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Abstract. In just the past 5 years, the field of Earth obser-

vation has progressed beyond the offerings of conventional

space-agency-based platforms to include a plethora of sens-

ing opportunities afforded by CubeSats, unmanned aerial ve-

hicles (UAVs), and smartphone technologies that are being

embraced by both for-profit companies and individual re-

searchers. Over the previous decades, space agency efforts

have brought forth well-known and immensely useful satel-

lites such as the Landsat series and the Gravity Research

and Climate Experiment (GRACE) system, with costs typ-

ically of the order of 1 billion dollars per satellite and with

concept-to-launch timelines of the order of 2 decades (for

new missions). More recently, the proliferation of smart-

phones has helped to miniaturize sensors and energy require-

ments, facilitating advances in the use of CubeSats that can

be launched by the dozens, while providing ultra-high (3–

5 m) resolution sensing of the Earth on a daily basis. Start-

up companies that did not exist a decade ago now oper-

ate more satellites in orbit than any space agency, and at

costs that are a mere fraction of traditional satellite missions.

With these advances come new space-borne measurements,

such as real-time high-definition video for tracking air pol-

lution, storm-cell development, flood propagation, precipi-

tation monitoring, or even for constructing digital surfaces

using structure-from-motion techniques. Closer to the sur-

face, measurements from small unmanned drones and teth-

ered balloons have mapped snow depths, floods, and esti-

mated evaporation at sub-metre resolutions, pushing back

on spatio-temporal constraints and delivering new process

insights. At ground level, precipitation has been measured

using signal attenuation between antennae mounted on cell

phone towers, while the proliferation of mobile devices has

enabled citizen scientists to catalogue photos of environmen-

tal conditions, estimate daily average temperatures from bat-

tery state, and sense other hydrologically important variables

such as channel depths using commercially available wire-

less devices. Global internet access is being pursued via high-

altitude balloons, solar planes, and hundreds of planned satel-

lite launches, providing a means to exploit the “internet of

things” as an entirely new measurement domain. Such global
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access will enable real-time collection of data from billions

of smartphones or from remote research platforms. This fu-

ture will produce petabytes of data that can only be accessed

via cloud storage and will require new analytical approaches

to interpret. The extent to which today’s hydrologic models

can usefully ingest such massive data volumes is unclear.

Nor is it clear whether this deluge of data will be usefully

exploited, either because the measurements are superfluous,

inconsistent, not accurate enough, or simply because we lack

the capacity to process and analyse them. What is apparent is

that the tools and techniques afforded by this array of novel

and game-changing sensing platforms present our commu-

nity with a unique opportunity to develop new insights that

advance fundamental aspects of the hydrological sciences.

To accomplish this will require more than just an application

of the technology: in some cases, it will demand a radical

rethink on how we utilize and exploit these new observing

systems.

1 Introduction

The capacity to observe the hydrosphere from the vantage

point of space has redefined not only our perspective of Earth

as an interconnected system, but also how we describe the

dynamic processes that occur above, on, and beneath its sur-

face. The year 2017 marks the 60th anniversary of the launch

of Sputnik 1, a polished metal sphere of less than 60 cm di-

ameter that became the first man-made object placed into or-

bit. Although only broadcasting dual-frequency radio trans-

missions over a short 21-day period (until the batteries ran

out), Sputnik had an indelible impact on humanity’s percep-

tion of space, triggering the “space race” and heralding in

a new era of Earth observation (EO). Space was to become

the new frontier. While the earliest satellite systems had a

military reconnaissance focus, the value of space-based sen-

sors for monitoring weather and climate was quickly recog-

nized (Nordberg, 1965). Several meteorology-focused sys-

tems were launched in the years following Sputnik, including

the Television and InfraRed Observation Satellite (TIROS 1)

in 1960, Nimbus 1 in 1964, and the Environmental Sci-

ence Services Administration (ESSA-1) satellite in 1966.

However, it would be 15 years post-Sputnik before the first

civilian-focused digital multispectral sensors were launched

on-board the inaugural Landsat 1 mission in 1972, a program

that has continued uninterrupted for more than 4 decades

(Wulder et al., 2008), providing an unrivalled record of ter-

restrial change and dynamics. Since these early satellite mis-

sions there have been considerable and dramatic advances in

remote observation platforms and the types of measurements

available from them. Evolving from early panchromatic and

red–green–blue (RGB) or R–G–near-infrared (NIR) imagery

(De Wulf et al., 1990), sensor technology has expanded

to include multi- and hyperspectral visible to near-infrared

bands (VNIR) (Houborg et al., 2015), multi-band thermal

(Roberts et al., 2012), multi-channel microwave emissions

(Njoku and Li, 1999), as well as radar and lidar techniques

(Mace et al., 2009), all of which have advanced and redefined

our knowledge and understanding of the Earth system.

From a hydrological sciences perspective, remote sens-

ing has driven process insights and provided new and inde-

pendent datasets that span the range of water cycle compo-

nents. Recent studies such as Lettenmaier et al. (2015) pro-

vide a retrospective assessment of these developments and

the progress of satellite observations in hydrology, compli-

menting earlier reviews of Schmugge et al. (2002) and Tang

et al. (2009). In addition, process-focused contributions have

examined remotely sensed evaporation (Kalma et al., 2008;

Wang and Dickinson, 2012), soil moisture (Njoku and En-

tekhabi, 1996; Wagner et al., 2007), precipitation (Kidd and

Huffman, 2011), surface waters (Alsdorf et al., 2007), as

well as terrestrial water storage changes using more recent

gravity-based methods (Rodell and Famiglietti, 1999; Swen-

son et al., 2003). Leveraging the spatial coverage of satel-

lite data, a number of research efforts have also taken ad-

vantage of extended temporal sequences of these observa-

tions to compile long-term global datasets (Miralles et al.,

2011; Liu et al., 2011a; Beck et al., 2017). Such satellite-

derived products provide an independent means of examin-

ing hydrological system dynamics and response (McCabe et

al., 2005; Brocca et al., 2014), and offer the opportunity for

an assessment of trends and variability in water cycle com-

ponents (Y. Zhang et al., 2016b; Kidd, 2001; Liu et al., 2012;

Miralles et al., 2014).

Considering the multitude of discipline-specific papers de-

tailing diverse remote sensing applications in hydrology that

have been published over the last few decades1, it is appar-

ent that Earth observations have played an undeniable role in

advancing the state of hydrological science. However, while

reviewing this role is instructive and important, our intent

here lies principally in foreshadowing the emergent oppor-

tunities that more recent and near-future observational de-

velopments might have in advancing and redefining our un-

derstanding of the terrestrial system and its interlinked pro-

cesses. To do this requires expanding our review beyond just

space-based sensors, especially since satellite remote sensing

represents just one aspect of EO. Indeed, some of the ear-

liest attempts at mapping and monitoring the Earth surface

were conducted from hot-air balloons, progressing to fixed-

wing planes and high-altitude reconnaissance aircraft such as

Lockheed’s U-2 “spy plane”; the geopolitical repercussions

of which, when combined with the rejection of Eisenhower’s

“open-skies” initiative, precipitated a tactical shift to space-

based sensing, and ultimately to the space race. Interestingly,

while EO developments have largely been defined by finer

and finer spatio-temporal resolutions or an increasing num-

1A search on SCOPUS using the terms “remote sensing hydrol-

ogy” returns over 4300 unique contributions (1 June 2017).
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Figure 1. The state of play in space today. Estimates are based on the Union of Concerned Scientists satellite database, updated from

30 June 2016 (see http://www.ucsusa.org/nuclear-weapons/space-weapons/satellite-database). In terms of the sectors operating Earth-

observing systems (right panel), another 5 % include shared systems between those listed.

ber of resolvable bands, we are also witnessing something

of a devolution in the choices available from our observing

platforms. That is, some of the earliest approaches (balloons,

fixed-wing aircraft, etc.) are being re-imagined through tech-

nological advances in system design, power management,

autonomous operation, and the accuracy of navigational con-

trols and communication infrastructure.

The overriding intent and purpose of this contribution is to

introduce and explore some of these emergent technologies

and observational approaches, highlighting new and innova-

tive sensing platforms that are either still reaching maturity

in terms of their application potential, or are yet to be fully

embraced (or even recognized) by the larger user commu-

nity. Another is to motivate some discussion on how we, as a

scientific community, might better utilize available informa-

tion and analytical resources, while also exploring the rapidly

changing landscape of traditional space agencies in the light

of recent commercial ventures in space-based observation.

At the least, this research synthesis will present to the reader

details on the ever-increasing number of observational tools

and techniques that have the scope and potential to deliver

new and powerful insights to our discipline.

2 Overview of space-based Earth-observing systems

The USA, European, Chinese, Japanese, Canadian, Indian,

and other national space agencies operate a large number

of satellite systems that deliver a diverse range of mea-

surement types and/or spatial and temporal coverage to the

science community. Including the International Space Sta-

tion (ISS) and systems operated jointly between the USA and

international agencies, NASA alone has 18 major Earth sci-

ence missions currently in orbit, while the European Space

Agency (ESA) has 11 EO missions in operation and a range

of future satellites in advanced stages of planning and launch

readiness. Other Earth-observing instruments from various

international agencies operate on-board small satellites and

CubeSats, as well as being mounted within the ISS. The

petabytes of data gathered by these missions have supported

tens of thousands of scientific investigations, practical ap-

plications, and breakthroughs in our understanding of the

planet. There have been launch and instrument failures along

the way, but the vast majority of large space agency missions

have met their baseline objectives. There are many exam-

ples of successful joint international missions that have re-

duced the costs and risks associated with launching a satellite

to the contributing countries, while increasing collaboration

and data uptake. Unfortunately, attempts to coordinate multi-

platform-observing systems in recognition of shared goals

(e.g. holistic water cycle measurement) have been less effec-

tive: although NASA’s A-train may serve as a partial counter

example to this claim (Stephens et al., 2002). Obstacles to

greater cooperation generally include scientific competitive-

ness, technological secrecy and political considerations, dif-

fering visions and needs, and the lack of an authoritative co-

ordinating organization. All this is to say that there remain

considerable challenges and barriers to overcome before an

holistic and collaborative EO strategy can be realized.

While EO in all its forms is the focus of this synthesis

paper, it is worth reviewing the somewhat narrower perspec-

tive of satellite-based remote sensing, given its central role in

delivering hydrological observations. As detailed in Fig. 1,

the last few decades have seen the launch of thousands of

satellites, with over 4000 placed into orbit during this time.

Of these, nearly 1460 are operational, with the largest pro-
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portion comprising systems that form the backbone of the

global communication network. Earth-observing satellites,

which include those operated by government, military, civil-

ian, and commercial sectors, comprise around 25 % of the

operational satellites in space, representing some 360 unique

platforms. While national governments operate the majority

of the EO-based systems (57 %), recent years have seen an

increasing number of both commercial and civilian platforms

being launched: a trend that is expected to continue into the

future (see Sect. 4).

2.1 Problems, challenges, and knowledge gaps

The past 25 years have seen astonishing advances in our

ability to observe hydrological phenomena, driven in part

by the maturation of satellite remote sensing, surging com-

puting power, and data-storage capacity (Lettenmaier et al.,

2015). Global measurements of rainfall, soil moisture, snow

cover, groundwater storage change, surface water elevation,

and other water cycle variables could scarcely have been

imagined when the race to space began in 1957, and the in-

novators and agencies, who shepherded these developments

deserve to be commended. Nevertheless, as detailed in Ta-

ble 1 and discussed throughout this section, there remain

critical gaps in our hydrological measurement and analysis

capabilities. Snowfall, snow water equivalent, evaporation,

deep soil moisture, groundwater depth and storage, water

consumption, and water quality remain elusive targets, de-

spite hopes that satellite missions to be recommended by the

2017 edition of the US Decadal Survey for Earth Science and

Applications from Space (see http://sites.nationalacademies.

org/DEPS/esas2017/) may address some of these retrieval

challenges. As is proposed herein, continuous, holistic water

budget observation would be superior to the current paradigm

of asynchronous measurement of individual variables. How-

ever, apart from requiring a paradigm shift in how we un-

dertake much of our research, achieving this also requires a

breakthrough in observation cost efficiency, such as cheap,

reusable rockets, or some other game-changing innovation.

In Sect. 3, we explore some of these shortcomings and

suggest improvements, highlight existing opportunities and

identify some new innovations that may be on the EO hori-

zon.

To date, only a handful of terrestrial hydrology-focused

EO missions have been designed and launched by national

and international space agencies. These were enabled by

a shift towards more user-oriented missions over the last

2 decades, which allowed scientists to press for their data

needs and helped steer missions from their earliest design

(Lettenmaier et al., 2015). As a result of this engagement,

there has been an increase in the range of hydrological vari-

ables that can be retrieved from space, spanning far beyond

the snow cover extent, land cover, and topographic prod-

ucts of early satellite remote sensing research. Key elements

of catchment- and continental-scale water balances are now

routinely derived from the available suite of EO satellites.

While this unprecedented wealth of data has brought about

major advances in the study of large-scale hydrology, there

remain gaps that need to be filled to increase our understand-

ing of the hydrosphere, as well as issues that need to be ad-

dressed to ensure continued progress in our system knowl-

edge. Here we detail some of these, with the aim of providing

context and motivation for many of the new techniques and

observation platforms on the EO horizon:

1. Satellite retrieval and interpretation challenges: a fun-

damental challenge in EO are the limitations imposed

by only measuring the spectral signature of solar, Earth

emitted, and reflected radiation, and using this in-

formation to retrieve a desired geophysical parame-

ter (GRACE being an exception to this description).

This issue can be extended to a perception in the lit-

erature that geophysical variables are directly obtained

from EO, whereas the reality is that complex retrieval

models, with their various simplifications, parameter-

izations, and non-unique solutions, are almost always

employed to transform the satellite measurement into

a specific variable of interest. For some variables, this

conversion is quite straightforward (e.g. Normalized

Difference Vegetation Index, NDVI), while for others,

the retrieval model may have underlying assumptions or

require ancillary data that contribute significantly to re-

trieval error (e.g. soil moisture, evaporation). Bearing in

mind that the utility of Earth observations lay not just in

their capacity to reveal insights on the hydrological cy-

cle, but also in their potential to benchmark the climate

models that we use to project hydrological response, an

important issue emerges when one considers the depen-

dency of EO datasets on their underlying models. In

some cases, climate models and the retrievals against

which they are benchmarked may share model assump-

tions and/or ancillary data. This interdependency can

extend to the use of model climatologies or reanaly-

sis forcing data in the generation of EO-based datasets

(Mueller et al., 2013; Liu et al., 2011b). Given that “in-

dependent” satellite observations increasingly serve as

indicators of climate change, or are used to detect trends

in hydrological processes (see following point), it be-

comes critically important that a complete understand-

ing, description and accounting of both the model and

component forcing that underlie the production of EO

data is provided.

