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Global food demand is rising, and serious questions remain about whether supply can 

increase sustainably1. Land-based expansion is possible but may exacerbate climate 

change and biodiversity loss, and compromise the delivery of other ecosystem 

services2–6. As food from the sea represents only 17% of the current production of 

edible meat, we ask how much food we can expect the ocean to sustainably produce 

by 2050. Here we examine the main food-producing sectors in the ocean—wild 

�sheries, �n�sh mariculture and bivalve mariculture—to estimate ‘sustainable supply 

curves’ that account for ecological, economic, regulatory and technological 

constraints. We overlay these supply curves with demand scenarios to estimate future 

seafood production. We �nd that under our estimated demand shifts and supply 

scenarios (which account for policy reform and technology improvements), edible 

food from the sea could increase by 21–44 million tonnes by 2050, a 36–74% increase 

compared to current yields. This represents 12–25% of the estimated increase in all 

meat needed to feed 9.8 billion people by 2050. Increases in all three sectors are likely, 

but are most pronounced for mariculture. Whether these production potentials are 

realized sustainably will depend on factors such as policy reforms, technological 

innovation and the extent of future shifts in demand.

Human population growth, rising incomes and preference shifts will 

considerably increase global demand for nutritious food in the coming 

decades. Malnutrition and hunger still plague many countries1,7, and 

projections of population and income by 2050 suggest a future need 

for more than 500 megatonnes (Mt) of meat per year for human con-

sumption (Supplementary Information section 1.1.6). Scaling up the 

production of land-derived food crops is challenging, because of declin-

ing yield rates and competition for scarce land and water resources2. 

Land-derived seafood (freshwater aquaculture and inland capture 

fisheries; we use seafood to denote any aquatic food resource, and food 

from the sea for marine resources specifically) has an important role in 

food security and global supply, but its expansion is also constrained. 

Similar to other land-based production, the expansion of land-based 

aquaculture has resulted in substantial environmental externalities 

that affect water, soil, biodiversity and climate, and which compro-

mise the ability of the environment to produce food3–6. Despite the  

importance of terrestrial aquaculture in seafood production 

(Supplementary Fig. 3), many countries—notably China, the largest 

inland-aquaculture producer—have restricted the use of land and pub-

lic waters for this purpose, which constrains expansion8. Although 

inland capture fisheries are important for food security, their contri-

bution to total global seafood production is limited (Supplementary 

Table 1) and expansion is hampered by ecosystem constraints. Thus, to  

meet future needs (and recognizing that land-based sources of fish  

and other foods are also part of the solution), we ask whether the 

sustainable production of food from the sea has an important role in 

future supply.

Food from the sea is produced from wild fisheries and species farmed 

in the ocean (mariculture), and currently accounts for 17% of the global 

production of edible meat9–12 (Supplementary Information section 1.1, 

Supplementary Tables 1–3). In addition to protein, food from the sea 

contains bioavailable micronutrients and essential fatty acids that are 

not easily found in land-based foods, and is thus uniquely poised to 

contribute to global food and nutrition security13–16.
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Widely publicized reports about climate change, overfishing, pollu-

tion and unsustainable mariculture give the impression that sustainably 

increasing the supply of food from the sea is impossible. On the other 

hand, unsustainable practices, regulatory barriers, perverse incentives 

and other constraints may be limiting seafood production, and shifts 

in policies and practices could support both food provisioning and 

conservation goals17,18. In this study, we investigate the potential of 

expanding the economically and environmentally sustainable produc-

tion of food from the sea for meeting global food demand in 2050. We 

do so by estimating the extent to which food from the sea could plau-

sibly increase under a range of scenarios, including demand scenarios 

under which land-based fish act as market substitutes.

