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Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from
medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML
primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML
will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This
paper considers key factors contributing to this issue, explores how federated learning (FL) may provide a solution for the future of
digital health and highlights the challenges and considerations that need to be addressed.
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INTRODUCTION

Research on artificial intelligence (AI), and particularly the
advances in machine learning (ML) and deep learning (DL)1 have
led to disruptive innovations in radiology, pathology, genomics
and other fields. Modern DL models feature millions of parameters
that need to be learned from sufficiently large curated data sets in
order to achieve clinical-grade accuracy, while being safe, fair,
equitable and generalising well to unseen data2–5.
For example, training an AI-based tumour detector requires a

large database encompassing the full spectrum of possible
anatomies, pathologies, and input data types. Data like this is hard
to obtain, because health data is highly sensitive and its usage is
tightly regulated6. Even if data anonymisation could bypass these
limitations, it is now well understood that removing metadata such
as patient name or date of birth is often not enough to preserve
privacy7. It is, for example, possible to reconstruct a patient’s face
from computed tomography (CT) or magnetic resonance imaging
(MRI) data8. Another reason why data sharing is not systematic in
healthcare is that collecting, curating, and maintaining a high-quality
data set takes considerable time, effort, and expense. Consequently
such data sets may have significant business value, making it less
likely that they will be freely shared. Instead, data collectors often
retain fine-grained control over the data that they have gathered.
Federated learning (FL)9–11 is a learning paradigm seeking to

address the problem of data governance and privacy by training
algorithms collaboratively without exchanging the data itself.
Originally developed for different domains, such as mobile and
edge device use cases12, it recently gained traction for healthcare
applications13–20. FL enables gaining insights collaboratively, e.g., in
the form of a consensus model, without moving patient data
beyond the firewalls of the institutions in which they reside. Instead,
the ML process occurs locally at each participating institution and
only model characteristics (e.g., parameters, gradients) are trans-
ferred as depicted in Fig. 1. Recent research has shown that models
trained by FL can achieve performance levels comparable to ones
trained on centrally hosted data sets and superior to models that
only see isolated single-institutional data16,17.

A successful implementation of FL could thus hold a significant
potential for enabling precision medicine at large-scale, leading to
models that yield unbiased decisions, optimally reflect an
individual’s physiology, and are sensitive to rare diseases while
respecting governance and privacy concerns. However, FL still
requires rigorous technical consideration to ensure that the
algorithm is proceeding optimally without compromising safety
or patient privacy. Nevertheless, it has the potential to overcome
the limitations of approaches that require a single pool of
centralised data.
We envision a federated future for digital health and with this

perspective paper, we share our consensus view with the aim of
providing context and detail for the community regarding the
benefits and impact of FL for medical applications (section “Data-
driven medicine requires federated efforts”), as well as highlighting
key considerations and challenges of implementing FL for digital
health (section “Technical considerations”).

DATA-DRIVEN MEDICINE REQUIRES FEDERATED EFFORTS

ML and especially DL is becoming the de facto knowledge
discovery approach in many industries, but successfully imple-
menting data-driven applications requires large and diverse data
sets. However, medical data sets are difficult to obtain (subsection
“The reliance on data”). FL addresses this issue by enabling
collaborative learning without centralising data (subsection “The
promise of federated efforts”) and has already found its way to
digital health applications (subsection “Current FL efforts for
digital health”). This new learning paradigm requires consideration
from, but also offers benefits to, various healthcare stakeholders
(section “Impact on stakeholders”).

The reliance on data

Data-driven approaches rely on data that truly represent the
underlying data distribution of the problem. While this is a well-
known requirement, state-of-the-art algorithms are usually
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evaluated on carefully curated data sets, often originating from
only a few sources. This can introduce biases where demographics
(e.g., gender, age) or technical imbalances (e.g., acquisition
protocol, equipment manufacturer) skew predictions and
adversely affect the accuracy for certain groups or sites. However,
to capture subtle relationships between disease patterns, socio-
economic and genetic factors, as well as complex and rare cases, it
is crucial to expose a model to diverse cases.
The need for large databases for AI training has spawned many

initiatives seeking to pool data from multiple institutions. This data
is often amassed into so-called Data Lakes. These have been built
with the aim of leveraging either the commercial value of data, e.g.,
IBM’s Merge Healthcare acquisition21, or as a resource for economic
growth and scientific progress, e.g., NHS Scotland’s National Safe
Haven22, French Health Data Hub23, and Health Data Research UK24.
Substantial, albeit smaller, initiatives include the Human

Connectome25, the UK Biobank26, the Cancer Imaging Archive
(TCIA)27, NIH CXR828, NIH DeepLesion29, the Cancer Genome Atlas
(TCGA)30, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)31, as well as medical grand challenges32 such as the
CAMELYON challenge33, the International multimodal Brain Tumor
Segmentation (BraTS) challenge34–36 or the Medical Segmentation
Decathlon37. Public medical data is usually task- or disease-specific
and often released with varying degrees of license restrictions,
sometimes limiting its exploitation.
Centralising or releasing data, however, poses not only

regulatory, ethical and legal challenges, related to privacy and
data protection, but also technical ones. Anonymising, controlling
access and safely transferring healthcare data is a non-trivial, and
sometimes impossible task. Anonymised data from the electronic
health record can appear innocuous and GDPR/PHI compliant, but
just a few data elements may allow for patient reidentification7.
The same applies to genomic data and medical images making
them as unique as a fingerprint38. Therefore, unless the
anonymisation process destroys the fidelity of the data, likely

rendering it useless, patient reidentification or information
leakage cannot be ruled out. Gated access for approved users is
often proposed as a putative solution to this issue. However,
besides limiting data availability, this is only practical for cases in
which the consent granted by the data owners is unconditional,
since recalling data from those who may have had access to the
data is practically unenforceable.

