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The Future of Indirect Evidence1

Bradley Efron

Abstract. Familiar statistical tests and estimates are obtained by the direct
observation of cases of interest: a clinical trial of a new drug, for instance,
will compare the drug’s effects on a relevant set of patients and controls.
Sometimes, though, indirect evidence may be temptingly available, perhaps
the results of previous trials on closely related drugs. Very roughly speak-
ing, the difference between direct and indirect statistical evidence marks the
boundary between frequentist and Bayesian thinking. Twentieth-century sta-
tistical practice focused heavily on direct evidence, on the grounds of supe-
rior objectivity. Now, however, new scientific devices such as microarrays
routinely produce enormous data sets involving thousands of related situ-
ations, where indirect evidence seems too important to ignore. Empirical
Bayes methodology offers an attractive direct/indirect compromise. There
is already some evidence of a shift toward a less rigid standard of statistical
objectivity that allows better use of indirect evidence. This article is basically
the text of a recent talk featuring some examples from current practice, with
a little bit of futuristic speculation.

Key words and phrases: Statistical learning, experience of others, Bayesian
and frequentist, James–Stein, Benjamini–Hochberg, False Discovery Rates,
effect size.

1. INTRODUCTION

This article is the text of a talk I gave twice in 2009,
at the Objective Bayes Conference at Wharton, and at
the Joint Statistical Meetings in Washington, DC. Well,
not quite the text. The printed page gives me a chance
to repair a couple of the more gaping omissions in the
verbal presentation, without violating its rule of avoid-
ing almost all mathematical technicalities.

Basically, however, I’ll stick to the text, which was
a broad-brush view of some recent trends in statis-
tical applications—their rapidly increasing size and
complexity—that are impinging on statistical theory,
both frequentist and Bayesian. An OpEd piece on
“practical philosophy” might be a good description of
what I was aiming for. Most of the talk (as I’ll refer
to this from now on) uses simple examples, includ-
ing some of my old favorites, to get at the main ideas.
There is no attempt at careful referencing, just a short
list of directly relevant sources mentioned at the end.

Bradley Efron is Professor, Department of Statistics,
Stanford University, Stanford, California 94305, USA.

1Discussed in 10.1214/10-STS308A, 10.1214/10-STS308B and
10.1214/10-STS308C; rejoinder at 10.1214/10-STS308REJ.

I should warn you that the talk is organized more his-
torically than logically. It starts with a few examples of
frequentist, Bayesian and empirical Bayesian analysis,
all bearing on “indirect evidence,” my catch-all term
for useful information that isn’t of obvious direct ap-
plication to a question of interest. This is by way of
a long build-up to my main point concerning the tor-
rent of indirect evidence uncorked by modern scientific
technologies such as the microarray. It is fair to say that
we are living in a new era of statistical applications,
one that is putting pressure on traditional Bayesian and
frequentist methodologies. Toward the end of the talk
I’ll try to demonstrate some of the pitfalls and oppor-
tunities of the new era, finishing, as the title promises,
with a few words about the future.

2. DIRECT STATISTICAL EVIDENCE

A statistical argument, at least in popular parlance,
is one in which many small pieces of evidence, often
contradictory, are amassed to produce an overall con-
clusion. A familiar and important example is the clini-
cal trial of a promising new drug. We don’t expect the
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FIG. 1. Roberto Clemente’s batting averages over the 1970 baseball season (partially simulated). After 45 tries he had 18 hits for a batting
average of 18/45 = 0.400; his average in the remainder of the season was 127/367 = 0.346.

drug to work on every patient, or for every placebo-
receiving patient to fail, but perhaps, overall, the new
drug will perform “significantly” better.

The clinical trial is collecting direct statistical evi-
dence, where each bit of data, a patient’s success or
failure, directly bears on the question of interest. Direct
evidence, interpreted by frequentist methods, has been
the prevalent mode of statistical application during the
past century. It is strongly connected with the idea of
scientific objectivity, which accounts, I believe, for the
dominance of frequentism in scientific reporting.

