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Abstract

When addressing terrorist threats we must give special at-
tention to both prevention and disaster response. Enabling
effective interactions between agent teams and humans for
disaster response is a critical area of research, with encour-
aging progress in the past few years. However, previous
work suffers from two key limitations: (i) limited human sit-
uational awareness, reducing human effectiveness in direct-
ing agent teams and (ii) the agent team’s rigid interaction
strategies that limit team performance. This paper focuses
on a novel disaster response software prototype, called DE-
FACTO (Demonstrating Effective Flexible Agent Coordina-
tion of Teams through Omnipresence). DEFACTO is based
on a software proxy architecture and 3D visualization sys-
tem, which addresses the two limitations described above.
First, the 3D visualization interface enables human virtual
omnipresence in the environment, improving human situa-
tional awareness and ability to assist agents. Second, gen-
eralizing past work on adjustable autonomy, the agent team
chooses among a variety of “team-level” interaction strate-
gies, even excluding humans from the loop in extreme cir-
cumstances.

Introduction
In the shadow of large-scale national and international ter-
rorist incidents, it is critical to provide first responders and
rescue personnel with tools that enable more effective and
efficient disaster response. We envision future disaster re-
sponse to be performed with a mixture of humans perform-
ing high level decision-making, intelligent agents coordi-
nating the response and humans and robots performing key
physical tasks. These heterogeneous teams of robots, agents,
and people (Scerri et al. 2003) will provide the safest and
most effective means for quickly responding to a disaster,
such as a terrorist attack. A key aspect of such a response
will be agent-assisted vehicles working together. Specifi-
cally, agents will assist the vehicles in planning routes, de-
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termining resources to use and even determining which fire
to fight. Each agent only obtains local information about its
surrounding, and must communicate with others to obtain
additional information, and coordinate to ensure that maxi-
mum numbers of civilians are saved and property damage is
minimized.

However, despite advances in agent technologies, human
involvement will be crucial. Allowing humans to make crit-
ical decisions within a team of intelligent agents or robots is
prerequisite for allowing such teams to be used in domains
where they can cause physical, financial or psychological
harm. These critical decisions include not only the decisions
that, for moral or political reasons, humans must be allowed
to make, but also coordination decisions that humans are bet-
ter at making due to access to important global knowledge,
general information or support tools.

Already, human interaction with agent teams is critical in
a large number of current and future applications (Burstein,
Mulvehill, & Deutsch 1999; Fong, Thorpe, & Baur 2002;
Scerri et al. 2003; Crandall, Nielsen, & Goodrich 2003).
For example, current efforts emphasize humans collabora-
tion with robot teams in space explorations, humans teaming
with robots and agents for disaster rescue, as well as humans
collaborating with multiple software agents for training (Do-
rais et al. 1998; Hill et al. 2003).

This paper focuses on the challenge of improving the
effectiveness of applications of human collaboration with
agent teams. Previous work has reported encouraging
progress in this arena, e.g., via proxy-based integration
architectures(Pynadath & Tambe 2003), adjustable auton-
omy(Scerri, Pynadath, & Tambe 2002; Dorais et al. 1998)
and agent-human dialogue (Allen 1995). Despite this en-
couraging progress, previous work suffers from two key
limitations. First, when interacting with agent teams act-
ing remotely, human effectiveness is hampered by interfaces
that limit their ability to apply decision-making skills in a
fast and accurate manner. Techniques that provide telepres-
ence via video are helpful (Fong, Thorpe, & Baur 2002),
but cannot provide the global situation awareness. Second,
agent teams have been equipped with adjustable autonomy
(AA)(Scerri et al. 2003) but not the flexibility critical in
such AA. Indeed, the appropriate AA method varies from
situation to situation. In some cases the human user should
make most of the decisions. However, in other cases human



involvement may need to be restricted. Such flexible AA
techniques have been developed in domains where humans
interact with individual agents (Scerri, Pynadath, & Tambe
2002), but whether they apply to situations where humans
interact with agent teams is unknown.

We report on a software prototype system, DEFACTO
(Demonstrating Effective Flexible Agent Coordination of
Teams through Omnipresence), that enables agent-human
collaboration and addresses the two shortcomings outlined
above. The system incorporates state of the art artificial
intelligence, 3D visualization and human-interaction rea-
soning into a unique high fidelity system for research into
human agent coordination in complex environments. DE-
FACTO incorporates a visualizer that allows for the human
to have an omnipresent interaction with remote agent teams,
overcoming the first limitation described above. We refer to
this as the Omni-Viewer, and it combines two modes of op-
eration. The Navigation Mode allows for a navigable, high
quality 3D visualization of the world, whereas the Alloca-
tion Mode provides a traditional 2D view and a list of pos-
sible task allocations that the human may perform. Human
experts can quickly absorb on-going agent and world activ-
ity, taking advantage of both the brain’s favored visual object
processing skills (relative to textual search, (Paivio 1974)),
and the fact that 3D representations can be innately recog-
nizable, without the layer of interpretation required of map-
like displays or raw computer logs. The Navigation mode
enables the human to understand the local perspectives of
each agent in conjunction with the global, system-wide per-
spective that is obtained in the Allocation mode.

