,
where they may be conjugated to cell wall proteins, and
then brought to the cell wall by the classical secretory
route via secretory vesicles. All synthases use nucleo-
tide diphosphate-sugars as substrates, so enzymes of
the metabolic pathways responsible for the synthesis of
nucleotide sugars are essential for the construction of the
cell wall and are rate-limiting.

Core Polysaccharides:
Chitin and β-(1,3) Glucan
The major synthases that make chitin and glucans reside
in the PM and use UDP-sugars as the substrate for the
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formation of the nascent polysaccharide that is extruded
into the cell wall (Fig. 2A). In the cell wall, polysaccha-
rides can then hydrogen-bond together or be cross-
linked or branched by enzymes that reside in the cell wall
(Fig. 2B,C). The pathway of cell wall synthesis therefore
comprises biosynthetic reactions that take place inside
the cell in the Golgi, at the PM, and in the cell wall itself.

UDP-N-acetylglucosamine is the substrate for chitin
synthesis. Chitin is composed of linear chains of β-(1,4)
N-acetylglucosamine and represents the most ancestral
structural polysaccharide in the fungal cell wall. Fami-
lies of chitin synthases responsible for the synthesis
of chitin have been identified bioinformatically, with
molecular weights of 100 to 130 kDa. The exact bio-
chemical functions of many chitin synthase isoforms
remain to be established (33–36), and although some
isoforms may have redundant functions, in several spe-
cies there is evidence that individual chitin synthase
enzymes perform distinct and specific functions under
normal growth conditions. Although the enzymological
product of all chitin synthase enzymes is a homopoly-
mer with only one linkage, individual chitin synthase
enzymes can synthesize chitin fibrils of differing archi-
tecture, perhaps due to differences in the folding and in-
trachitin hydrogen bonding of the primary chain (37).
Two families of fungal chitin synthases with three classes
in the first family (I, II, III) and four classes in the second
family (IV, V, VI, VII) have been identified based on
amino acid sequence (38). Four classes (III, V, VI, VII)
are specific to filamentous fungi (36, 39). The signifi-
cance of each of these seven classes is not well under-
stood, since mutations in members of a common family
do not always result in a similar phenotype. However,
two groups of mutants can be identified: the first has
reduced chitin content but normal chitin synthase ac-
tivity in vitro, whereas the second is affected in enzyme
activity but has regular cell wall chitin content. In ad-
dition, other genes, named CHS, are not associated with
chitin synthase activity but are involved in the regula-
tion of chitin synthase activity or localization. Some
chitin synthases appear to be zymogens that are acti-
vated by proteolysis, and there is also evidence that some
chitin synthase enzymes are regulated by phosphoryla-
tion (40, 41). Some fungi have more than 20 CHS genes,
and some have only 1 (42). A. fumigatus and C. neo-
formans are both predicted to have eightCHS genes, and
Wangiella dermatitidis has five; all of these CHS genes
are nonessential, although the chs3Δ mutant of C. neo-
formans cannot grow at 37°C. In contrast, C. albicans
has a CHS family of four genes, and the class II CHS1 is
essential for cell viability (43). In Aspergillus species,

some double chitin synthase mutants are lethal, but most
single mutants are viable (39).

The class V and class VII chitin synthase enzymes of
filamentous fungi have unconventional myosin-motor-
like domains (MMD) (44). These enzymes are often
essential for growth, morphogenesis, and virulence,
as well as stress tolerance. It is likely that the MMD
functions in actin-mediated cytoplasmic transport, and
there is evidence for this domain’s ability to bind actin
and to influence apical localization (45). However, this
domain is not required for cellular motility in Asper-
gillus nidulans and Ustilago maydis, and (46) instead
theMMDmay function in tethering vesicles in the apical
dome, increasing the residence time at that location, and
thereby favoring vesicle fusion with the PM (47).

β-(1,3) Glucan, the other major cell wall polysac-
charide, is synthesized by a PM-bound glucan synthase
complex which uses UDP-glucose as a substrate and
extrudes linear β-(1,3) glucan chains through the mem-
brane into the cell wall, where it can act as a substrate for
various transglycosidase enzymes (see below) (48). The
protein complex contains at least two proteins: (i) the
putative catalytic subunit encoded by the gene(s) FKS/
GSC and (ii) a regulatory subunit encoded by RHO1
with an Mr of ∼20 kDa. The Fks/Gsc subunits are the
target of the echinocandin family of antifungal drugs
and the recently described plant metabolite poacic acid
(49, 50). Fks subunits have an Mr of >200 kDa with
up to 16 transmembrane helices and a central hydro-
philic domain of about 580 amino acids, which displays
a remarkable degree of identity (>80%) with all known
Fks proteins (48). Two external loops of Fks contain so-
called hot-spot regions: sites in which common mutations
confer reduced sensitivity to echinocandins (51). Rho1-
GTPase is regulated by switching between a GDP-bound
inactive state to a GTP-bound active state with accompa-
nying conformational changes (1). There are fewer glucan
synthase genes than chitin synthase genes in pathogenic
fungi. In A. fumigatus and C. neoformans, FKS1 is unique
and essential (52). In C. albicans, three FKS orthologues
have been identified, but only one of them, orf19.2929, is
associated with echinocandin resistance (53).

Recently, it was shown inU. maydis that the class VII
chitin synthase Mcs1 and the class V chitin synthase 6
(Chs6) can be cotransported on the same secretory ves-
icle along with the β-(1,3) glucan synthase Gsc1 (Fig. 3)
(45). Moreover, the cocomplex of glucan and chitin
synthases seems to be retained at a localized spot of
exocytosis and wall synthesis by the tethering effect of
the synthases to their nascent polysaccharides that reside
within the fabric of the external cell wall (45).
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FIGURE 2 Synthesis and remodeling of β-(1,3) glucan. (A) Putative sequential or concomitant events in the synthesis and

remodeling of β-(1,3) glucan. 1. Synthesis of linear glucan chains (glucan synthase complex composed of a catalytic [GS],

activating [Act], and regulating [Reg] subunits). 2. Hydrolysis of glucans. 3. Branching of β-(1,3) glucan. 4. Elongation of β-(1,3)

glucan side chains. 5. Cross-linking with branched [β-(1,3)] glucan. GPI-anchored transglycosidase or hydrolases (T) bound to the

membrane can act on the polysaccharides in the cell wall space. Panel A provides example. (B) An example of GPI-anchored Gel1

protein involved in the elongation of β-(1,3) glucan inside the cell wall space. (C) Crystal structure of the S. cerevisiae Gel1

orthologue, Gas2 complex with acceptor and donor oligosaccharides. The enzyme is shown as a ribbon, the glucan binding