The future contribution of food from the sea to global food supply 

will depend on a range of ecological, economic, policy and technologi-

cal factors. Estimates based solely on ecological capacity are useful, 

but do not capture the responses of producers to incentives and do 

not account for changes in demand, input costs or technology19,20. To 

account for these realities, we construct global supply curves of food 

from the sea that explicitly account for economic feasibility and feed 

constraints. We first derive the conceptual pathways through which 

food could be increased in wild fisheries and in mariculture sectors. We 

then empirically derive the magnitudes of these pathways to estimate 

the sustainable supply of food from each seafood sector at any given 

price21. Finally, we match these supply curves with future demand sce-

narios to estimate the likely future production of sustainable seafood 

at the global level.

Sustainably increasing food from the sea

We describe four main pathways by which food supply from the ocean 

could increase: (1) improving the management of wild fisheries;  

(2) implementing policy reforms of mariculture; (3) advancing feed 

technologies for fed mariculture; and (4) shifting demand, which affects 

the quantity supplied from all three production sectors.

Although mariculture production has grown steadily over the past 

60 years (Fig. 1) and provides an important contribution to food secu-

rity22, the vast majority (over 80%) of edible meat from the sea comes 

from wild fisheries9 (Fig. 1b). Over the past 30 years, supply from this 

wild food source has stabilized globally despite growing demand 

worldwide, which has raised concerns about our ability to sustainably 

increase production. Of nearly 400 fish stocks around the world that 

have been monitored since the 1970s by the UN Food and Agriculture 

Organization (FAO), approximately one third are currently not fished 

within sustainable limits1. Indeed, overfishing occurs often in poorly 

managed (‘open access’) fisheries. This is disproportionately true in 

regions with food and nutrition security concerns1. In open-access 

fisheries, fishing pressure increases as the price rises: this can result 

in a ‘backward-bending’ supply curve23,24 (the OA curve in Fig. 2a), in 

which higher prices result in the depletion of fish stocks and reduced 

productivity—and thus reduced equilibrium food provision.

Fishery management allows overexploited stocks to rebuild, which 

can increase long-term food production from wild fisheries25,26. We 

present two hypothetical pathways by which wild fisheries could adopt 

improved management (Fig. 2a). First, independent of economic condi-

tions, governments can impose reforms in fishery management. The 

resulting production in 2050 from this pathway—assuming that fisher-

ies are managed for maximum sustainable yield (MSY)—is represented 

by the MSY curve in Fig. 2a, and is independent of price. The second 

pathway explicitly recognizes that wild fisheries are expensive to moni-

tor (for example, via stock assessments) and manage (for example, via 

quotas)—management reforms are adopted only by fisheries for which 

future profits outweigh the associated costs of improved manage-

ment. When management entities respond to economic incentives, the 

number of fisheries for which the benefits of improved management 

outweigh the costs increases as demand (and thus price) increases. This 

economically rational management endogenously determines which 

fisheries are well-managed, and thus how much food production they 

deliver, resulting in supply curve designated R in Fig. 2a.

Although the production of wild fisheries is approaching its ecologi-

cal limits, current mariculture production is far below its ecological 

limits and could be increased through policy reforms, technological 

advancements and increased demand19,27. We present explanations 

for why food production from mariculture is currently limited, and 

describe how the relaxation of these constraints gives rise to distinct 

pathways for expansion (Fig. 2b). The first pathway recognizes that 

ineffective policies have limited the supply28,29. Lax regulations in some 

regions have resulted in poor environmental stewardship, disease and 

even collapse, which have compromised the viability of food produc-

tion in the long run (curve M1 in Fig. 2b). In other regions, regulations 

are overly restrictive, convoluted and poorly defined30,31, and thus 

limit production (curve M2 in Fig. 2b). In both cases, improved policies 

and implementation can increase food production by preventing and 

ending environmentally damaging mariculture practices (the shift 

from M1 to M3 in Fig. 2b) and allowing for environmentally sustainable 

expansion (the shift from M2 to M3 in Fig. 2b).