Second, to provide flexible AA, we generalize the no-
tion of strategies from single-agent single-human context
(Scerri, Pynadath, & Tambe 2002). In our work, agents may
flexibly choose among team strategies for adjustable auton-
omy instead of only individual strategies; thus, depending on
the situation, the agent team has the flexibility to limit hu-
man interaction, and may in extreme cases exclude humans
from the loop.

We present results from detailed experiments with DE-
FACTO, which reveal two major surprises. First, contrary
to previous results (Scerri et al. 2003), human involve-
ment is not always beneficial to an agent team— despite
their best efforts, humans may sometimes end up hurting an
agent team’s performance. Second, increasing the number of
agents in an agent-human team may also degrade the team
performance, even though increasing the number of agents
in a pure agent team under identical circumstances improves
team performance. Fortunately, in both the surprising in-
stances above, DEFACTO’s flexible AA strategies alleviate
such problematic situations. DEFACTO is currently instan-
tiated as a prototype of a future disaster response system.
DEFACTO has been repeatedly demonstrated to key police
and fire department personnel in Los Angeles area, with very
positive feedback.

DEFACTO System Details
The DEFACTO system is currently focused on illustrating
the potential of future disaster-response to disasters that may
arise as a result of large-scale terrorist attacks. Constructed

as part of the effort at the first center for research excellence
on homeland security (the CREATE center), DEFACTO is
motivated by a scenario of great concern to first responders
within Los Angeles and other metropolitan areas. In our
consultations with the Los Angeles fire department and per-
sonnel from the CREATE center, this scenario is of great
concern. In particular, a shoulder-fired missile could poten-
tially be used to attack a low-flying civilian jet-liner that is
preparing to land at Los Angeles International Airport. This
would cause the jet-liner to crash into an urban area and re-
sult in a large-scale disaster on the ground. This scenario
could lead to multiple fires in multiple locations with po-
tentially many critically injured civilians. While there are
many longer-term implications of such an attack, we focus
on assisting first responders, namely fire fighters.

In this chapter we will describe two major components
of DEFACTO: the Omni-Viewer and the proxy-based team-
work (see Figure 1). The Omni-Viewer is an advanced hu-
man interface for interacting with an agent-assisted response
effort. The Omni-Viewer provides for both global and local
views of an unfolding situation, allowing a human decision-
maker to precise the information required for a particular
decision. A team of completely distributed proxies, where
each proxy encapsulates advanced coordination reasoning
based on the theory of teamwork, controls and coordinates
agents in a simulated environment. The use of the proxy-
based team brings realistic coordination complexity to the
prototype and allows more realistic assessment of the inter-
actions between humans and agent-assisted response. Cur-
rently, we have applied DEFACTO to a disaster rescue do-
main. The incident commander of the disaster acts as the
human user of DEFACTO. We focus on two urban areas:
a square block that is densely covered with buildings (we
use one from Kobe, Japan) and the USC campus , which
is more sparsely covered with buildings. In our scenario,
several buildings are initially on fire, and these fires spread
to adjacent buildings if they are not quickly contained. The
goal is to have a human interact with the team of fire engines
in order to save the most buildings. Our overall system ar-
chitecture applied to disaster response can be seen in Figure
1. While designed for real world situations, DEFACTO can
also be used as a training tool for incident commanders when
hooked up to a simulated disaster scenario.

Omni-Viewer
Our goal of allowing fluid human interaction with agents re-
quires a visualization system that provides the human with
a global view of agent activity as well as showing the local
view of a particular agent when needed. Hence, we have
developed an omnipresent viewer, or Omni-Viewer, which
will allow the human user diverse interaction with remote
agent teams. While a global view is obtainable from a two-
dimensional map, a local perspective is best obtained from
a 3D viewer, since the 3D view incorporates the perspective
and occlusion effects generated by a particular viewpoint.
The literature on 2D- versus 3D-viewers is ambiguous. For
example, spatial learning of environments from virtual nav-
igation has been found to be impaired relative to studying
simple maps of the same environments (Richardson, Mon-
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Figure 1: DEFACTO system applied to a disaster rescue.
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Figure 2: Omni-Viewer during a scenario: (a) Multiple fires
start across the campus (b) The Incident Commander uses
the Navigation mode to quickly grasp the situation (c) Nav-
igation mode shows a closer look at one of the fires (d) Al-
location mode is used to assign a fire engine to the fire (e)
The fire engine has arrived at the fire (f) The fire has been
extinguished.

tello, & Hegarty 1999). On the other hand, the problem may
be that many virtual environments are relatively bland and
featureless. Ruddle points out that navigating virtual en-
vironments can be successful if rich, distinguishable land-
marks are present (Ruddle, Payne, & Jones 1997).