domain with green strands and orange helices, and the catalytic domain with blue strands and red helices. A gray transparent

molecular surface is shown, revealing an elongated groove on the catalytic domain, in which the laminarioligosaccharides (shown

as sticks, with yellow carbon atoms) bind. (D) Biochemical organization of a GPI-anchored protein in A. fumigatus. The three

domains of the GPI anchor are (i) a phosphoethanolamine linker covalently bound to the protein, (ii) a mannan-glucosamine-

myo-inositol oligosaccharide, and (iii) a ceramide tail attaching the GPI anchor to the cell membrane. (Data from reference 86).
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Biosynthesis of Mannan and
Other Decorating Polysaccharides
The yeasts S. cerevisiae and C. albicans have an outer
layer of proteins that are highly glycosylated with α and
β-linked oligomannosyl residues by mannosyltransfer-
ases that use GDP-mannose as a substrate. N-glycans
are the major form of mannoprotein modification and
consist of a core structure, which is similar in all eu-
karyotes and is further elaborated in the Golgi to form
an outer chain comprising a linear α-(1,6) mannan back-
bone that is highly branched with α-(1,2)- and α-(1,3)-
containing side chains (54, 55). In some species these
may be further modified with mannosyl phosphate
that may contain β-(1,2) mannan. O-Linked mannans
of fungi tend to be short, linear chains composed of
α-linked mannose sugars. In A. fumigatus and other
molds, long mannan chains are also bound to core
polysaccharides (9), and mannosyl groups also form
part of GPI anchors. Although the mannan structural
organization of fungi can differ substantially, a com-
parative genomic study has indicated that orthologues
of most yeast mannosyltransferase genes can be found
in the genome of A. fumigatus and other filamentous
molds, although other branched chain mannans do not
seem to be represented in the genome of Pneumocystis
and possibly other fungi (56). In A. fumigatus, deletion
of 11 genes coding for putative mannosyltransferases
had little effect on the growth or physiology of A. fumi-
gatus (57).

The synthesis of other decorating polymers remains
less well understood. For example, in the case of α-(1,3)
glucan synthesis, only the genes encoding putative
α-(1,3) glucan synthases have been identified (13, 58).
They are the largest known genes (∼8 kb) involved in
cell wall polysaccharide synthesis and are characterized
by two putative hydrolase and synthase domains sepa-
rated by a single transmembrane domain. Deletion of a
single α-(1,3) glucan synthase gene (NcAGS-1) or mul-
tiple genes (AGS1, AGS2, and AGS3) generates de-
fects in the conidial cell wall in Neurospora crassa and
A. fumigatus, respectively (59, 60), without impacting
the growth of the vegetative mycelium. Deletion of the
three AGS genes in A. fumigatus also resulted in atten-
uation in virulence in a mouse aspergillosis model. Simi-
larly, genes involved in β-(1,6) glucan synthesis have
been identified based on the resistance of mutants to the
K1 killer toxin, which kills yeast by binding to β-(1,6)
glucan (61). Many of these KRE genes such as KRE2,
KRE5, KRE6, and KRE9 impact glucan synthesis with-
out being directly associated with an enzymatic activity
(9, 62). Permeabilized S. cerevisiae cells are capable of

synthesizing β-(1,6) glucan when supplied with UDP-
glucose, and the amount of product was reduced in the
absence of Kre5 or Kre9 (61, 63–65). Deletion of KRE5,
KRE6, or SKN1 in C. neoformans provided evidence
that these genes are also involved in β-(1,6) glucan syn-
thesis in this pathogen and that the mutations also
affected capsule formation, chitosan levels, and reten-
tion of cell wall mannoproteins (66).

In A. fumigatus, the UDP-glucose 4-epimerases Uge3
and Uge5 are required for synthesis of UDP-galacto-
pyranose. Galactofuran side chains of GM are synthe-
sized by the sequential action of the UDP galactose
mutase Ugm1 and the galactofuranosyltransferase Gfsa.
More recently, a cluster of genes has been implicated in
the biosynthesis of the galactosaminogalactan GAG in
A. fumigatus (67). This cluster contains the ADG3 gene
encoding a protein with a deacetylase domain, which
deacetylates GAG, giving it polycationic properties,
which are required for it to adhere to the hyphal surface
and for biofilm formation. GAG has been shown to be
an important virulence factor of A. fumigatus responsi-
ble for conidial adherence to epithelial cells as well as
man-made surfaces (68, 69), with anti-inflammatory
effects in mice (70).

Melanin
Melanins are negatively charged hydrophobic pigments
of high molecular weight that are composed of poly-
merized phenolic or/and indolic compounds (71, 72).
Little is known about the detailed structure of melanin
mainly because of the lack of suitable technologies
to analyze amorphous, insoluble materials that are re-
sistant to harsh chemical treatments. Indeed, most of
the structural information about melanin comes from
molecular studies deciphering the melanin metabolic
pathways. Two main types of melanin are found in the
fungal cell wall: the DHN-melanin of Aspergillus species
and black fungal pathogens such as W. dermatitidis
or Sporothrix schenckii and the 3,4-dihydroxyphenyl-
alamine (DOPA)-melanin found in C. neoformans. En-
riching growth medium with L-DOPA has even been
shown to induce melanin production in C. albicans (73).
A third form of water-soluble pyomelanin whose func-
tional significance is less clear also exists in some fungi
and bacteria.

Melanin in C. neoformans is synthesized by a laccase
located in the outer layer of the cell wall in the presence
of DOPA. A model structure has been established in
which the concentric melanin layers in the wall come
from irregularly shaped melanin granules. The spaces
between granules would determine the size of the pores
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controlling the passage of different secreted molecules
(74). In addition, solid-state nuclear magnetic resonance
data have identified a putative covalent linkage between
melanin and mannose-containing polysaccharide motifs,
suggesting that melanin may be anchored to the cell wall

via linkages with galactoxylomannan or mannosylated
proteins. Other work also suggests associations of mel-
anin with chitin or chitosan (73, 75).

DHN-melanin (named from one pathway intermedi-
ate 1,8-dihydroxynaphthalene) is formed from malonyl-

FIGURE 3 Glucan synthase (Gsc1), chitin synthase (Chs6), and myosin chitin synthase

(Mcs1) of U. maydis are codelivered on the same secretory vesicles and colocalize at

bud and hypha tips. (A) mCherry3-Mcs1 (red) and Chs6-GFP3 (green and yellow)

colocalized Mcs1 and Chs6 at the bud tip. Scale bar, 2 μm. In (B) the bud is photobleached

with a laser, and the codelivery of mCherry3-Mcs1 (red) and Chs6-GFP3 (green) into the

photobleached bud is revealed after 5 minutes. Scale bars, 3 μm (left) and 0.5 μm (right).