The second pathway to sustainably increase mariculture production 

is through further technological advances in finfish feeds. Currently, 

most mariculture production (75%) requires some feed input (such as 

fishmeal and fish oil) that is largely derived from wild forage fisheries1. 
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Fig. 1 | Marine harvest and food from the sea over time (excluding aquatic 

plants). Data are from ref. 9. a, b, Harvests (live-weight production) (a) are 

converted to food equivalents (edible production)10 (b). In b, there is also an 

assumption that 18% of the annual landings of marine wild fisheries are 

directed towards non-food purposes47.

OA
R

MSY

M1M2
M3

M4

a b

Quantity Quantity

P
ri
c
e

Fig. 2 | Hypothetical supply curves for wild fisheries and mariculture, 

showing the influence of price on production quantity. a, Wild fisheries. 

Curves represent poorly managed (open access) fisheries (OA); management 

reform for all fisheries (MSY); and economically rational management reform 

(R). b, Mariculture. Curves represent weak regulations that allow for 

ecologically unsustainable production (M1); overly restrictive policies (M2); 

policies that allow for sustainable expansion (M3); and a reduced dependence 

on limited feed ingredients for fed-mariculture production (M4).
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If fed mariculture continues using fishmeal and fish oil at the current 

rate, its growth will be constrained by the ecological limits of these wild 

fisheries32. Alternative feed ingredients—including terrestrial plant- or 

animal-based proteins, seafood processing waste, microbial ingredi-

ents, insects, algae and genetically modified plants—are rapidly being 

developed and are increasingly used in mariculture feeds33–36. These 

innovations could decouple fed mariculture from wild fisheries (but 

may refocus pressure on terrestrial ecosystems) and could catalyse 

considerable expansion in some regions37,38. This has already begun 

for many fed species, such as Atlantic salmon—for which fish-based 

ingredient use has been reduced from 90% in the 1990s to just 25% at 

present39. A reduced reliance on fishmeal and fish oil is expected to shift 

the supply curve of fed mariculture to the right (curve M4 in Fig. 2b).

The final pathway is a shift in demand (aggregated across all global 

fish consumers), which affects all three production sectors. When the 

sustainable supply curve is upward-sloping, an increase in demand 

(rightward shift; for example, from rising population, income or prefer-

ences) increases food production.

Estimated sustainable supply curves

We estimate supply curves of food from the sea in 2050 for the three 

largest food sectors in the ocean: wild fisheries, finfish mariculture 

and bivalve mariculture. We construct global supply curves for marine 

wild fisheries using projected future production for 4,702 fisheries 

under alternative management scenarios (Fig. 3a). We model future 

production with a bioeconomic model based on ref. 17, which tracks 

annual biomass, harvest and profit, and accounts for costs associated 

with extraction and management (see Methods and Supplementary 

Information for details). Managing all fisheries to maximize food pro-

duction (MSY) would result in 57.4 Mt of food in 2050 (derived from 

89.3 Mt of total harvest, hereafter noted as live-weight equivalent), 

representing a 16% increase compared to the current food production 

(Fig. 3a). Under a scenario of economically rational reform (in which 

the management approach and exploitation rate of fisheries depend 

on profitability), the price influences production (Fig. 3a). At current 

mean global prices, this scenario would result in 51.3 Mt of food (77.4 Mt 

live-weight equivalent)—a 4% increase compared to current food pro-

duction. These management-induced shifts in supply are ultimately 

limited by the carrying capacity of the ecosystem. If current fishing 

pressure is maintained for each fish stock when profitable (F current, 

referring to the current fishing mortality rate), food production from 

wild fisheries is lower for most prices than under the two reform sce-

narios (owing to fishing too intensively on some stocks, and too con-

servatively on others)25: this supply curve is not backward-bending, as 

it reflects constant fishing pressures.