The promise of federated efforts

The promise of FL is simple—to address privacy and data
governance challenges by enabling ML from non-co-located data.
In a FL setting, each data controller not only defines its own
governance processes and associated privacy policies, but also
controls data access and has the ability to revoke it. This includes
both the training, as well as the validation phase. In this way, FL
could create new opportunities, e.g., by allowing large-scale, in-
institutional validation, or by enabling novel research on rare
diseases, where the incident rates are low and data sets at each
single institution are too small. Moving the model to the data and
not vice versa has another major advantage: high-dimensional,
storage-intense medical data does not have to be duplicated from
local institutions in a centralised pool and duplicated again by
every user that uses this data for local model training. As the
model is transferred to the local institutions, it can scale naturally
with a potentially growing global data set without disproportio-
nately increasing data storage requirements.
As depicted in Fig. 2, a FL workflow can be realised with different

topologies and compute plans. The two most common ones for
healthcare applications are via an aggregation server16–18 and peer
to peer approaches15,39. In all cases, FL implicitly offers a certain
degree of privacy, as FL participants never directly access data from
other institutions and only receive model parameters that are
aggregated over several participants. In a FL workflow with
aggregation server, the participating institutions can even remain
unknown to each other. However, it has been shown that the models

Fig. 1 Example federated learning (FL) workflows and difference to learning on a Centralised Data Lake. a FL aggregation server—the
typical FL workflow in which a federation of training nodes receive the global model, resubmit their partially trained models to a central server
intermittently for aggregation and then continue training on the consensus model that the server returns. b FL peer to peer—alternative
formulation of FL in which each training node exchanges its partially trained models with some or all of its peers and each does its own
aggregation. c Centralised training—the general non-FL training workflow in which data acquiring sites donate their data to a central Data
Lake from which they and others are able to extract data for local, independent training.
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themselves can, under certain conditions, memorise information40–43.
Therefore, mechanisms such as differential privacy44,45 or learning
from encrypted data have been proposed to further enhance privacy
in a FL setting (c.f. section “Technical considerations”). Overall, the
potential of FL for healthcare applications has sparked interest in the
community46 and FL techniques are a growing area of research12,20.

Current FL efforts for digital health

Since FL is a general learning paradigm that removes the data
pooling requirement for AI model development, the application
range of FL spans the whole of AI for healthcare. By providing an
opportunity to capture larger data variability and to analyse
patients across different demographics, FL may enable disruptive
innovations for the future but is also being employed right now.
In the context of electronic health records (EHR), for example, FL

helps to represent and to find clinically similar patients13,47, as well
as predicting hospitalisations due to cardiac events14, mortality
and ICU stay time19. The applicability and advantages of FL have
also been demonstrated in the field of medical imaging, for
whole-brain segmentation in MRI15, as well as brain tumour
segmentation16,17. Recently, the technique has been employed for
fMRI classification to find reliable disease-related biomarkers18 and
suggested as a promising approach in the context of COVID-1948.
It is worth noting that FL efforts require agreements to define

the scope, aim and technologies used which, since it is still novel,
can be difficult to pin down. In this context, today’s large-scale
initiatives really are the pioneers of tomorrow’s standards for safe,
fair and innovative collaboration in healthcare applications.
These include consortia that aim to advance academic research,

such as the Trustworthy Federated Data Analytics (TFDA) project49

and the German Cancer Consortium’s Joint Imaging Platform50,
which enable decentralised research across German medical
imaging research institutions. Another example is an international
research collaboration that uses FL for the development of AI
models for the assessment of mammograms51. The study showed
that the FL-generated models outperformed those trained on a
single institute’s data and were more generalisable, so that they
still performed well on other institutes’ data. However, FL is not
limited just to academic environments.
By linking healthcare institutions, not restricted to research

centres, FL can have direct clinical impact. The on-going

HealthChain project52, for example, aims to develop and deploy
a FL framework across four hospitals in France. This solution
generates common models that can predict treatment response
for breast cancer and melanoma patients. It helps oncologists to
determine the most effective treatment for each patient from their
histology slides or dermoscopy images. Another large-scale effort
is the Federated Tumour Segmentation (FeTS) initiative53, which is
an international federation of 30 committed healthcare institu-
tions using an open-source FL framework with a graphical user
interface. The aim is to improve tumour boundary detection,
including brain glioma, breast tumours, liver tumours and bone
lesions from multiple myeloma patients.
Another area of impact is within industrial research and

translation. FL enables collaborative research for, even competing,
companies. In this context, one of the largest initiatives is the
Melloddy project54. It is a project aiming to deploy multi-task FL
across the data sets of 10 pharmaceutical companies. By training a
common predictive model, which infers how chemical compounds
bind to proteins, partners intend to optimise the drug discovery
process without revealing their highly valuable in-house data.

