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Abstract—Most navigation systems today rely on global navi-
gation satellite systems (GNSS), including navigation in cars. With
support from odometry and inertial sensors, this is a sufficiently
accurate and robust solution, but there are future demands.
Autonomous cars require higher accuracy and integrity. Using the
car as a sensor probe for road conditions in cloud-based services
also sets other kind of requirements. The Internet of Things
concept require stand-alone solutions without access to vehicle
data. Our vision is a future with both in-vehicle localization
algorithms and after market products, where the position is
computed with high accuracy in GNSS-denied environments. We
present a localization approach based on a prior that vehicles
spend most time on the road, with odometer as the primary
input. When wheel speeds are not available, we present an
approach solely based on inertial sensors, which also can be
used as a speedometer. The map information is included in a
Bayesian setting using the particle filter, rather than standard
map matching. In extensive experiments the performance without
GNSS is shown to have basically the same quality as utilizing a
GNSS sensor. Several topics are treated: virtual measurements,
dead reckoning, inertial sensor information, indoor-positioning,
off-road driving, and multi-level positioning.

Index Terms—Localization, map-aided positioning, particle
filter, velocity estimation.

I. INTRODUCTION

Today’s positioning systems are intended for humans

rather than machines. The position is presented

and used for instructions in

navigation systems, or for

reporting vehicle data, also

including emergency acci-

dent location. We refer to

the area as localization al-

gorithms for several rea-

sons. First, the word al-

gorithm indicates software

development. Already today

there is sufficient informa-

tion at hand, in terms of sen-

sors and databases to make

a leap in performance com-

pared to GNSS-based solu-

tions. Second, localization

is not a system, it is rather a service required by many systems.

Third, the term navigation is avoided since this is only one

application of localization algorithms. Fourth, localization is

sometimes a more appropriate term than positioning, since

a true longitude and latitude position is of no value unless

the map and situational awareness have the same absolute

accuracy.

Consider the schematic picture of a vehicle in Fig. 1. The

trend is to make vehicles autonomous, [1–4] and utilizing

advanced driver assistance systems (ADAS). Hence, there is

a need to improve both localization and velocity estimation

systems. Basically going beyond traditional point estimation

methods, [5, 6] to get a better probabilistic understanding

[7–10] of the environment using more detailed models and

filters. The actuators (brake, steering wheel, engine torque)

have basically been the same since the car was invented, and

only a few new actuator concepts have been introduced (active

suspension, movable headlights, etc).

Fig. 1: Illustration of data flow in a vehicle. Future ADAS

functionality might include cloud information as well as

control, sensor fusion, and planning.

In stark contrast to the actuators, the amount of sensors

has increased substantially over the last decade, [11–13], for

example:

• Inertial measurement unit (IMU), [14], in the engine con-

trol unit (ECU) and in suspension sensors for estimating

the vehicle state.

• Vision, stereo vision, night vision, radar, sonar for mon-

itoring the surroundings and keeping the vehicle in the

lane at a safe distance (i.e., relative position control).

• The wheel speed sensors (WSS) introduced with the ABS

systems are one of the most versatile sensors in the car.

• Databases: vectorized road maps, [15–18], utilized for po-

sitioning including road height, map-matching, [11, 19–

22], and pothole indications, [23], etc.

• Cars are slowly following the development of smart

phones. Already today there are many radio receivers

in the vehicles: cellular network, Bluetooth, and Wi-Fi.

These can be used in various signal processing applica-

tions such as localization and speed estimation.
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Fig. 2: Overview of positioning, orientation, and velocity

estimation utilizing all available in-vehicle sensors, external

databases, and cloud interaction.

It is less explored that these information sources all in-

clude indirect information about the position. The vehicle

state sensors contain information of road signatures (curves,

banking, slopes and small variations in the surface height). The

vision sensors can see landmarks of known position. How the

WSS can be used for positioning will be thoroughly described

below.