To address our discrepant goals, the Omni-Viewer incor-
porates both a conventional map-like 2D view, Allocation
Mode (Figure 2-d) and a detailed 3D viewer, Navigation
Mode (Figure 2-c). The Allocation mode shows the global
overview as events are progressing and provides a list of
tasks that the agents have transferred to the human. The
Navigation mode shows the same dynamic world view, but
allows for more freedom to move to desired locations and
views. In particular, the user can drop to the virtual ground
level, thereby obtaining the world view (local perspective) of
a particular agent. At this level, the user can “walk” freely
around the scene, observing the local logistics involved as
various entities are performing their duties. This can be
helpful in evaluating the physical ground circumstances and
altering the team’s behavior accordingly. It also allows the
user to feel immersed in the scene where various factors
(psychological, etc.) may come into effect.

In order to prevent communication bandwidth issues, we
assume that a high resolution 3D model has already been
created and the only data that is transferred during the dis-
aster are important changes to the world. Generating this
suitable 3D model environment for the Navigation mode can
require months or even years of manual modeling effort, as
is commonly seen in the development of commercial video-
games. However, to avoid this level of effort we make use
of the work of You et. al. (Suya You & Fox 2003) in rapid,
minimally assisted construction of polygonal models from
LiDAR (Light Detection and Ranging) data. Given the raw
LiDAR point data, we can automatically segment buildings
from ground and create the high resolution model that the
Navigation mode utilizes. The construction of the campus
and surrounding area required only two days using this ap-
proach. LiDAR is an effective way for any new geographic
area to be easily inserted into the Omni-Viewer.

We use the JME game engine to perform the actual ren-
dering due to its cross-platform capabilities. JME is an ex-
tensible library built on LWJGL (Light Weight Java Game
Library), which interfaces with OpenGL and OpenAL. This
environment easily provided real-time rendering of the tex-
tured campus environment on mid-range commodity PCs.
JME utilizes a scene graph to order the rendering of geo-
metric entities. It provides some important features such as
OBJ format model loading (which allows us to author the
model and textures in a tool like Maya and load it in JME)
and also various assorted effects such as particle systems for
fires.

Proxy: Teamwork
A key hypothesis in this work is that intelligent distributed
agents will be a key element of a future disaster response.
Taking advantage of emerging robust, high bandwidth com-
munication infrastructure we believe that a critical role of
these intelligent agents will be to manage coordination be-
tween all members of the response team. Specifically, we are



Figure 3: Proxy Architecture

using coordination algorithms inspired by theories of team-
work to manage the distributed response (Tambe 1997). The
general coordination algorithms are encapsulated in proxies,
with each team member having its own proxy and represent-
ing it in the team. The current version of the proxies is called
Machinetta (Scerri et al. 2004) and extends the successful
Teamcore proxies (Pynadath & Tambe 2003). Machinetta is
implemented in Java and is freely available on the web. No-
tice that the concept of a reusable proxy differs from many
other “multiagent toolkits” in that it provides the coordina-
tion algorithms, e.g., algorithms for allocating tasks, as op-
posed to the infrastructure, e.g., APIs for reliable communi-
cation.

Communication: communication with other proxies
Coordination: reasoning about team plans and communi-

cation
State: the working memory of the proxy
Adjustable Autonomy: reasoning about whether to act au-

tonomously or pass control to the team member
RAP Interface: communication with the team member

The Machinetta software consists of five main modules,
three of which are domain independent and two of which
are tailored for specific domains. The three domain inde-
pendent modules are for coordination reasoning, maintain-
ing local beliefs (state) and adjustable autonomy. The do-
main specific modules are for communication between prox-
ies and communication between a proxy and a team member.
The modules interact with each other only via the local state
with a blackboard design and are designed to be “plug and
play”, thus, e.g., new adjustable autonomy algorithms can
be used with existing coordination algorithms. The coor-
dination reasoning is responsible for reasoning about inter-
actions with other proxies, thus implementing the coordina-
tion algorithms. The adjustable autonomy algorithms reason
about the interaction with the team member, providing the
possibility for the team member to make any coordination
decision instead of the proxy. For example, the adjustable
autonomy module can reason that a decision to accept a role
to rescue a civilian from a burning building should be made
by the human who will go into the building rather than the
proxy. In practice, the overwhelming majority of coordina-
tion decisions are made by the proxy, with only key deci-
sions referred to team members.