Figure 1 concerns an example of direct statistical ev-
idence, taken from the sports pages of 1970. We are
following the star baseball player Roberto Clemente
through his 1970 season. His batting average, number
of successes (“hits”) over number of tries (“at bats”)
fluctuates wildly at first but settles down as the sea-
son progresses. After 45 tries he has 18 hits, for a bat-
ting average of 18/45 = 0.400 or “four hundred” in
baseball terminology. The remainder of the season is
slightly less successful, with 127 hits out of 367 at
bats for a batting average of 0.346 = 127/367, giv-
ing Clemente a full season average of 0.352.1 This is a

1These numbers are accurate, but I have to admit to simulating
the rest of the figure by randomly dispersing his 18 hits over the
first 45 tries, and similarly for the last 127 hits.

classic frequentist estimate: direct statistical evidence
for Clemente’s 1970 batting ability.

In contentious areas such as drug efficacy, the de-
sire for direct evidence can be overpowering. A clinical
trial often has three arms: placebo, single dose of new
drug, and double dose. Even if the double dose/placebo
comparison yields strongly significant results in favor
of the new drug, a not-quite significant result for the
single dose/placebo comparison, say p-value 0.07, will
not be enough to earn FDA approval. The single dose
by itself must prove its worth.

My own feeling at this point would be that the sin-
gle dose is very likely to be vindicated in any sub-
sequent testing. The strong result for the double dose
adds indirect evidence to the direct, nearly significant,
single dose outcome. As the talk’s title suggests, in-
direct statistical evidence is the focus of interest here.
My main point, which will take a while to unfold, is
that current scientific trends are producing larger and
more complex data sets in which indirect evidence has
to be accounted for: and these trends will force some
re-thinking of both frequentist and Bayesian practices.

3. BAYESIAN INFERENCE

I was having coffee with a physicist friend and her
husband who, thanks to the miracle of sonograms,
knew they were due to have twin boys. Without warn-
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ing, the mother-to-be asked me what was the probabil-
ity her twins would be identical rather than fraternal.
Stalling for time, I asked if the doctor had given her
any further information. “Yes, he said the proportion
of identical twins is one-third.” (I checked later with an
epidemiology colleague who confirmed this estimate.)

Thomas Bayes, 18th-century non-conformist Eng-
lish minister, would have died in vain if I didn’t use
his rule to answer the physicist mom. In this case the
prior odds

Pr{Identical}
Pr{Fraternal} = 1/3

2/3
= 1

2

favor fraternal. However the likelihood ratio, the cur-
rent evidence from the sonogram, favors identical,

Pr{Twin boys|Identical}
Pr{Twin boys|Fraternal} = 2,

since identical twins are always the same sex while fra-
ternal twins are of differing sexes half the time.

Bayes rule, published posthumously in 1763, is a
rule for combining evidence from different sources. In
this case it says that the posterior odds of identical to
fraternal is obtained by simple multiplication.

Posterior odds = (Prior odds) · (Likelihood ratio)

= 1
2 · 2 = 1.

So my answer to the physicists was “50/50,” equal
chances of identical or fraternal. (This sounded like
pure guessing to them; I would have gotten a lot more
respect with “60/40.”)

Bayes rule is a landmark achievement. It was the first
breakthrough in scientific logic since the Greeks and
the beginning of statistical inference as a serious math-
ematical subject. From the point of view of this talk,
it also marked the formal introduction of indirect evi-
dence into statistical learning.

Both Clemente and the physicists are learning from
experience. Clemente is learning directly from his own
experience, in a strict frequentist manner. The physi-
cists are learning from their own experience (the sono-
gram), but also indirectly from the experience of oth-
ers: that one-third/two-thirds prior odds is based on
perhaps millions of previous twin births, mostly not
of the physicists’ “twin boys” situation. Another way
to state Bayes rule is as a device for filtering out and
using the relevant portions of past experiences.

All statisticians, or almost all of them, enjoy Bayes
rule, but only a minority make much use of it. Learning
only from direct experience is a dominant feature of

contemporary applied statistics, connected, as I said,
with notions of scientific objectivity. A fundamental
Bayesian difficulty is that well-founded prior distrib-
utions, like the twins one-thirds/two-thirds, are rare in
scientific practice. Much of 20th-century Bayesian the-
ory concerned subjective prior distributions, which are
not very convincing in contentious areas such as drug
trials.