Sensor fusion is used in all cases above for refining the

information, where there are several good examples of virtual

(or soft) sensors that compute physical quantities that cannot

readily be measured by sensors. Examples include detection

of obstacles, pedestrians, animals from vision sensors, and

tire pressure and road friction from WSS. The approach we

propose is based on statistical signal processing techniques,

based on a simple odometric model of the vehicle and a model

of each sensor relating to the vehicle state. In particular the

road map information is nonlinear and cannot be approximated

with a linear Gaussian model, so a particle filter framework

is preferred to Kalman filter algorithms. The sensor fusion

concept is summarized in Fig. 2.

The paper is organized as follows. In Section II different

localization application areas are highlighted. In Section III

map matching is addressed. Section IV addresses dead reck-

oning. Section V introduces Bayesian estimation for GPS free

positioning. In Section VI inertial sensors are discussed and

utilized. Finally, Section VII summarizes the contribution and

discusses further ideas.

II. FUTURE LOCALIZATION ALGORITHM APPLICATIONS

This section motivates the need for improved localization

algorithms highlighting areas such as cloud based computa-

tions, autonomous driving, hand-held devices, and mapping.

A. Cloud-based Services

To some extent, positioning is used for cloud based crowd

sourcing today, such as in apps for pothole detection, speed

camera positions, etc. This is an area that most probably will

explode in the future, when the manufacturers integrate these

reports in their own servers, and offer their own and other

customers services based on this information.

As an example of a virtual sensor, consider potholes that

are annoying to passengers and may be a hazard to the

vehicle. These are easily detected by accelerometers, WSS

or suspension sensors and the presence of potholes can be

included in the car’s navigation system. The problem is how

to share the information between users. Fig. 3 shows an

illustration of pot hole detections and clustering, [23]. Many

vehicles have in this case hit the same potholes, and delivered

the estimated position to a cloud database. A cloud based

clustering algorithm is then used to merge them into one

pothole, and possibly also project the position to the road.

This information can now be shared with other drivers, but it

could also be used by road authorities for maintenance.

Fig. 3: There are different sensors in a modern vehicle that can

detect potholes. Reports from a fleet of vehicles from NIRA

Dynamics are sent to a cloud database (left fig), [23]. Since

their notion of position differs for natural reasons (based on

GNSS), clustering is needed in the cloud (right fig).

B. Autonomy

Future autonomy will put high demands on the localization

algorithms. Despite the media success of self-driving cars, the

technology is still in development. On one hand, there is the

DARPA generation of cars where localization is based on a

laser scanner, whose price is still far from affordable, See

DARPA Grand challenge and urban challenge [1], [2]. Further,

its raised placement on the rooftop is not well aligned with the

design. The Google self-driving car, [3] is equipped with laser,

radar, and cameras on the roof top. Apart from most vehicles

it is not designed or even possible to drive manually. On the

other hand, we have seen self-driving cars (Audi RS7 Piloted

Driving presented at Hockenheim) positioned using differen-

tial GPS, including yaw estimation from multiple antennas, and

camera information. These cars have demonstrated spectacular

performance on restricted accurately mapped areas.

Autonomous functions in the car, and in the extreme self-

driving cars, will need another level of integrity. The lo-

calization algorithms must work in tunnels, parking houses,

urban canyons, and other areas where GNSS has problems. If

the satellite signal is only mitigated and pseudo-ranges are

available multiple model filters and map constraints might be

an option, [24]. However, for the general case: indoor driving,

long tunnels, and multiple levels, the focus is on map aided

positioning without satellite signals.

Localization must also be robust against jamming and

spoofing. Fleet management and theft tracking systems should

not rely on the access to GNSS.
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C. Devices

With tens of billions of connected devices around us, some

of them are to be used in vehicles. There is of course a

demand to keep track of those devices. In some cases, the

devices can be connected to the car to take advantage of

the sensor information on the CAN (computer area network)

bus. However, there is no standard for the protocol here, so

making devices connect to many OEM (original equipment

manufacture) vehicles is a challenge. That is, there is also

a need for completely stand-alone localization algorithms. It

will also be more common with transition from in-vehicle

estimation to hand-held devices.

D. Mapping

For positioning/localization there could either be a priori

map information available or it could be derived from sensor

data. For vehicle positioning usually accurate vectorized maps

of the road network are available. This is the focus on the

applications described in this paper. Also many landmarks

such as speed signs etc could be considered known and

available in complementary databases.