(C) Electron microscopy of secretory vesicles that have been colloidal-gold-labeled with

antibodies showing Chs6 and Mcs1 colocalization in a single vesicle. Scale bars: 100 nm.

(D) A model for the delivery and secretion of vesicles containing both Chs6 and Msc1

via actin- and microtubule-based cytoplasmic transport systems to the apical cell mem-

brane. After fusion with the apical membrane, the nascent polysaccharide chains of chitin

and β-(1,3) glucan are inserted into the cell wall—a process that anchors the synthases

in situ, ensuring coordinated synthesis and tethering at the biosynthetically active apical

region of the cell. (From Schuster et al. [45], with kind permission andmodification by Gero

Steinberg.)
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CoA by the action of several enzymes including a poly-
ketide synthase and several reductases and dehydratases.
Deletion of the genes encoding the polyketide synthase
(alb1 = pksP) of A. fumigatus, the initial step in the
pathway, results in the production of conidia with a
variety of different colors (76). In contrast to DOPA-
melanin, nomicrostructure of cell wall-associated DHN-
melanin has been obtained. Nor is it understood how
the putatively intracellularly synthesized melanin crosses
the cell wall barrier to become immobilized on the co-
nidial surface. In addition, DOPA-melanins can be
formed by Aspergillus and other black fungi (77, 78).
Based on studies of plant pathogenic fungi, it can be
predicted that the structural role of melanin in human
fungal pathogens is to increase cell wall rigidity, en-
abling hyphae of black fungi such as W. dermatitidis to
penetrate host tissues and pigmented conidia of Asper-
gillus or yeast cells of Cryptococcus to remain turgid
when desiccated.

Cell Wall Proteins
There are multiple classes of proteins in the cell wall of
fungi, whose functions are diverse and sometimes spe-
cies-specific. They can serve in modifying the properties
of the wall, in adherence to surfaces, and in protecting
the fungus from harmful environmental elements or
disguising it from phagocytes.

GPI proteins

The complement of cell wall-associated proteins and, in
particular, those predicted to be GPI-anchored appear to
be rapidly evolving, with a number of species-specific
proteins evident (4, 79). Genome-wide analyses have
been performed to predict all proteins that can be
modified by the addition of a GPI anchor (80, 81). While
S. cerevisiae is predicted to have around 66 GPI proteins,
many fungal pathogens have many more, with some
Candida species having well over 100 predicted GPI
proteins (79, 80). Within this cohort in Candida are a
number of families, such as the Als, Iff, Epa, Sap/yapsins,
and Sod proteins. These families show marked variation
both in the number of members and in the case of the
Als and Iff families in the number of intragenic tandem
repeats within family members between and within dif-
ferent species (80–82). Furthermore, many predicted GPI
proteins are species-specific, with no known orthologues
(80). Whether the diversity among the surface proteins
has consequences in terms of relative pathogenicity of
the different species remains to be firmly elucidated,
because many species-specific GPI proteins have un-
known functions.

In C. albicans, many of these CWP genes are highly
regulated at the transcriptional level. Some are regu-
lated during yeast-to-hypha morphogenesis, during
the response of C. albicans to various environmental
changes and stresses and, presumably, in vivo during
the establishment of C. albicans infections (83). Non-gel
proteomics using tandem liquid chromatography-mass
spectrometry/mass spectrometry is now providing a
global view of the cell wall proteome. It is possible not
only to detect which proteins are cell-wall-localized (82,
84) but also to quantify them (85). This approach has
identified 15 to 21 cell wall proteins on the surface of
C. albicans when grown under rich laboratory culture
conditions. Altering the environmental conditions such
as carbon source, iron limitation, or hypoxia has a direct
effect on the cell wall proteome composition and the
abundance of certain wall proteins (86–88). We still
have little knowledge of cell wall protein expression,
both quantitative and qualitative, during infection. Al-
though many cell wall proteins are known to be immu-
nogenic and hence likely to be expressed in vivo and to
play roles in adaptive immunity, their significance in
growth and pathogenesis is not known (89).

In most natural situations, the outer cell wall is im-
pregnated with, or loosely attached to, a greasy outer
layer of cell wall-associated proteins, sometimes called
“moonlighting proteins.” Much has been made of the
apparent conundrum that these proteins are predomi-
nantly of cytoplasmic origin such as enolase, collagen,
translation elongation factors, and certain heat shock
proteins, which do not have a signal sequence for export
across the cell membrane (86, 90, 91). Such proteins
are readily removed by extraction protocols using SDS
and reducing agents such as β-mercaptoethanol and
dithiothreitol, which had been thought mild enough to
preserve the integrity of the cell (91). However, it has
been demonstrated that such treatment may partially
solubilize the membrane, leading to the leakage of cy-
tosolic contents (91). Biotinylation of cell wall proteins
can also potentially permeabilize the cell membrane at
moderate temperatures (91). Therefore, the likelihood is
that most of these cell wall-associated proteins leak out
of cells and become incorporated at the cell surface when
cells are treated with reagents that semipermeabilize the
cell membrane.

It is clear that the cell walls of fungi such as C. albi-
cans have a significant capacity to absorb soluble pro-
teins from the environment and that fungal surfaces are
normally contaminated with cytoplasmic proteins that
are picked up from the environment. Alternatively, it is
possible that exosomes (secreted vesicles that transit in-
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tact through the cell wall) deliver cytoplasmic proteins
to the surface, bypassing the normal secretory pathway
(92). Once deposited on the cell surface, some of these
proteins can impart important properties such as the
binding of plasminogen and other host proteins (93),
or opsonization, and could therefore have a direct effect
on the function of the cell wall. In C. albicans, the hy-
droperoxide peroxidase-like protein Tsa1p is bound
specifically to hyphal cells despite being expressed at
approximately equal concentrations in yeast and hyphal
cells (90, 94). This suggests that different cell surfaces
are differentially receptive to protein binding and that
the composition of cell wall-associated proteins could
vary substantially between and within species and dif-
ferent cell types.

Transglycosidases

While most of the cell wall biosynthetic processes occur
in the Golgi and at the cell membrane, part of the bio-
synthesis of the fungal cell wall takes place within the
wall itself. Neosynthesized polysaccharides are linear
or amorphous and become cross-linked to other poly-
saccharides by transglycosidases that are putatively an-
chored to the PM or located in the cell wall space to form
the rigid three-dimensional network typical of the cell
wall (Fig. 2B,C). The first transglycosidase identified as
contributing to cell wall organization is a GPI-anchored
enzyme encoded by the genes GEL and PHR in Asper-
gillus and Candida and GAS in Saccharomyces that
splits internally a β-(1,3) glucan molecule and transfers
the newly generated reducing end to the nonreducing
end of another β-(1,3) glucan molecule (95, 96) (Fig. 2B).
The generation of a new β-(1,3) linkage between the
acceptor and donor molecules results in the elongation
of β-(1,3) glucan chains. Transglycosidases that play
such an essential role in branching and cross-linking
polysaccharides should be common to all fungal species.
Comparative genomic and proteomic analyses of asco-
mycete fungal species have identified six families of con-
served, GPI proteins: Sps2, Gas/Gel, Dfg, Plb, Crh, and
Yps (79, 96). The Sps2 and Dfg5 families are involved in
cell wall construction, and the Crh family is involved in
cross-linking β-(1,6) glucan and chitin (97–99).