Impact on stakeholders

FL comprises a paradigm shift from centralised data lakes and it is
important to understand its impact on the various stakeholders in
a FL ecosystem.

Clinicians. Clinicians are usually exposed to a sub-group of the
population based on their location and demographic environ-
ment, which may cause biased assumptions about the probability
of certain diseases or their interconnection. By using ML-based
systems, e.g., as a second reader, they can augment their own
expertise with expert knowledge from other institutions, ensuring
a consistency of diagnosis not attainable today. While this applies
to ML-based system in general, systems trained in a federated
fashion are potentially able to yield even less biased decisions and
higher sensitivity to rare cases as they were likely exposed to a
more complete data distribution. However, this demands some
up-front effort such as compliance with agreements, e.g.,
regarding the data structure, annotation and report protocol,
which is necessary to ensure that the information is presented to
collaborators in a commonly understood format.

Fig. 2 Overview of different FL design choices. FL topologies—communication architecture of a federation. a Centralised: the aggregation
server coordinates the training iterations and collects, aggregates and distributes the models to and from the Training Nodes (Hub & Spoke).
b Decentralised: each training node is connected to one or more peers and aggregation occurs on each node in parallel. c Hierarchical:
federated networks can be composed from several sub-federations, which can be built from a mix of Peer to Peer and Aggregation Server
federations (d)). FL compute plans—trajectory of a model across several partners. e Sequential training/cyclic transfer learning. f Aggregation
server, g Peer to Peer.
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Patients. Patients are usually treated locally. Establishing FL on a
global scale could ensure high quality of clinical decisions
regardless of the treatment location. In particular, patients
requiring medical attention in remote areas could benefit from
the same high-quality ML-aided diagnoses that are available in
hospitals with a large number of cases. The same holds true for
rare, or geographically uncommon, diseases, that are likely to have
milder consequences if faster and more accurate diagnoses can be
made. FL may also lower the hurdle for becoming a data donor,
since patients can be reassured that the data remains with their
own institution and data access can be revoked.

Hospitals and practices. Hospitals and practices can remain in full
control and possession of their patient data with complete
traceability of data access, limiting the risk of misuse by third
parties. However, this will require investment in on-premise
computing infrastructure or private-cloud service provision and
adherence to standardised and synoptic data formats so that ML
models can be trained and evaluated seamlessly. The amount of
necessary compute capability depends of course on whether a site
is only participating in evaluation and testing efforts or also in
training efforts. Even relatively small institutions can participate
and they will still benefit from collective models generated.

Researchers and AI developers. Researchers and AI developers
stand to benefit from access to a potentially vast collection of real-
world data, which will particularly impact smaller research labs
and start-ups. Thus, resources can be directed towards solving
clinical needs and associated technical problems rather than
relying on the limited supply of open data sets. At the same time,
it will be necessary to conduct research on algorithmic strategies
for federated training, e.g., how to combine models or updates
efficiently, how to be robust to distribution shifts11,12,20. FL-based
development implies also that the researcher or AI developer
cannot investigate or visualise all of the data on which the model
is trained, e.g., it is not possible to look at an individual failure case
to understand why the current model performs poorly on it.

Healthcare providers. Healthcare providers in many countries are
affected by the on-going paradigm shift from volume-based, i.e.,
fee-for-service-based, to value-based healthcare, which is in turn
strongly connected to the successful establishment of precision
medicine. This is not about promoting more expensive individua-
lised therapies but instead about achieving better outcomes
sooner through more focused treatment, thereby reducing the
cost. FL has the potential to increase the accuracy and robustness
of healthcare AI, while reducing costs and improving patient
outcomes, and may therefore be vital to precision medicine.

Manufacturers. Manufacturers of healthcare software and hard-
ware could benefit from FL as well, since combining the learning
from many devices and applications, without revealing patient-
specific information, can facilitate the continuous validation or
improvement of their ML-based systems. However, realising such
a capability may require significant upgrades to local compute,
data storage, networking capabilities and associated software.

TECHNICAL CONSIDERATIONS

FL is perhaps best-known from the work of Konečnỳ et al.55, but
various other definitions have been proposed in the litera-
ture9,11,12,20. A FL workflow (Fig. 1) can be realised via different
topologies and compute plans (Fig. 2), but the goal remains the
same, i.e., to combine knowledge learned from non-co-located
data. In this section, we will discuss in more detail what FL is, as
well as highlighting the key challenges and technical considera-
tions that arise when applying FL in digital health.