We estimate the production potential of mariculture at a resolu-

tion of 0.217° around the world for finfish and bivalves. Ecological 

conditions—sea surface temperature, dissolved oxygen and primary 

productivity—determine the suitability of each pixel for mariculture 

production. We build on previous models19 by including economic 

considerations (including the capital costs of vessels and equipment, 

and the operating costs of wages, fuel, feed, insurance and mainte-

nance; Supplementary Tables 5–7) to determine whether farming an 

ecologically suitable area is economically profitable at any given price. 

Summing economically viable production for each sector at the global 

level for different prices produces two mariculture supply curves. This 

approach assumes that the most profitable sites will be developed first, 

but does not explicitly include challenges such as the cost of public 

regulation and the delineation of property rights. Farm design is based 

on best practice for sustainable production, and we therefore interpret 

the results as an environmentally sustainable supply. We examine a 

range of assumptions regarding production costs, and explore different 

technological assumptions with respect to the species type farmed for 

finfish mariculture (Methods, Supplementary Information section 1.3, 

Supplementary Table 9). The supply curve for finfish mariculture differs 

substantially among future feed-technology scenarios, although all of 

these scenarios foretell a substantial increase in annual food supply in 
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Fig. 3 | Estimated sustainable supply curves for wild fisheries, finfish 

mariculture and bivalve mariculture. a–c, Points represent current production 

and average price in each sector: marine wild fisheries (a), finfish mariculture (b) 

and bivalve mariculture (c). In a, supply curves for annual steady-state edible 

production from wild fisheries are shown under three different management 

scenarios: production in 2050 under current fishing effort assuming that fishing 

only occurs in fisheries that are profitable (F current); the economically rational 

supply curve aimed at maximizing profitability (rational reform); and a reform 

policy aimed at maximizing food production, regardless of the economic 

considerations (MSY). In b, supply curves for finfish (fed) mariculture show: 

future steady-state production under current feed assumptions and policy 

reform (policy reform); sustainable production assuming policy reform and a 

50% reduction in fishmeal and fish oil feed requirements (technological 

innovation); and sustainable production assuming policy reform and a 95% 

reduction in fishmeal and fish oil feed requirements (technological innovation 

(ambitious)). In all cases, feed ingredients are from the economically rational 

reform of wild fisheries.
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the future compared to the current production of the sector (6.8 Mt of 

food) (Fig. 3b). However, the policy reform scenario—which assumes 

mariculture policies are neither too restrictive nor lax (curve M3 in 

Fig. 2b), but that fishmeal and fish oil requirements match present-day 

conditions—produces a modest additional 1.4 Mt of food at current 

prices. In this scenario, marine-based feed inputs limit mariculture 

expansion even as the price increases considerably.

Two feed-innovation scenarios—representing policy reform plus a 

50% or 95% reduction in fishmeal and fish oil requirements, which we 

refer to as ‘technological innovation’ and ‘technological innovation 

(ambitious)’, respectively—can substantially shift the supply curve.

At current prices, future supply under these scenarios is predicted 

to increase substantially to 17.2 Mt and 174.5 Mt of food for techno-

logical innovation and technological innovation (ambitious) scenarios, 

respectively (Fig. 3b). Bivalve mariculture is constrained by current 

policy but not by feed limitations, and is poised to expand substan-

tially under policy reform scenarios. At current prices, economically 

rational production could lead to an increase from 2.9 Mt to 80.5 Mt of 

food (Fig. 3c). Even if our model underestimates costs by 50%, policy 

reforms would increase the production potential of both fed and unfed 

mariculture at current prices. For fed mariculture, this remains true 

even when evaluating mariculture species with different feed demands 

(Atlantic salmon, milkfish and barramundi).

Estimates of future food from the sea

Our supply curves suggest that all three sectors of ocean food produc-

tion are capable of sustainably producing much more food than they do 

at present. The quantity of seafood demanded will also respond to price. 