For the sake of completeness and since the algorithms and

methods are closely related we will briefly discuss Simulta-

neous localization and mapping (SLAM). It is an extension of

the localization problem to the case where the environment

is unmodeled and has to be mapped on-line. A survey to the

SLAM problem is given in [25–27]. The FastSLAM algorithm

introduced in [28] has proved to be an enabling technology

for such applications. FastSLAM can be seen as a special case

of Rao-Blackwellized particle filter (RBPF) or marginalized

particle filter (MPF) (see Section V-A), where the map state

containing the positions for all landmarks used in the mapping

can be interpreted as a linear Gaussian state. The main

difference is that the map vector is a constant parameter with

a dimension increasing over time, rather than a time-varying

state with a dynamic evolution over time. In [29] SLAM is used

to get high accuracy map information (centimeter resolution)

utilizing all available sensors such as GPS, odometer, and laser.

In [30] a different technique utilizing image data for high

accuracy navigation is utilized.

III. ROAD MAPS AND MAP MATCHING

The unique feature with automotive localization algorithms

is that vehicles spend most of their time on roads, and this is

also the common theme in this paper. We will illustrate how

road maps can be integrated with sensor fusion techniques to

provide an accurate position with high integrity.

The classical method to improve localization performance

is map matching, [22, 31]. Here, the position estimate com-

puted from the sensors (for instance GPS) is mapped to the

closest point on the road. This is an appropriate method for

presentation purposes, but it suffers from two problems. First,

it does not take the topography of the map into account,

which implies that the localization can jump from one road

to another. Second, the motion dynamics of the vehicle is not

combined with the map information in an optimal way. Having

said that there are a different types of map matching, basically

using the estimated trajectory in combination with the GPS

measurement in order to retrieve the most likely position. They

are sometimes referred to as point-to-point, point-to-curve, and

curve-to-curve matching, [11, 19–21]. For a detailed survey

over map-matching we refer to [22].

The purpose of this section is to survey different methods

which we refer as dynamic map matching. This includes

combining a motion model, sensor models and the road model

in a nonlinear filter, including uncertainties. The problem is

basically to fit a distorted and noisy trajectory to the road

network. Fig. 4 illustrates the principle. Hence, it is possible to

utilize only odometry and map information to get an accurate

localization, [32, 33].

Start

End

(b) (c) (d) (e)

(a)

Fig. 4: The key idea in dynamic map matching is to fit

an observed trajectory to the road network. (a) Undistorted

trajectory. (b) Undistorted trajectory with random rotation. (c)

Trajectory based on biased speed. (d) Trajectory based on

biased yaw rate. (e) Trajectory with random noise.

IV. DEAD-RECKONING PRINCIPLES

Dead reckoning is basically calculating the integral of

velocity or acceleration signals, with or without a vehicle

model. It can be based on IMU data or WSS signals for instance.

We will look at several aspects:

• Odometry or dead reckoning based on WSS

• Inertial sensor data dead reckoning

• Utilization of map matching

• Dynamic filtering

A. Dead-reckoning: Odometry

A simple motion model is based on a state vector consisting

of position X,Y and course ψ, in which case the principle of

dead-reckoning can be applied. Inserting the observed speed

ϑm(t) and angular velocity ψ̇m(t) as input signals gives the

following dynamic model with process noise w(t):

X(t+ T ) = X(t) + ϑm(t)T cos(ψ(t)) + T cos(ψ(t))wϑ(t),

Y (t+ T ) = Y (t) + ϑm(t)T sin(ψ(t)) + T sin(ψ(t))wϑ(t),

ψ(t+ T ) = ψ(t) + T ψ̇m(t) + Twψ̇(t).
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Fig. 5: Road segment i with normal vector n̂ and a position

estimate p̄. The scalar product between the vectors can be used

in order to determine if the estimate should be considered to

belong to the segment or not.

This model has the following structure (T = 1):

xt+1 = f(xt, ut) + g(xt, ut)wt, ut =
(

ϑmt , ψ̇
m
t

)T
.

Normally, additional sensors are needed to get observability

of the absolute position. However, the vectorized road map,

[15–18], contains sufficient information in itself. Note that

the speed and the angular velocity measurements are modeled

as inputs, rather than measurements. This is in accordance

to many navigation systems, where inertial measurements are

dead-reckoned in similar ways. Alternative road graph models

are discussed in [34], and second order motion models in [35].