The holy grail of statistical theory is to use the expe-
rience of others without the need for subjective prior
distributions: in L. J. Savage’s words, to enjoy the
Bayesian omelette without breaking the Bayesian eggs.
I am going to argue that this grail has grown holier,
and more pressing, in the 21st century. First though I
wanted to say something about frequentist use of indi-
rect information.

4. REGRESSION MODELS

Bayesians have an advantage but not a monopoly on
the use of indirect evidence. Regression models pro-
vide an officially sanctioned2 frequentist mechanism
for incorporating the experience of others.

Figure 2 concerns an example from Dr. Brian My-
ers’ Stanford nephrology laboratory: 157 healthy vol-
unteers have had their kidney function evaluated by a
somewhat arduous series of tests. An overall kidney
score, higher numbers better, is plotted versus the vol-
unteer’s age, illustrating a decline in function among
the older subjects. (Kidney donation was once limited
to volunteers less than 60 years old.) The decline is em-
phasized by the downward slope of the least squares
regression line.

A potential new donor, age 55, has appeared but it is
not practical to evaluate his kidney function by the ar-
duous testing procedure. How good are his kidneys?
As far as direct evidence is concerned, only one of
the 157 volunteers was 55, and he had score −0.01.
Most statisticians would prefer the estimate obtained
from the height at age 55 of the least square line,
−1.46. In Tukey’s evocative language, we are “bor-
rowing strength” from the 156 volunteers who are not
age 55.

Borrowing strength is a clear use of indirect evi-
dence, but invoked differently than through Bayes the-
orem. Now every individual is adjusted to fit the case
of interest; in effect the regression model allows us to
adjust each volunteer to age 55. Linear model theory

2Sanctioned, though not universally accepted as fully relevant, as
the three-arm drug example showed.
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FIG. 2. Kidney function plotted versus age for 157 healthy volunteers from the nephrology laboratory of Dr. Brian Myers. The least squares
regression line has a strong downward slope. A new donor age 55 has appeared, and we need to predict his kidney score.

permits a direct frequentist analysis of the entire least
squares fitting process, but that shouldn’t conceal the
indirect nature of its application to individual cases.

One response of the statistical community to the on-
slaught of increasingly large and complex data sets
has been to extend the reach of regression models:
LARS, lasso, boosting, bagging, CART and projection
pursuit being a few of the ambitious new data-mining
algorithms. Every self-respecting sports program now
has its own simplified data-mining program, producing
statements like “Jones has only 3 hits in 16 tries versus
Pettitte.” This is direct evidence run amok. Regression
models seem to be considered beyond the sporting pub-
lic’s sophistication, but indirect evidence is everywhere
in the sports world, as I want to discuss next.

5. JAMES–STEIN ESTIMATION

Early in the 1970 baseball season, Carl Morris col-
lected the batting average data shown in the second col-
umn of Table 1. Each of the 18 players had batted 45
times (they were all of those who had done so) with
varying degrees of success. Clemente, as shown in Fig-
ure 1, had hit successfully 18 of the 45 times, for an
observed average of 0.400 = 18/45. Near the bottom
of the table, Thurman Munson, another star player, had
only 8 hits; observed average 8/45 = 0.178. The grand
average of the 18 players at that point was 0.265.

Only about one-tenth of the season had elapsed, and
Morris considered predicting each player’s subsequent
batting average during the remainder of 1970. Since the
players bat independently of each other—Clemente’s
successes don’t help Munson, nor vice versa—it seems
there is no alternative to using the observed averages, at
least not without employing more baseball background
knowledge.

TABLE 1
Batting averages for 18 major league players early in the 1970

season (“Observed”) and their averages for the remainder of the
season (“Truth”). Also the James–Stein predictions

Name Hits/AB Observed “Truth” James–Stein

1. Clemente 18/45 0.400 0.346 0.294
2. F. Robinson 17/45 0.378 0.298 0.289
3. F. Howard 16/45 0.356 0.276 0.285
4. Johnstone 15/45 0.333 0.222 0.280

...
...

...
...

...