2. Data homogeneity and harmonization: the capacity to

develop long-term remotely sensed hydrologic records

has proven useful across a range of applications, includ-

ing (a) studying trends in the terrestrial water cycle (Mi-

ralles et al., 2014), (b) improving simulations of hydro-

logical, eco-physiological, and biogeochemical models

(Beck et al., 2017), (c) examining the social science im-

plications of water availability (Müller et al., 2016), and
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Table 1. Hydrological variables and the current and planned satellite remote sensing missions that can be used to estimate them. We note

that this list is not necessarily comprehensive and that there are possible trade-offs between resolution and accuracy that are not explicitly

accounted for.

Hydrological Missions/ Standard Standard Launch Dedicated

variable instruments spatial temporal year measurement

resolution resolution

(km) (days)

Rainfall GPM 5 0.125 2014 Y

Snowfall GPM 5 0.125 2014 N

Evaporation

Terra/MODIS

0.5 1

1999

N

Aqua/MODIS 2002

Suomi/VIIRS 2013

Landsat 8 2013

Landsat 9 2023

Runoff SWOT 0.1 11 2021 Y

Snow cover

Terra/MODIS

0.5 1

1999

YAqua/MODIS 2002

Suomi/VIIRS 2013

Snow density, depth, or
GCOM-W/AMSR2 30 1 2012 N

water equivalent

Surface soil moisture

SMOS 36 3 2009 Y

SMAP (radiometer) 36 3 2015 Y

ASCAT 25 1 2006 N

GCOM-W/AMSR2 50 1 2012 N

Sentinel-1A
0.1–0.005 12

2014 N

Sentinel-1B 2016 N

Deep soil moisture Biomass 0.2 18 days yr−1 2021 N

Surface water elevation

Jason-3 10 10 2016 N

SARAL 10 35 2013 N

SWOT 0.1 11 2021 Y

ICESat-2 1.5 90 2018 N

Depth to groundwater – – – – –

Total groundwater storage – – – – –

Terrestrial water GRACE 220 30 2002 Y

storage change GRACE-FO 180 30 2017 Y

Water consumption – – – – –

Water quality – – – – –

Terra/MODIS

0.5 1

1999

YAqua/MODIS 2002

Suomi/VIIRS 2013

Vegetation/land cover/ Landsat 8
0.03 16

2013
Y

irrigated area Landsat 9 2023

Sentinel-2A 0.02 10 2015 Y

Sentinel-2B 0.02 10 2017 Y

Sentinel-3A 0.3 2 2016 Y

Proba-V 0.35 2 2013 Y

Vegetation stress ISS/ECOSTRESS 0.07 4 2018 Y

Photosynthesis FLEX 0.3 0.5 2022 Y

Water vapour Aqua/AIRS 13.5 1 2002 N

Integrated water budget – – – – –

www.hydrol-earth-syst-sci.net/21/3879/2017/ Hydrol. Earth Syst. Sci., 21, 3879–3914, 2017
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(d) benchmarking the hydrology in land-surface and at-

mospheric models (Mueller et al., 2013), amongst nu-

merous other examples. The development of long-term

records demands the continuity (although, not necessar-

ily replication) of previous successful missions, which

for space agencies with static budgets, may come at the

expense of more innovative exploratory missions. In ad-

dition, given the limited lifetime of satellite missions,

these long-term records can only be achieved by merg-

ing datasets based on various sensors. As a consequence

of this merging, observed inter-annual fluctuations may

reflect discontinuities in the constellation of satellites,

rather than actual hydro-climatological signatures (Liu

et al., 2012). Efforts to harmonize satellite data repre-

sent a critical need, not just for more effective data as-

similation or direct use of Earth observations in hydro-

logical models, but to better understand any underlying

physical process. To support such efforts, information

on the accuracy of hydrological retrievals is required,

which requires a departure from simple sensor precision

and ground validation statistics, towards more appropri-

ate error analysis and statistical equivalence that may

reflect the artefacts of multi-sensor merging strategies

(Su et al., 2016).

3. Engineering and operational constraints: if a satellite is

to rotate around the Earth at the same speed that the

Earth rotates around its axis, then it must be placed

above the Equator in a geostationary position, approx-

imately 35 786 km above mean sea level. At that alti-

tude, and with current technologies, visible and NIR

frequencies can be measured at high temporal resolu-

tions (min), but only at spatial scales of the order of

kilometres (GOES-16 and Himawari-8 can be tasked to

capture sub-areas of a full disk at a frequency of 30 s).

Lower-altitude (∼ 700 km) satellites generally operate

in polar orbits, allowing them to image a large part of

the Earth surface, but at a coarser revisit time of one to

several days. Such orbital limitations impede the ability

to observe fast weather and hydrologic processes over

the diurnal cycle at the needed high spatial resolutions

(sub- to tens of metres). One way to leverage the higher-

resolutions achievable from lower-orbits and overcome

the temporal repetition (cadence) issue is through the

use of more than one satellite, i.e. constellations; a topic

that is explored further in Sect. 3.4. Related in part

to the satellite orbital characteristics, sensors and plat-

forms are often poorly designed to provide data over re-

gions where hydrological observations are the scarcest

and most needed (e.g. tropics, poles, mountainous re-

gions and urban areas), which limits the potential to

close the hydrological balance at continental scales and

advance our understanding of these processes. Finally,

many hydrological variables require observations in the

microwave portion of the spectrum (from Earth emit-

ted radiation), but current technology limits antenna

size and therefore spatial resolution (excepting synthetic

aperture radar) and impedes the mounting of microwave

sensors in geostationary satellites. Increased spatial res-

olution is necessary to help disentangle Earth emissions

from heterogeneous land and atmospheric conditions

(cloud and moisture variability, wet and dry surface ar-

eas, different vegetation classes, effects of topography,

etc.). Optimizing the desired spatio-temporal combina-

tion against the physics-based constraints of orbiting

systems is one area where emerging EO technologies

(see Sect. 3) may offer a solution.

4. The need for comprehensive sensing: a number of un-

successful missions (e.g. OCO, Glory, Landsat 6) have

demonstrated the often capricious nature of space-based

observation. Such mission failures (or instrument fail-

ures, as in the case of the Soil Moisture Active Pas-

sive (SMAP) radar) highlight that even with massive

investment and allocation of resources to satellite pro-

grams, there is no guarantee of mission success, re-

flecting an inherent risk of single-instrument platforms.

This third challenge relates to the scientific commu-

nity’s penchant to focus on using a single sensor to re-

trieve a single geophysical variable. Such “stove piping”

of both science teams and retrieval algorithm develop-

ment has impeded the progress of more comprehen-

sive approaches to estimating global-scale hydrologic

datasets. Indeed, there are numerous satellite systems

that are currently in orbit, or in advanced stages of plan-

ning, which we seem ill-prepared to exploit (e.g. hy-

perspectral sensing), while at the same time, we rely

on other sensors or variables that are often used well

beyond the intent or purpose for which they were de-

signed (e.g. NDVI). This may be a consequence of too

much data, and too little cross-disciplinary interaction.

Either way, the result is a plethora of variables that are

being routinely collected by satellite systems, but which

remain largely under-utilized by the community. As a

manifest illustration of this issue, the current interna-

tional Programs of Record includes over 700 existing

or planned (approved) sensors for EO. It is more likely

than not that most investigator or operational programs

will use only a few of these. Rather than employing a

piece-meal approach to EO, we require a comprehen-

sive and consistent strategy that informs across a range

of hydrological processes and responses.

5. The decline of evaluation infrastructure: finally, al-

though the number of EO systems available for hydro-

logical monitoring seem to be increasing, one of the

most concerning aspects threatening the very founda-

tion upon which much of our process understanding

and conceptual developments derive, is the decline of

in situ networks, especially since the 1980s (Fekete et

Hydrol. Earth Syst. Sci., 21, 3879–3914, 2017 www.hydrol-earth-syst-sci.net/21/3879/2017/
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al., 2012). Distinct from the issue of poor spatial rep-

resentation of ground-based monitoring that discrim-

inates collections in the developed versus developing

nations, this is a negative trend that has been repli-

cated across many regions of the world, from the USA

(Lanfear and Hirsch, 1999) to the pan-Arctic (Shiklo-

manov et al., 2002). From a long-term monitoring per-

spective, one particularly worrying aspect of this de-

cline is the demise of gauging stations (and other mea-

surements) containing greater than 30 years of continu-

ous records, which has been witnessed in the USA (see

water.usgs.gov/nsip/history.html) and almost certainly

seen in other parts of the world and for other hydro-

logical variables (Lorenz and Kunstmann, 2012). With-

out long-term and well-maintained in situ networks, the

challenges of disentangling the fingerprints of climate

changes and its impact on hydrological systems be-

comes far more difficult (Hidalgo et al., 2009). While

there have been encouraging activities that draw fo-

cus to the importance of in situ collections at catch-

ment, regional, and even global scales (Zacharias et al.,

2011; Dorigo et al., 2011; Stahl et al., 2010), sustained

community effort is required. The importance of a ro-

bust and operational in situ network is an often under-

recognized element of satellite research programs and

initiatives. Indeed, it is not outrageous to posit that there

are few conceptual advances or process insights result-

ing from space-based observations that have occurred

independent of using ground-based monitoring. Tech-

nologies that strengthen and support this endeavour are

immediately required.

To resolve many of these issues will require comprehen-

sive programs that conceive EO as being based upon a va-

riety of complementary platforms (i.e. satellite arrays that

include nano-satellites, commercial aircraft-based sensors,

long-deployment unmanned aerial vehicles (UAVs), high-

altitude balloons, etc.; see Sect. 3), blended and merged with

models in ways that are more informative than just using

conventional data-assimilation approaches. The community

has already developed hyper-resolution land-surface models

that have been applied at 30 m scales over continental do-

mains (Chaney et al., 2016), as well as approaches for inte-

grating land-surface models with satellite retrievals to obtain

time-consistent datasets (Coccia et al., 2015), or using di-

verse data to challenge hydrological simulations (Koch et al.,

2015; Stisen et al., 2011). Other approaches beckon, espe-

cially the opportunities being facilitated by cloud-computing

and data-analytic techniques (see Sect. 3.8). The emerging

hyper-resolution trend (Wood et al., 2011; Bierkens et al.,

2015) requires hyper-resolution forcing data, together with

observations of the diurnal cycle of critical hydrological vari-

ables in order to prevent spatial and temporal inconsistencies

between observations and models: a demand that we seem

ill-prepared to meet.

To face these challenges, we have to recognize and ac-

commodate the physics of EO, space agencies need to invest

in new technologies (e.g. the development of nano-satellites

and next-generation antenna) and ensure continuity of criti-

cal platforms, and they also need to support the community

to develop improved retrieval models and encourage the use

of measurements from a variety of sensors. All of this will

require open and easily accessible data systems: something

that to date has not been streamlined or optimized in the

most efficient manner. What emerges from this brief sum-

mary is that it is not necessarily technological limitations that

are inhibiting progress or advances. The challenges as listed

seem largely scientific in nature, and reflect the need for a

paradigm shift in how EO data are collected, disseminated,

and utilized; a topic that is examined further in Sect. 3.

2.2 Hydrology-specific data needs

Some of the issues identified above are general to Earth ob-

servation as a discipline, rather than specific to the field of

hydrology. For this reason, we shift the discussion to focus

on some of the key data needs and knowledge gaps per water

cycle variable. While the following is focused on satellite-

based retrievals and does not explicitly detail other observa-

tion systems, the issues are not platform specific. In compil-

ing this (deliberately concise) list, we perpetuate a previously

recognized limitation of our community’s approach to EO,

i.e. the fixation on single-component retrieval, whereby we

measure one water cycle variable at a time, and ignore the

interdependencies and relationships inherent in observed re-

sponses (López et al., 2017). Here, by at least acknowledging

the issue, we seek to excuse ourselves from perpetuating it.

– Precipitation: satellite retrieved rainfall was first in-

ferred using visible and thermal infrared observations

(Lethbridge, 1967), providing an estimate of rainfall

volume (Kidd and Huffman, 2011). With the launch of

microwave sensors such as the Advanced Microwave

Sounding Unit-B (AMSU-B) and the Special Sensor

Microwave Imager (SSMI), a shift towards more di-

rect measurement was taken. Evolutions on these early

missions are reflected in the dedicated Tropical Rain-

fall Measuring Mission (TRMM) and the latest Global

Precipitation Mission (GPM), both of which use a com-

bination of radiometers and high-resolution radar mea-

surements. Precipitation is highly variable in both time

and space, and therefore accurate representation de-

mands a platform that reflects these spatio-temporal

constraints. Unfortunately, while advances have been

made, current capability still falls short in this regard.

Microwave instruments on low Earth orbits limit repeat

overpasses to once per day or longer. Although algo-

rithms have incorporated infrared retrievals from geo-

stationary satellites to fill the temporal gaps, these can

introduce considerable uncertainty. Furthermore, mea-

surement resolutions over land are typically greater than
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5 km × 5 km, and are not anticipated to improve dra-

matically after GPM, presenting a further challenge for

those seeking hyper-resolution hydrological modelling.

Therefore, while remote sensing observations of pre-

cipitation have greatly improved our understanding of

its global magnitude and variability, there remain crit-

ical knowledge gaps. Other long-standing issues in-

clude the detection of snowfall, drizzle, and extreme

events (Rios Gaona et al., 2016) and the fact that lower-

frequency microwave channels often fail to discrimi-

nate between the scattering by ice in the clouds and

that by the surface, while higher frequency channels re-

quire the extraction of the background emission, which

is not trivial. An additional challenge is rainfall retrieval

at higher latitudes, where snowfall is the largest contrib-

utor to annual precipitation, yet remains unsampled by

the oblique orbits of TRMM or GPM. All of these is-

sues are amplified by the disconnect between satellite

data and traditional gauge-based measurements, which

have well-recognized problems of poor distribution,

wind-induced undercatch, elevation bias in gauge place-

ment, and numerous other measurement complications

(Lorenz and Kunstmann, 2012; Steiner et al., 1999).

While ground-based polarimetric radars offer high tem-

poral and spatial resolutions, they are only generally

available in developed countries (Heistermann et al.,

2013), have relatively poor coverage in mountainous ar-

eas, and their merging with satellite observations has

often proven cumbersome (Lee et al., 2015). Neverthe-

less, due to their spatial and temporal continuity, ground

radar data are considered the gold standard where they

do exist. Further efforts to archive, harmonize, repro-

cess, and provide access to the global network of radar

data are needed before the potential value of this data

source can be fully realized2.

– Evaporation: monitoring the second largest flux in the

continental hydrological cycle has proven to be es-

pecially challenging, whether from ground-based ap-

proaches or from space. A range of techniques to de-

rive evaporation from remote sensing data exist (An-

derson et al., 2004; Wang and Dickinson, 2012; Er-

shadi et al., 2014; Fisher et al., 2008; K. Zhang et al.,

2016; Bastiaanssen et al., 1998). However, given the

inability to observe this water flux in any direct way,

all such approaches rely on rather complex empirical

or process-based models, often requiring significant an-

cillary information and site-specific parameterizations.