Teams of proxies implement team oriented plans (TOPs)
which describe joint activities to be performed in terms of
the individual roles to be performed and any constraints be-
tween those roles. Typically, TOPs are instantiated dynam-
ically from TOP templates at runtime when preconditions
associated with the templates are filled. Typically, a large

team will be simultaneously executing many TOPs. For ex-
ample, a disaster response team might be executing multiple
fight fire TOPs. Such fight fire TOPs might specify a break-
down of fighting a fire into activities such as checking for
civilians, ensuring power and gas is turned off and spraying
water. Constraints between these roles will specify interac-
tions such as required execution ordering and whether one
role can be performed if another is not currently being per-
formed. Notice that TOPs do not specify the coordination or
communication required to execute a plan, the proxy deter-
mines the coordination that should be performed.

Proxy: Adjustable Autonomy
In this paper, we focus on a key aspect of the proxy-based
coordination: Adjustable Autonomy. Adjustable autonomy
refers to an agent’s ability to dynamically change its own
autonomy, possibly to transfer control over a decision to a
human. Previous work on adjustable autonomy could be
categorized as either involving a single person interacting
with a single agent (the agent itself may interact with oth-
ers) or a single person directly interacting with a team. In
the single-agent single-human category, the concept of flex-
ible transfer-of-control strategy has shown promise (Scerri,
Pynadath, & Tambe 2002). A transfer-of-control strategy is
a preplanned sequence of actions to transfer control over a
decision among multiple entities, for example, an AH1H2

strategy implies that an agent (AT ) attempts a decision and
if the agent fails in the decision then the control over the de-
cision is passed to a human H1, and then if H1 cannot reach
a decision, then the control is passed to H2. Since previ-
ous work focused on single-agent single-human interaction,
strategies were individual agent strategies where only a sin-
gle agent acted at a time.

An optimal transfer-of-control strategy optimally bal-
ances the risks of not getting a high quality decision against
the risk of costs incurred due to a delay in getting that deci-
sion. Flexibility in such strategies implies that an agent dy-
namically chooses the one that is optimal, based on the situ-
ation, among multiple such strategies (H1A, AH1, AH1A,
etc.) rather than always rigidly choosing one strategy. The
notion of flexible strategies, however, has not been applied in
the context of humans interacting with agent-teams. Thus,
a key question is whether such flexible transfer of control
strategies are relevant in agent-teams, particularly in a large-
scale application such as ours.

DEFACTO aims to answer this question by implement-
ing transfer-of-control strategies in the context of agent
teams. One key advance in DEFACTO, however, is that
the strategies are not limited to individual agent strategies,
but also enables team-level strategies. For example, rather
than transferring control from a human to a single agent, a
team-level strategy could transfer control from a human to
an agent-team. Concretely, each proxy is provided with all
strategy options; the key is to select the right strategy given
the situation. An example of a team level strategy would
combine AT Strategy and H Strategy in order to make AT H
Strategy. The default team strategy, AT , keeps control over
a decision with the agent team for the entire duration of the
decision. The H strategy always immediately transfers con-



trol to the human. AT H strategy is the conjunction of team
level AT strategy with H strategy. This strategy aims to
significantly reduce the burden on the user by allowing the
decision to first pass through all agents before finally going
to the user, if the agent team fails to reach a decision.

Mathematical Model of Strategy Selection
We develop a novel mathematical model for these team level
adjustable autonomy strategies in order to enable team-level
strategy selection. We first quickly review background on
individual strategies from Scerri (Scerri, Pynadath, & Tambe
2002) before presenting our team strategies. Whereas strate-
gies in Scerri’s work are based on a single decision that is se-
quentially passed from agent to agent, we assume that there
are multiple homogeneous agents concurrently working on
multiple tasks interacting with a single human user. We ex-
ploit these assumptions (which fit our domain) to obtain a
reduced version of our model and simplify the computation
in selecting strategies.

Background on individual strategies
A decision, d, needs to be made. There are n entities, e1

. . . en, who can potentially make the decision. These enti-
ties can be human users or agents. The expected quality of
decisions made by each of the entities, EQ = {EQei,d(t) :
R → R}n

i=1, is known, though perhaps not exactly. P =
{P>(t) : R → R} represents continuous probability distri-
butions over the time that the entity in control will respond
(with a decision of quality EQe,d(t)). The cost of delaying
a decision until time t, denoted as {W : t → R}. The set of
possible wait-cost functions is W. W(t) is non-decreasing
and at some point in time, Γ, when the costs of waiting stop
accumulating (i.e., ∀t ≥ Γ, ∀W ∈ W,W(t) = W(Γ)).