Cell wall hydrolases and deacetylase
plasticizing the rigid cell wall

There is clear evidence that endo β-(1,3) glucanases
and chitinases participate in cytokinesis since mutations
in these genes and inhibitors of these enzymes affect
the separation of mother and daughter cells (100, 101).
In filamentous fungi, which do not undergo cytokinesis,

some models of cell wall synthesis invoke a delicate
balance between cell wall synthesis and hydrolysis at
the hyphal apex (102). However, there is no unequivocal
evidence that cell wall hydrolases are required for tip
growth, and mutants in C. albicans and A. fumigatus
with single and multiple mutations in chitinase and endo
β-(1,3) glucanase genes do not appear to differ in growth
rate or hyphal morphogenesis (103, 104).

Similarly, in zygomycetes, ascomycetes, and basidio-
mycetes substantial deacetylation of chitin to chitosan
occurs, creating a more flexible molecule that becomes
resistant to chitinases. Chitin deacetylase genes have
been identified, but in general, their role in fungal mor-
phogenesis is not clear yet. In C. neoformans, disruption
of all three chitin deacetylase genes (105) attenuates
virulence and results in a defect in cell wall integrity. In
plant pathogens, chitin deacetylation can prevent plant
receptors from recognizing chitin of plant pathogens (see
below).

Yapsins

The yapsins play important roles in cell wall remodeling
and in maintaining a robust cell wall. They comprise
a subset of the aspartyl proteinase family, and in con-
trast to other members that are secreted, they are teth-
ered to the membrane and the wall via the addition
of a GPI anchor. The cell wall-localized proteolytic ac-
tivity of ScYps1 was shown to be pH-regulated, and it
was shown that Yps1 acted as a “sheddase,” releasing a
number of GPI proteins from the wall—notably itself
and Gas1 (106). In C. albicans, deletion of both the
yapsin genes SAP9 and SAP10 resulted in reduced ad-
herence to epithelial cells and in a reduction in epithelial
damage in a reconstituted human epithelial model of
oral infection (107). Similarly, Candida glabrata has a
family of eight yapsins that have been implicated in viru-
lence as well as in maintenance of cell wall integrity
(108).

Adhesins

One vital property of the fungal cell wall that promotes
virulence is adhesion to host cells and tissues. Several
cell wall proteins have adhesin-like properties (86, 109).
The best characterized are the C. albicans Als family
of eight proteins (110) and the C. glabrata Epa family
(111), both comprising GPI proteins. A more extensive
family of GPI-anchored adhesin-like proteins has been
identified in C. glabrata (112). Both the Als and Epa
families have a characteristic domain organization with
N-terminal adhesin domains that impart specificity of
host protein/glycan binding to different family members
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(113–116). The C. albicans hyphal-specific cell wall
protein Hwp1 aids adherence to oral epithelial cells by
acting as a substrate for host transglutaminases (117).
Both Hwp1 and the Als family play significant roles in
biofilm formation, and complementary binding between
these adhesin types enhances the attachment of C. albi-
cans cells to each other during biofilm generation (118).
Interestingly, in pathogenic molds, proteins do not seem
to act as adhesins, and this role seems to be a function of
cell wall α-(1,3) glucans and GAG (67, 69).

In C. albicans, a number of other cell wall proteins
have also been shown to contribute to biofilm forma-
tion, including Eap1 (119), Sun41 (120–122), and mem-
bers of a family that contains a CFEM-like domain
(Rbt5, Pga10/Rbt51 and Csa1/Wap1) (123).

Hydrophobins

Hydrophobins form a class of amphipathic proteins
that can self-assemble to form rodlets, generating a hy-
drophobic interface between filamentous fungi and their
environments (124). The rodlets resemble amyloid fibrils
and form a monolayer around aerial structures such as
hyphae and fruiting bodies, coating hydrophilic surfaces
to make them hydrophobic (18, 19). Hydrophobins play
roles in morphogenesis, may be developmentally regu-
lated (125), and are also involved in adhesion of fungal
cells to surfaces and hence have been associated with
virulence of fungal plant and insect pathogens (126–
128). In human pathogens only RodA and RodB, the
hydrophobins present on the A. fumigatus conidial sur-
face, have been characterized in detail (19). RodA con-
tributes to pathogenesis by protecting conidia from
alveolar macrophage killing (20). This rodlet layer has
also been shown to be an immune-shield masking the
detection of conidia or a range of molds by macrophages
and dendritic cells (21). Detection only occurs once the
spores swell and germinate—a process that leads to
cracking of the hydrophobin layer and hence revealing
of the underlying immunologically active glucans.

REGULATION AND SIGNALING

The Cell Wall Salvage Response
The cell wall can be built in different ways depending
on environmental conditions and exposure of agents
that induce cell wall damage. The integrity of the β-(1,3)
glucan-chitin cell wall scaffold must be monitored and
regulated constantly to enable growing walls to remain
plastic enough to allow turgor-driven cell expansion yet
robust enough to prevent bursting of the cell. It is not

fully understood how this delicate balance between the
rigidity and the compliance of the cell wall is maintained,
but it is known that the nascent cell wall at the hyphal
apex is thinner, has less hydrogen bonding between the
antiparallel α-chitin chains, and has fewer cross-links
between chitin and β-(1,3) glucan than the mature wall
of the parallel sides of the hypha (102).

Regulation of cell wall biosynthesis occurs at many
levels ranging from availability of substrate for biosyn-
thetic enzymes to protein phosphorylation. A number of
signaling pathways have been implicated in the regula-
tion of cell wall biosynthesis and in the maintenance of a
robust wall (Fig. 4). The pathways often impinge on
different elements of the same promoter, allowing fine-
tuning of gene expression.