14. Petrocelli 10/45 0.222 0.264 0.256
15. E. Rodriguez 10/45 0.222 0.226 0.256
16. Campaneris 9/45 0.200 0.286 0.252
17. Munson 8/45 0.178 0.316 0.247
18. Alvis 7/45 0.156 0.200 0.242

Grand average 0.265 0.265 0.265
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However, that is not true. The James–Stein estimates
in the last column of the table are functions of the ob-
served averages, obtained by shrinking them a certain
amount of the way toward the grand average 0.265, as
described next. By the end of the 1970 season, Mor-
ris could see the “truth,” the players’ averages over
the remainder of the season. If prediction error is mea-
sured by total squared discrepancy from the truth, then
James–Stein wins handsomely: its total squared pre-
diction error was less than one-third of that for the ob-
served averages. This wasn’t a matter of luck, as we
will see.

Suppose each player has a true expectation μi and
an observed average xi , following the model

μi ∼ N (M,A) and xi |μi ∼ N (μi, σ
2
0 )(1)

for i = 1,2, . . . ,N = 18. Here M and A are mean and
variance hyper-parameters that determine the Bayesian
prior distribution; μi can be thought of as the “truth”
in Table 1, xi as the observed average, and σ 2

0 as its
approximate binomial variance 0.265 · (1 − 0.265)/45.
(I won’t worry about the fact that xi is binomial rather
than perfectly normal.)

The posterior expectation of μi given xi , which is
the Bayes estimator under squared error loss, is

μ̂
(Bayes)
i = M + B(xi − M)

(2)

where B = A

A + σ 2
0

.

If A = σ 2
0 , for example, Bayes rule shrinks each ob-

served average xi half way toward the prior mean M .
Using Bayes rule reduces the total squared error of pre-
diction, compared to using the obvious estimates xi , by
a factor of 1 −B . This is a 50% savings if A = σ 2

0 , and
more if the prior variance A is less than σ 2

0 .
Baseball experts might know accurate values for M

and A, or M and B , but we are not assuming ex-
pert prior knowledge here. The James–Stein estima-
tor can be motivated quite simply: unbiased estimates
M̂ and B̂ are obtained from the vector of observations
x = (x1, x2, . . . , xN) (e.g., M̂ = x̄ the grand average)
and substituted into formula (2). In Herbert Robbins’
apt terminology, James–Stein is an empirical Bayes es-
timator. It doesn’t perform as well as the actual Bayes
estimate (2), but under model (1) the penalty is surpris-
ingly small.

All of this seems interesting enough, but a skeptic

might ask where the normal prior distributions μi
ind∼

N (M,A) in (1) are coming from. In fact, James and

Stein didn’t use normal priors, or any priors at all, in
their derivation. Instead they proved the following fre-
quentist theorem.

THEOREM 1 (1956). If xi ∼ N (μi, σ
2
0 ) indepen-

dently for i = 1,2, . . . ,N, N ≥ 4, then the James–
Stein estimator always beats the obvious estimator xi

in terms of expected total squared estimation error.

This is the single most striking result of post-World
War II statistical theory. It is sometimes called3 Stein’s
paradox for it says that Clemente’s good performance
does increase our estimate for Munson (e.g., by in-
creasing M̂ = x̄) and vice versa, even though they suc-
ceed or fail independently. In addition to the direct evi-
dence of each player’s batting average, we gain indirect
evidence from the other 17 averages.

James–Stein estimation is not an unmitigated bless-
ing. Low total squared error can conceal poor perfor-
mance on genuinely unusual cases. Baseball fans know
from past experience that Clemente was an unusually
good hitter, who is learning too much from the expe-
rience of others by being included in a cohort of less-
talented players. I’ll call this the Clemente problem in
what follows.

6. LARGE-SCALE MULTIPLE INFERENCE

All of this is a preface, and one that could have been
written 50 years ago, to what I am really interested
in talking about here. Large-scale multiple inference,
in which thousands of statistical problems are consid-
ered at once, has become a fact of life for 21st-century
statisticians. There is just too much indirect evidence
to ignore in such situations. Coming to grips with our
new, more intense, scientific environment is a major
enterprise for the statistical community, and one that is
already affecting both theory and practice.

Rupert Miller’s book Simultaneous Statistical Infer-
ence appeared in 1966, lucidly summarizing the post-
war boom in multiple-testing theory. The book is over-
whelmingly frequentist, aimed mainly at the control
of type I error, and concerned with the simultaneous
analysis of between 2 and perhaps 10 testing prob-
lems. Microarray technology introduced in the 1990s
dramatically raised the ante: number of problems N

now easily exceeds 10,000; “SNP chips” have N =
500,000+, and imaging devices reach higher still.