B. Dead-reckoning: Inertial Sensors

Using an IMU it is possible to measure the acceleration

and angular rotation directly. From these measurements it is

theoretically possible to integrate the underlying system to

achieve position, velocity and direction, [14]. This is a com-

mon approach for military aircraft navigation and underwater

navigation. It is possible to use this dead-reckoning together

with map-matching to mitigate sensor imperfections. This is

probably best achieved using dynamic filtering and will be

described more in the sequel. For cheap commercial sensors

usually a GPS sensor is needed to handle the drift due to small

sensor biases.

C. Dead-reckoning: Map matching

As discussed previously, map-matching can be done by

fitting an estimate to the closest road or by looking at segments

etc. Here we will focus on the point-to-point matching, i.e.,

that the estimate is mapped to the closest orthogonal distance.

In Fig. 5 a position estimate (p̄) is considered to belong to

road segment i, i.e., between the two road edges p̄i and p̄i+1.

This can easily be verified if the following scalar products are

greater than zero: p̄i · ∆i > 0 and p̄i+1 · (−∆i) > 0, where

∆i = p̄i+1 − p̄i = (dX, dY )T . If this is the case the closest

distance to the segment can be calculated as d = ||(p̄−p̄i)·n̂||,
using the normal vector n̂ = (dY,−dX)T . Such project is

needed in many localization systems and in particular utilized

in the method described in Section V.

D. Dead-reckoning: Dynamic Filtering

A generic nonlinear filter for localization consists of the

following main steps:

• Time update : Use a motion model to predict where the

vehicle will be when the next measurement arrives.

• Measurement update: Use the current measurement and a

sensor model to update the information about the current

location.

In a Bayesian framework, the information is represented by

the posterior distribution given all available measurements.

The process of computing the Bayesian posterior distribution

is called filtering. Details are given in Section V, where the

distance calculated in Section IV-C is used in a probabilistic

way.

V. BAYESIAN FILTERING FOR MAP AIDED POSITIONING

A. Bayesian Filtering

Nonlinear filtering is the branch of statistical signal process-

ing concerned with recursively estimating the state xt based

on the measurements up to time t, Yt , {y1, . . . , yt} from

sample 1 to t. The most general problem it solves is to compute

the Bayesian conditional posterior density p(xt|Yt). There

are several algorithms for computing the posterior density.

The Kalman filter (KF) [5] solves the filtering problem in

case the model is linear and Gaussian. The solution involves

propagating the mean x̂t|t and the covariance Pt|t for the

posterior distribution. For nonlinear problems the model can

be linearized before the KF technique is applied, leading to the

extended Kalman filter (EKF), [6]. There also exist methods

where the Gaussian approximation is the key element, hence

no linearization is needed, for instance the unscented Kalman

filter (UKF) [36] approximates the posterior at each step with a

Gaussian density. Common for these methods is that it is not

trivial to impose hard-constraints from the road-map. They

also do not work particularly well unless the posterior density

is very mono-modal or Gaussian. For a KF based estimation

with map information see [37].

The road constraints imply a kind of information that

normally leads to a multi-modal posterior density (the target

can be on either this road, or that road, etc). Hence, a Gaussian

approximation of the PDF is not suitable. A completely differ-

ent approach to nonlinear filtering is based on approximating

the posterior p(xt|Yt) numerically. The point mass filter (PMF)

[38] represents the state space using a regular grid of size

N , where the grid points and the related weights (x(i), w
(i)
t

are used as a representation of the posterior. Different basis

functions have been suggested, the simplest one being an

impulse at each grid, when the posterior approximation can

be written p(xt|Yt) ≈
∑N

i=1 w
(i)
t δ(xt − x

(i)
t ), where δ(x)

denotes the Dirac-delta function. The particle filter (PF) [10]

is the state of the art numerical solution today. It uses a

stochastic grid {w
(i)
t , x

(i)
t }Ni=1 that automatically changes at

each iteration.