The key pathway that controls cellular integrity via
maintenance of the cell wall is the protein kinase C path-
way (129) (Fig. 4). Best characterized in S. cerevisiae,
this pathway is conserved in most fungal species, includ-
ing human pathogens (130). Highly glycosylated inte-
gral membrane sensors, Mid2, Wsc family, and Mtl1,
sense perturbations in the cell wall, and ScWsc1 has been
shown to act as a nano-spring detecting wall stretching to
trigger a response by activating Rho1. This GTPase relays
signals to protein kinase C (Pkc1) and also regulates actin
polymerization, polarized secretion, and glucan synthesis
(129). Pkc1 lies at the top of a mitogen-activated protein
kinase (MAPK) cascade and phosphorylates the Bck1
MAPKKK in addition to a number of other substrates,
including chitin synthase (41). The signal passes down the
MAPK cascade via a phosphorylation relay and ulti-
mately activates transcription factors that regulate target
gene expression.

Other pathways that play significant roles in the reg-
ulation of cell wall biosynthesis are the Ca2+/calcineurin
pathway; a second MAPK cascade, the HOG pathway;
and the pH-sensing RIM101 pathway (131). Activation
of cell wall compensatory or salvage mechanisms often
results in elevated chitin levels in the cell wall and an
increase in the number of GPI proteins that are cova-
lently attached to chitin rather than β-(1,3) glucan,
reflecting significant alterations to cell wall architecture
(132). Transcript profiling experiments in S. cerevisiae in
various cell wall mutant backgrounds and in cells treated
with cell wall perturbing agents have identified a core
set of regulatory genes including Rlm1, Crz1, SBF (Swi4/
Swi6), Msn2/Msn4, Ste12, and Tec1 that are activated
upon cell wall assault (133). Some orthologous genes
have also been identified as upregulated in C. albicans in
response to caspofungin (134, 135), Ca2+ (136), and cell
wall mutations.
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FIGURE 4 Signaling pathways that regulate cell wall remodeling and cell integrity. Inte-

gral, glycosylated, membrane sensors (Wsc family, Mid2, Mtl1, Sho1, and Sln1) detect spe-

cific perturbations in the wall and transduce the signal to the downstream pathway

elements that feed into MAP kinase cascades. Transcription factors at the bottom of

the pathway activate gene expression to promote remodeling of the cell wall architec-

ture to maintain cell integrity. In S. cerevisiae, Pkc1 is involved in targeting Chs3 to the

plasma membrane in response to heat shock, and Rho1 activates the Fks1 subunit of

β-(1,3) glucan synthase. Black text denotes S. cerevisiae proteins; red, C. albicans; blue,

C. neoformans; and green, A. fumigatus. The fungal pathogen orthologues may not

have been fully characterized, and their position in the pathways reflects the S. cerevisiae

paradigm. However, significant rewiring of signaling pathways is evident in C. albicans;

for example, the role of the CaSko1 transcription factor in response to caspofungin is

independent of the Hog1 MAP kinase (135) but involves the Psk1 PAK kinase. Furthermore,

in C. albicans, there is no evidence of Ste11 activating Hog1 like there is in S. cerevisiae

(213). In C. albicans, the Cas5 transcription factor also contributes to the transcriptional

response to caspofungin, and there are no Cas5-orthologues in S. cerevisiae (134). The

CaCek1 MAP kinase is also implicated in cell wall remodeling and is constitutively activated

in a hog1 null mutant background (213). Fungal pathogen orthologues of the elements

upstream of the MAP kinase cascades are not shown but exist, although the membrane

sensors appear to have significantly diverged. Exogenous calcium enters cells primarily

through the Cch1/Mid1 channel complexes. A third Ca2+ channel, Fig1, plays a role in Ca2+

transport during mating, but no orthologues of Fig1 have been identified in C. neoformans

or A. fumigatus. Ca2+ binds to and activates calmodulin (Cmd1), which in turn activates the

phosphatase calcineurin, composed of a catalytic (Cna1) and a regulatory (Cnb1) subunit.

S. cerevisiae has two Cna1 isoforms (Cna1/Cmp1 and Cna2/Cmp2). Calcineurin activates

the transcription factor Crz1 by dephosphorylation to induce expression of genes that

contain calcium-dependent response elements within their promoter sequences. No Crz1

orthologue has been identified in C. neoformans. Some data also suggest that calcineurin

has regulatory functions that are independent of Crz1 (136). Several of the A. fumigatus

proteins that may be related to this pathway remain unannotated, so putative orthologs

have been ascribed but have not been experimentally validated. The pathway can be

blocked via FK506 binding to Fpr1 or cylosporin A binding to cyclophilin Cpr1, and both

interactions result in calcineurin inhibition. (Adapted from references 129, 130, 214–216).
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Activation of cell wall salvage pathways, specifically the
protein kinase C pathway, is one of the responses to sub-
lethal doses of the echinocandin antifungal drugs (137,
138). Synergism has also been shown between immuno-
suppressive drugs that block the Ca2+/calcineurin pathway
(FK506, cyclosporine A) and the echinocandins in C. albi-
cans, C. neoformans (139), and A. fumigatus (140). Mu-
tants blocked in the protein kinase C pathway, Ca2+/
calcineurin, and certain steps of the HOG pathway (but
not Hog1) are hypersensitive to echinocandins (138, 140,
141). Echinocandin hypersensitivity has been used as a
screen to identify signaling components that are involved
in the response of C. albicans to this class of antifungal
(134, 135). These screens identified a novel C. albicans-
specific transcription factor, Cas5 (134), and Sko1, the
transcription factor thought to be downstream of theHog1
MAP kinase. Interestingly, Hog1p itself was not required
for the echinocandin response via Sko1, but the Sko1-
dependent activation of genes induced by caspofungin was
dependent on another protein kinase, Psk1 (135).

Regulation of Septation
Redundancy exists in the strategies employed to assem-
ble the fungal cell wall under both normal and cell wall
stress conditions (Fig. 5A). This is also evident in the
observation in S. cerevisiae that a septum can be fabri-
cated in mutants that lack enzymes that are required to

make the normal septum. A greatly thickened salvage
septum can be made by the Chs3 enzyme in the absence
of the ScChs2 chitin synthase that normally synthe-
sizes the chitinous primary septum (33). In C. albicans,
a septum can still be formed that permits cell division
in a mutant that lacks both CaChs3 and CaChs1 (the
orthologue of ScChs2), the normal chitin synthase ma-
chinery required for septation (138, 142) (Fig. 5B).