Federated learning definition

FL is a learning paradigm in which multiple parties train
collaboratively without the need to exchange or centralise data
sets. A general formulation of FL reads as follows: Let L denote a
global loss function obtained via a weighted combination of K local
losses fLkg

K
k¼1 , computed from private data Xk, which is residing at

the individual involved parties and never shared among them:

min
ϕ
LðX;ϕÞ with LðX;ϕÞ ¼

XK

k¼1

wk LkðXk;ϕÞ; (1)

where wk > 0 denote the respective weight coefficients.
In practice, each participant typically obtains and refines a global

consensus model by conducting a few rounds of optimisation
locally and before sharing updates, either directly or via a
parameter server. The more rounds of local training are performed,
the less it is guaranteed that the overall procedure is minimising
(Eq. 1)9,12. The actual process for aggregating parameters depends
on the network topology, as nodes might be segregated into sub-
networks due to geographical or legal constraints (see Fig. 2).
Aggregation strategies can rely on a single aggregating node (hub
and spokes models), or on multiple nodes without any centralisa-
tion. An example is peer-to-peer FL, where connections exist
between all or a subset of the participants and model updates are
shared only between directly connected sites15,56, whereas an
example of centralised FL aggregation is given in Algorithm 1. Note
that aggregation strategies do not necessarily require information
about the full model update; clients might chose to share only a
subset of the model parameters for the sake of reducing
communication overhead, ensure better privacy preservation10 or
to produce multi-task learning algorithms having only part of their
parameters learned in a federated manner.
A unifying framework enabling various training schemes may

disentangle compute resources (data and servers) from the
compute plan, as depicted in Fig. 2. The latter defines the
trajectory of a model across several partners, to be trained and
evaluated on specific data sets.

Algorithm 1. Example of a FL algorithm16 via Hub & Spoke
(Centralised topology) with FedAvg aggregation9.
Require: num_federated_rounds T

1: procedure AGGREGATING

2: Initialise global model: W(0)

3: for t ← 1 ⋯ T do

4: for client k ← 1 ⋯ K do ⊳ Run in parallel

5: Send W(t−1) to client k

6: Receive model updates and number of local training iterations
ðΔW

ðt�1Þ
k ;NkÞ from client’s local training with LkðXk ;W

ðt�1ÞÞ

7: end for

8: WðtÞ  Wðt�1Þ þ 1P
k
Nk

P
kðNk �W

ðt�1Þ
k Þ

9: end for

10: return W(t)

11: end procedure

Challenges and considerations

Despite the advantages of FL, it does not solve all issues that are
inherent to learning on medical data. A successful model training
still depends on factors like data quality, bias and standardisation2.
These issues have to be solved for both federated and non-
federated learning efforts via appropriate measures, such as
careful study design, common protocols for data acquisition,
structured reporting and sophisticated methodologies for dis-
covering bias and hidden stratification. In the following, we touch
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upon the key aspects of FL that are of particular relevance when
applied to digital health and need to be taken into account when
establishing FL. For technical details and in-depth discussion, we
refer the reader to recent surveys11,12,20.

Data heterogeneity. Medical data is particularly diverse—not only
because of the variety of modalities, dimensionality and
characteristics in general, but even within a specific protocol
due to factors such as acquisition differences, brand of the
medical device or local demographics. FL may help address
certain sources of bias through potentially increased diversity of
data sources, but inhomogeneous data distribution poses a
challenge for FL algorithms and strategies, as many are assuming
independently and identically distributed (IID) data across the
participants. In general, strategies such as FedAvg9 are prone to fail
under these conditions9,57,58, in part defeating the very purpose of
collaborative learning strategies. Recent results, however, indicate
that FL training is still feasible59, even if medical data is not
uniformly distributed across the institutions16,17 or includes a local
bias51. Research addressing this problem includes, for example,
FedProx57, part-data-sharing strategy58 and FL with domain-
adaptation18. Another challenge is that data heterogeneity may
lead to a situation in which the global optimal solution may not be
optimal for an individual local participant. The definition of model
training optimality should, therefore, be agreed by all participants
before training.

Privacy and security. Healthcare data is highly sensitive and must
be protected accordingly, following appropriate confidentiality
procedures. Therefore, some of the key considerations are the
trade-offs, strategies and remaining risks regarding the privacy-
preserving potential of FL.
Privacy vs. performance: It is important to note that FL does not

solve all potential privacy issues and—similar to ML algorithms in
general—will always carry some risks. Privacy-preserving techni-
ques for FL offer levels of protection that exceed today’s current
commercially available ML models12. However, there is a trade-off
in terms of performance and these techniques may affect, for
example, the accuracy of the final model10. Furthermore, future
techniques and/or ancillary data could be used to compromise a
model previously considered to be low-risk.
Level of trust: Broadly speaking, participating parties can enter

two types of FL collaboration:
Trusted—for FL consortia in which all parties are considered

trustworthy and are bound by an enforceable collaboration
agreement, we can eliminate many of the more nefarious
motivations, such as deliberate attempts to extract sensitive
information or to intentionally corrupt the model. This reduces the
need for sophisticated counter-measures, falling back to the
principles of standard collaborative research.
Non-trusted—in FL systems that operate on larger scales, it might

be impractical to establish an enforceable collaborative agreement.
Some clients may deliberately try to degrade performance, bring the
system down or extract information from other parties. Hence,
security strategies will be required to mitigate these risks such as,
advanced encryption of model submissions, secure authentication
of all parties, traceability of actions, differential privacy, verification
systems, execution integrity, model confidentiality and protections
against adversarial attacks.
Information leakage: By definition, FL systems avoid sharing

healthcare data among participating institutions. However, the
shared information may still indirectly expose private data used for
local training, e.g., by model inversion60 of the model updates, the
gradients themselves61 or adversarial attacks62,63. FL is different from
traditional training insofar as the training process is exposed to
multiple parties, thereby increasing the risk of leakage via reverse-
engineering if adversaries can observe model changes over time,
observe specific model updates (i.e., a single institution’s update), or

manipulate the model (e.g., induce additional memorisation by
others through gradient-ascent-style attacks). Developing counter-
measures, such as limiting the granularity of the updates and adding
noise16,18 and ensuring adequate differential privacy44, may be
needed and is still an active area of research12.