We present three demand-curve estimates, shown in Fig. 4 (Methods, 

Supplementary Information). The intersections of future demand and 

sustainable supply curves provide an estimate of future food produc-

tion from the sea. Because it is a substantial contributor to fish supply 

and—in some instances—acts as a market substitute for seafood, we 

also account for land-based aquatic food production (from freshwater 

aquaculture and inland capture fisheries; Supplementary Information 

section 1.4, Supplementary Tables 10–12). Estimates of future produc-

tion from this fourth sector (‘inland fisheries’) are shown side-by-side in 

Supplementary Fig. 3 and Supplementary Tables 13, 14 (for quantities of 

food) and in Supplementary Tables 15, 16 (for live-weight equivalents), 

and are discussed with the results on food from the sea.

Even under current demand curves (green curves in Fig. 4), the eco-

nomically rational reform of marine wild fisheries and sustainable 

mariculture policies (stocking densities consistent with European 

organic standards40) under the technological innovation (ambitious) 

scenario could result in a combined total of 62 Mt of food from the 

sea per year, 5% more than the current levels (59 Mt). But we know 

that demand will increase as incomes rise and populations expand. 

Under the ‘future demand’ scenario (purple curves in Fig. 4), total food 

from the sea is projected to increase to 80 Mt. If demand shifts even 

more (as represented by our ‘extreme demand’ scenario; red curves in 

Fig. 4), the intersection of supply and demand is expected to increase 

to 103 Mt of food. Using the approach used by the FAO to estimate 

future needs, the world will require an additional 177 Mt of meat by 2050 

(Supplementary Information section 1.1.6)—our results suggest that 

additional food from the sea alone could plausibly contribute 12–25% of 

this need. Another possibility we consider is that future consumers will 

not distinguish between fish-producing sectors, such that all sources 

of fish (including land-based) would be substitutes for each other. 

Adopting that assumption alters the supply-and-demand equilibrium, 

and implies that the increase among all sources of fish (sea and land) 

relative to the present could be between 90–212 Mt of food; under this 

scenario, expansion of aquatic foods alone could possibly exceed the 

177-Mt benchmark.

Our results also suggest that the future composition of food from 

the sea will differ substantially from the present (Fig. 5). Although wild 

fisheries dominate edible marine production at present, we project 

that by 2050 up to 44% of edible marine production could come from 

mariculture (rising to 76% when all fish are substitutes and land-based 

fish are included under extreme demand scenarios (Supplementary 

Fig. 3, Supplementary Table 14)), although all sectors could increase 

production. Although even more substantial increases are technically 

possible (for example, fed mariculture alone is capable of generating 

at least the benchmark 177 Mt of additional meat), actually realizing 

these gains would require enormous shifts in demand.

Our models rely on a number of assumptions and parameters that 

are uncertain, and which may interact in nonlinear ways. To test the 

robustness of our main conclusions, we examine a range of scenarios 

and run an extensive sensitivity analysis (Supplementary Information). 

Across a wide range of cost, technology and demand scenarios, we find 

that sustainably harvested food from the sea: (1) has the potential to 

increase considerably in the coming decades; (2) will change in com-

position, with a greater future share coming from mariculture; and 

(3), in aggregate, could have an outsized role in meeting future meat 

demands around the world (Supplementary Figs. 1–4, Supplementary 

Tables 13–17).

Conclusions

Global food demand is rising, and expanding land-based production is 

fraught with environmental and health concerns. Because seafood is 

nutritionally diverse and avoids or lessens many of the environmental 
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burdens of terrestrial food production, it is uniquely positioned to 