To calculate the EU of an arbitrary strategy, the model
multiplies the probability of response at each instant of time
with the expected utility of receiving a response at that in-
stant, and then sum the products. Hence, for an arbitrary
continuous probability distribution if ec represents the en-
tity currently in decision-making control:

EU =

∫ ∞

0

P>(t)EUec,d(t) .dt (1)

Since we are primarily interested in the effects of delay
caused by transfer of control, we can decompose the ex-
pected utility of a decision at a certain instant, EUec,d(t),
into two terms. The first term captures the quality of the de-
cision, independent of delay costs, and the second captures
the costs of delay: EUec,dt = EQe,d(t) −W(t). To calcu-
late the EU of a strategy, the probability of response function
and the wait-cost calculation must reflect the control situa-
tion at that point in the strategy. If a human, H1 has control
at time t, P>(t) reflects H1’s probability of responding at t.

Introduction of team level strategies
AT Strategy: Starting from the individual model, we in-
troduce team level AT strategy, denoted as AT in the fol-
lowing way: We start with Equation 2 for single agent AT

and single task d. We obtain Equation 3 by discretizing

time, t = 1, ..., T and introducing set ∆ of tasks. Prob-
ability of agent AT performing a task d at time t is de-
noted as Pa,d(t). Equation 4 is a result of the introduc-
tion of the set of agents AG = a1, a2, ..., ak. We assume
the same quality of decision for each task performed by an
agent and that each agent AT has the same quality so that
we can reduce EQa,d(t) to EQ(t). Given the assumption
that each agent AT at time step t performs one task, we
have

∑
d∈∆ Pa,d(t) = 1 which is depicted in Equation 5.

Then we express
∑ak

a=a1

∑
d∈∆ Pa,d(t)×Wa,d(t) as the to-

tal team penalty for time slice t, i.e, at time slice t we sub-
tract one penalty unit for each not completed task as seen
in Equation 6. Assuming penalty unit PU = 1 we finally
obtain Equation 7.

EUa,d =

Z

∞

0

P>a(t) × (EQa,d(t) − W(t)).dt (2)

EUa,∆ =
T

X

t=1

X

d∈∆

Pa,d(t) × (EQa,d(t) − W(t)) (3)

EUAT ,∆ =
T

X

t=1

ak
X

a=a1

X

d∈∆

Pa,d(t) × (EQa,d(t) − Wa,d(t)) (4)

EUAT ,∆,AG =

T
X

t=1

(

ak
X

a=a1

EQ(t) −

ak
X

a=a1

X

d∈∆

Pa,d(t) × Wa,d(t)) (5)

EUAT ,∆,AG =

T
X

t=1

(|AG| × EQ(t) − (|∆| − |AG| × t) × PU) (6)

EUAT ,∆,AG = |AG| ×

T
X

t=1

(EQ(t) − (
|∆|

AG
− t)) (7)

H Strategy: The difference between EUH,∆,AG and
EUAT ,∆,AG results from three key observations: First, the
human is able to choose strategic decisions with higher prob-
ability, therefore his EQH(t) is greater than EQ(t) for both
individual and team level AT strategies. Second, we hy-
pothesize that a human cannot control all the agents AG at
disposal, but due to cognitive limits will focus on a smaller
subset, AGH , of agents. |AGH | should slowly converge
to B, which denotes its upper limit, but never exceed AG.
Each function f(AG) that models AGH should be consis-
tent with three properties: i) if B → ∞ then f(AG) → AG;
ii) f(AG) < B; iii) f(AG) < AG. Third, there is a delay
in human decision making compared to agent decisions. We
model this phenomena by shifting H to start at time slice tH .
For tH − 1 time slices the team incurs a cost |∆| × (tH − 1)
for all incomplete tasks. By inserting EQH(t) and AGH

into the time shifted utility equation for AT strategy we ob-
tain the H strategy (Equation 8).

AT H Strategy: The AT H strategy is a composition of
H and AT strategies (see Equation 9).
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Figure 4: Model predictions for various users.

EUH,∆,AG = |AGH | ×
T

X

t=tH

(EQH(t)

−(
|∆|

AGH

− (t − tH))) − |∆| × (tH − 1) (8)

EUAT H,∆,AG = |AG| ×

tH−1
X

t=1

(EQ(t) − (
|∆|

|AG|
− t))

+|AGH | ×

T
X

t=tH

(EQH(t) − (
|∆| − |AG|

|AGH |
− (t − tH )))) (9)

Strategy utility prediction: Given our strategy equations
and the assumption that EQH,∆,AG is constant and indepen-
dent of the number of agents we plot the graphs representing
strategy utilities (Figure 4). Figure 4 shows the number of
agents on the x-axis and the expected utility of a strategy on
the y-axis. We focus on humans with different skills: (a) low
EQH , low B (b) high EQH , low B (c) low EQH , high B
(d) high EQH , high B. The last graph representing a hu-
man with high EQH and high B follows results presented
in [13] (and hence the expected scenario), we see the curve
of AH and AT H flattening out to eventually cross the line
of AT . Moreover, we observe that the increase in EQH

increases the slope for AH and AT H for small number of
agents, whereas the increase of B causes the curve to main-
tain a slope for larger number of agents, before eventually
flattening out and crossing the AT line.