Depending on the model it is also possible to implement

numerical efficient filters combining KF and PF. The idea is to

divide the state space into two parts. If there is a conditionally
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linear Gaussian substructure with this partition, the KF can be

utilized for that part and the PF for the other part. This is

referred to as the Rao-Blackwellized particle filter (RBPF) or

the marginalized particle filter (MPF), [7–9, 39–41] The RBPF

improves the performance when a linear Gaussian substructure

is present, e.g., in various map based positioning applications

and target tracking applications as shown in [41].

The map aided positioning algorithm based on the particle

filter is summarized in Alg. 1.

Algorithm 1 Particle Filter for Map Aided Positioning

Given the system

xt+1 = f(xt) + wt

yt = h(xt) + et

1: Initialization: For i = 1, . . . , N , x0|−1 ∼ p
x
(i)
0
(x0) and

set t = 0.

2: PF measurement update: For i = 1, . . . , N , evaluate the

importance weights ω̃
(i)
t = p(yt|x

(i)
t|t ,Yt−1), and normal-

ize ω
(i)
t = ω̃

(i)
t /

∑

j ω̃
(j)
t using map information.

3: Resample N particles with replacement:

Pr(x
(i)
t|t = x

(j)
t|t−1) = ω

(j)
t .

3: PF time update: For i = 1, . . . , N predict new particles

x
(i)
t+1|t ∼ p(xt+1|t|X

(i)
t ,Yt).

4: Increase time and repeat from step 2.

B. Particle Filter Based Map Aided Positioning

In this section the map aided positioning (MAP) method is

first illustrated on experimental data. After that the crucial map

based observation is described in detail. Finally, the algorithm

performance is presented on 10 experiments conducted in the

same driving scenario (see Fig. 7).

1) MAP illustrations: In Fig. 6 the map aided positioning

using wheel speed information and road map information is

demonstrated, where GPS information is used as a ground truth

reference only. For other map aided positioning applications

see for instance [42–48]. First the PF is initialized in the

vicinity of the GPS position. The initial distribution is chosen

uniformly on road segments in a region around the GPS

fix. Particles are allowed slightly off-road to handle off-road

situations and small map errors. In Fig. 6 (a) the algorithm has

been active for some time. As seen, the PDF is highly multi-

modal (several clusters of particles). Note that the PF algorithm

uses only wheel speeds from the CAN-bus and that the GPS

is only used to evaluate the ground truth. In Fig. 6 (b), after

yet some turns, the filter has converged and the mean estimate

(red circle) is close to the true position (blue circle).

2) MAP algorithm: As discussed in Section IV-C map

matching can be used to fit an estimate to the closest road

segment. In this section we will focus on the PF implemen-

tation, so for each particle it is crucial to find the closest

road segment. The generic PF algorithm is used for map

aided positioning. The road map is used as a virtual sensor,

so there is not an actual measurement function. Instead the

closest distance to every road segment is evaluated for each

Fig. 7: Ten routes were driven (red GPS line). For one of them

(blue line) the position using map aided position is depicted.

particle. The main advantage here compared to normal map

matching algorithms is that the entire probability density is

considered, not just one point estimate. In Fig. 5 a particle (p̄)

is considered to belong to road segment i, if the two defined

scalar products are positive (see Section IV-C). The calculated

distance can then be assumed Gaussian distributed and used

in the PF measurement update.

In order to make the algorithm efficient each particle will

remember the road segment that was closest in the last update.

Hence, if the distance is still close enough not every road

segment needs to be considered.

3) MAP performance: To evaluate the average performance

10 similar experiments were conducted (see Fig. 7). All

trajectories are driven approximately in the same way, however

it is not possible to have them synchronized in time. Hence,

RMSE evaluation is done at some fixed way-points. In Fig. 8

the RMSE is calculated for each trajectory against known GPS-

way-points (upper plot). In the lower plot the average RMSE is

presented. As seen the performance is comparable to standard

GPS position error.

C. Multi-Level Positioning and Indoor Navigation

Indoor navigation is challenging since no GPS signal is

available. However, for parking garages the map aided po-

sitioning principle can still be utilized if maps are available.