3Willard James was Charles Stein’s graduate student. Stein had
shown earlier that another, less well-motivated, estimator domi-
nated the obvious rule.
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FIG. 3. Histogram of N = 6033z-values from the prostate cancer study compared with the theoretical null density that would apply if all
the genes were uninteresting. Hash marks indicate the 49 z-values exceeding 3.0.

Figure 3 concerns a microarray study in which the
researchers were on a fishing expedition to find genes
involved in the development of prostate cancer: 102
men, 50 healthy controls and 52 prostate cancer pa-
tients, each had expression levels for N = 6033 genes
measured on microarrays. The resulting data matrix
had N = 6033 rows, one for each gene, and 102
columns, one for each man.

As a first step in looking for “interesting” genes,
a two-sample t-statistic ti comparing cancer patients
with controls was computed for each gene i, i =
1,2, . . . ,N , and then converted to a z-value

zi = �−1(F100(ti))(3)

with � and F100 the c.d.f.’s of a standard normal and
t100 variate. Under the usual textbook conditions, zi

will have a standard normal distribution in the null (un-
interesting) situation where genetic expression levels
are identically distributed for controls and patients,

H0 : zi ∼ N (0,1).(4)

A histogram of the N = 6033 z-values appears in
Figure 3. It is fit reasonably well by the “theoretical
null” curve that would apply if all the genes followed
(4), except that there is an excess of tail values, which
might indicate some interesting “non-null” genes re-
sponding differently in cancer and control subjects.

Here I will concentrate on the 49 genes having zi

exceeding 3.0, as indicated by the hash marks. Figure 4

shows a close-up of the right tail, where we notice that
49 is much greater than 8.14, the expected number of
zi ’s exceeding 3.0 under full null conditions. The ratio
is

F̂dr(3.0) = 8.14
49 = 1

6 .(5)

where Fdr stands for false discovery rate, in Benjamini
and Hochberg’s evocative terminology. Reporting the
list of 49 back to the investigators seems like a good
bet if it only contains 1/6 duds, but can we believe that
value?

Benjamini and Hochberg’s (1995) paper answered
the question with what I consider the second most
striking theorem of post-war statistics. For any given
cutoff point c let N(c) be the number of zi’s observed
to exceed c, E0(c) the expected number exceeding c if
all genes are null (4), and

F̂dr(c) = E0(c)/N(c).(6)

[In (5), c = 3.0, N(c) = 49, and E0(c) = 8.14.]
Choose an Fdr control value q between 0 and 1 and
let cq be the smallest value of c such that F̂dr(c) ≤ q .

THEOREM 2. If the N z-values are independent of
each other, then the rule that rejects the null hypothesis
(4) for all cases having zi ≥ cq will make the expected
proportion of false discoveries no greater than q .

In the prostate data example, choosing q = 1/6 gives
cq = 3.0 and yields a list of 49 presumably interesting
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FIG. 4. Close-up of right tail of the prostate data z-value histogram; 49 zi ’s exceed 3.0, compared to an expected number 8.14 if all genes
were null (4).

genes. Assuming independence4, the theorem says that
the expected proportion of actual null cases on the list
is no greater than 1/6. That is a frequentist expectation,
Benjamini and Hochberg like James and Stein having
worked frequentistically, but once again there is an in-
structive Bayesian interpretation.

A very simple Bayes model for simultaneous hy-
pothesis testing, the two-groups model, assumes that
each gene has prior probability p0 or p1 = 1 − p0 of
being null or non-null, with corresponding z-value den-
sity f0(z) or f1(z):

Prior probability
{

p0,

p1,
zi ∼

{
f0(z),

f1(z).
(7)

Let F0(z) and F1(z) be the right-sided c.d.f.’s (survival
functions) corresponding to f0 and f1, and F(z) their
mixture,

F(z) = p0F0(z) + p1F1(z).(8)

Applying Bayes theorem shows that the true false dis-
covery rate is

Fdr(c) ≡ Pr{gene i null|zi ≥ c}
(9)

= p0F0(c)/F (c).