Traceability and accountability. As per all safety-critical applica-
tions, the reproducibility of a system is important for FL in
healthcare. In contrast to centralised training, FL requires multi-
party computations in environments that exhibit considerable
variety in terms of hardware, software and networks. Traceability
of all system assets including data access history, training
configurations, and hyperparameter tuning throughout the training
processes is thus mandatory. In particular in non-trusted federations,
traceability and accountability processes require execution integrity.
After the training process reaches the mutually agreed model
optimality criteria, it may also be helpful to measure the amount of
contribution from each participant, such as computational resources
consumed, quality of the data used for local training, etc. These
measurements could then be used to determine relevant compen-
sation, and establish a revenue model among the participants64.
One implication of FL is that researchers are not able to investigate
data upon which models are being trained to make sense of
unexpected results. Moreover, taking statistical measurements of
their training data as part of the model development workflow will
need to be approved by the collaborating parties as not violating
privacy. Although each site will have access to its own raw data,
federations may decide to provide some sort of secure intra-node
viewing facility to cater for this need or may provide some other way
to increase explainability and interpretability of the global model.

System architecture. Unlike running large-scale FL amongst
consumer devices such as McMahan et al.9, healthcare institu-
tional participants are equipped with relatively powerful compu-
tational resources and reliable, higher-throughput networks
enabling training of larger models with many more local training
steps, and sharing more model information between nodes. These
unique characteristics of FL in healthcare also bring challenges
such as ensuring data integrity when communicating by use of
redundant nodes, designing secure encryption methods to
prevent data leakage, or designing appropriate node schedulers
to make best-use of the distributed computational devices and
reduce idle time.
The administration of such a federation can be realised in

different ways. In situations requiring the most stringent data
privacy between parties, training may operate via some sort of
“honest broker” system, in which a trusted third party acts as the
intermediary and facilitates access to data. This setup requires an
independent entity controlling the overall system, which may not
always be desirable, since it could involve additional cost and
procedural viscosity. However, it has the advantage that the precise
internal mechanisms can be abstracted away from the clients,
making the system more agile and simpler to update. In a peer-to-
peer system each site interacts directly with some or all of the other
participants. In other words, there is no gatekeeper function, all
protocols must be agreed up-front, which requires significant
agreement efforts, and changes must be made in a synchronised
fashion by all parties to avoid problems. Additionally, in a trustless-
based architecture the platform operator may be cryptographically
locked into being honest by means of a secure protocol, but this
may introduce significant computational overheads.

CONCLUSION

ML, and particularly DL, has led to a wide range of innovations in
the area of digital healthcare. As all ML methods benefit greatly
from the ability to access data that approximates the true global
distribution, FL is a promising approach to obtain powerful,
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accurate, safe, robust and unbiased models. By enabling multiple
parties to train collaboratively without the need to exchange or
centralise data sets, FL neatly addresses issues related to egress of
sensitive medical data. As a consequence, it may open novel
research and business avenues and has the potential to improve
patient care globally. However, already today, FL has an impact on
nearly all stakeholders and the entire treatment cycle, ranging
from improved medical image analysis providing clinicians with
better diagnostic tools, over true precision medicine by helping to
find similar patients, to collaborative and accelerated drug
discovery decreasing cost and time-to-market for pharma
companies. Not all technical questions have been answered yet
and FL will certainly be an active research area throughout the
next decade 12. Despite this, we truly believe that its potential
impact on precision medicine and ultimately improving medical
care is very promising.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Received: 17 March 2020; Accepted: 12 August 2020;

REFERENCES

1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
2. Wang, F., Casalino, L. P. & Khullar, D. Deep learning in medicine—promise, pro-

gress, and challenges. JAMA Intern. Med. 179, 293–294 (2019).
3. Chartrand, G. et al. Deep learning: a primer for radiologists. Radiographics 37,

2113–2131 (2017).
4. De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in

retinal disease. Nat. Med. 24, 1342 (2018).
5. Sun, C., Shrivastava, A., Singh, S. & Gupta, A. Revisiting unreasonable effectiveness

of data in deep learning era. In Proceedings of the IEEE international conference on

computer vision, 843–852 (IEEE, 2017).
6. Van Panhuis, W. G. et al. A systematic review of barriers to data sharing in public

health. BMC Public Health 14, 1144 (2014).
7. Rocher, L., Hendrickx, J. M. & De Montjoye, Y.-A. Estimating the success of re-

identifications in incomplete datasets using generative models. Nat. Commun.