These maps can also include obstacles such as pillars, side-

walls etc defining boundary regions. Since the geometry and

curvature are quite different than when driving on normal

roads, it is also beneficial to extend the simple vehicle model

and include a more precise spatial vehicle model. This can

easily be done by evaluating side-walls and pillars around a

rectangle placed around the particles which corresponds to the

vehicle’s geometry.

In order to handle multi-levels one successful implemen-

tation is to utilize entry and exit points between levels, and

simply handle each level as a continuation of the previous.

Inertial sensors such as inclination in longitudinal accelerom-
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(a) Illustration of the particle cloud after some iterations. Multi-modal
PDF representing the position (several clusters of particles). The par-
ticles clustered but still the mean point estimate (red circle) does not
correspond to the ground truth GPS (blue circle).

(b) The PF has converged to a uni-modal PDF (one cluster). The mean
estimate is now close to the ground truth.

Fig. 6: Map aided positioning using wheel speed sensor information in combination with road map information. The small

black dots are particles, the red and blue circles represent mean estimate and ground truth (GPS) position. The two figures

represent time instances after initialization when the filter is still in a multi-modal state (a), and at convergence (b).
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Fig. 8: RMSE for each trajectory as a function of driven

distance evaluated at specified way-points and as a total RMSE

average at the same instances. Note that GPS was not used

in the estimations, but only as a source for ground truth

evaluation.

eter signal can also support the level change decision. Similar

geometries can be found in multi-level highways in big cities.

For the positioning to work well on highways there must be

some variation in the geometry. For instance driving on very

straight highways for a long time will of course lead to a more

uncertain position estimate, since the wheel radius cannot be

known or estimated exactly. However, for such scenarios it is

very likely that GPS reception is very good and could be used

to adjust the position estimate.

D. Measurement Features

The PF method for positioning is very general, and it is easy

to add other information sources to the measurement update.

There are several important and common information sources

for automotive positioning that can be utilized. Modern camera

based vehicles can be equipped with traffic sign recognition

etc. If a database of the sign location is available it fits

perfectly into the map aided positioning framework, by simply

adding a measurement update. Other information sources such

as maximum allowed speed information for a road can be

used for making a better proposal in the particle filter. In the

future more localization sources will probably be available,

for instance information exchange from the infrastructure.

VI. INERTIAL SENSORS AND VELOCITY ESTIMATION

In this section the use of inertial sensors such as accelerom-

eters and gyros, both for dead reckoning, sensor fusion, and

as stand-alone velocity estimation is discussed.

A. Inertial sensors

An IMU measures acceleration and angular rotation. From

these measurements it is possible to integrate the underlying

system to achieve an estimate of position, velocity and direc-

tion, [14].

Dead-reckoning IMU: The pure integration or dead-

reckoning approach relies on very accurate and expensive

sensors that are not possible to utilize in commercial passenger

vehicles. The main problem for affordable commercial sensors

is that they have both unknown sensor biases and drifts, that
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Fig. 9: The fused position EKF estimate and the GPS position

depicted in a street map utilizing sensor data from a Google

Nexus Android mobile phone.

are not possible to remove. For instance in the longitudinal

acceleration direction both sensor errors and hills will act like

an unknown time-varying bias. Integrating twice to achieve

position will very rapidly yield large position errors. For

reliable stand-alone navigation without relying on for instance

GPS this is very difficult.

Map aided positioning using IMU: An IMU based map aided

position (stand-alone or in combination with WSS sensors) was

tested in [46], where the outcome was that WSS is a superior

velocity sensor due to the above mentioned problems.

GPS and IMU fusion: For modern ECU:s the in-vehicle sen-

sor cluster consisting of rate gyros and accelerometers can be

used together with a GPS sensor to achieve position, velocity,

and orientation estimates, [14]. However, not all vehicles have

these signals or they are not easily available. Hence, for many

application external sensors might be interesting, particularly

utilizing signals available in smart phones.

Consider the following state vector

x =
(

q pi vb ab
)T
,

where q is the quaternion vector, pi is the inertial position

vector, vb is the velocity in the body system, and ab is the

accelerometer vector in the body system. Let Cib be the

conversion matrix from body to inertial systems. Hence, in

discrete time we have the inertial position pit+1 = pit+TCibv
b
t .