Moving forward, improvements are needed in both re-

trieval algorithms as well as satellite measurements.

Large-scale satellite-based evaporation estimates gener-

ally have a resolution that is too coarse for critical ap-

plications such as drought assessment, water manage-

2See http://eumetnet.eu/activities/observations-programme/

current-activities/opera/ for an example of such an initiative

ment or agricultural monitoring, although there are re-

gional to local-scale exceptions to this (Anderson et al.,

2013; Cammalleri et al., 2014). To achieve the required

high resolution over large spatial domains, equally high-

resolution observations of surface-level temperature and

radiation budget components are required, together with

improved representation of the hydrometeorology re-

quired to force many of these models (Ershadi et al.,

2013). While current generation geostationary satellites

can provide retrievals between 1 and 2 km in the visible-

to-infrared spectrum, available global operational data

products only offer coarse degree-scale resolutions, pre-

senting a critical drawback for efforts targeting the pro-

duction of global estimates (McCabe et al., 2016; Mi-

ralles et al., 2016). Finally, one of the key issues to

advance the development of evaporation models is our

representation of the vegetation components inherent in

partitioning between evaporation and transpiration. The

emergence of new remote sensing datasets (see Vegeta-

tion section below) that move beyond the relatively sim-

plistic NDVI or leaf area index approaches that are cur-

rently employed, may provide a path forward to achiev-

ing needed model improvements.

– Soil moisture: over the years, several algorithms have

been formulated to derive soil moisture from low mi-

crowave frequencies, resulting in numerous data prod-

ucts being developed since the late 1970s. These

datasets have demonstrated their utility in hydrologi-

cal applications at different scales, and have become

a valuable tool for the climate community after merg-

ing into multi-decadal, multi-satellite, and multi-sensor

(active and passive) records (Liu et al., 2012). With

algorithm developments for active scatterometer-based

retrievals (Naeimi et al., 2009) enabling soil moisture

products from the Advanced Scatterometer (ASCAT)

(Wagner et al., 2013), together with the launch of soil-

moisture-dedicated missions such as the Soil Moisture

and Oceans Salinity (SMOS) mission in 2009 and the

SMAP mission in 2015, the retrieval of soil moisture

from space has taken on a new dimension. Current re-

search strives to improve the accuracy of retrieval al-

gorithms (Mladenova et al., 2014), understand the spa-

tial representativeness of the observations (Dorigo et al.,

2015), increase the spatio-temporal resolution (Jha et

al., 2013; Merlin et al., 2010), optimally ingest obser-

vations into hydrological models (Reichle et al., 2007),

and explore the blending of different sensors (Liu et

al., 2011b). The coarse resolution of passive-based re-

trievals remains a challenge, but advances in antenna

technology may provide improvements on this. Shallow

retrieval depths also limit the determination of root-zone

moisture profiles and dynamics, although modelling

approaches seek to improve deeper-soil representation

(Das and Mohanty, 2006; Li et al., 2010). Despite the
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failure of the SMAP radar after only 3 months of opera-

tion, the performance of SMAP’s passive retrievals has

recently been evaluated with encouraging results (Pan

et al., 2016). Likewise, the SMOS mission continues

to provide valuable insights and an expanding range of

derived products (Mecklenburg et al., 2016). Although

no SMOS Follow-On mission is planned at this time,

the future of satellite remote sensing of soil moisture

remains bright, with the newly launched Sentinel-1 se-

ries from the ESA carrying high-resolution radars that

have proven capabilities to deliver soil moisture at less

than 1 km resolution and near-real time (Paloscia et al.,

2013).

– Runoff: of all the hydrological variables, the one that

typically draws the most attention from a water man-

agement perspective is river runoff. However, runoff is

inherently local and difficult to determine from coarse-

resolution space observations. While some efforts have

focused on using GRACE to derive long-term mean

discharge for large rivers, most initiatives to date have

been limited to running hydrological models of differ-

ent complexities using satellite-derived digital eleva-

tion models, river height, inundation extent, or simply

satellite-based precipitation. The long-awaited Surface

Water and Ocean Topography (SWOT) mission (now

planned for 2021) is set to measure surface water bodies

and to infer river discharge. SWOT will carry a radar al-

timeter capable of deriving two-dimensional (2-D) im-

ages of surface water height, with a vertical accuracy of

about 1 cm averaged over 1 km2 across a 120 km swath.

This will deliver a substantial advance over previous al-

timeters used for hydrological applications that report

only 1-D heights (Calmant and Seyler, 2006). However,

while river height, width and slope will be derivable

from SWOT, the calculation of river discharge will still

rely on algorithms that account for the unknown chan-

nel depths and flow velocities. Any algorithm that has a

requirement of in situ data for calibration limits its ap-

plicability in ungauged regions, where discharge mea-

surements from space are the most needed. Moreover,

estimates of discharge will correspond to the particu-

lar time of the SWOT overpass, which may not match

the desired timing, especially in applications related to

the detection and monitoring of flash floods that require

both high spatial and temporal resolution.

– Groundwater and terrestrial water storage: gravimet-

ric remote sensing represents one alternative to conven-

tional electromagnetic sensing techniques for estimat-

ing water storage variables. Since 2002, GRACE has

been measuring temporal anomalies in the Earth’s grav-

ity field, from which changes in terrestrial water stor-

age (the sum of groundwater, soil moisture, surface wa-

ter, snow, and biomass water content) can be inferred

(Tapley et al., 2004). Combined with auxiliary model-

or observation-based information, satellite gravimetry

provides the only viable remote sensing approach for

consistently estimating changes in groundwater storage

(Rodell et al., 2007). However, GRACE’s coarse spa-

tial (> 150 000 km2) and temporal (monthly) resolution

and data latency (typically 2–4 months) have limited its

value for operational applications and decision-making,

absent any model-based downscaling (Zaitchik et al.,

2008). The GRACE Follow-On mission (to be launched

in 2018) is expected to improve upon the retrievable

resolution somewhat (> 100 000 km2). In spite of these

limitations, the GRACE mission has proven to be one

of the outstanding examples of non-traditional EO ap-

plications in hydrology, and serves as a reminder that

process understanding is best achieved utilizing a range

of complementary observation platforms.

– Vegetation: given the strong links between vegetation

and multiple elements of the water cycle, there is un-

derstandable focus from the hydrological community on

capturing plant response and dynamics at high spatial

and temporal resolutions. Vegetation features are most

clearly extracted from the VNIR, with sensors such as

MODIS and Sentinel-2 providing unprecedented detail

on plant-spectrum response. It could be argued that too

much emphasis has been placed on relatively simplis-

tic broadband-derived optical or near-infrared vegeta-

tion indices such as the NDVI, at the expense of other

indices and portions of the electromagnetic spectrum

(Houborg et al., 2015). For instance, microwave obser-

vations of vegetation optical depth (VOD) offer a close

proxy of the water content and hydrological function-

ing of vegetation (Liu et al., 2011a, 2013), without the

limitations of clear-sky conditions or the impacts of sig-

nal saturation in dense canopies and sun-sensor geom-

etry issues. While research efforts have produced long-

term records of VOD that hold considerable potential

to improve understanding of land water fluxes and car-

bon storages (Liu et al., 2015), they are seldom em-

ployed in diagnostic studies of the hydrological cycle.

In some ways, there seems to be a disconnect between

the vegetation and water research communities that has

led to the mis- or under-use of observable vegetation

metrics. Solar-induced fluorescence (SIF) (Meroni et

al., 2009) is one example of this disconnect. Observa-

tions of fluorescence by the Japanese Greenhouse gases-

Observing SATellite (GOSAT) have mapped photosyn-

thesis at the global scale (Frankenberg et al., 2011). Due

to the synchronization of photosynthesis and transpira-

tion through the stomatal conductance, SIF data could

in principle be utilized to enhance our understanding

of transpiration and evaporative stress (Alemohammad

et al., 2016), but relatively little research has focused

on examining this apparent link. Data from the Orbit-

ing Carbon Observatory-2 (OCO-2) spectrometer, and
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the TROPOspheric Monitoring Instrument (TROPOMI)

on-board Sentinel-5 Precursor (to be launched in 2017),

will enable some of these ideas to be explored further,

forerunning the first SIF-dedicated mission, the Fluo-

rescence Explorer (FLEX) from the ESA (launch sched-

uled in 2022). While earlier SIF datasets had resolutions

that were not particularly well suited for hydrological

applications, OCO-2 and TROPOMI present improved

spatial detail (3 and 8 km, respectively), and in the case

of TROPOMI, a near-daily revisit time.

– Snow and permafrost: terrestrial snow and frozen soils

represent an important yet poorly represented compo-

nent of the global water cycle. While the retrieval of 2-

D snow cover extent is a mature research field (Hall et

al., 1995), the retrieval of snow depth, density, or wa-

ter equivalent (SWE) is usually of greater interest to

hydrologists, since these form key elements of model

initialization and forecasting of runoff, drought and

flood prediction (Bormann et al., 2013). Unfortunately,

retrieving these and related cryospheric variables re-

mains a major challenge, particularly for mountainous

regions, where spatial variability is high and seasonal

snow depth may reach tens of metres. Microwave sen-

sors can be used for SWE and snow depth observations,

but current systems lack optimal combinations of fre-

quencies and resolutions. Although active microwave

sensors can improve retrieval resolution and may be

better suited for snow monitoring in mountainous re-

gions, the maturity of active-based products has not

reached the same level as passive approaches. However,

even passive microwave-based SWE retrieval can suf-

fer from signal saturation due to a deep snowpack, with

commonly used Ku- and Ka-band microwave emission

signals saturating at around 200 mm SWE. Given the

importance of monitoring wet-snow properties for hy-

drology, synthetic aperture radar (SAR) retrieval ap-

proaches have been proposed, since passive approaches

are not sensitive to dry snow parameters. Gravimetric

techniques represent another alternative to microwave-

based measurement of snow depth (Baur et al., 2009),

but the approach is limited by the large spatial and

coarse temporal characteristics of such sensors (Niu et

al., 2007). In the light of the non-selection of ESA’s

CoreH2O as an Earth Explore mission, there remains a

need for high-resolution active microwave sensors with

high revisit times to more effectively capture the dy-

namics of wet-snow in diverse terrain. Apart from snow

covered surfaces, understanding the dynamics of frozen

soils has become an increasingly important topic in hy-

drology, given the observed warming in many cold re-

gions and the role that permafrost may play in changing

river discharges, particularly in boreal areas (Woo et al.,

2008). Permafrost properties include key state variables

such as ground temperature, as well as thickness of the

active layer, spatial patchiness and ice content. While

there has yet to be a dedicated permafrost mission,

EO data can be used to obtain permafrost-related fea-

tures, such as the evolution in micro-topography, rock

glaciers, thermokarst, and deformation. For instance,

ESA’s SMOS satellite has been used to detect the on-

set of soil freezing (Rautiainen et al., 2016) with en-

couraging results, while the SMAP mission would have

provided key insights into permafrost processes, partic-

ularly the freeze/thaw state, which acts as a proxy for

monitoring methane and carbon release (Heimann and

Reichstein, 2008), forest productivity (Kimball et al.,

2001), and sub-surface flow processes (Bayard et al.,

2005). ESA’s Sentinel 1 mission (Sabel et al., 2012), to-

gether with InSAR data (Liu et al., 2010), may present

as possible platforms from which permafrost character-

istics can be retrieved, advancing our knowledge of this

increasingly important variable and our understanding

of cold regions hydrology.

– Water vapour: a general drawback of current satellite

observations for hydrological applications is their in-

ability to provide vertical profiles of the atmospheric

state with a high enough temporal resolution to allow

for tracking of the fate and transport of water vapour.

Water dynamics in the lower atmosphere are determined

by complex interactions between the land surface and

the free atmosphere, which are mediated by the di-

urnal cycle of the atmospheric boundary layer (ABL;

from the surface to 2–5 km above). Diurnal processes

like air entrainment into the ABL act as key drivers of

evaporation, convective rainfall, or near-surface humid-

ity. Therefore, understanding the connection between

the surface and atmospheric branches of the hydro-

logical cycle relies on adequately monitoring heat and

moisture exchanges in the ABL over large spatial do-

mains. However, this requirement demands the avail-

ability of temperature and humidity observations at fine

time steps (e.g. hourly) and over high vertical and hor-

izontal resolutions. Presently, low-orbiting sensors ca-

pable of providing vertical information, such as the li-

dar in the Cloud–Aerosol Lidar and Infrared Pathfinder

Satellite Observation (CALIPSO), the radar in Cloud-

Sat, or the hyperspectral sounder in the Atmospheric

Infrared Sounder (AIRS), can only provide data at daily

(or much longer) temporal resolutions. Existing geosta-

tionary satellites, on the other hand, have frequent tem-

poral sampling, but wider spectral bands and coarser

vertical resolutions. Until these capacities are resolved

in a single platform (or in a constellation of smaller

satellite systems) the lack of any high spatio-temporal

resolution data to monitor the evolution of the ABL will

continue to constrain our ability to monitor diurnal cy-

cles of atmospheric water fluxes from space.
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– Water quality: compared with other hydrology-related

variables, relatively little focus has been directed to-

wards characterizing inland surface water quality from

space. Changes in the Earth’s natural environment,

whether from global warming, land use and land cover

changes, or other anthropogenic causes, can signifi-

cantly deteriorate freshwater quality (Whitehead et al.,

2009). Given the limited availability of in situ water

quality measurements, remotely sensed datasets offer a

means to fill this knowledge gap, with temperature, sus-

pended sediment, dissolved organic matter, and chloro-

phyll of particular interest. Lake and stream temper-

atures, which directly impact freshwater habitats, are

very sensitive to climate changes (van Vliet et al., 2013).

Although land-surface temperature products generated

from sensors such as MODIS and Landsat are quite

well developed, large-scale water temperature datasets

are less common. Since estimating water temperature

requires delineating water bodies, a MODIS-based wa-

ter mask has been developed for this purpose (Carroll

et al., 2009). However, resolving such information re-

mains challenging for water bodies with surface ar-

eas that have large seasonal or inter-annual variations,

or whose cross sections fall below retrievable resolu-

tions. Suspended sediment and chlorophyll concentra-

tions can be measured using VNIR data from Land-

sat, Sentinel-3, MODIS, and AVHRR, or with hyper-

spectral sensors (Brando and Dekker, 2003). Research

on the use of physically based algorithms that monitor

these properties is required, with high spatial and spec-

tral resolution observations needed to advance such ef-

forts (Odermatt et al., 2012). The Hyperion mission has

contributed to sensing such variables with high accuracy

(Giardino et al., 2007), but was decommissioned in late-

February 2017. With no dedicated water quality mis-

sion planned, there is interest in the proposed Plankton,

Aerosol, Cloud, and ocean Ecosystem (PACE) satellite

to advance terrestrial water quality monitoring (even

though its primary focus is on oceans), but the future of

this satellite remains uncertain in the light of the recent

2018 US budget announcement.

Section 2 has focused predominantly on our space-based ob-

serving platforms and identified some of the issues hindering

developments in our characterization of the hydrological cy-

cle. In order to drive continued advances in our system under-

standing, it is paramount that we exploit a comprehensive and

holistic EO strategy, both with data that we currently have, as

well as that which is only just emerging. To explore this con-

cept and the opportunities being provided by a combination

of new technologies, sensor innovations, and advanced anal-

ysis techniques, a presentation of some emerging monitoring

systems and approaches that may leverage, support, or even

supplant the traditional notion of EO is presented in the fol-

lowing section.