contribute to both food provision and future global food and nutrition 

security. Our estimated sustainable supply curves of food from the 

sea suggest substantial possibilities for future expansion in both wild 

fisheries and mariculture. The potential for increased global produc-

tion from wild fisheries hinges on maintaining fish populations near 

their most-productive levels. For underutilized stocks, this will require 

expanding existing markets. For overfished stocks, this will require 

adopting or improving management practices that prevent overfishing 

and allow depleted stocks to rebuild. Effective management practices 

commonly involve setting and enforcing science-based limits on catch 

or fishing effort, but appropriate interventions will depend on the bio-

logical, socioeconomic, cultural and governance contexts of individual 

fisheries. Effective management will be further challenged by climate 

change, species composition changes in marine ecosystems and illegal 

fishing. Directing resources away from subsidies that enhance fishing 

capacity towards building institutional and technical capacity for fish-

eries research, management and enforcement will help to meet these 

challenges. Increased mariculture production will require manage-

ment practices and policies that allow for environmentally sustainable 

expansion, while balancing the associated trade-offs to the greatest 

extent possible; this principle underpins the entire analysis. We find 

that substantial expansion is realistic, given the costs of production 

and the likely future increase in demand.

We have identified a variety of ways that sustainable supply  

curves can shift outward. These shifts interact with future demand to 

determine the plausible future equilibrium quantity of food produced 

from the sea. We find that although supply could increase to more 

than six times the current level (primarily via expanded mariculture), 

the demand shift required to engage this level of supply is unlikely. 

Under more realistic demand scenarios and appropriate reforms of 

the supply, we find that food from the sea could increase in all three 

sectors (wild fisheries, finfish mariculture and bivalve mariculture) 

to a total of 80–103 Mt of food in 2050 versus 59 Mt at present (in 

live-weight equivalents, 159–227 Mt compared to 102 Mt at present). 

When combined with projected inland production, this represents 

an 18–44% per decade increase in live-weight production, which is 

somewhat higher than the 14% increase that the Organisation for 

Economic Co-operation and Development (OECD) and the FAO pro-

ject for total fish production during the next decade41. Under some 

scenarios, future production could represent a disproportionate 

fraction of the estimated total increase in global food production that 

will be required to feed 9.8 billion people by 2050. Substantial growth 

in mariculture will rely partly on public perceptions. Although there 

is some evidence of a negative public perception of aquaculture, it is 

highly variable by region and by context42,43, and certifications and 

the provision of other information can help to alleviate concerns and 

expand demand44.

These global projections will not have uniform implications around 

the world. For example, improved policies that shift the supply curve 

outward will decrease prices, but income-induced demand shifts will 

increase prices. Both effects increase production, but have vastly differ-

ent consequences for low-income consumers. Bivalves may contribute 

substantially to food security by providing relatively low-cost and thus 

accessible food, because they have a high production potential at low 

costs compared to finfish production (Fig. 3). If all seafood is perfectly 

substitutable, bivalves could contribute 43% and 34% of future aquatic 

food under future and extreme demand scenarios, respectively (Sup-

plementary Fig. 3)—which suggests potential large increases in produc-

tion, provided demand is high enough. Trade also has an important 

role in distributing seafood from high-production to low-production 

regions, and in overcoming regional mismatches in price. The rate 

of international trade of seafood products has increased over past 

decades, and 27% of seafood products were traded in 20161, although 

major economic disruptions—such as the COVID-19 pandemic—can 

jointly reduce both supply and demand of traded seafood. On the other 

hand, trade may become increasingly relied upon as climate change 

alters regional productivity.

Substantially expanding the production of food from the sea will 

bring co-benefits and trade-offs, and will require national and inter-

regional governance, as well as local capacity to ensure equity and 

sustainability. The improved management of wild fisheries can not 

only increase fish biomass, but also brings the co-benefit of improved 

livelihoods of fishers. However, there will be some short-term costs 

as overfished stocks rebuild to levels that support greater food pro-

vision. As mariculture expands, interactions with wild fisheries and 

other ecosystem services (via spatial overlaps, pollution and so on) 

must be constantly addressed. Ambitious technical innovation (that 

is, the substitution of marine ingredients with terrestrial-sourced 

proteins) can help to decouple fed mariculture from wild fisheries, 

but will probably refocus some pressure on terrestrial ecosystems. 