10, 1–9 (2019).
8. Schwarz, C. G. et al. Identification of anonymous mri research participants with

face-recognition software. N. Engl. J. Med. 381, 1684–1686 (2019).
9. McMahan, B., Moore, E., Ramage, D., Hampson, S. & y Arcas, B. A. Communication-

efficient learning of deep networks from decentralized data. In Artificial Intelligence

and Statistics, 1273–1282. https://scholar.google.de/scholar?hl=de&as_sdt=0%
2C5&q=Communicationefficient+learning+of+deep+networks+from
+decentralized+data&btnG= (2017).

10. Li, T., Sahu, A. K., Talwalkar, A. & Smith, V. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine 37, 50–60 (IEEE, 2020).

11. Yang, Q., Liu, Y., Chen, T. & Tong, Y. Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. (TIST) 10, 12 (2019).

12. Kairouz, P. et al. Advances and open problems in federated learning. arXiv pre-

print arXiv:1912.04977 (2019).
13. Lee, J. et al. Privacy-preserving patient similarity learning in a federated envir-

onment: development and analysis. JMIR Med. Inform. 6, e20 (2018).
14. Brisimi, T. S. et al. Federated learning of predictive models from federated elec-

tronic health records. Int. J. Med. Inform. 112, 59–67 (2018).
15. Roy, A. G., Siddiqui, S., Pölsterl, S., Navab, N. & Wachinger, C. Braintorrent: a peer-

to-peer environment for decentralized federated learning. arXiv preprint

arXiv:1905.06731 (2019).
16. Li, W. et al. Privacy-preserving federated brain tumour segmentation. In Inter-

national Workshop on Machine Learning in Medical Imaging, 133–141 (Springer,
2019).

17. Sheller, M. J., Reina, G. A., Edwards, B., Martin, J. & Bakas, S. Multi-institutional
deep learning modeling without sharing patient data: a feasibility study on brain
tumor segmentation. In International MICCAI Brainlesion Workshop, 92–104
(Springer, 2018).

18. Li, X. et al. Multi-site fmri analysis using privacy-preserving federated learning and
domain adaptation: abide results. arXiv preprint arXiv:2001.05647 (2020).

19. Huang, L. et al. Patient clustering improves efficiency of federated machine
learning to predict mortality and hospital stay time using distributed electronic
medical records. J. Biomed. Inform. 99, 103291 (2019).

20. Xu, J. & Wang, F. Federated learning for healthcare informatics. arXiv preprint

arXiv:1911.06270 (2019).
21. Roy, A. & Banerjee, A. Ibm’s merge healthcare acquisition. https://www.reuters.

com/article/us-merge-healthcare-m-a-ibm/ibm-to-buy-merge-healthcare-in-1-
billion-deal-idUSKCN0QB1ML20150806 (2015) (Accessed 10 February 2020).

22. Nhs scotland’s national safe haven. https://www.gov.scot/publications/charter-safe-
havens-scotland-handling-unconsented-data-national-health-service-patient-
records-support-research-statistics/pages/4/ (2015) (Accessed 10 February 2020).

23. Cuggia, M. & Combes, S. The french health data hub and the german medical
informatics initiatives: Two national projects to promote data sharing in health-
care. Yearbook Med. Informat. 28, 195–202 (2019).

24. Health Data Research UK. https://www.hdruk.ac.uk/ (Health Data Research UK,
2020) (Accessed 10 Feb 2020).

25. Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural
description of the human brain. PLoS Comput. Biol. 1, e42, https://doi.org/
10.1371/journal.pcbi.0010042 (2005).

26. Sudlow, C. et al. Uk biobank: an open access resource for identifying the causes
of a wide range of complex diseases of middle and old age. PLoS Med. 12,
e1001779. https://doi.org/10.1371/journal.pmed.1001779 (2015).

27. Clark, K. et al. The cancer imaging archive (tcia): maintaining and operating a
public information repository. J. Digit. Imaging. 26, 1045–1057 (2013).

28. Wang, X. et al. Chestx-ray8: Hospital-scale chest X-ray database and benchmarks
on weakly-supervised classification and localization of common thorax diseases.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
2097–2106 (IEEE, 2017).

29. Yan, K., Wang, X., Lu, L. & Summers, R. M. Deeplesion: automated mining of large-
scale lesion annotations and universal lesion detection with deep learning. J Med.

Imaging. 5, 036501 (2018).
30. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The cancer genome atlas (tcga): an

immeasurable source of knowledge. Contemp. Oncol. 19, A68 (2015).
31. Jack Jr., C. R. et al. The alzheimer’s disease neuroimaging initiative (adni): Mri

methods. J. Magn. Reson. Imaging 27, 685–691 (2008).
32. Grand Challenge-a Platform for End-to-end Development of Machine Learning

Solutions in Biomedical Imaging. https://grand-challenge.org/ (2020) (Accessed 24
July 2020).

33. Litjens, G. et al. 1399 h&e-stained sentinel lymph node sections of breast cancer
patients: the camelyon dataset. GigaScience 7, giy065 (2018).

34. Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark
(brats). IEEE Trans. Med. Imaging 34, 1993–2024 (2014).

35. Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival prediction in the
brats challenge. arXiv preprint arXiv:1811.02629 (2018).

36. Bakas, S. et al. Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017).

37. Simpson, A. L. et al. A large annotated medical image dataset for the develop-
ment and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063
(2019).