3 Emergent platforms, capabilities, and technologies

A few decades from now, historians may reflect on today’s

remote sensing capabilities the way we regard transportation

in the early 20th century; i.e. most of the major modes were

already in existence, but huge improvements in quality, cost

and production efficiency, accessibility, and safety were yet

to come. These improvements will be spawned and nurtured

as before by government research investments, individual in-

genuity, as well as private sector involvement. In this section

we briefly summarize both the near- and mid-term plans of

government space agencies and draw attention to a range of

recent innovations that will augment and possibly disrupt the

traditional concept of large orbital missions in the near, mid-

dle, and long term. Later, in Sect. 4, we review the commer-

cialization of space, which will be essential in driving down

orbital insertion costs and thus enabling the predicted effi-

ciency and accessibility improvements for many of the tech-

nologies described below. In previewing some of these emer-

gent observation platforms, Fig. 2 provides a concept of what

a new Earth-observing “system of systems” might comprise.

3.1 Future agency missions

In forecasting the range of future hydrology-related satellite

missions, it is not feasible to comprehensively list the entirety

of national space agency plans in this brief overview. Real-

izing this, we use US agency missions as guidance for com-

parable space programs in Europe, China, Japan, and else-

where. While the specifics might vary, there are some gener-

alities that remain true. For example, space agencies typically

discuss plans for their flagship Earth-observing missions 10–

15 years out, accept proposals and approve the formulation

and science definition teams for missions 5-10-years out, and

begin assembly 3–5-years out. While NASA Venture class

and smaller missions as well as bolt-on instruments typically

have more compressed timelines, it is clear that the time hori-

zons from mission concept to launch are long, rather than

short.

Some hydrology relevant flagship missions currently

approved and in various stages of development include

the GRACE Follow On, Water Cycle Observation Mis-

sion (WCOM), SWOT, and ICESat-2. The joint NASA and

German Aerospace Center (DLR) GRACE Follow-On mis-

sion, with a launch window between December 2017 and

February 2018, will extend the unique monthly record of ter-

restrial water storage anomaly observations that have been

provided by GRACE since 2002 (Tapley et al., 2004). In

addition to the K-band microwave ranging system used to

measure changes in distance between its twin satellites with

extreme precision, GRACE Follow-On will use an experi-

mental laser ranging system and design improvements that

together are expected to increase the spatial resolution from

roughly 150 000 to 100 000 km2 at mid-latitudes. China’s

WCOM, targeted for launch around 2020, aims to measure
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Figure 2. An Earth-observing “system of systems” for revolutionizing our understanding of the hydrological cycle. This multi-scale, multi-

resolution observation strategy is not really a concept, as the technology exists and is largely in place now. Supporting traditional space-based

satellites, there are now a range of orbital options from commercial CubeSats to demonstration sensors on-board the International Space Sta-

tion. Beyond orbiting EO systems, technological advances in hardware design and communications are opening the skies to stratospheric

balloons and solar planes, as well as an explosion of UAV-type platforms for enhanced sensing. At the ground level, the ubiquity of mo-

bile devices are expanding traditional in situ network capacity, while proximal sensing and signals of opportunity are opening up novel

measurement strategies.
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soil moisture, snow water equivalent, soil freeze–thaw, atmo-

spheric water vapour, and precipitation, amongst other vari-

ables. This is to be accomplished through accurate, simul-

taneous active and passive microwave measurements across

a wide frequency range, obtained by three on-board instru-

ments: (1) an L-S-C tri-frequency interferometric microwave

imager with 15–50 km spatial resolution, consisting of a

9 m × 6 m mesh reflector and a 1-D thinned array as the feed,

(2) a polarized microwave imager covering 7.2 to 90 GHz

with a 1.8 m diameter reflector antenna for conical scan, and

(3) an X–Ku dual-frequency polarized scatterometer with 2–

5 km spatial resolution and 1000 km swath for snow water

equivalent and freeze–thaw mapping. NASA’s SWOT mis-

sion, scheduled for launch in 2021, will return accurate sur-

face water elevations over 90 % of the globe at least twice

every 3 weeks, enabling estimation of river runoff as well

as surface water storage. SWOT will employ a wide swath,

Ka-band radar interferometer to resolve 100 m wide rivers

and 250 m2 lakes, wetlands, or reservoirs with a height ac-

curacy of 10 cm and a slope accuracy of 1 cm km−1. Recent

runoff data are currently available from only a fraction of

the world’s rivers, due mainly to closed data policies outside

of a few developed nations. SWOT will fill a major void in

our observational capabilities. NASA’s ICESat-2, while pri-

marily focused on precise laser altimetry for ice sheet map-

ping, will also prove valuable for monitoring surface wa-

ter elevations (Jasinski et al., 2016), particularly before the

launch of SWOT. Other missions, such as NOAA’s Suomi

National Polar-orbiting Partnership (Suomi NPP; launched

in 2011) Joint Polar Satellite System 1 (JPSS-1; scheduled

for launch near the end of 2017), and future missions in the

JPSS series are mainly geared towards atmospheric measure-

ments, but all will carry Visible Infrared Imaging Radiome-

ter Suite (VIIRS) instruments, which collect visible and in-

frared imagery useful for monitoring snow cover and vege-

tation as an input to retrieval algorithms for numerous hy-

drological variables. ESA’s Sentinel-4 Earth-observing mis-

sion (planned for launch in 2019) and its Sentinel-5 succes-

sor, will focus on air quality monitoring. ESA also plans

two Earth Explorer missions related to hydrology: (1) the

Biomass mission (planned for launch in 2021) will carry a

P-band SAR for the purpose of estimating forest biomass,

but which may also be useful for inferring root-zone soil

moisture; and (2) the FLEX mission, which will map veg-

etation fluorescence to quantify photosynthetic activity and

should help to constrain transpiration rates. In addition to

these large missions, NASA’s Venture class ECOsystem

Spaceborne Thermal Radiometer Experiment on Space Sta-

tion (ECOSTRESS) (scheduled to be deployed aboard the

ISS in 2018), will measure vegetation temperatures with the

aim of constraining transpiration estimates and better under-

standing plant response to stress.

The 2017 edition of the Decadal Survey in Earth Sciences

is intended to guide the prioritization and selection of major

US Earth-observing satellites for the next 10 years. While

the 2007 edition (National Research Council, 2007) recom-

mended specific mission architectures, the new edition is ex-

pected to recommend observables and to leave mission and

instrument design to the agencies and proposing institutions.

At the time of writing, it is unknown what hydrological ob-

servables will be prioritized, but based on the missions that

were included in 2007 (but did not enter NASA’s mission

queue due to a second or third tier ranking), we speculate

that snow water equivalent will be a priority. Referring to Ta-

ble 1, evaporation is another variable that may be targeted

due to its importance, lack of a current, dedicated mission,

and existence of a demonstrated retrieval approach. Deep soil

moisture could also be on the list, although soil moisture al-

gorithms that make use of wavelengths longer than L-band

(e.g. P-band at 40 cm) are not yet mature (Moghaddam et al.,

2007).

While there are impressive and innovative sensing plat-

forms scheduled for launch in the next 5–10 years (or in

advanced stages of planning) across international space and

government agencies, there are emerging parallel opportuni-

ties for both investigator-driven and commercially-led activ-

ities that have the potential to reshape the EO landscape in

hydrology. A selection of these are explored below.

3.2 Unmanned aerial vehicles

One of the most exciting recent advances in near-Earth obser-

vation lies in the field of unmanned aerial vehicles (UAVs),

also referred to as “unmanned aircraft systems” or “remotely

piloted aircraft systems”. Often used interchangeably, or sim-

ply referred to as a drone, the terms encompass the remote

or semi-autonomous operation of an airborne vehicle. In a

way, these new observation platforms represent a “hook in

the sky” from which to deploy a range of sensors. The ap-

plication of UAVs for remote sensing has offered new oppor-

tunities to map, monitor, and understand the environment in

unprecedented detail (Anderson and Gaston, 2013), particu-

larly at the scale at which traditional field-based observations

can be made, but also covering a greater spatial extent with

a unique top-down view (see Fig. 3). The key advantages

of UAV-based remote sensing is their capacity to (1) collect

ultra-fine resolution imagery (defined here as 1–20 cm pixel

size); (2) acquire data on-demand at critical times and with

high temporal resolution at costs affordable to an individual

investigator; (3) carry multiple sensors (both active and pas-

sive) across the electromagnetic spectrum; (4) be employed

for calibration and validation of satellite products; (5) com-

plement, extend, or potentially replace field surveys (espe-

cially in areas that are difficult to access); and (6) provide

a scaling tool between field and satellite data. Most impor-

tantly, this rapidly emerging technology offers the opportu-

nity to reveal new insights into hydrological, geomorpho-

logical, atmospheric, and biotic processes, and represents a

game-changing sensing platform.
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Figure 3. Employing a UAV to retrieve high-resolution multispec-

tral information on the land surface for hydrology and related appli-

cations over an Australian rangeland site located near Fowler’s Gap

in New South Wales. Retrieved products include (a) a false-colour

infrared image, (b) a reconstructed digital surface model using vis-

ible imagery and structure-from-motion techniques and (c) an op-

timized soil adjusted vegetation index (OSAVI) derived from the

4-band multispectral image. Images were captured using a MicaS-

ense/Parrot Sequoia sensor on-board a 3DR Solo quadcopter. The

UAV was flying at a height of 40 m, providing a ground sampling

distance of approximately 3 cm. Imagery provided by the University

of Tasmania’s TerraLuma Research Group.

In a recent contribution, Vivoni et al. (2014) reviewed the

application of UAVs for eco-hydrology and suggested that

UAV remote sensing can fundamentally change how eco-

hydrologic science is conducted. This same is true for hydrol-

ogy. At the most basic level, UAVs can provide turn-key solu-

tions of ultra-high resolution RGB imagery using consumer-

grade cameras. Recently, multispectral and thermal sensors

have gained traction and are increasingly being deployed by

scientists. While lidar and hyperspectral sensors are still in

an early operational phase, rapid progress is being made.

One of the breakthrough technologies to the success of UAVs

for mapping applications is structure-from-motion (SfM) and

dense image matching (Turner et al., 2012). SfM is based

on photogrammetric principles and generates detailed 3-D

point clouds from overlapping and multi-view photography.

UAV platforms are ideally suited to fly overlapping flight

lines, and collect hundreds of images during dedicated cam-

paigns. Using SfM approaches, extremely rich 3-D informa-

tion on the terrain, vegetation, buildings, geology, etc. can

be extracted cheaply and efficiently by the end user. For hy-

drological applications, SfM provides information on micro-

topography and can be used to generate digital terrain mod-

els (DTMs) and digital surface models (DSMs) at unprece-

dented detail. Apart from their natural affinity to application

in precision agriculture (Zhang and Kovacs, 2012) and for

vegetation health and stress monitoring (Zarco-Tejada et al.,

2012, 2013), a number of recent contributions have demon-

strated the utility of UAVs in hydrological process studies,

with snow depth retrieval (Vander Jagt et al., 2015), flood

mapping (Feng et al., 2015), irrigation monitoring (Bellvert

et al., 2016), and evaporation estimation (Hoffmann et al.,

2016) all being explored.

New UAV-based sensor technologies are likely to drive

further advances in hydrological process description and un-

derstanding. For example, advances in sensor manufactur-

ing have now enabled production of frame-based hyperspec-

tral snapshot systems that are much smaller than a typi-

cal consumer-grade compact camera. Similar miniaturization

processes are being applied to thermal sensors and laser scan-

ners. These recent developments present opportunities to the

hydrologic community by offering the combination of multi-

ple sensors that acquire data simultaneously. The acquisition

of 3-D information on terrain and vegetation, together with

hyperspectral and thermal imagery, was previously a highly

specialized task for very experienced airborne remote sens-

ing crews. Now, this multi-sensor capability is already avail-

able for UAV platforms, providing unprecedented informa-

tion for remote sensing applications. However, as with any

new technology, UAV deployment comes with challenges

as well as opportunities. One potential threat to the suc-

cess of UAV remote sensing is that innovations are primarily

driven from a technological rather than scientific perspective.

While new airframes and sensors are evolving at an impres-

sive pace, research is required to deliver rigorous processing

workflows and to generate accurate and robust end products

that are meaningful. There is a real risk that new sensors and

products may produce little more than “pretty pictures” with-

out a thorough understanding of sensor performance, preci-

sion and calibration. Semi-automated processing workflows

are needed to ensure accurate geometric, radiometric, and

spectral corrections. These workflows will have to cope with

a data deluge of hundreds to thousands of images that typical

flight campaigns generate, but developments in cloud com-

puting (Sect. 3.8) may provide a solution to the currently long

processing times. Furthermore, as the need (or desire) for

ultra-high-resolution imagery increases, there will be a push

to extend UAVs beyond visual line of sight (BVLOS) in or-

der to cover larger areas. Visual line of sight is a current legal

limitation of UAV operation in many countries, which effec-

tively limits the size of the study area to an order of 1 km2,

making the retrieval of information over larger catchments

a laborious and time-consuming process. Improvements in

technology and safety will ultimately make BVLOS opera-
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tions feasible, but it will take time for regulatory bodies to

keep pace with advances in technology.

Even though UAV remote sensing requires expertise in pi-

loting, sensor operations, calibrations, and image processing

workflows, it is now possible for small groups and even in-

dividual end users to collect their own ultra-high-resolution

multi-sensor EO data: a capability that even a decade ago,

was the purview of space agencies and highly specialized

airborne data providers. In the not too distant future, fully

autonomous systems are anticipated. Although current appli-

cations are some way off being completely autonomous, the

ultimate goal of the UAV is analogous to the image-capturing

capability of the space-based satellite: a self-propelling, pow-

ered, self-contained, and independent data-collection system.

So long as the needed developments in UAV science can keep

pace with the rapid technological innovations, these innova-

tive observation platforms are well placed to deliver needed

advances in hydrological understanding.

3.3 Stratospheric balloons and solar planes

UAVs are not the only non-orbiting remote sensing systems

driving progress in hydrological observation: they are just

one of the latest. Aerial weather balloons have been used for

more than a century to remotely monitor terrestrial systems.