Climate change will further challenge food security. Estimates suggest 

that active adaptation to climate-induced changes will be crucial in 

both wild fisheries45 and mariculture46. Climate-adaptive manage-

ment of wild fisheries and decisions regarding mariculture produc-

tion (for example, the type of feed used, species produced and farm 

siting) could improve food provision from the sea under conditions 

of climate change.

We have shown that the sea can be a much larger contributor to sus-

tainable food production than is currently the case, and that this comes 

about by implementing a range of plausible and actionable mecha-

nisms. The price mechanism—when it motivates improved fishery 

management and the sustainable expansion of mariculture into new 

areas—arises from change in demand, and acts on its own without any 

explicit intervention. The feed technology mechanism is driven by 

incentives to innovate, and thus acquire intellectual property rights 

to new technologies. When intellectual property is not ensured, or 

to achieve other social goals, there may be a role for public subsidies 

or other investments in these technologies. The policy mechanism 

pervades all three production sectors, and could make—or break—the 

ability of food from the sea to sustainably, equitably and efficiently 

expand in the future.
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Fig. 5 | Composition of current and future food from the sea under three 

alternative demand scenarios. a, Composition of current (initial production) 

food from the sea. b–d, Composition of future (2050) food from the sea under 

scenarios of current (b), future (c) and extreme (d) demand. The sustainable 

supply curves assumed for these predictions are: rational reform for wild 

fisheries; technological innovation (ambitious) for finfish mariculture; and 

policy reform for bivalve mariculture, as shown in Fig. 3. The total production 

of food from the sea per year is shown in the centre in each panel.
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Methods

Sample size was a census of all available fisheries data. No experiments 

were conducted.

Here we describe our methods in brief: detailed methods, sensitivity 

analyses and robustness checks are provided in the Supplementary 

Information.

Sustainable supply curves

The supply of food from marine wild fisheries is jointly determined by 

ecosystem constraints, fishery policy and prevailing economic condi-

tions. Estimated supply curves show the projected 2050 production 

quantity at a given price, incorporating harvesting costs, management 

costs and fishery-specific engagement decisions for individual fisher-

ies. Current management of the 4,702 marine fisheries included in our 

study range from open access to strong target-based management17. 

Using data from the RAM Legacy Stock Assessment Database48, the 

FAO9 and refs. 17,49,50, we calculate three supply curves that represent 

summed global production from established wild fisheries for a range 

of prices (Fig. 3). The first (F current) assumes that all fisheries in the 

world maintain their current fishing mortality rate if profitable (that is, 

fisheries for which current fishing pressure would result in steady-state 

profit < 0 are not fished). The second (rational reform) assumes that 

fisheries are reformed to maximize long-term food production (that is, 

adopt FMSY, the fishing mortality rate that results in maximum sustain-

able yield (MSY)), but only at prices for which reform results in greater 

future profit than that of current management. Importantly, adopting 

reform is associated with greater management costs for fisheries that 

are currently weakly managed. If a fishery is managed, its production 

changes, which alters the supply curve. Production occurs in a given 

fishery only if future profit > 0. The third supply curve (MSY) assumes 

that all fisheries are managed to maximize sustainable yield, regardless 

of the cost or benefit of doing so (Fig. 3). Supply curves under alterna-

tive cost assumptions yield results similar to those presented in Fig. 3 

(Supplementary Fig. 1).

To construct supply curves for finfish and bivalve mariculture (which 

account for 83% of current production of edible animal products from 

mariculture11), we use a previously published19 global suitability dataset 

at a resolution of 0.217°. Ecological conditions (that is, surface tem-

perature, dissolved oxygen and primary productivity (bivalves only)) 

determine the suitability of different areas for production. We build on 

ref. 19 by including economic considerations (for example, the capital 

costs of vessels and equipment and operating costs of wages, fuel, 

feed, insurance and maintenance; see Supplementary Information 

section 1.3, Supplementary Tables 5–7 for more details) to determine 

whether an ecologically suitable area is also economically profitable 

to farm at a given price. For any given price, we estimate the potential 

production and profitability of each pixel, and determine the global 

set of economically viable pixels for mariculture production of finfish 

and bivalves; we allow for production of both kinds of mariculture in 

the same pixel, provided the pixel is economically suitable for both. 