38. Yeh, F.-C. et al. Quantifying differences and similarities in whole-brain white
matter architecture using local connectome fingerprints. PLoS Comput. Biol. 12,
e1005203 (2016).

39. Chang, K. et al. Distributed deep learning networks among institutions for
medical imaging. J. Am. Med. Inform. Assoc. 25, 945–954 (2018).

40. Shokri, R., Stronati, M., Song, C. & Shmatikov, V. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy

(SP), 3-18 (IEEE, 2017).
41. Sablayrolles, A., Douze, M., Ollivier, Y., Schmid, C. & Jégou, H. White-box vs black-

box: Bayes optimal strategies for membership inference. In Chaudhuri, K. & Sal-
akhutdinov, R. (eds) Proceedings of the 36th International Conference on Machine

Learning, {ICML} 97, 5558–5567. http://proceedings.mlr.press/v97/sablayrolles19a.
html (PMLR, 2019).

42. Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep
learning requires rethinking generalization. In 5th International Conference on

Learning Representations, {ICLR}. https://openreview.net/forum?id=Sy8gdB9xx,
(OpenReview.net, 2017).

43. Carlini, N., Liu, C., Erlingsson, Ú., Kos, J. & Song, D. The secret sharer: evaluating
and testing unintended memorization in neural networks. In Heninger, N. &
Traynor, P. (eds) 28th {USENIX} Security Symposium ({USENIX} Security 19, 267–284.
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini ({USE-
NIX} Association, Santa Clara, CA, USA, 2019).

44. Abadi, M. et al. Deep learning with differential privacy. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, 308–318
(ACM, 2016).

N. Rieke et al.

6

npj Digital Medicine (2020)   119 Seoul National University Bundang Hospital

https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=Communicationefficient+learning+of+deep+networks+from+decentralized+data&btnG=
https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=Communicationefficient+learning+of+deep+networks+from+decentralized+data&btnG=
https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=Communicationefficient+learning+of+deep+networks+from+decentralized+data&btnG=
https://www.reuters.com/article/us-merge-healthcare-m-a-ibm/ibm-to-buy-merge-healthcare-in-1-billion-deal-idUSKCN0QB1ML20150806
https://www.reuters.com/article/us-merge-healthcare-m-a-ibm/ibm-to-buy-merge-healthcare-in-1-billion-deal-idUSKCN0QB1ML20150806
https://www.reuters.com/article/us-merge-healthcare-m-a-ibm/ibm-to-buy-merge-healthcare-in-1-billion-deal-idUSKCN0QB1ML20150806
https://www.gov.scot/publications/charter-safe-havens-scotland-handling-unconsented-data-national-health-service-patient-records-support-research-statistics/pages/4/
https://www.gov.scot/publications/charter-safe-havens-scotland-handling-unconsented-data-national-health-service-patient-records-support-research-statistics/pages/4/
https://www.gov.scot/publications/charter-safe-havens-scotland-handling-unconsented-data-national-health-service-patient-records-support-research-statistics/pages/4/
https://www.hdruk.ac.uk/
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pmed.1001779
https://grand-challenge.org/
http://proceedings.mlr.press/v97/sablayrolles19a.html
http://proceedings.mlr.press/v97/sablayrolles19a.html
https://openreview.net/forum?id=Sy8gdB9xx
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini


45. Shokri, R. & Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the

22nd ACM SIGSAC conference on computer and communications security,
1310–1321 (ACM, 2015).

46. Langlotz, C. P. et al. A roadmap for foundational research on artificial intelligence
in medical imaging: from the 2018 nih/rsna/acr/the academy workshop. Radi-
ology 291, 781–791 (2019).

47. Kim, Y., Sun, J., Yu, H. & Jiang, X. Federated Tensor Factorization for Computa-
tional Phenotyping. In Proceedings of the 23rd {ACM} {SIGKDD} International

Conference on Knowledge Discoveryand Data Mining. 887–895. https://doi.org/
10.1145/3097983.3098118 (ACM, Halifax, NS, Canada, 2017).

48. He, C., Annavaram, M. & Avestimehr, S. Fednas: Federated deep learning via
neural architecture search. https://sites.google.com/view/cvpr20-nas/ (2020).

49. Trustworthy federated data analytics (tfda). https://tfda.hmsp.center/ (2020)
(Accessed 28 May 2020).

50. Joint Imaging Platform (Jip). https://jip.dktk.dkfz.de/jiphomepage/ (2020)
(Accessed 28 May 2020).

51. Medical institutions collaborate to improve mammogram assessment ai. https://
blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-
assessment/ (2020) (Accessed 28 May 2020).

52. Healthchain consortium. https://www.substra.ai/en/healthchain-project (2020)
(Accessed 28 May 2020).

53. The federated tumor segmentation (fets) initiative. https://www.fets.ai (2020)
(Accessed 28 May 2020).

54. Machine learning ledger orchestration for drug discovery. https://cordis.europa.
eu/project/id/831472 (2020). Accessed 28 May 2020.