Some of the earliest uses of balloons were to carry observers

over battlefields throughout the 1800s and even during World

War I, providing an unparalleled logistical and military plan-

ning tool. Today, balloon designs enable a low-cost, stable

platform for intriguing hydrologic and related remote sens-

ing applications (Chen and Vierling, 2006). Apart from pro-

viding soundings of atmospheric temperature, pressure, and

humidity, along with a variety of other meteorological vari-

ables, a range of enhanced measurement capabilities are also

possible. Vierling et al. (2006) constructed a tethered balloon

consisting of meteorological instruments, Global Positioning

System (GPS) receiver, thermal infrared camera, and a video

camera, all operating in real time with data downlinked to a

receiving computer. A more recent and novel application was

the use of a mobile laser scanning lidar attached to a teth-

ered balloon to acquire topographic elevation measurements

(Brooks et al., 2013; Hauser et al., 2016). Costing approxi-

mately USD 100 000, the approach yielded a point cloud of

elevation measurements accurate to about 5 cm and spanning

an approximately 75 m swath along the balloon’s trajectory.

Another system was developed by Shaw et al. (2012), who

retrofitted a tethered balloon with red and infrared imaging

capabilities for less than USD 1000, providing an approxi-

mately 12 cm spatial resolution in a 64 m wide imaging swath

from a legally restricted flying height of 50 m.

Like balloons, aircraft-based remote sensing has existed

since the earliest developments of powered flight. Since more

traditional aerial methods are well-known and easily acces-

sible via the peer-reviewed literature (Green et al., 1998),

we focus here instead on a more speculative but intrigu-

ing sensing future. Consider the recent around-the-world pi-

loted flight of the Solar Explorer 2 (2016), an entirely solar-

powered aeroplane weighing 2300 kg and having a 72 m

wingspan. Covered in more than 17 000 photovoltaic solar

cells, the craft achieved a maximum flight leg lasting al-

most 5 full days and nights. While this experimental system

cost more than USD 200 million, it highlights the future pos-

sibilities of having unmanned aircraft flying uninterrupted

over fixed locations, without the need for landing. Back of

the envelope calculations, assuming an average velocity of

75 km h−1 and a maximum piloted altitude of 8500 m, sug-

gest that a similar unmanned plane equipped with an imaging

sensor capable of 20 km swath widths could observe areas of

300 km by 120 km in a single day: enough to sense the extent

of the Sierra Nevada and its snowpacks in about 3 days.

Unsurprisingly, improved Earth observation is not the only

motivation driving the exploration of balloons and solar-

powered platforms. A number of Silicon Valley technology

companies have well-developed plans to use unmanned sys-

tems to deliver broadband internet coverage to poorly con-

nected regions of the globe. Google’s Project Loon (https://x.

company/loon/) is perhaps the most advanced of these and is

based on the idea of using stratospheric winds to navigate and

control an interconnected network of high-altitude balloons.

Using this approach, the project aims to provide internet ac-

cess to both developed and developing communities. With

a similar goal in mind, Facebook’s Project Aquila (Zucker-

berg, 2016) is a parallel effort exploring solar-powered air-

craft. Aquila’s aim is to have a fleet of planes flying at be-

tween 18 000 and 27 000 m that would stay aloft for months

at a time, using on-board lasers to transmit and receive in-

formation to users below. A first unmanned flight was com-

pleted in late-June 2016, lasting for 96 min (Flying Aquila,

2016), but many technical barriers remain to be overcome.

While these examples are focused on providing communica-

tions infrastructure to the estimated 2 billion people currently

without internet access (representing an untapped revenue

stream relative to the largely saturated market in most devel-

oped countries), there are clear opportunities for leveraging

such systems for enhanced EO. Harnessing a fleet of high-

altitude balloons or aircraft with an array of lightweight sen-

sor packages provides a platform not just for opportunistic

sensing, but also for evaluating new technology, calibration

and validation of satellite systems, and supporting large-scale

test beds for product assessment: the last representing an of-

ten ignored (or under-funded) element of space-based Earth

observation. Leveraging the advances in technology behind

the commercial development and production of these sys-

tems may provide scientists with direct access to their own

airborne platforms, offering capabilities to individuals or re-

search teams that are currently beyond the scope or reach of

most. While such future platforms remain somewhat spec-

ulative, these early developments are not just exciting: they

represent real pathways towards an enhanced Earth observa-

tion strategy.
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3.4 The rise of the CubeSat

The demand for increased spatial and temporal resolution

is one of the underlying drivers of sensor and platform de-

velopment, with the assumption being that enhanced resolu-

tion will improve the monitoring, characterization, and un-

derstanding of terrestrial ecosystems. Till recently, there has

been a rather incremental improvement in observing sys-

tem specifications. Current agency-based high spatial reso-

lution satellites, such as the Landsat series or Sentinel-2 plat-

forms, provide spatial detail at the 10–100 m resolution, but

are constrained by the temporal frequency of acquisitions

(5–16 days). When considering the influence of cloud cover

on the visible, shortwave infrared, and thermal infrared por-

tions of the spectrum, data continuity and availability can be

severely impeded (Roy et al., 2008). While deploying two

identical sensor systems, as with Sentinel-2A and -2B (Dr-

usch et al., 2012), represents significant progress towards

improving the temporal resolution, acquisition of near-daily

high-resolution imagery can only currently be met via the ex-

pensive tasking of commercial multi-sensor satellite systems

such as RapidEye and WorldView (Houborg et al., 2015), and

only then on an area-limited basis.

One way in which enhancements in revisit time and large

area availability can be realized is via the launch of a larger

number of replicate sensor systems. In the past, such at-

tempts have been hindered by the high mission costs of the

type of large satellites favoured by space agency missions.

For instance, Landsat-8 (which is around the size of a large

car), had an estimated cost of USD 855 million to build and

launch, and therefore producing multiple versions (not in-

cluding associated launch costs) is not a realistic proposition.

The 2014–2020 budget for the European Copernicus Earth

observation program, which includes the Sentinel missions,

is estimated at approximately EUR 4.3 billion, but does not

include multi-satellite constellations beyond the Sentinel-2

pair (Denis et al., 2016). Here the key limitation in the repli-

cation of multiple sensing platforms relates to the satellites

size and the associated price tag. One possible solution to

this constraint that has seen some impressive real-world re-

sults is an obvious one: make satellites smaller and lighter

and they become cheaper to launch. Such an approach is be-

hind the CubeSat concept, introduced by Stanford Univer-

sity and the California Polytechnic State University in 1999

(Puig-Suari et al., 2001). CubeSats have provided the foun-

dation upon which the recent surge in the development and

launch of constellations of compact (i.e. 0.1–10 kg) pico- and

nano-satellites (Bouwmeester and Guo, 2010; Selva and Kre-

jci, 2012) can largely be attributed. A single-unit (1 U) Cube-

Sat, measuring 10 × 10 × 11.35 cm3 and typically weighing

less than 1.33 kg, forms the base level building block for a

range of larger configurations. Indeed, CubeSats can be con-

figured in a variety of sizes, increasing as integer multiples

such as 3, 6 or 12 U, to expand observation capacities and

potential applications (Hevner et al., 2011). The advances

driving CubeSats have not occurred in isolation, nor are they

solely a product of economies of scale. The economics of

space observation is changing rapidly, due to a combination

of sensor miniaturization (allowing the development of stan-

dardized smaller satellites comprised of commercial off-the-

shelf – COTS – components) and their deployment as sec-

ondary payloads on commercial and public launch platforms

(Woellert et al., 2011). The emergence of reusable rockets

is also a major driver in the cost reduction of actually plac-

ing infrastructure in orbit, making the launch of investigator-

led CubeSats a feasible proposition (see further details in

Sect. 4.2).

Regardless of the driving forces behind their emergence,

CubeSats represent a cost-effective observation strategy that

provides a unique opportunity for the implementation and

demonstration of technological innovations, serving as po-

tential test beds for advanced visible–infrared sensing sys-

tems (to date, the power requirements of active sensors cur-

rently limit their integration) or even as direct replacements

to larger satellite missions (see e.g. NASA’s CubeSat Launch

Initiative; NASA, 2016a and Small Spacecraft Technology

Program; NASA, 2016b). NASA’s Jet Propulsion Labora-

tory (JPL) is actively exploring the CubeSat potential, with

new on-board processing and sensor technology testing be-

ing conducted on planned CubeSat missions (Edberg et al.,

2016). From a hydrological perspective, JPL’s RainCube

(Haddad et al., 2016), which is scheduled for launch in 2017,

will act as a demonstration mission for the use of Ka-band

radar for precipitation retrieval. Another JPL project is the

CubeSat Infrared Atmospheric Sounder (CIRAS), that seeks

to match some of the temperature and water vapour profiling

capabilities of the AIRS instrument (Aumann et al., 2003),

but on a considerably smaller platform. Driving these ef-

forts is the opportunity to leverage the significantly reduced

cost, relative to conventional satellites, that makes launching

constellations or swarms of CubeSats economically feasible.

They also represent an inherent risk minimization strategy;

a systems failure on a sole-satellite configuration is mission

ending, while multiple failures could occur within a con-

stellation and still retain its mission capability. Such an ap-

proach has the potential to revolutionize monitoring capacity

from space, not just from a hydrological perspective but also

across disciplines and sectors.

A number of commercial companies are leading the way in

exploiting this observation strategy, most notably Planet (for-

merly known as Planet Labs; http://www.planet.com), who,

with more than 150 3 U CubeSats launched since 2013, man-

ages the world’s largest constellation of satellites in orbit

(Planet Team, 2017). Planet’s flock of “Doves” are capable

of capturing RGB and near-infrared imagery at 3–5 m ground

sampling distance (GSD), providing near-daily global cov-

erage based on a full constellation of nano-satellites. This

emerging resource provides new and exciting opportuni-

ties for a wide range of applications seeking to exploit

high-resolution clear-sky imaging. One recent example using
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(a)

(b) (c) (d)

Figure 4. Multi-scale capabilities of state of the art sensing optical satellites. Image illustrates the expanding resolution options available

from both commercial and government satellites. (a) Planet CubeSat at 3 m ground sampling distance over the Tawdeehiya Farm in Al Kharj,

Saudi Arabia. Centre-pivot irrigated fields dot the landscape, with dimensions approaching 800 m. The inset in (a) is zoomed to show the

resolution advantages offered by the next generation of sensing solutions over (b) Landsat-8 at 30 m, with (c) Sentinel-2A at 10 m and

(d) Planet imagery at 3 m providing enhanced details. All images are false colour representations of NIR, red and blue in RGB bands.

Sentinel-2A and Landsat-8 images were acquired on 4 December 2016, while the Planet data were captured on 5 December 2016.

these data is the retrieval of high-resolution NDVI for preci-

sion agriculture (Houborg and McCabe, 2016), but there are

clear applications in land cover and land use change detec-

tion, environmental monitoring and numerous other fields of

interest (see Fig. 4). The CubeSat approach features in other

commercial enterprises, such as the planned Astro Digital

Landmapper high-definition constellation, which comprises

20 6 U CubeSats capturing five spectral bands at a GSD of

2.5 m every 3–4 days (http://www.astrodigital.com). Like-

wise, Planetary Resources (http://www.planetaryresources.

com) envisions a programmable constellation of 10 12 U

CubeSats, delivering visible to near-infrared (400–900 nm)

hyperspectral and mid-wave (3–5 µm) thermal infrared data

at 10–15 m GSD for any spot on Earth on a weekly basis.

With the cost of a CubeSat ranging anywhere from a few tens

of thousands upwards (including launch costs), the prospect

of investigator or community-driven missions becomes a re-

alistic proposition.

Instead of launching constellations (i.e. a large number)

of independent satellites into space, others have advocated

the concept of a dense network of distributed space missions

working in cooperation, where sensing systems coordinate

to achieve a monitoring task in much the same way as a dis-

tributed sensor network collects information on the ground

(Barnhart et al., 2009). Using satellite-on-a-chip or printed

circuit board approaches, such low-cost, sub-kilogram op-

tions have obvious potential for hydrological and related

sensing. While the next generation of CubeSats has the po-

tential to revolutionize Earth observation, data from such

platforms should ideally complement, and not necessarily re-

place, the high-quality imagery that is currently acquired by

conventional large satellite missions. To harness the potential

and exploit these technological advances demands prepara-
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Figure 5. Worldwide global system for mobile communication (GSM) coverage for the year 2013. The GSM network does not include the

growth of related 3G or 4G networks. The image is derived from Fig. 2 in Overeem et al. (2016).

tion (Dash and Ogutu, 2016) and this will only be realized

through synergistic exploration and leadership from govern-

ment space agencies, the science community, and increas-

ingly the private sector. An underlying assumption here is

that space junk will not continue to accumulate to the point

of becoming an intolerable risk to launching satellites to low

Earth and geosynchronous orbits: though that dystopia would

actually enhance the importance of the sub-orbital alternative

technologies described throughout this section. Whether in-

trinsic barriers (e.g. payload launch) or a divergence of com-

mercial motivation versus scientific research interests will in-

hibit this exciting and much needed development in EO are

topics that are explored further in Sect. 4.2.

3.5 Mobile phones and citizen science

While space-based and near-Earth sensing platforms are re-

vealing entirely new avenues of EO, there are technologies

closer to home that are also revolutionizing how we can

monitor, sense, and interact with the environment around

us. Smartphones have transformed entire societies, from the

most developed countries to regions where a regular source

of electricity or freshwater is still lacking. Data from 2013

estimated that there are 7.3 billion mobile subscriptions glob-

ally, with 3.2 billion of these linked to smartphones3 (see

Fig. 5). Undoubtedly this number has increased in the last

3https://www.ericsson.com/mobility-report.

few years. Given their ubiquity, they present an ideal plat-

forms from which to harness the possibilities of remote sens-

ing hydrologic and related variables, as well as providing a

means of information exchange. In Africa, one of the world’s

fastest growing regions for mobile phone subscribers (num-

bering more than 330 million as of mid-20164), mobile bank-

ing has allowed Kenya to lead the world in mobile money

via its M-PESA system (Aker and Mbiti, 2010), while the

delivery of information via text messaging has improved the

economic outcomes of subsistence farmers through simple

knowledge of market prices (Wyche and Steinfield, 2016).

Other approaches have exploited mobile camera capabilities

combined with smartphone applications to monitor soil, veg-

etation, and land use changes (Herrick et al., 2017). In this

sense, a person with a smartphone can become a remote (or

at least proximal) sensing platform capable of providing in-

formation on the environment around them. This concept of

harnessing widely accessible technology and the users de-

ploying it is broadly referred to as “citizen science”, and has

the potential to reshape how information is both collected

and interpreted (Buytaert et al., 2014).

But simple image-capturing examples belie the potential

that mobile devices have in providing a distributed measure-

ment network. Plug-in and Bluetooth technologies linked to

smartphones enable potentially billions of users to become

4http://interactive.aljazeera.com/aje/2016/

connecting-africa-mobile-internet-solar/connecting-africa.html
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“sensors” for measuring actual hydrological events. As an

example of the immediate potential of this sensing platform,

iBobber is a USD 100 baseball-sized fishing bob that mea-

sures water depths and temperatures and has GPS location

capabilities (see http://reelsonar.com; noting that there are

other similar devices available on the market). Fishermen ev-

erywhere could be recording water depths for river hydraulic

models and for total storage in lakes. In a more focused man-

ner, teams of lay scientists could be easily trained to use such

low-cost devices to provide remotely sensed water depths in

cost-effective ways, e.g. a leisurely riverboat excursion or

simple fishing pole cast from the shoreline to yield water

depths. It is not hard to envisage numerous other smartphone-

enabled devices that auto-upload their measurements to the

internet. Indeed, it is the ubiquity of smartphones that enables

the imagining of new hydrologic measurements.