Experiments and Evaluation
Our DEFACTO system was evaluated in three key ways,
with the first two focusing on key individual components
of the DEFACTO system and the last attempting to evalu-
ate the entire system. First, we performed detailed exper-
iments comparing the effectiveness of Adjustable Auton-
omy (AA) strategies over multiple users. In order to pro-
vide DEFACTO with a dynamic rescue domain we chose to
connect it to a simulator. We chose the previously devel-
oped RoboCup Rescue simulation environment (Kitano et
al. 1999). In this simulator, fire engine agents can search
the city and attempt to extinguish any fires that have started

in the city. To interface with DEFACTO, each fire engine
is controlled by a proxy in order to handle the coordination
and execution of AA strategies. Consequently, the proxies
can try to allocate fire engines to fires in a distributed man-
ner, but can also transfer control to the more expert user. The
user can then use the Omni-Viewer in Allocation mode to al-
locate engines to the fires that he has control over. In order to
focus on the AA strategies (transferring the control of task
allocation) and not have the users ability to navigate inter-
fere with results, the Navigation mode was not used during
this first set of experiments.

The results of our experiments are shown in Figure 5,
which shows the results of subjects 1, 2, and 3. Each sub-
ject was confronted with the task of aiding fire engines in
saving a city hit by a disaster. For each subject, we tested
three strategies, specifically, H , AH and AT H ; their perfor-
mance was compared with the completely autonomous AT

strategy. AH is an individual agent strategy, tested for com-
parison with AT H , where agents act individually, and pass
those tasks to a human user that they cannot immediately
perform. Each experiment was conducted with the same ini-
tial locations of fires and building damage. For each strategy
we tested, varied the number of fire engines between 4, 6 and
10. Each chart in Figure 5 shows the varying number of fire
engines on the x-axis, and the team performance in terms of
numbers of building saved on the y-axis. For instance, strat-
egy AT saves 50 building with 4 agents. Each data point on
the graph is an average of three runs. Each run itself took
15 minutes, and each user was required to participate in 27
experiments, which together with 2 hours of getting oriented
with the system, equates to about 9 hours of experiments per
volunteer.

Figure 5 enables us to conclude the following:

• Human involvement with agent teams does not neces-
sarily lead to improvement in team performance. Con-
trary to expectations and prior results, human involvement
does not uniformly improve team performance, as seen by
human-involvingstrategies performing worse than the AT

strategy in some instances. For instance, for subject 3, hu-
man involving strategies such as AH provide a somewhat
higher quality than AT for 4 agents, yet at higher numbers
of agents, the strategy performance is lower than AT .

• Providing more agents at a human’s command does not
necessarily improve the agent team performance. As seen
for subject 2 and subject 3, increasing agents from 4 to 6
given AH and AT H strategies is seen to degrade perfor-
mance. In contrast, for the AT strategy, the performance
of the fully autonomous agent team continues to improve
with additions of agents, thus indicating that the reduction
in AH and AT H performance is due to human involve-
ment. As the number of agents increase to 10, the agent
team does recover.

• No strategy dominates through all the experiments given
varying numbers of agents. For instance, at 4 agents,
human-involving strategies dominate the AT strategy.
However, at 10 agents, the AT strategy outperforms all
possible strategies for subjects 1 and 3.

• Complex team-level strategies are helpful in practice:
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Figure 5: Performance of subjects 1, 2, and 3

AT H leads to improvement over H with 4 agents for
all subjects, although surprising domination of AH over
AT H in some cases indicates that AH may also be a use-
ful strategy in a team setting.

Note that the phenomena described range over multiple
users, multiple runs, and multiple strategies. The most im-
portant conclusion from these figures is that flexibility is nec-
essary to allow for the optimal AA strategy to be applied.
The key question is then how to select the appropriate strat-
egy for a team involving a human whose expected decision
quality is EQH . In fact, by estimating the EQH of a subject
by checking the “H” strategy for small number of agents (say
4), and comparing to AT strategy, we may begin to select
the appropriate strategy for teams involving more agents. In
general, higher EQH lets us still choose strategies involving
humans for a more numerous team. For large teams how-
ever, the number of agents AGH effectively controlled by
the human does not grow linearly thus AT strategy becomes
dominant.