It can be shown that

˙qbi =
1

2
S(ωbbi)qbi,

where ωbbi is the angular velocity of the body system relative

to the inertial system described in body coordinates.

In Fig. 9 the EKF estimate based on IMU and GPS signals

from a Google Nexus mobile phone using the data logging

from [49] is depicted together with GPS position using a

discretized model. For this application it is essential that some

velocity estimation algorithm or position sensor is utilized

Fig. 10: Accelerometer spectrogram (filtered periodogram of

the lateral acceleration as a function of time) compared to the

velocity from WSS, where the harmonics correspond to the

wheel rotation frequency.

to mitigate the dead-reckoning problem with unknown biases

in accelerometer and gyro signals. Here the GPS sensor was

utilized instead of map-matching techniques.

B. Virtual Speedometer

For some applications an accurate velocity estimate is es-

sential. A complementary method to the previously described

estimation is to utilize frequency analysis. It turns out that

the velocity of the vehicle is proportional to vibrations in

the accelerometer signal, [50]. This can be utilized in the

previously described positioning filter. It is not as accurate

as WSS information, but for a stand-alone application when

WSS is not available, data from a standard smart phone can

be utilized. In Fig. 10 the lateral accelerometer spectrogram

is depicted together with the angular velocity from the WSS

(as ground truth). The spectrum is formed at every instance

(downsampled to every second) by filtering the periodogram of

the lateral acceleration. As seen there are usually a frequency

related to the velocity. Also note that there is usually some

overtones as well. Utilizing this in the frequency domain, it

is possible to construct a simple peak detector to estimate

the velocity. In Fig. 11 the point estimates utilizing only the

maximal peak in the accelerometer spectrum (batch-wise every

second) is depicted. As seen usually this correlates to the true

velocity, but there are some outliers. It is possible to improve

the detector by incorporating the knowledge of overtones but

this is not done here.

For map aided positioning WSS sensor information is always

available. But for stand-alone applications the vibration based

velocity estimate could be used as a complementary measure-

ments for map-aided positioning. In Fig. 12 it is illustrated how

the speed estimation can be used as input signal (instead of

the WSS data) to the map aided positioning. For low velocities

this is not accurate enough, but potentially pure accelerometer

integration can be used for short period of times to support

the algorithm.
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Fig. 11: Velocity from WSS compared to estimates derived

from peaks in the accelerometer spectrum. Sometimes there

are outliers or the wrong harmonic is selected, however this

can later be corrected by the over-all velocity filter.

Fig. 12: The general idea for a stand-alone map aided posi-

tioning when WSS is not available is to use the acceleration

vibration speed estimation as input to the MAP algorithm.

With proper outlier rejection to the velocity estimates the

algorithm can function without WSS data.

VII. DISCUSSION AND CONCLUSION

We have discussed the needs in future automotive local-

ization algorithms, and pointed out that both accuracy and

integrity have to be improved compared to the navigation

systems today that rely on GNSS. For this purpose, we outlined

a path to future automotive localization algorithms based on a

statistical signal processing approach, where information from

various sensors and information sources are fused based on

given sensor models and an odometric motion model. The

possible sensors include in-vehicle sensors such as wheel

speed sensors, accelerometers, gyros, and external ones such

as GPS. However, localization concerns the relative position of

the own vehicle compared to the surrounding, so the position

relative the road network is more important that the absolute

longitude and latitude. A road map is the key information

source for this purpose, and we have discussed the concepts

of map matching (basically projection of a position to the road

network) and map aided positioning (where the road map is

treated as a sensor). Furthermore, landmarks such as road signs

detected by a camera, and the inclusion of car to infrastructure

information, wireless sources (Bluetooth, Wi-Fi, and mobile

positioning) will be crucial in the future, and this information

is also easily incorporated in our framework.

We have in particular highlighted the crucial concept of

map aided positioning. Utilizing measurements from a yaw

rate and wheel speed signals (WSS), we have shown that it is

possible in urban areas to position a vehicle with almost GPS

accuracy without using any external GNSS positioning sensor,

when utilizing the vehicle model and accurate road map

information in a particle filter. Incorporation of inertial sensor

measurements for velocity estimation utilizing accelerometer

vibrations was demonstrated, as well as the basic principle

when using it for positioning.
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