However, there are (at least) two challenges with such

“citizen science”: (1) making certain that the measurements

are accurate; and (2) connecting the hydrologic researcher

with the smartphone users. Both challenges are solvable us-

ing standard methods employed in hydrological sciences. For

instance, data assimilation and other statistical approaches

can ensure that measurements collected from disparate plat-

forms are appropriately integrated in hydrologic models. In

terms of engagement or outreach, cross-disciplinary interac-

tion between the social and physical sciences could facili-

tate the implementation of strategies to effectively engage

citizen science. One application where smartphones have al-

ready demonstrated their potential for environmental moni-

toring is their use as thermometers. Overeem et al. (2013b)

showed that thousands of smartphone battery temperatures

uploaded to a central database through an Android applica-

tion could be employed to estimate daily mean air tempera-

tures in eight major cities around the world with reasonable

accuracy. Their results show the potential of “crowd sourc-

ing” for real-time temperature monitoring in urban areas,

where dedicated temperature measurements by meteorolog-

ical services are typically lacking. Recent reviews have fur-

ther illustrated the success of a number of crowd-sourcing

projects, detailing the use of mobile video and imagery to

capture and analyse flash flooding, debris flow, and flow ve-

locities (Le Coz et al., 2016), precipitation events (Allamano

et al., 2015) as well their application in atmospheric and cli-

mate sciences (Muller et al., 2015), detailing an exciting av-

enue of enhanced data collection.

Importantly, crowd sourcing in hydrology is not solely

about smartphones. de Vos et al. (2017) report on an ef-

fort to source rainfall data from personal weather stations

in Amsterdam, exploiting the proliferation of low-cost sta-

tions designed for home-based meteorological collection.

Even in this single-city-focused example, more than 60 in-

habitants were found to operate personal weather stations

equipped with tipping bucket rain gauges within the Am-

sterdam metropolitan area, significantly increasing the sole

rain gauge operated by the Royal Netherlands Meteorolog-

ical Institute at Amsterdam’s Schiphol Airport. While there

are undoubtedly issues associated with poor siting consider-

ations, (lack of) maintenance, and (interrupted) connectivity

that would need to be accounted for, the utility of such addi-

tional hydrological monitoring is obvious. Indeed, the de Vos

et al. (2017) study highlighted the additional information on

the space–time variability of rainfall over a densely popu-

lated area that could be retrieved with reasonable accuracy

and reliability from such a citizen network. A larger-scale

example includes the Community Collaborative Rain, Hail,

and Snow Network in the USA, (https://www.cocorahs.org/),

which receive approximately 20 000 daily rain-gauge reports

from citizen scientists across North America (Reges et al.,

2016). In a particularly novel application of exploiting ex-

isting networks of data, Rabiei et al. (2016) inferred rainfall

by utilizing a vehicles GPS location together with sensors at-

tached to the cars windscreen wipers. Many late-model vehi-

cles employ infrared (or optical) sensors to determine rainfall

intensity in order to automatically adjust the wiper rate, offer-

ing the possibility of providing distributed records of rainfall:

albeit limited to the road network.

The use of non-traditional sources of information to infer,

improve, or inform upon our hydrological understanding, as

well as to expand the distribution and spatio-temporal repre-

sentation of existing networks, is a rapidly growing field that

presents clear potential. The topic is explored further in the

section below, which details related examples of opportunis-

tic sensing.

3.6 Signals of opportunity

The modern world is full of sensors, from the cars we drive,

to the mobile phones (and cameras) we carry in our pockets.

We are in the age of the “internet of things”, where every

day physical devices are connected to the network, sensing

the world around us. Although related to the concept of “cit-

izen science” that was introduced in Sect. 3.5, we couch the

present discussion under the context of “opportunistic sens-

ing”: the concept of utilizing signals from often unrelated

measurements to inform upon hydrological processes. Infer-

ring hydrological properties by making use of signals of op-

portunity is a growing area of research.

Telecommunication engineers have known for a long time

that radio signals propagating from the transmitting to receiv-

ing antennas of microwave links used in cellular communica-

tion networks are attenuated by rainfall. By using this knowl-

edge, researchers have been able to translate this electromag-

netic “noise” into a hydrometeorological “signal” (Messer

et al., 2006; Leijnse et al., 2007). Indeed, it turns out that

for the radio frequencies typically employed in such cellu-

lar networks, the signal attenuation is nearly linearly related

to the average rainfall intensity. The attenuation can be in-

ferred from the transmitted and received signal levels, which

are operationally stored by telecommunication companies at

regular time intervals (typically 15 min or less) to monitor
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network quality. As these links typically have lengths of a

few kilometres and are installed at just a few tens of metres

above the ground, they can be considered as path-averaged

rain gauges, well suited for hydrological applications. Sev-

eral thousand of such links across the Netherlands have re-

cently been used to produce 15 min rainfall maps of compa-

rable quality to those obtained from gauge-corrected ground-

based weather radars (Overeem et al., 2013a, 2016). In addi-

tion to rainfall monitoring over urban areas5 (where network

densities are generally high), this technique offers much po-

tential for high-resolution measurement in areas where the

density of ground-based monitoring networks (i.e. gauges

or radars) is typically low, such as in developing countries

(Doumounia et al., 2014; Gosset et al., 2016).

Given their spatial and temporal advantage, there is a

long history of using radio occultation measurements via the

GPS of satellites to infer atmospheric variables and profiles

(Kursinski et al., 1997) for use in numerical weather pre-

diction. More recent work has sought to expand the type of

measurements that can be inferred between satellite links and

ground stations. For example, Barthès and Mallet (2013) de-

scribed the use of an Earth–space link in the Ku-band to mea-

sure rainfall, leveraging several hundred telecommunications

satellites transmitting in this frequency to infer periods of

rainfall via signal propagation through the troposphere. Such

information is not only useful for hydrological applications

but also for ground validation of satellite-based rainfall re-

trievals.

While improved representation of rainfall is of importance

to hydrological studies, soil moisture plays an equally signif-

icant role in many process investigations. The use of prox-

imal remote sensing techniques to measure soil water con-

tent and soil properties at depths deeper than current remote

sensing capabilities (i.e. greater than 5 cm) represents an area

of considerable interest. One of the best example of oppor-

tunistic proximal sensing is the Plate Boundary Observatory

H2O initiative, which uses reflected GPS signals to estimate

soil moisture (Larson et al., 2008), snow depth (Larson et

al., 2009), and vegetation growth (Small et al., 2010). Some

of the advantages of this technique include the provision of

temporally continuous data at scales (∼ 1000 m2) that fill a

gap between point measurements and satellite remote sens-

ing footprints, and that cloud cover and labour are not issues.

Another approach that seeks to bridge the point-to-footprint-

scale divide is the COsmic-ray Soil Moisture-Observing Sys-

tem (COSMOS) (Zreda et al., 2012), which provides an in-

creasingly rich dataset for calibration, validation, and eval-

uation of remote sensing products and land-surface models.

Comprising a growing network of more than 200 cosmic-

ray neutron probes at fixed installations across six continents,

these data represent a valuable source of independent infor-

5See http://www.nature.com/news/

mobile-phone-signals-bolster-street-level-rain-forecasts-1.21799.

mation from which a range of hydrological responses may be

inferred or assessed (Jana et al., 2016; Montzka et al., 2017).

A recent addition to the COSMOS program has been the

use of mobile “rovers”, which offer a way to increase the

spatial coverage from the local to mesoscales (Desilets et

al., 2010; Chrisman and Zreda, 2013), while also offering a

means to merge data from fixed probes to provide a multi-

scale real-time soil moisture product (Franz et al., 2015).

In addition to supporting hyper-resolution land-surface mod-

elling needs, the rover approach provides opportunities not

only in research but also commercial activities; most no-

tably in precision agriculture, e.g. mounting rovers to ex-

isting farm equipment (sprayers, tractors, etc.), autonomous

farm vehicles, or to rotating infrastructure (i.e. centre-pivot

irrigation systems), offers an interesting opportunistic sens-

ing possibility. The capacity to mount probes on delivery

trucks, self-driving vehicles, or even national train networks

would further expand observational capacity and provide

semi-repeatable local and regional mapping opportunities

across both natural and urban landscapes. Mobile sensors

can easily collect data from either ground vehicles (e.g. snow

mobiles, dog sleds) or low-flying aircraft, which offers a po-

tentially unprecedented calibration, validation, and evalua-

tion dataset for a range of hydrological variables. While rov-

ing probes are fairly heavy (50+ kg) and miniaturization op-

tions are somewhat limited, the use of drone swarms with

several smaller probes functioning as a single unit would

further increase mapping possibilities (see Sect. 3.2). With

the simultaneous use of several detector energies (bare, cad-

mium shielded, and plastic shielded probes) recent research

has illustrated the means to collect information on vegetation

condition, soil organic properties, and soil moisture simul-

taneously, providing a valuable resource to support observa-

tion and modelling strategies (Andreasen et al., 2016). Such

sensing technology also has the potential to augment ongo-

ing global digital soil mapping efforts (Sanchez et al., 2009),

as well as aid in the validation of existing high-resolution

products (Chaney et al., 2016).

In a final example of opportunistic sensing, we examine

the potential of commercial passenger and cargo aircraft as

mobile airborne sensing platforms. While observations from

dedicated aircraft are typically only collected during sen-

sor testing and infrequent, targeted measurement campaigns,

there is little to inhibit (at least from a scientific perspec-

tive) airborne sensors from hitching rides aboard commercial

aircraft, greatly expanding their spatial and temporal data-

collection capabilities. Many airliners are already outfitted

with Doppler radar and Aircraft Meteorological Data Re-

lay (AMDAR) systems (Drüe et al., 2008), which provide

measurements of meteorological variables that include tem-

perature, wind vector, and dew point temperature, and are

made available for assimilation into weather forecast mod-

els (Petersen, 2016) and for other scientific investigations

deemed beneficial to the airlines (Sharman et al., 2014). Ad-

vanced sensors for measuring water vapour more precisely
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have also been tested alongside AMDAR sensors, while the

benefits of including on-board infrared sensors (e.g. for vol-

canic ash detection) have recently been demonstrated (Prata

et al., 2016). While leveraging the remote sensing potential

of commercial aircraft is an approach that has been espoused

for more than 2 decades (Fleming, 1996), it has yet to be

routinely employed to enhance hydrometeorological obser-

vation. No doubt this is due in part to some of the obvious

constraints on retrofitting aircraft with non-essential instru-

mentation, and the regulatory hurdles that would be faced in

doing this. However, given that the systems described above

all seek to enhance flight safety either directly (i.e. improved

hazard detection) or indirectly (i.e. improved forecasting and

early-warning systems), such an observing system may see

more operational integration into the future.

3.7 High-definition video from space

One of the most exciting remote sensing opportunities that

has the potential to change not only the way we observe

the Earth system, but also the manner in which we can

use data to inform on processes, is the emergence of high-

definition (HD) digital video. This game-changing visualiza-

tion approach builds on a surprisingly long history of em-

ploying airborne video in EO studies (King, 1995). Indeed,

some of the earliest satellite missions such as Landsat 1–3

(Townshend, 1981) used vidicons, a type of cathode-ray tube

employed in capturing television images (Nagy and Nagy,

1972); although due to the temporal sampling limitations of

the deployed systems, these were basically 2-D image snap-

shots, i.e. essentially television cameras providing still pho-

tographs (Vaughan and Johnson, 1994). While the use of air-

borne and ground-based optical and multispectral video sys-

tems have been explored actively in vegetation and agricul-

tural studies (Everitt et al., 1991), it is only in very recent

times that the capacity to exploit full-motion HD video from

space has emerged. Indeed, it is this opportunity to utilize

the temporal insights that HD video allows that represents

the truly revolutionary aspect of this observing system.

With full-motion video imagery comes the capacity to cap-

ture dynamic hydrology and meteorology, providing new in-

sights that could enhance our process understanding. An abil-

ity to record the Earth system in real-time on a repeatable

basis has inter-disciplinary implications. Pollution monitor-

ing, disaster management and response, ecosystem assess-

ment, as well as numerous and immediate hydrological ap-

plications are imaginable, e.g. flow velocity, flood propaga-

tion, erosion monitoring, contaminant transport and disper-

sion, precipitation, and cloud tracking to name but a few. One

novel application lies in the use of satellite video data to re-

construct a digital surface model (d’Angelo et al., 2016) via

structure-from-motion-type approaches, providing details of

landscape changes in ways that static elevation datasets can-

not. Being able to record debris flow down a river, or dynamic

inundation in natural or urban systems could provide new

insights into how we model, forecast, and predict flow and

related hydrological events. However, while the possibilities

of video imagery from space are exciting, as a discipline we

are under-prepared to utilize such data effectively. Ultra-high

temporal resolution information is not something we rou-

tinely deal with, and therefore how to exploit such data will

require innovation and imagination. An obvious constraint in

current modelling application is that the temporal resolution

of even the most advanced hydrological schemes are usu-

ally of the order of minutes rather than seconds (Berne et al.,

2004; Ochoa-Rodriguez et al., 2015). Direct ingestion is the

most obvious (but least imaginative) manner in which video

data could be used, but computational and model-physical

constraints are apparent. So, while a range of applications

can be imagined, the practicalities of integrating or ingesting

high-temporal sequences into our current modelling or anal-

ysis frameworks remain largely unexplored. Indeed, video

imaging and analysis is more the domain of the computa-

tional scientist than the hydrologist, and therefore these disci-

plinary lines will need to be crossed to take advantage of such

technological breakthroughs. Although the potential applica-

tions are many, a paradigm shift away from the use of peri-

odic 2-D snapshots will be required to exploit the feature-rich

temporal dimensions offered by video streams.

It is important to note that this is not blue-sky research:

the technology exists, satellites are already in orbit, and

data streams are available, but we are not keeping pace

with the rapid advance in imagery possibilities. Indeed,

it is the private sector that is leading the charge in re-

alizing and utilizing the technology, with Google’s Terra-

Bella (recently acquired by Planet) providing high spatial

(approx. 1 m) and temporal (30 fps – frames per second)

full-motion video imagery (Murthy et al., 2014). UrtheCast

(https://www.urthecast.com/) is another company exploring

this potential, with similar spatial (1 m) but lower temporal

(3 fps) specifications (see Fig. 6): although the second gen-

eration UrtheCast system that is due for launch in late 2017

will provide imagery at 0.5 m and 30 fps, in addition to hav-

ing a 1 m resolution X-band and 5 m resolution L-band SAR

(Beckett, 2015). At the moment, both video platforms are

limited to between 60 and 90 s captures, but expanding this

technology to allow for full-coverage real-time observation

in low Earth orbit has been proposed on micro- and nano-

type satellite configurations (Han et al., 2015). Others have

presented a vision of a geostationary space surveillance sys-

tem (Airbus GO-3S) (Villien et al., 2014). Regardless of

the platform, it is the combination of high-spatial and high-

temporal observation that has the potential to dramatically

alter the very nature of Earth observation.