Three distinct types of salvage septa were identified
in C. albicans that could be synthesized in the absence
of Chs1 by different combinations of Chs2, Chs3, and
Chs8 (142). An implication of this work is that all four
chitin synthases in C. albicans can be employed for sep-
tum formation—a prediction supported by observations
that CaChs1, CaChs2, CaChs3, and CaChs8 are all lo-
cated at the site of cytokinesis under normal conditions
(37, 143). Similarly, all eight chitin synthases localize to
the septa ofUstilago (143). In S. cerevisiae, the septum is
assembled on a complex scaffold of proteins that are
linked in turn to the septin rings (144) (Fig. 5A). This
scaffold involves Bni4p, which tethers the Chs3 chitin
synthase enzyme to the mother-bud neck by forming a
bridge between a regulatory protein Chs4 and the septin
Cdc10. In C. albicans, BNI4 was shown not to be es-
sential for chitin ring formation, but null mutants were
affected in bud formation, suggesting that some, but
not all, features of this scaffold are conserved between

FIGURE 5 Chitin synthesis and septum formation in yeasts. (A) Septation involves a protein

scaffold that tethers the Chs3p chitin synthase that assembles the chitin ring to Cdc10p of

the septin ring complex via Chs4p and Bni4p. (B) The structure of the wild-type septum of

C. albicans (transmission electronmicroscopy image on right) is shown alongside septum-

less yeast cells in a chs1 chs3 conditional mutant (middle transmission electron micros-

copy image) and salvage septa (transmission electron microscopy image on left) made in

the same mutant strain after stimulation of the cell wall salvage pathways by growth in the

presence of calcium ions and calcofluor white. (Reused from reference 138 under CC BY

4.0).
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these two species (145). It remains to be established how
the various salvage septa of fungi are constructed and
how and whether they are assembled on a normal septin
ring structure. Septins also play key roles in filamen-
tous fungi. For example, they have been shown to play
multiple roles in septation, conidiation, the function of
clamp connections, and nuclear dynamics (146, 147).

Septation is a complex process tightly coupled to the
cell cycle. The transcription factor Ace2 regulates the
expression of many genes that orchestrate the process
of cytokinesis. Among these are chitinases and gluca-
nases that in some fungi have been shown to aid the
septation of daughter cells by digesting the interstitium
of the wall between the completed septal structures (100,
148). Fks1 localization and activation require the Rho1
GTPase as a regulatory subunit (1). Chitin synthase
phosphorylation may also be involved in regulating its
localization throughout the cell cycle (40, 41), but the
details of how chitin synthase and other cell wall bio-
synthetic genes are targeted in the cell cycle remain to be
established.

Regulation of Polarized Growth
Polarized cell wall growth requires the concerted activity
of the cytoskeleton and cortical patches of membrane
proteins that regulate secretory vesicle traffic to the sites
of cell wall growth (149–152). In filamentous fungi,
cytoplasmic transport must move vesicles and organelles
to the apex over long distances. In hyphae this trans-
port occurs in two stages. Vesicles are delivered to the
apical surface first via cytoplasmic transport, probably
mediated by microtubules, to a vesicle supply center near
the apex called the Spitzenkörper (apical body). Sub-
sequently, docking and fusion with the PM are mediated
by the “Arp2/3 complex,” which organizes apical actin
(151), and an “exocyst complex” which is responsible
for vesicle docking and fusion (152). An additional
group of apical proteins called the “polarisome,” which
contains the essential Cdc42 Rho GTPase, is responsible
for recruitment of actin and other components required
for polarized cell growth. This dynamic process there-
fore involves the secretory pathway, cytoskeleton func-
tion, and the activities of multimeric protein complexes
that establish andmaintain polarity. In filamentous fungi
with chitin synthases that have an MMD, the MMD
contributes to the docking process by retaining the en-
zymes in the apical dome (47). A detailed description
of this integrated process is beyond the scope of this re-
view but has been published elsewhere (138, 141–143).
However, ultimately, the cell shape and growth of fungi
relate to how the vectorial secretion of secretory vesicles

is regulated and to the overall composition of the cell
wall (152–155).

Most pathogenic fungi are dimorphic (sometimes
polymorphic), and the prevailing morphotype existing in
the environment is normally different from the invading
form. Cell wall composition varies with morphotype,
but data in this area are rather scarce. Universal rela-
tionships between morphology (for example, spherical
or tubular) and cell wall structure and composition
do not exist. In the yeast of C. albicans or the conidium
of A. fumigatus, the amount of chitin is reduced in com-
parison to the mycelium. However, in Blastomyces
dermatitidis or Paracoccidioides brasiliensis, the amount
of chitin is lower in the mycelial form (156, 157) than
in the yeast form. β-(1,3) Glucan is higher in yeast of
P. brasiliensis but lower in conidia of A. fumigatus than
in their respective mycelial stages. β-(1,3) Glucans are
present in higher amounts in the conidia of A. fumigatus
and almost absent in the yeast phase of B. dermatitidis
and P. brasiliensis compared to their respective mycelial
stages. β-(1,3) and β-(1,6) glucans are also absent in the
biotrophic hyphae of the plant pathogen Colletotrichum
(158). In Sporothrix schenkii, no difference in compo-
sition of the structural polysaccharides is seen between
yeast and mycelial cell walls. For some fungi such as
C. albicans, all morphotypes are hyaline; for others
such as A. fumigatus, conidia are pigmented, whereas
the mycelium is hyaline, and for black fungi such as
W. dermatitidis, all morphotypes contain melanin. Links
between morphology and cell wall composition are even
more difficult to establish because cell wall composition
is not only stage- and strain-specific but is also depen-
dent on culture conditions (159).

CELL WALL AS A TARGET

Antifungal Target
The cell wall is composed almost exclusively of mole-
cules that are not represented in the human body yet
are important or essential for fungal growth viability or
virulence. As such, the wall is a near ideal target for the
design of antifungal drugs for clinical use. Nikkomycins
and polyoxins are specific chitin synthase inhibitors
of chitin synthases, and although they often potently
inhibit enzyme activity in in vitro assays, they are not
efficiently taken up in vivo and consequently are often
not effective antifungals (160).

The newest class of clinically used antifungals are the
echinocandins, which are fungal secondary metabolites
that inhibit β-(1,3) glucan synthesis in the cell wall.
Echinocandins have a cyclic hexapeptide core with a
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lipid side chain that is responsible for their antifungal
activity and determines species specificity. Three com-
pounds are in clinical use—caspofungin, anidulafun-
gin, and micafungin—and new agents such as CD101
(Biafungin) are under development. These drugs have
proven to be safe and effective, but they are insoluble
drugs requiring intravenous administration. Clinical re-
sistance has been shown to be due to the acquisition of
point mutations in one of two hotspots in the outer face
of the Fks1 β-(1,3) glucan synthase target protein, and
the efficacy of the drugs can be offset by the induction of
chitin synthesis in the cell wall (see above) (161, 162).

Target for Mammalian Immune System
In recent years it has been increasingly evident that there
are conserved aspects in the ways both animals and plants
detect and respond to fungal invaders. Indeed, defense
mechanisms against fungal pathogens have been discov-
ered in all higher organisms that have been investigated.