4This isn’t a bad assumption for the prostate data, but a danger-
ous one in general for microarray experiments. However, depen-
dence usually has little effect on the theorem’s conclusion. A more
common choice of q is 0.10.

(Left-sided c.d.f.’s perform just as well, but it is conve-
nient to work on the right here.)

Of course we can’t apply the Bayesian result (9) un-
less we know p0, f0, and f1 in (7). Once again though,
a simple empirical Bayes estimate is available. Under
the theoretical null (4), F0(z) = 1 − �(z), the stan-
dard normal right-sided c.d.f.; p0 will usually be close
to 1 in fishing expedition situations and has little ef-
fect on Fdr(c). (Benjamini and Hochberg set p0 = 1.
It can be estimated from the data, and I will take it as
known here.) That leaves the mixture c.d.f. F(z) as the
only unknown. But by definition, all N zi values fol-
low F(z), so we can estimate it by the empirical c.d.f.
F̂ (z) = #{zi ≥ z}/N , leading to the empirical Bayes
estimate of (9),

F̂dr(c) = p0F0(c)/F̂ (c).(10)

The two definitions of F̂dr(c), (6) and (10), are the
same since E0(c) = Np0F0(c) and F̂ (c) = N(c)/N .
This means we can restate Benjamini and Hochberg’s
theorem in empirical Bayes terms: the list of cases
reported by BH(q), the Benjamini–Hochberg-level q

rule, is essentially those cases having estimated poste-
rior probability of being null no greater than q .

The Benjamini–Hochberg algorithm clearly involves
indirect evidence. In this case, each z-value is learning
from the other N − 1 values: if, say, only 10 instead of
49 z-values had exceeded 3.0, then F̂dr(c) would equal
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FIG. 5. Histogram of z-values for N = 7128 genes in a microarray study comparing two types of leukemia. The N (0,1) theoretical null
is much narrower than the histogram center; a normal fit to the central histogram height gives empirical null N (0.09,1.682). Both curves
have been scaled by their respective estimates of p0 in (7).

0.81 (i.e., “very likely null”) so a gene with zi ≥ 3.0
would now not be reported as non-null.

I have been pleasantly surprised at how quickly false
discovery rate control was accepted by statisticians and
our clients. It is fundamentally different from type I
error control, the standard for nearly a century, in its
Bayesian aspect, its use of indirect evidence, and in
the fact that it provides an explicit estimate of nullness
F̂dr(z) rather than just a yes/no decision.5

7. THE PROPER USE OF INDIRECT EVIDENCE

The false discovery rate story is a promising sign of
our profession’s ability to embrace new methods for
new problems. However, in moving beyond the con-
fines of classical statistics we are also moving outside
the wall of protection that a century of theory and ex-
perience has erected against inferential error.

Within its proper venue, it is hard to go very wrong
with a frequentist analysis of direct evidence. I find it
quite easy to go wrong in large-scale data analyses.
This section and the next offer a couple of examples
of the pitfalls yawning in the use of indirect evidence.
None of this is meant to be discouraging: difficulties

5Although one might consider p-values to provide such esti-
mates in classical testing.

are what researchers thrive on, and I fully expect sta-
tisticians to successfully navigate these new waters.

The results of another microarry experiment, this
time concerning leukemia, are summarized in Figure 5.
High-density oligonucleotide microarrays provided ex-
pression levels on N = 7128 genes for 72 patients,
45 with ALL (acute lymphoblastic leukemia) and 27
with AML (acute myeloid leukemia), the latter having
worse prognosis. Two-sample t-statistics provided z-
values zi for each gene, as with the prostate study.

Figure 5 shows that this time the center of the z-value
histogram does not approximate a N (0,1) density. In-
stead, it is much too wide: a maximum likelihood fit
to central histogram heights gave estimated proportion
p0 = 0.93 of null genes in the two-groups model (7),
and an empirical null density estimate

f0(z) ∼ N (0.09,1.682),(11)

more than half again as wide as the N (0,1) theoreti-
cal null (4). The dashed curve shows (11) nicely fol-
lowing the histogram height near the center while the
estimated proportion of non-null genes p1 = 1 − p0 =
0.07 appear as heavy tails, noticeably on the left.