3.8 Cloud computing and data analytics

In parallel to developments seen in other fields, novel EO

satellites are acquiring data at a staggering rate, where even

a single-satellite collection can exceed many terabytes on a
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Figure 6. On-board the International Space Station, the Urthecast IRIS high-resolution camera (HRC) captures colour video at three frames

per second for a duration of 60 s. Here we see an example of the HD Video over the Burj Khalifi in Dubai. The tracking of vehicles on roads

is analogous to monitoring flow in rivers or the speed of moving clouds, while the capacity to extract 3-D structure of the underlying terrain

provides opportunities in dynamic monitoring of surfaces. The HD video can be viewed and downloaded at https://doi.org/10.5446/21698.

daily basis. Therefore, while the capacities of today’s EO

sensors to collect data of relevance to hydrology are truly

unprecedented, the challenges faced when trying to turn the

raw satellite data into useful information can be daunting.

Over the regular lifetime of a satellite, more than a petabyte

of raw satellite data can easily accumulate. It is by no means

clear when or to what extent hydrology will fully exploit this

rapidly increasing volume and diversity of EO data. How-

ever, the speed of adoption will likely be determined by

the time it will take to move the vast quantities of EO data

and their processing into the “cloud”. This is because pro-

cessing such large data volumes is impossible with standard

computing resources, nor is it meaningful to distribute the

data over the internet, thereby replicating many thousands

of queries. Instead, the only way forward will be to “bring

the users to the data”. In practical terms, this means that EO

data processing will increasingly take place in large virtu-

alized data centres, allowing large numbers of users to ac-

cess the data and enabling collaboration on the development

and use of EO data. At a very basic level a cloud can be

understood to be a large-scale computing infrastructure ca-

pable of delivering EO services over the internet. A key en-

abler of cloud computing was the construction and operation

of extremely large-scale, commodity-computer data centres

at low-cost locations to achieve economies of scale (Arm-

brust et al., 2010). Currently, with falling prices for storage

and computing, thematic aspects and service quality is be-

coming more and more important. Some of the advantages of

cloud computing include virtualized resources, parallel pro-

cessing, and data-service integration with scalable data stor-

age (Hashem et al., 2015). With the existence of such infras-

tructure, it becomes possible to start building multi-level EO

data-processing chains in a collaborative manner.

The adoption of cloud-computing technologies in EO and

hydrology will not be without its challenges. Apart from the

practical software-based considerations that allow for virtu-

alization of large computing infrastructures with hundreds to

thousands of users, a much larger obstacle is how best to or-

ganize the expert community, ensuring that joint efforts to

develop code and products lead to quality-controlled, well-

documented, and user-friendly software and data. Ideally, in-

terpretive models and subsequent data analysis would be run

where the EO data reside, ensuring a seamless processing

line from the raw sensor data to the final hydrologic predic-

tions, allowing each expert along the value-adding chain to

focus on his or her competencies. Considering the increasing

complexity of scientific algorithms and models used in EO

and hydrology, such collaboration can be expected to speed

up research and development efforts, leading to a much faster

data uptake in hydrological practice. Precisely where this
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cloud computing might take place also raises questions (and

potential concerns) related to data archiving, distribution and

intellectual property. One of the most advanced cloud plat-

forms is Google’s Earth Engine (http://earthengine.google.

com), which provides a platform for petabyte-scale scien-

tific analysis and visualization of geospatial datasets, both for

public benefit (non-commercial use is for free) and for busi-

ness and government users. Its data catalogue contains a wide

variety of popular, curated datasets, including the world’s

largest online collection of Landsat scenes (Gorelick, 2013).

Amazon Web Services offers a similar storage and analyt-

ics platform, which houses an expanding collection of satel-

lite, meteorological, and climate datasets available to the user

community, including recent Sentinel-2 data and a number of

NASA collections (http://aws.amazon.com/earth). Earth ob-

servation data archiving and stewardship are relatively new

concepts to these more commercially oriented services, and

therefore it is unclear how effectively they will embrace the

scientific model of data retention: especially if the revenue

potential of older data does not justify its storage. Whether

government agencies will continue to maintain their own

storage services or leverage these much larger commercial

facilities also remains to be seen. Regardless of any future

delivery mode, ensuring continued free-access and long-term

archiving of stored Earth observations is essential to advanc-

ing the field. With the rise of artificial intelligence and deep-

learning approaches (discussed below), the importance of

maintaining a long record of “training data” may provide a

commercial incentive to archive historical records.

A number of early examples have explored the hydrology-

related opportunities afforded by cloud-based platforms

(McGuire et al., 2014; Astsatryan et al., 2016). Donchyts et

al. (2016) employed the Earth Engine for mapping surface

water changes at 30 m over the past 30 years on a global

scale, an effort that would not have been possible with-

out such data analytic centralization. While the Earth En-

gine is popular amongst scientists, Amazon’s cloud is in-

creasingly being used by commercial companies to show-

case their EO services, such as the Sentinel-2 web mapping

service offered by Sinergise (http://www.sentinel-hub.com).

Another cloud platform serving both EO and hydrological

applications is currently being built by the Earth Observa-

tion Data Centre (EODC) for Water Resources Monitoring

(https://www.eodc.eu/), a public–private partnership with a

goal to foster the use of EO data for monitoring global wa-

ter resources (Wagner et al., 2014). In addition to optical

data (i.e. Landsat, Sentinel-2) EODC holds a complete global

archive of Sentinel-1 SAR data, which can be processed with

a supercomputer for continental to global-scale mapping of

soil moisture, water bodies, and other hydrological parame-

ters (Elefante et al., 2016). Clearly, there are many potential

and diverse applications of cloud computing in hydrology,

some of which are being enabled by access to the underlying

applications program interface (API), a common feature of

many of the Silicon Valley-type start-ups.

Although representing rather focused examples of cloud-

computing opportunities, the cases noted above serve to il-

lustrate that this revolutionary change in technology, which

has the potential to completely overhaul working practices

in EO and hydrology, has already started. As the spatial and

temporal resolution of EO data increases, the development

of efficient cloud-computing, storage, and on-the-fly process-

ing solutions becomes even more relevant. This is especially

pertinent for a community that seeks to embrace the con-

cept of hyper-resolution hydrological modelling, where the

scales of processing and data requirements start to pushback

on available computational power and resources (Bierkens et

al., 2015). Undoubtedly, any future EO strategy in the hydro-

logical sciences will have cloud computing as a core element,

and therefore recognizing and resolving the inevitable chal-

lenges and opportunities that cloud computing will bring to

the community will be key to realizing its potential.

A parallel consideration that will follow any increase in

data volumes and the associated computing demands is the

need to explore more efficient approaches to exploit and in-

terpret the petabytes of satellite data being collected on a rou-

tine basis (Warren et al., 2015). The era of big data and ar-

tificial intelligence is upon us: whether we are prepared for

it or not. Traditional modelling and analysis techniques are

ill designed to interrogate or utilize immense EO datasets,

and alternatives based on machine- and deep-learning meth-

ods that can be used for regression or classification problems

involving massively multivariate systems are becoming in-

creasingly popular. These data-analytic techniques have the

potential to either completely replace process-based mod-

els, or work in combination to make them less computation-

ally expensive (Lary et al., 2016). Commonly used machine-

learning methods include artificial neural networks, support

vector machines, genetic programming, decision tress, or

random forests, amongst many other approaches. These ap-

proaches are usually applied in a “supervized” context, in

which a database subset is used to train the algorithm to re-

produce an expected response (i.e. “learning process”), and

a different subset can be used to test or validate the perfor-

mance of the trained algorithm. An interesting characteristic

of these methods is that little to no knowledge of the phys-

ical processes underlying the observed variables is required

to implement them, which releases their potential for discov-

ering unexpected relationships as new hydrological and cli-

matic observations become available (Faghmous and Kumar,

2014; Lary et al., 2016).

Machine-learning methods have been applied across a

range of science and engineering applications for more than

2 decades. A number of recent examples have targeted the

(retrospective) prediction or retrieval of hydrological states

and fluxes from single- and multi-satellite sources, including

the estimation of typhoon rainfall over the ocean (Chen et

al., 2011), the retrieval of surface soil moisture (Rodríguez-

Fernández et al., 2016) and water vapour content (Aires et

al., 2001), the estimation of river runoff (Rasouli et al., 2012;
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Deo and Şahin, 2016), the analysis of global hydro-climatic

controls on vegetation (Papagiannopoulou et al., 2017), the

training of high-resolution sensors for retrieval of NDVI

(Houborg and McCabe, 2016), and the derivation of conti-

nental water and carbon fluxes using decision trees (Jung et

al., 2009). Still, the application of these techniques to dy-

namically monitor hydrological events and processes using

remote sensing remains an emerging field, with relatively

limited existing applications. With the storage and analysis

opportunities afforded by cloud computing, the capacity to

streamline many of these examples into on-the-fly applica-

tions is more a reality than ever before, providing a new and

on-demand observation and analysis source.

Despite this remarkable confluence of data science and re-

mote sensing, one can still resist the narrative that there is no

problem that a sufficiently complex machine-learning algo-

rithm cannot unravel given enough data (Anderson, 2008). If

this were the case, there would be no need for domain exper-

tise to understand current and future challenges in hydrology:

the dilettante will have prevailed (Klemeš, 1986). Indeed,

there remain several obstacles to any predicted ascension of

a completely data-driven approach to hydrology. Observa-

tions of the hydrosphere often have a spatio-temporal struc-

ture that emerges in the form of correlations between vari-

ables, but this correlation may not necessarily imply causal-

ity. Therefore, being able to draw strong deterministic con-

clusions about the behaviour of hydrologic systems based on

data-driven methods often requires prior knowledge (and un-

derstanding) of the physical processes (Faghmous and Ku-

mar, 2014). As an example, Papagiannopoulou et al. (2017)

discussed how the application of random forest models to

auto-correlated vegetation imagery and cross-correlated tem-

perature and precipitation can lead to the wrong conclu-

sion that temperature controls vegetation growth in water-

limited regions. Changing sensors or satellites (e.g. as part of

data-continuity missions) routinely result in temporal gaps,

discontinuities, and artefacts. In addition to inherent sensor

degradations, these influences, without context, would im-

pact any conclusions that data-driven models may yield on

the behaviour of hydrological systems. All of this is to say

that without subject knowledge, such temporal record adjust-

ments are unlikely to be diagnosed or interpreted appropri-

ately.

On the other hand, a dogmatic approach to a purely

physically based hydrological process representation has in-

evitable limits to advancing understanding. The concept of

“letting the data speak for itself” is particularly attractive in

a discipline where so much of our physical understanding is

based on a relatively simplistic description of process form

and function, and where its application is routinely extended

beyond the scales at which it was observed to be relevant. As

both hydrological and remote sensing research progress, it is

prudent that we (at least initially) seek the middle ground,

where the development of machine-learning methods might

be guided by theoretical constraints and understanding, and

that they be used to complement or improve more traditional

physically based models, which in turn can add interpretabil-

ity with regard to the underlying processes. Regardless, the

opportunities being presented by these new and innovative

approaches are likely to challenge our concept of hydrol-

ogy as a discipline, especially as the exploration of inter-

disciplinary datasets provide new insights and understand-

ing to hydrological processes and behaviour: a topic that is

expanded upon in the context of a fourth paradigm in hydrol-

ogy, as discussed in Peters-Lidard et al. (2017).

4 The changing Earth observation landscape

We have examined some of the challenges and issues as-

sociated with satellite-based hydrological remote sensing

(Sect. 2) and reviewed the innovative and exciting frontiers

of emerging Earth observation technologies (Sect. 3). To con-

clude this synthesis, we present a brief overview on some of

the important considerations that may influence how this vi-

sion for the future of EO will be realized, highlighting the

roles that government space agencies and commercial enter-

prises may play in reshaping the field, and identifying some

of the potential drawbacks, constraints, and limitations that

may emerge as we navigate this rapidly evolving landscape.

4.1 The space agency approach

Space agencies are government entities that are tasked with

undertaking and enabling the development of space-based

science and technology. In the USA, approximately 25 %

of NASA’s USD 19 billion budget goes to funding the sci-

ence program, of which USD 2.0 billion is allocated to Earth

Science6. With these resources, NASA supports 60 operat-

ing satellite missions, 35 which are in the planning stages,

and over 10 000 US scientists, as well as funding more than

3000 research grants (NB these include awards to planetary

science, astrophysics, and Earth science). Other space agen-

cies are smaller, but still have USD 2–5 billion budgets, e.g.

ESA, ROSCOSMOS, CNES, DLR, and JAXA. While the

budget numbers seem quite large, space agencies are still

challenged to afford the suite of desired satellite missions

that satisfy a diverse scientific community as well as gov-

ernment needs. The cost of design, launch, and operation of

a satellite mission has increased considerably over the last

few decades. Satellite missions 20 years ago cost of the or-

der of USD 100 million, but today, they can reach up to (and

beyond) USD 1 billion. Agency budgets, however, have not

grown by a similar magnitude. Indeed, measured in 2014 dol-

lars, NASA’s budget has remained around USD 20 billion for

over 3 decades.

To forecast the types of future missions that will be

launched by space agencies, we can look to their plan-

6https://www.nasa.gov/sites/default/files/atoms/files/fy_2017_

nasa_agency_fact_sheet.pdf.
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ning process to evaluate the historical success at following

such plans. The best known amongst the space agency plan-

ning efforts for Earth observation is the National Academies

Earth Science and Applications from Space “Decadal Sur-

vey” (2007): an Herculean effort that energized the Earth

science community to gather and prioritize NASA’s future

EO capacity. The endeavour identified 15 new missions for

consideration as well as urging NASA to launch two addi-

tional missions already in mature planning stages, i.e. GPM

and a replacement for Landsat 7. The GPM core observatory

launched in February 2014, following Landsat 8 in Febru-

ary 2013. However, of the original 15 new missions proposed

in the Decadal Survey, SMAP (Entekhabi et al., 2010) is the

only one to have launched (in January 2015). Other mis-

sions were already in various stages of planning before the

Decadal Survey, including the SWOT mission (Biancamaria

et al., 2011), which was initiated 5 years prior to 2007. All

of this is to illustrate that it is not unusual for government

space agency missions to take of the order of 2 decades to go

from concept to launch (see Sect. 3.1), and that the systems

that move from proposal to orbit are not always identified

by consensus. Indeed, sometimes an entire generation of sci-

entists move through the community before the space-based

measurement system arrives in orbit.