Unfortunately, the strategies including the humans and
agents (AH and AT H) for 6 agents show a noticeable de-
crease in performance for subjects 2 and 3 (see Figure 5). In
the future we would like to explore which factors contributed
to this interesting phenomena.

The second aspect of our evaluation was to explore the
benefits of the Navigation mode (3D) in the Omni-Viewer
over solely an Allocation mode (2D). We performed 2 tests
on 20 subjects. All subjects were familiar with the USC
campus. Test 1 showed Navigation and Allocation mode
screenshots of the university campus to subjects. Subjects
were asked to identify a unique building on campus, while
timing each response. The average time for a subject to find
the building in 2D was 29.3 seconds, whereas the 3D al-
lowed them to find the same building in an average of 17.1
seconds. Test 2 again displayed Navigation and Allocation
mode screenshots of two buildings on campus that had just
caught fire. In Test 2, subjects were asked first asked to al-
locate fire engines to the buildings using only the Allocation
mode. Then subjects were shown the Navigation mode of
the same scene. 90 percent of the subjects actually chose
to change their initial allocation, given the extra information
that the Navigation mode provided.

Third, the complete DEFACTO system has been peri-
odically demonstrated to key government agencies, public
safety officials and disaster researchers for assessing its util-
ity by the ultimate consumers of the technology, with ex-

citing feedback. Indeed they were eager to deploy DE-
FACTO and begin using it as a research tool to explore the
unfolding of different disasters. For example, during one
of the demonstrations on Nov 18, 2004 Gary Ackerman, a
Senior Research Associate at the Center for Nonprolifera-
tion Studies at the Monterey Institute of International Stud-
ies pointed out in reference to DEFACTO, “This is exactly
the type of system we are looking for” to study the poten-
tial effect of terrorist attacks. Also, we have met with sev-
eral public safety officials about using DEFACTO as a train-
ing tool for their staff. According to Los Angeles County
Fire Department Captain Michael Lewis: “Effective simula-
tion programs for firefighters must be realistic, relevant in
scope, and imitate the communication challenges on the fire
ground. DEFACTO focuses on these very issues.”

Related Work
We have discussed related work throughout this paper, how-
ever, we now provide comparisons with key previous agent
software prototypes and research. Among the current tools
aimed at simulating rescue environments it is important to
mention products like TerraSim (TerraSim 2005), JCATS
(Laboratory 2005) and EPICS (Technology 2005). Terra-
Tools is a complete simulation database construction sys-
tem for automated and rapid generation of high-fidelity
3D simulation databases from cartographic source mate-
rials. Developed by TerraSim, Inc. TerraTools provides
the set of integrated tools aimed at generating various ter-
rains, however, it is not applicable to simulate rescue oper-
ations. JCATS represents a self-contained, high-resolution
joint simulation in use for entity-level training in open, urban
and subterranean environments. Developed by Lawrence
Livermore National Laboratory, JCATS gives users the ca-
pability to detail the replication of small group and indi-
vidual activities during a simulated operation. Although it
provides a great human training environment, at this point
JCATS cannot simulate intelligent agents. Finally, EPICS is
a computer-based, scenario-driven, high-resolution simula-
tion. It is used by emergency response agencies to train for
emergency situations that require multi-echelon and/or inter-
agency communication and coordination. Developed by the
U.S. Army Training and Doctrine Command Analysis Cen-
ter, EPICS is also used for exercising communications and
command and control procedures at multiple levels. Simi-
lar to JCATS however, intelligent agents and agent-human
interaction cannot be simulated by EPICS at this point.



Given our application domains, Scerri et al’s work on
robot-agent-person (RAP) teams for disaster rescue is likely
the most closely related to DEFACTO (Scerri et al. 2003).
Our work takes a significant step forward in comparison.
First, the omni-viewer enables navigational capabilities im-
proving human situational awareness not present in previous
work. Second, we provide team-level strategies, which we
experimentally verify, absent in that work. Third, we pro-
vide extensive experimentation, and illustrate that some of
the conclusions reached in (Scerri et al. 2003) were indeed
preliminary, e.g., they conclude that human involvement
is always beneficial to agent team performance, while our
more extensive results indicate that sometimes agent teams
are better off excluding humans from the loop. Human inter-
actions in agent teams is also investigated in (Burstein, Mul-
vehill, & Deutsch 1999; Suya You & Fox 2003), and there is
significant research on human interactions with robot-teams
(Fong, Thorpe, & Baur 2002; Crandall, Nielsen, & Goodrich
2003). However they do not use flexible AA strategies
and/or team-level AA strategies. Furthermore, our exper-
imental results may assist these researchers in recognizing
the potential for harm that humans may cause to agent or
robot team performance. Significant attention has been paid
in the context of adjustable autonomy and mixed-initiative
in single-agent single-human interactions (Horvitz 1999;
Allen 1995). However, this paper focuses on new phenom-
ena that arise in human interactions with agent teams.