In humans and other mammals, the innate immune
system has evolved to recognize conserved microbial
structures called pathogen-associated molecular patterns
(PAMPs) via a range of pattern-recognition receptors
(PRRs) on their cell surfaces (Fig. 6). Detailed analyses
of this recognition system for fungi have been exten-
sively reviewed and are beyond the scope of this article
(7, 163). However, recognition of the fungal cell wall
ultimately results in the uptake and killing of fungal
invaders by phagocytes and the induction of innate and
adaptive immunity. Almost all of the main components
of the fungal cell wall can be detected by immune cells,
and there are more PRRs that detect fungus-specific
PAMPs than for any other class of organism. Mannans
and mannoproteins are recognized by mannose receptor
and Toll-like receptor 4 (TLR4), phospholipomannan
by TLR2, and β-mannosides by galectin-3 (163). β-(1,3)
Glucan is recognized by the C-type lectin dectin-1 (163–
165), and chitin can be detected by the mannose receptor
and by Nod2 and TLR9 (Fig. 6). Chitin and chitosan
have emerged as important immmunoreactive polysac-
charides, with chitin having anti-inflammatory proper-
ties, while chitosan is more proinflammatory in nature
(166–168). Chitin isolated from Aspergillus was shown
to have both pro- and anti-inflammatory properties de-
pending on the presence of costimulatory PAMPs, and
IgG-opsonized chitin was shown in this study to be rec-
ognized by a novel Fcγ receptor-dependent mechanism
(169). Chitin recognition is also complicated by the fact
that particle size plays an important role in its ability to
engage with receptors and induce the secretion of cyto-
kines (170).

Dectin-1 detection of β-(1,3) glucan represents a ma-
jor recognition mechanism by the immune system. This
polysaccharide is often masked by the outer layers of the
cell, resulting in shielding of β-(1,3) glucan and escape of
immune recognition (7). Various unmasking treatments,
such as heat-killing, echinocandin treatment, or genetic
deletion of superficial mannans or glucans of several
fungal pathogens, have been shown to enhance signaling
of leukocytes via dectin-1 (11, 171–173). In the archi-
tecture of fungal cell walls, superficial mannoproteins,
α-glucans, conidial spore hydrophobins, and melanin
can all mask the exposure of β-(1,3) glucan and thereby
prevent dectin-1-mediated recognition (Fig. 1) (174).
Fungal cell wall PAMPs can be detected singly or in
combination by PRP complex leukocytes (175), and the
relative importance of individual PAMPs is likely to vary
substantially in different immune cell types. It is most
likely that recognition of the fungal cell wall involves
detection of multiple components of the cell wall that
may vary according to fungal species and during dif-
ferent stages and different sites of clinical infections.

Resisting immunity: Cryptococcus capsule

More than 40 years ago, it was shown that encapsu-
lated cryptococci are resistant to phagocytosis (176).
Capsular polysaccharides are able to scavenge oxygen-
related oxidants as well as antimicrobial peptides that
are essential for killing phagocyte effectors (177). How-
ever, the protective effect of the capsule varies with the
phagocyte cell since a recent study shows that C. neo-
formans enters the endolysosomal compartment of den-
dritic cells and is killed by lysosomal components despite
the presence of a capsule (178). However, it is clear that
capsular polysaccharides play an essential role in es-
caping phagocytosis. Moreover, the enlargement of the
capsule size associated with in vivo growth is essential
for fungal survival and replication inside phagocytic
cells. Recent observations have shown that C. neo-
formans, and other species of yeasts, can induce its own
expulsion from the phagosome (179, 180). After the
expulsive event, both the macrophage and the expelled
C. neoformans continue to grow normally. This mech-
anism, which allows the pathogen to escape the phago-
cyte without triggering host cell death and subsequent
inflammation, is entirely dependent on the presence of
the capsule since acapsular cells do not promote phago-
somal extrusion.

Resisting immunity and stress: melanin

Melanins are an adaptation of fungi to resist envi-
ronmental stress. Melanized fungal cells resist extreme
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temperature and UV and ionizing radiation; indeed,
melanized fungi in soils have been shown to be able to
harvest energy from ionizing radiation for growth (181,
182). Melanin also binds to heavy metals or antifungal
drugs, resulting in their detoxification. Internalization by
phagocytes ofC. neoformans, S. schenkii, or F. pedrosoi,
but not Aspergillus, can be directly affected by the pres-
ence of melanin in the cells. Melanin also protects mi-
crobes from host defense reactions since albino strains
are more susceptible to killing after phagocytosis. Resis-
tance is due to quenching of nitrogen- or oxygen-derived
radicals (67) or microbiocidal peptides (67, 183). After
phagocytosis, the only material left is the melanin ghost,
confirming the extreme resistance of this compound not
only to chemical treatments but also to immunological
aggression. These data explain why melanin confers a
survival advantage for the melanized morphotypes in the
environment and especially to enzymatic degradation by
the surrounding hostile microflora.

Target for the Plant Immune System
Plant immunology is now a well-established discipline,
and it is clear that plants also recognize fungal PAMPs
to trigger immunity (8, 184, 185). Plant PRRs can be

located on the plant cell surface or receptor-like proteins
that bind fungal and other PAMPs of damage-associated
molecules.

Recognition of chitin plays a major role in plant im-
munity to fungi. Two major chitin PRRs have been
characterized. The chitin binding protein LysM-receptor-
like protein CEBiP was first identified in rice, while in
Arabidopsis, chitin-triggered plasmodesmatal closure is
induced by LysM-receptor kinase LYK4 (8, 184, 185)
(Fig. 7). Plants and fungi have been engaged in an im-
munological arms race that mediates recognition and
disguise of fungal chitin. Plant chitinase secretion can
liberate chitin fragments that promote recognition.
Reciprocally, some fungal pathogens synthesize α-(1,3)
glucan or secrete effector molecules to block chitin rec-
ognition or chitinase-mediated attack (186, 187) (Fig. 7).
Some fungi produce high-affinity chitin-binding effec-
tor scavengers that bind chitin and prevent its interac-
tion with plant chitin receptors or block chitin-induced
chitin receptor dimerization that is required for sig-
naling. Some fungi convert chitin to chitosan to es-
cape chitinase degradation and prevent recognition by
chitin receptors of the plant immune response (Fig. 7)
(188).