55. Konečny`, J., McMahan, H. B., Ramage, D. & Richtárik, P. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint

arXiv:1610.02527 (2016).
56. Lalitha, A., Kilinc, O. C., Javidi, T. & Koushanfar, F. Peer-to-peer federated learning

on graphs. arXiv preprint arXiv:1901.11173 (2019).
57. Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A. & Smith, V. Federated

optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018).
58. Zhao, Y. et al. Federated learning with non-iid data. arxivabs/1806.00582 (2018).
59. Li, X., Huang, K., Yang, W., Wang, S. & Zhang, Z. On the convergence of fedavg on

non-IID data. https://openreview.net/forum?id=HJxNAnVtDS (2020).
60. Wu, B. et al. P3sgd: patient privacy preserving SGD for regularizing deep CNNs in

pathological image classification. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (pp. 2099–2108) (2019).
61. Zhu, L., Liu, Z. & Han, S. Deep leakage from gradients. In Wallach, H. M. et al. (eds)

Advances in Neural Information Processing Systems 32: Annual Conference on

Neural Information Processing Systems, 14747–14756. http://papers.nips.cc/paper/
9617-deep-leakage-from-gradients (2019).

62. Wang, Z. et al. Beyond inferring class representatives: user-level privacy leakage
from federated learning. In 2019 {IEEE} Conferenceon Computer Communications,

{INFOCOM} 2512–2520. https://doi.org/10.1109/INFOCOM.2019.8737416 (IEEE,
Paris, France, 2019).

63. Hitaj, B., Ateniese, G. & Perez-Cruz, F. Deep models under the gan: information
leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, CCS’17, 603–618 (Asso-
ciation for Computing Machinery, New York, NY, USA, 2017).

64. Ghorbani, A. & Zou, J. Data shapley: Equitable valuation of data for machine
learning. In International Conference on Machine Learning (pp. 2242-2251) (2019).

ACKNOWLEDGEMENTS

This work was supported by the UK Research and Innovation London Medical
Imaging & Artificial Intelligence Centre for Value-Based Healthcare, by the Wellcome/
EPSRC Centre for Medical Engineering (WT203148/Z/16/Z), by the Wellcome Flagship
Programme (WT213038/Z/18/Z), by the Intramural Research Programme of the
National Institutes of Health (NIH) Clinical Center, by the National Cancer Institute of

the NIH under award number U01CA242871, by the National Institute of Neurological
Disorders and Stroke of the NIH under award number R01NS042645, as well as by the
Helmholtz Initiative and Networking Fund (project “Trustworthy Federated Data
Analytics”) and the PRIME programme of the German Academic Exchange Service
(DAAD) with funds from the German Federal Ministry of Education and Research
(BMBF). The content and opinions expressed in this publication is solely the
responsibility of the authors and do not necessarily represent those of the institutions
they are affiliated with, e.g., the U.S. Department of Health and Human Services or the
National Institutes of Health. Open access funding provided by Projekt DEAL.

AUTHOR CONTRIBUTIONS

N.R., J.H., W.L., F.M., H.R. and M.J.C. developed the concept for the article and created
the initial draft. N.R. lead the manuscript writing and finalised the article. J.H., B.L. and
M.N.G drafted and J.H. created the figures. All authors contributed expertise and edits
to the contents of this manuscript. In particular, S.A., K.M.H. and M.S. supported the
editing of the technical considerations of FL, R.M.S. and M.B. advised on the clinical
and technical perspective, respectively. The final manuscript was approved by all
authors.

COMPETING INTERESTS

R.M.S. receives royalties from iCAD, ScanMed, Philips, Translation Holdings and Ping
An. His lab has received research support from Ping An and NVIDIA. S.B. is supported
by the National Institutes of Health (NIH). M.N.G. is supported by the HealthChain
(BPIFrance) and Melloddy (IMI2) projects. A.T. is an employee of Google’s DeepMind.
S.O. and M.J.C. are founders and shareholders of Brainminer, llc. The other authors
declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/
s41746-020-00323-1.

Correspondence and requests for materials should be addressed to N.R.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

N. Rieke et al.

7

Seoul National University Bundang Hospital npj Digital Medicine (2020)   119 

https://doi.org/10.1145/3097983.3098118
https://doi.org/10.1145/3097983.3098118
https://sites.google.com/view/cvpr20-nas/
https://tfda.hmsp.center/
https://jip.dktk.dkfz.de/jiphomepage/
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://www.substra.ai/en/healthchain-project
https://www.fets.ai
https://cordis.europa.eu/project/id/831472
https://cordis.europa.eu/project/id/831472
https://openreview.net/forum?id=HJxNAnVtDS
http://papers.nips.cc/paper/9617-deep-leakage-from-gradients
http://papers.nips.cc/paper/9617-deep-leakage-from-gradients
https://doi.org/10.1109/INFOCOM.2019.8737416
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41746-020-00323-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The future of digital health with federated learning
	Introduction
	Data-driven medicine requires federated efforts
	The reliance on data
	The promise of federated efforts
	Current FL efforts for digital health
	Impact on stakeholders
	Clinicians
	Patients
	Hospitals and practices
	Researchers and AI developers
	Healthcare providers
	Manufacturers


	Technical considerations
	Federated learning definition
	Challenges and considerations
	Data heterogeneity
	Privacy and security
	Traceability and accountability
	System architecture


	Conclusion
	Reporting summary

	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