Summary
This paper presents a large-scale prototype, DEFACTO, that
is currently focused on illustrating the potential of future
disaster-response to disasters that may arise as a result of
large-scale terrorist attacks. Based on a software proxy ar-
chitecture and 3D visualization system, DEFACTO provides
two key advances over previous work. First, DEFACTO’s
Omni-Viewer enables the human to both improve situational
awareness and assist agents, by providing a navigable 3D
view along with a 2D global allocation view. Second, DE-
FACTO incorporates flexible AA strategies, even excluding
humans from the loop in extreme circumstances. We per-
formed detailed experiments using DEFACTO, leading to
some surprising results. These results illustrate that an agent
team must be equipped with flexible strategies for adjustable
autonomy so that the appropriate strategy can be selected.
Exciting feedback from DEFACTO’s ultimate consumers il-
lustrates its promise and potential for real-world application.

References
Allen, J. F. 1995. The TRAINS project: A case study in
building a conversational planning agent. Journal of Ex-
perimental and Theoretical AI (JETAI) 7:7–48.

Burstein, M. H.; Mulvehill, A. M.; and Deutsch, S. 1999.
An approach to mixed-initiative management of heteroge-
neous software agent teams. In HICSS, 8055. IEEE Com-
puter Society.

Crandall, J. W.; Nielsen, C. W.; and Goodrich, M. A. 2003.
Towards predicting robot team performance. In SMC.

Dorais, G.; Bonasso, R.; Kortenkamp, D.; Pell, P.; and
Schreckenghost, D. 1998. Adjustable autonomy for
human-centered autonomous systems on mars. In Mars.
Fong, T.; Thorpe, C.; and Baur, C. 2002. Multi-robot re-
mote driving with collaborative control. IEEE Transactions
on Industrial Electronics.
Hill, R.; Gratch, J.; Marsella, S.; Rickel, J.; Swartout, W.;
and Traum, D. 2003. Virtual humans in the mission re-
hearsal exercise system. In KI Embodied Conversational
Agents.
Horvitz, E. 1999. Principles of mixed-initiative user in-
terfaces. In Proceedings of ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI’99), 159–166.
Kitano, H.; Tadokoro, S.; Noda, I.; Matsubara, H.; Taka-
hashi, T.; Shinjoh, A.; and Shimada, S. 1999. Robocup
rescue: Search and rescue in large-scale disasters as a do-
main for autonomous agents research. In IEEE SMC, vol-
ume VI, 739–743.
Laboratory, L. L. N. 2005. Jcats - joint conflict and tactical
simulation. In http://www.jfcom.mil/about/fact jcats.htm.
Paivio, A. 1974. Pictures and words in visual search. Mem-
ory & Cognition 2(3):515–521.
Pynadath, D. V., and Tambe, M. 2003. Automated team-
work among heterogeneous software agents and humans.
Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 7:71–100.
Richardson, A.; Montello, D.; and Hegarty, M. 1999. Spa-
tial knowledge acquisition from maps and from navigation
in real and virtual environments. Memory and Cognition
27(4):741–750.
Ruddle, R.; Payne, S.; and Jones, D. 1997. Navigat-
ing buildings in desktop virtual environments: Experimen-
tal investigations using extended navigational experience.
J. Experimental Psychology - Applied 3(2):143–159.
Scerri, P.; Pynadath, D. V.; Johnson, L.; Rosenbloom, P.;
Schurr, N.; Si, M.; and Tambe, M. 2003. A prototype
infrastructure for distributed robot-agent-person teams. In
AAMAS.
Scerri, P.; Liao, E.; Xu, Y.; Lewis, M.; Lai, G.; and Sycara,
K. 2004. Theory and Algorithms for Cooperative Sys-
tems. World Scientific Publishing. chapter Coordinating
very large groups of wide area search munitions.
Scerri, P.; Pynadath, D.; and Tambe, M. 2002. Towards ad-
justable autonomy for the real world. Journal of Artificial
Intelligence Research 17:171–228.
Suya You, Jinhui Hu, U. N., and Fox, P. 2003. Urban site
modeling from lidar. In Proc. 2nd Int’l Workshop Com-
puter Graphics and Geometric Modeling (CGGM), 579–
588.
Tambe, M. 1997. Agent architectures for flexible, practical
teamwork. National Conference on AI (AAAI97) 22–28.
Technology, A. S. 2005. Epics - emergency
preparedness incident commander simulation. In
http://epics.astcorp.com/.
TerraSim. 2005. Terratools. In http://www.terrasim.com.