An important consideration, particularly in the light of

the “fast and nimble” approach advocated by Silicon Valley-

driven commercial enterprises, is that by the time any gov-

ernment satellite actually reaches orbit, the technology on-

board may already be a decade (or more) old. The obvious

implication of this is that space agencies may not be launch-

ing the most cutting edge sensing platforms. Indeed, by their

nature, space agencies are risk averse, seeking out the most

robust technology to survive the hazards of space and ensure

delivery of mission objectives. This model stands in contrast

to the technological advances being made today, especially

in instrument design and function, which occur at a seem-

ingly faster pace than in decades past. The emerging concept

of “agile aerospace” combined with the opportunities being

presented by commercial ventures via the rise of the Cube-

Sat (see Sect. 3.4) and other sensing platforms present an

ideal test bed for new technology and demonstrator systems;

a theme that is explored in the following section.

4.2 The commercialization of space

The commercial sector presents something of a counter ex-

ample to the government space agency approach. Undoubt-

edly, commercial enterprises build upon the successes (and

sometimes direct funding) of the government sector. How-

ever, recent advances have seen an increased capacity to

combine that foundation with venture capital and new tech-

nology to provide immediate EO platforms to the paying cus-

tomer. Of the recent players operating in this market, per-

haps the most well-known is Space Exploration Technolo-

gies (SpaceX) (http://www.spacex.com). Employing tech-

niques such as 3-D printing to create strong and durable

rocket parts at a fraction of the time taken for traditional

casting, they have also re-imagined and re-engineered the

reusable launch vehicle concept, representing a major inno-

vation and cost saving to the delivery of payloads into space.

An objective of these new rocket companies is to radically

improve the efficiencies of payload delivery at a fraction of

current costs, which have been estimate at up to USD 20 000

per kg (Coopersmith, 2011). Indeed, the SpaceX approach

purports to reduce costs by about half compared to tradi-

tional launch vehicles (e.g. USD 62 million for a 22 000 kg

payload on a Falcon 9 rocket)7. With a launch planned for

late 2017, the SpaceX Falcon Heavy aims to reduce this

cost further, lifting up to 54 000 kg to low Earth orbit for

USD 90 million, or USD 1700/kg (NB finding precise fig-

ures for this is difficult, as they are “reusable rockets” and

the costs decrease as function of the number of planned

launches). While not a reusable launch system, Rocket Lab

(http://www.rocketlabusa.com), a New Zealand start-up, is

offering smaller launch vehicle capability, but with greater

frequency and selective orbit. Aimed specifically at the

small satellite market, it will launch a 150 kg payload for

USD 5 million and also provide a ride-sharing option where

users can launch 1 to 12 U CubeSats, opening up the prospect

of investigator-led space missions.

But getting to space is only one aspect of the recent rise

in commercial activity. As discussed in Sect. 3.4, there are

a number of companies exploiting technological advances in

sensor miniaturization, reduced power consumption and im-

proved battery life (that have been driven in large part by

the mobile phone industry) to produce cheaper, smaller and

more efficient satellite platforms. One of the most ambitious

of these ventures may be Planet (http://www.planet.com),

a USD 200 million 7-year-old start-up with a stated goal of

providing complete global coverage of the terrestrial surfaces

of the Earth every day via a constellation of their CubeSat

“Doves”, representing an unprecedented high-resolution in-

formation resource (Houborg and McCabe, 2016). But Planet

is just one of a number of non-agency-based companies play-

ing a role in EO; DigitalGlobe, BlackSky, Planetary Re-

sources, and Spire are just a few examples of private ventures

that are operating largely independent of government space

agencies.

Apart from the motivation and rationale of these compa-

nies shifting towards profit-making enterprises rather than

operating for the social good, a key difference between

government and commercial sector approaches to space is

funding for scientific use. By very approximate calculation,

NASA provides about one-tenth of a satellite missions cost

for scientific users. Thus, a USD 1 billion mission might pro-

vide of the order of USD 100 million for related scientific ac-

tivities. A private company, with a total budget of the order of

a few hundred million dollars, would obviously place a much

7See http://www.spacex.com/about/capabilities.
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lower (or no) priority on directly funding the science commu-

nity. However, while space agencies are certainly well mo-

tivated by science, the significant imbalance between tech-

nology and science funding indicates a strong vested interest

in their supported technology engineering communities. In

contrast, commercial enterprises are strongly motivated by

profit; i.e. venture capitalists expect a return on their invest-

ment, and therefore optimizing efficiencies in production,

launch and operation are paramount.

There are numerous examples of private–public partner-

ships that have shown the success of industry engagement,

and many opportunities exist to exploit intersections of inter-

est not only within industry but also with other government

departments. Of course, putting satellites into orbit is only

one small part of a space agency’s mission. But what is be-

coming clear is that there are cheaper, faster, and more func-

tional options being presented to the community from a va-

riety of sources, both private and commercial, which present

an opportunity to embrace a new era of EO beyond the tra-

ditional agency approach. In some ways, government space

agencies are already adapting to leverage these changes in

their own operations by sub-contracting out certain mission

elements to the commercial sector, e.g. resupply of the ISS

using SpaceX Falcon 9 rockets, along with the many satel-

lite components built by private companies under govern-

ment contract. Still, it remains unclear how individual in-

vestigators can best leverage these new observational plat-

forms and the data they produce within the current mode of

open-access, peer-review, and publication of results. Will hy-

drologists be able to afford this data, and once provided, will

there be limitations on its use? There is a real risk that the

successful commercialization of space could pose a serious

threat to the function and operation of both space agency and

investigator-led Earth observation, as well as scientific ad-

vancement that relies on freely available and abundant data

(Tollefson, 2017). How the science community and the re-

spective national space agencies respond to these opportu-

nities (and risks) will go some way to defining the direction

of hydrologic (and related) sciences over the next decade and

beyond. Given our stakeholder position and vested interest in

this, it would make sense to help shape the direction of these

seemingly inevitable developments.

4.3 Continuity and stability or disruption and

opportunity

As has become apparent, there are exciting future opportu-

nities for hydrologic science that do not rely solely upon

traditional space-borne approaches. The advent of low-cost

UAVs, smartphones, and the global internet empower the in-

dividual researcher to collect their own measurements and

drive and direct their own scientific goals. For instance, sci-

entists and engineers are no longer reliant on space agency

airborne campaigns that can take years to organize, can-

not respond to fast-paced dynamic events (such as floods,

droughts, extreme events), and are subject to the meteoro-

logical vagaries of the planned-in-advance experimental win-

dow (e.g. soil moisture campaigns that do not rain). But

investigator-led approaches are often process-based and lo-

cal in scale, and therefore determining whether or how they

can they be scaled up to regional programs is an important

objective. Likewise, and perhaps more importantly, ensur-

ing that these distributed and often uncoordinated efforts can

be more closely tied to existing space-based measurements

or local-to-global monitoring programs is an issue requiring

community attention.

Hydrologists, like all scientists, need measurements, mod-

els, and money to make discoveries. From our review, it

seems inevitable that at least for the immediate (and some-

what) foreseeable future, there will be positive and negative

outcomes for the EO community, with both technological

changes and new players entering the space-based observa-

tion sphere. Although government agencies are unlikely to

radically alter their EO programs (a positive), barring some

unforeseen political event or paradigm shift, the moneys that

space agencies receive have remained historically flat, while

costs continue to rise (a negative). Therefore, while the posi-

tive enables a significant-sized research community, the neg-

ative is that there will likely be fewer satellites and hence a

lower variety of needed measurements available to advance

our understanding of the Earth system. Space agencies will

surely do their best to continue funding for individual re-

search communities, e.g. working groups and airborne cam-

paigns for each unique sector studying their particular com-

ponent of the water cycle, and such approaches may well lead

to scientific discoveries. But these will inevitably be at local

scales and not at the global scale that satellites are designed

to address. Moreover, while the traditional space agency ap-

proach of a careful and often prolonged mission planning

and approval schedule may lead to the eventual launch of

a satellite measuring one aspect of the water cycle, there is

no guarantee that other components will be simultaneously

retrieved, and hence the error envelope of models (and ob-

servations) will remain unconstrained. One of the outstand-

ing challenges of hydrological remote sensing remains to

monitor (and close) the water cycle (McCabe et al., 2008;

Sheffield et al., 2009; Y. Zhang et al., 2016a), yet an inte-

grated water cycle observation strategy remains very much in

the conceptual phase, with no planned mission on the hori-

zon.

Over the last few years, the commercial sector has demon-

strated that space is now “open for business”. A singularly

positive outcome of this is that there now exists a range

of global VNIR near-daily to daily measurement platforms

that are available (albeit at a cost) from the commercial sec-

tor, providing ultra-high resolution detail. These commercial

sensors can provide data at a higher spatial and temporal res-

olution than comparable space agency systems (Dash and

Ogutu, 2016), although the radiometric quality of the im-

agery may not always be as refined (Houborg and McCabe,
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2016). As already noted, there is generally no underlying sci-

entific purpose or social good directly driving these efforts;

commercial launches are ultimately driven by an economic

incentive. Therefore, one negative resulting from this mis-

alignment of purpose is that sensors that do not have an ob-

vious income generating market are unlikely to be launched.

For instance, active sensors have yet to make commercial in-

roads in the same way as optical sensors, and thus water cycle

measurements that rely upon lidar or emitted radar pulses are

not presently available (NB UrtheCast plans to equip their

next-generation satellite with an X- and L-band active radar;

see Beckett, 2015). But profit incentive is not the only dif-

ference separating these competing interests. Space agencies

and the communities they serve often have an interest in data

continuity; indeed, the Landsat mission has a legislated foun-

dation to provide data “sufficiently consistent (in terms of

acquisition geometry, coverage characteristics, and spectral

characteristics) with previous Landsat data to allow compar-

isons for global and regional change detection and character-

ization” as part of the 1992 Land Remote Sensing Policy Act

(US Code Title 15, Chapter 82) (Irons et al., 2012). In the

light of technological advances (e.g. constellations of Cube-

Sats) and other space agency sensors such as Sentinel-2, it

could be argued that continuity of a particular mission or sen-

sor type is no longer necessary, so long as the observations

lack discontinuities caused by large spatio-temporal gaps or

calibration issues. The point here is that unlike the scientific

community, the commercial sector has no demand or under-

lying rationale for ensuring continuity beyond satisfying the

needs of their particular business model. Likewise, if there

is an economic incentive to pursue it, they can move quickly

from one technology to the next without concern for the in-

tegrity of the long-term data record: a position that may not

be as easily adopted by space agencies. Of course, a potential

drawback of commercialization lies in the quality and assess-

ment of the delivered products. While many space agencies

now allocate a proportion of the mission budget for cal-/val-

related activities, this is not an aspect that would necessarily

be considered by commercial ventures. The consequence of

less stringent quality controls is that any data from new com-

mercial platforms may contain poorly defined accuracies and

sensitivities, hampering the process of time series and multi-

satellite data merging.

Given the somewhat meandering nature of research to ap-

plications, the commercial model may not seem to have im-

mediate relevance to advancing scientific inquiry. However,

there is much to be gained in leveraging and engaging with

the influx of activity in the current race to space, particu-

larly given the range and variability of measurements that

can provide new insights into process scale and response

and with a density and fidelity that has never been seen be-

fore. One aspect that is not clear is whether the commercial

sector will ultimately be in competition, or in cooperation,

with government funded space agencies. Noting that both

groups provide VNIR-band imagery, it might seem that they

are marketing the same product. Indeed, from an economics

perspective, competition usually lowers costs. But given that

space agency data are largely “free” to the scientific commu-

nity (NB this ignores the very real cost of tax-payer funded

mission launches and data collection, processing, and archiv-

ing), there would not seem to be any competitive advantage

or level playing field. Clearly, the value proposition will be

in resolution, timeliness, or in value adding, i.e. increasing

imagery information content through derived or customer-

specific products. How government space agencies might

adapt to account for this commercial rise is unclear. There

are threats, but also opportunities, particularly in the demon-

stration of new technologies and rapid delivery of payloads to

space. There are also obvious risks in a solely commercially

driven framework; uncertainties in financing, profit-making

incentive, imagery costs, free-use policies, and freedom to

publish are all potential inhibitors to unhindered scientific

inquiry. The future is certainly not clear, but these are issues

that require immediate consideration given what seems to be

an inevitable advance towards a greater commercialization of

Earth observation.

5 Concluding remarks

We have entered a new era of Earth observation, where

the threshold for what can be sensed from small satel-

lite, airborne platforms and even on-ground monitoring is

rapidly changing and evolving. The EO technologies dis-

cussed throughout this synthesis show great potential to rev-

olutionize and reinvigorate our understanding of hydrology

and present a range of exciting platforms from which to

develop new insights into hydrological process form and

function. Our community has an opportunity to reshape hy-

drologic science across the spectrum from fundamental re-

search to applications-based objectives. Either in isolation

or (ideally) in combination, researcher-led, commercial and

government-driven EO enterprises present new and innova-

tive ways to envision both our own, and related disciplines.

The alignment of circumstance and technology driving these

advances have not happened in isolation, but reflect a conver-

gence of innovation, breakthroughs in computational infras-

tructure and data storage, and opportunities for leveraging

public and private assets collectively. Many of the EO ad-

vances discussed herein have arisen in just the past 5 years.

What might the next 5–10 years have in stall? One possible

scenario is contingent on the provision of global and low-

cost internet access (see discussion in Sect. 3.3 and efforts

such as http://oneweb.world/). Given some notable failures

of previous attempts, the following remains rather specula-

tive, but presents a plausible vision of the future. With an

ever-increasing availability of low-cost sensors, the connec-

tivity provided by a global internet would facilitate truly au-

tonomous remote monitoring of the Earth system. Whether

permanent, disposable, or even biodegradable, thousands of
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cheap devices could be deployed to measure soil moisture,

precipitation, snow, stage, or any other imaginable variable

(see van de Giesen et al., 2014), recording and broadcasting

directly to the internet or through scheduled collection via

targeted UAVs or sentry systems (balloons, solar planes) in

more remote regions. In such a connected world, integrating

these diverse EO sources, from space based to in situ, in order

to optimize observing potential will be a key challenge. Tech-

nology is not the barrier to realizing such a future, as much

of what is needed exists already. But embracing these tech-

nologies will require a radical rethink, not just on how data

are collected, but how it is used and managed in our mod-

elling and interpretation efforts, where the focus on point-

precision accuracy and error quantification can act as bar-

riers to broader system understanding. While there are cer-

tainly challenges in realizing the potential of these emerging

applications, there are game-changing opportunities as well,

from the novelty of new sensing platforms such as CubeSats

and UAVs, to the reshaping of the computational landscape

through cloud-computing and data-analytic approaches. It is

our hope that this forward-looking synthesis article will help

to accelerate the adoption of these (r)evolutionary techniques

and technologies. What is increasingly evident is that hu-

mans have the capacity to traverse all corners of the globe

and have the technology required to measure or infer most

variables of interest. It is possible that we may be the remote

sensing platforms of the future.

Data availability. The high-definition video shown in Fig. 6,
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