FIGURE 6 Recognition of human fungal pathogens. PAMP-PRR interactions for fungal

cell recognition are shown as described in the text. Interactions with CLRs (C-type

lectins), TLRs (Toll-like receptors), NLRs (Nod-like receptors), and a range of other

receptors are shown in the purple boxes along with the relevant fungal PAMPs and

examples of organisms for which given PRR-PAMP recognition phenomena have been

described.
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An excellent example comes from a study of the
hemibiotrophic plant pathogen Colletotrichum gram-
inicola, which infects maize. The invading biotropic
hyphae of this fungus coordinately downregulates
GLS1, KRE5, and KRE6, resulting in the formation of
hyphae with little or no exposed β-(1,6) and β-(1,3)
glucan (158, 188). They also induce chitin deacetylation
in the hyphal walls. As a result, the fungus can colo-
nize the plant tissue without inducing PAMP-triggered
immunity.

Diagnostics and Immunotherapeutic Targets
Promising vaccines and immunotherapies are under
development that are mainly based on cell wall or cell
wall-associated components (189–192). Examples that
have been shown to be efficacious in mouse models of
systemic mycoses include C. albicans vaccines based
on the N-terminal regions of Als1 (193) and Als3 (194),
synthetic glycopeptides that are based on epitopes of
cell wall-associated proteins conjugated to mannose

trisaccharides (195), and anti-Mp65 antibodies (196).
Vaccination of mice with recombinant versions of the
allergen Aspf3 protected mice from invasive aspergillosis
(197). An antibody against GXM of the C. neoformans
capsule conveys protection in animal models and has
undergone phase I clinical trials (198). An antilaminarin
[anti-β-(1,3) glucan] monoclonal antibody can inhibit
growth ofA. fumigatus,C. albicans, andC. neoformans,
suggesting that a single therapy of this type may be
efficacious against a wide range of fungi (199–201).

Cationic antimicrobial peptides also play important
roles in host defense against microbial pathogens in-
cluding fungi (202) and have been shown to be impor-
tant in the oral cavity, lungs, and GI tract. The action
of salivary Histatin 7 is mediated through heat shock
proteins Ssa1 and Ssa2 (203), which have been shown to
be cell wall and membrane associated. Novel therapies
based on antimicrobial peptides have much potential
in the clinic and can be used, for example, to coat in-
animate medical devices such as indwelling catheters

FIGURE 7 Recognition and avoidance of the recognition of chitin by plant pathogens.

The detection of fungal chitin is used to trigger PAMP-mediated immunity in plants.

To counter this, plant pathogenic fungi have evolved a range of mechanisms to avoid

detection, including the following. (A) The liberation of chitin fragments by host chitinase

attack can activate host immunity. (B) Countering this, some phytopathogens secrete

effectors that block access to chitinase or (C) inhibit chitinase activity. (D) Fungal LysM-

type effectors block recognition either by tight binding to prevent engagement with the

host PRR or by interfering with host receptor dimerization. (E) The synthesis of an outer

cell wall layer of α-(1,3) glucan (as in certain human pathogenic species) prevents chitinase

action and access to inner cell wall PAMPs. (F) Some fungal pathogens convert, to a

greater or lesser extent, chitin into chitosan by inducing chitin deacetylases. This modified

form of chitin is a poor substrate for chitinase and only weakly induces plant immune

recognition. (From Bart Thomma with permission [adapted from reference 186]).
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to prevent microbial biofilm formation, one of the risk
factors associated with invasive fungal infections (204).

Diagnostic Antigens
Cell wall polysaccharides have formed the basis of the
development of serological tests for the diagnosis of sys-
temic fungal infection since their presence in the bio-
logical fluids of infected immunocompromised patients
is directly correlated to fungal growth. An increase in the
circulating antigen results from expanded fungal growth
synonymous with a worsening of the disease, whereas
successful antifungal therapy or immune reconstitution
is associated with a reduction in antigen concentration.
Galactomannan, mannan, and glucuronoxylomannan
are the specific cell wall polysaccharides of interest for
the diagnosis of aspergillosis, candidiasis, and crypto-
coccosis, respectively.

A monoclonal antibody directed against galacto-
furanose residues is used for the diagnosis of aspergil-
losis (205). The sensitivity of the commercially available
sandwich enzyme-linked immunosorbent assay test is
very high (on the order of nanograms per milliliter). This
is due to the presence of epitopes not only on the cell
wall polysaccharides but also on glycoproteins and gly-
colipids of Aspergillus species. This MAb recognizes
β-(1,5) linked galactofuranose residues but also terminal
Galf β-(1,2) linked to mannan of N-glycans (206).

Identifying the presence of both α- and β-mannan
increases the specificity and sensitivity of candidemia
diagnosis. In the case of candidiasis, parallel monitoring
of circulating mannan and antimannan antibodies can
be performed. A decrease in antibody titer often cor-
relates with an increase in antigen detection (207, 208).

Polyclonal antibodies have been raised against a mix-
ture of complex capsular polysaccharides (GXM) of C.
neoformans to develop EIA or latex agglutination tests
able to recognize all serotypes of this fungal species (209).

A test for the detection of β-(1,3) glucan has also been
developed using a modification of the Limulus proteo-
lytic cascade identifying a β-(1,3) glucan as an ancestral
innate defense reaction undertaken by arthropods. The
sensitivity of this test is very low since it can detect 10 to
50 pg of β-(1,3) glucans/ml (210, 211). All these tests,
however, have associated problems with false positives
and negatives, insufficient early detection in comparison
with clinical signs, and interaction with serum proteins
including antibodies that require a proteolytic or EDTA
treatment of the serum. In addition, the exact com-
position of the antigens produced in vivo as well as an
understanding of the antigen secretion process is often
unknown (62, 212).

CONCLUSIONS

The cell wall represents a major organelle of the fun-
gus, determining viability, shape, and interactions with
the environment. The assembly of the cell wall involves
more than a thousand genes that encode a complex
network of metabolic, signaling, and biosynthetic func-
tions. Recent research has shown that redundant path-
ways exist to activate cell wall salvage mechanisms
under conditions of cell wall damage and that the as-
sembly of the wall can be modified and adapted to cope
with stress. Although the walls of most fungi have a
common skeleton, they also comprise a huge diversity
of specialized molecules that are attached to the skeleton
that define their specific ecologies. A range of mecha-
nisms exist that ensure that the surface characteristics
of the wall are hugely variable, and indeed, it is likely
that no two cell walls that are identical have ever been
assembled in any fungus. For fungal pathogens, the cell
wall remains an ideal yet somewhat unrealized target for
chemotherapy since its enzymology is fungus-specific.
Similarly, the unique set of fungus-specific polysaccha-
rides and glycoproteins that compose the outer and inner
cell wall layers represent fungus-specific pattern recog-
nition molecules and antigens that stimulate immune
function of animals and plants. However, the inherent
variability of the cell wall means that it is a moving
target for both antifungal chemotherapy and for im-
mune surveillance, and a raft of immune recognition
avoidance mechanisms has evolved for both plant and
animal pathogens that drives a “detect-or-escape” arms
race between the host and pathogen.
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