Summing production in this manner at the global level provides a point 

on the supply curve, at which farm design (Supplementary Table 4) is 

based on best practices for sustainable production (that is, stocking 

densities consistent with European organic standards40). We then derive 

supply curves under different assumptions regarding mariculture 

policy and technological innovation, which affect the parameters of 

the supply model.

We estimate supply curves for finfish mariculture under three sce-

narios, all of which assume that wild fisheries are rationally managed; 

this pins down the potential supply of wild fish that can be used as feed 

in mariculture (Supplementary Table 8). We display three supply curves 

for fed mariculture (Fig. 3). The policy reforms scenario represents a 

future in which regulatory barriers are removed, unsustainable produc-

tion is prevented and mariculture continues to use feed ingredients 

from wild fisheries at the current rate (that is, feed conversion ratios 

remain static, fishmeal and fish oil inclusion rates in feed remain the 

same, and feed availability depends on production from wild fisheries). 

This scenario represents the economically rational sustainable pro-

duction given the current feed context. Two technological innovation 

scenarios represent policy reform plus a 50% and (a more ambitious) 

95% reduction in fishmeal and fish oil requirements for fed mariculture 

production. The supply curve for bivalve (unfed) mariculture (Fig. 3) 

reflects production in the set of pixels for which unfed mariculture can 

be profitably produced at any given price.

Supply meets demand

To estimate how food from the sea might help to meet future increases 

in demand at the global level, we require estimates of the current and 

future demand curves of food from the sea. The intersection of future 

demand curves and our estimated sustainable supply curves provides 

an estimate of food from the sea in 2050. As a benchmark, we assume 

that the three sectors are independent, but that increases in demand 

are parametric, so each of the three sectors experiences a proportional 

increase in future demand—for example, as global population and 

per capita incomes rise (see Supplementary Information for detailed 

results, assuming all aquatic foods are perfect substitutes). We assume 

a straightforward structure in which each sector faces an isoelastic 

demand (for example, see ref. 51, with own price elasticity = −0.382;  

ref. 52; and sector-specific income elasticities estimated from ref. 51). Using 

these elasticities, the coefficient on current-demand curve in each sec-

tor (current, in Fig. 4) is tuned so the demand curve passes through the 

current price of seafood in that sector (averaged across fish from that 

sector) given the current global gross domestic product and population. 

Effectively, this approach assumes that all fish within a sector are substi-

tutes. We do not explicitly estimate a current supply curve because it is 

not required to perform our calculations and—for reasons stated in the 

Article—we do not necessarily regard the current supply as sustainable.

To project future demand at the global level, we develop two sce-

narios that we term future and extreme (Fig. 4). The future demand 

represents the demand curve for food from the sea in each sector given 

exogenous estimates of future population size and global income in 

205053,54, which are entered as parameters in the demand curve (Sup-

plementary Information). The extreme scenario doubles the quantity 

demanded at any given price in 2050, relative to the future scenario; 

we regard demand shifts larger than this amount as unlikely.

The Supplementary Information contains an extensive set of robust-

ness checks and sensitivity analyses. One important alternative to the 

model in the Article is to allow all fish to be perfect substitutes in the 

future. Under that model, land-based fish production (aquaculture and 

capture) must be accounted for because those fish act as substitutes for 

food from the sea. Although this tends to increase the final estimates 

of food production from the sea, our qualitative findings are robust to 

this assumption and the Supplementary Information reports how this 

changes the model results described in the Article.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

All datasets analysed during the current study are available in a Dryad 

repository at https://datadryad.org/stash/dataset/doi:10.25349/

D96G6H.

Code availability

All code used to conduct the study are available in a GitHub repository: 

https://github.com/emlab-ucsb/future_food_from_sea.
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