At this point one could maintain faith in the theo-
retical null but at the expense of concluding that about
2500 (35%) of the genes are involved in AML/ALL
differences. On the other hand, there are plenty of rea-
sons to doubt the theoretical null. In particular, the
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leukemia data comes from an observational study, not
a randomized experiment, so that unobserved covari-
ates (age, sex, health status, race, etc.) could easily add
a component of variance to both the null and non-null
z-values.

The crucial question here has to do with the numera-
tor E0(c) in F̂dr(c) = E0(c)/N(c), the expected num-
ber of null cases exceeding c. The theoretical N (0,1)

null predicts many fewer of these than does the em-
pirical null (11). The fact that we might estimate the
appropriate null distribution from evidence at hand—
bordering on heresy from the point of view of clas-
sical testing theory—shows the opportunities inherent
in large-scale studies, as well as the novel inferential
questions surrounding the use of indirect evidence.

8. RELEVANCE

Large-scale testing algorithms are usually carried
out under the tacit assumption that all available cases
should be analyzed together: for instance, employing
a single false discovery analysis for all the genes in a
given microarray experiment. This can be a dangerous
assumption, as the example illustrated in Figure 6 will
show.

Twelve children, six dyslexics and six normal con-
trols, received DTI (diffusion tensor imaging) scans,
measuring fluid diffusion at N = 15,443 locations
(voxels) in the brain. A z-value zi was computed at
each voxel such that the theoretical null hypothesis
zi ∼ N (0,1) should apply to locations where there is
no dyslexic/normal distributional difference. The goal
of course was to pinpoint areas of genuine difference.

Figure 6 indicates the z-values in a horizontal slice
of the brain about half-way from bottom to top. Open
circles, colored red, indicate zi ≥ 0, solid red circles
zi ≥ 2; green + symbols indicate zi < 0, with green #
for zi < −2. The x-axis measures distance from the
back of the brain to the front, left to right.

Spatial correlation among the zi ’s is evident: red cir-
cles are near red circles and green +’s near other green
+’s. The Benjamini–Hochberg Fdr control algorithm
tends to perform as claimed as an hypothesis-testing
device, even under substantial correlation. However,
there is an empirical Bayes price to pay: correlation
makes F̂dr(c) (10) less dependable as an estimate of
the true Bayes probability (9). Just how much less is a
matter of current study.

FIG. 6. DTI study z-values comparing 6 dyslexic children with 6 normal controls, at N = 15,443 voxels; shown is horizontal section of 848
voxels; x indicates distance from back of brain (left) to front (right). The vertical line at x = 50 divides the brain into back and front halves.
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FIG. 7. Separate histograms for zi ’s from the front and back halves of the brain, DTI study. The heavy right tail of the front-half data yields
281 significant voxels in an Fdr test, control level q = 0.10.

There is something else to worry about in Figure 6:
the front half of the brain, x ≥ 50, seems to be red-
der (i.e., with more positive z-values) than the back
half. This is confirmed by the superimposed histograms
for the two halves, about 7700 voxels each, seen in
Figure 7. Separate Fdr tests at control level q = 0.10
yield 281 “significant” voxels for the front-half data,
all those with zi ≥ 2.69, and none at all for the back
half. But if we analyze all 15443 voxels at once, the
Fdr test yields only 198 significant voxels, those hav-
ing zi ≥ 3.02. Which analysis is correct?

This is the kind of question my warning about diffi-
cult new inference problems was aimed at. Notice that
the two histograms differ near their centers as well as in
the tails. The Fdr analyses employed thoretical N (0,1)

null distributions. Using empirical nulls as with the
leukemia data gives quite different null distributions,
raising further questions about proper comparisons.

The front/back division of the brain was arbitrary
and not founded on any scientific criteria. Figure 8
shows all 15,443 zi ’s plotted against xi , the voxel’s dis-
tance from the back. We see waves in the z-values, at
the lower percentiles as well as at the top, cresting near
x = 64. Disturbingly, most of the 281 significant vox-
els for the front-half analysis came from this crest.

Maybe I should be doing local Fdr tests of some
sort, or perhaps making regression adjustments (e.g.,
subtracting off the running median) before applying an

Fdr procedure. We have returned to a version of the
Clemente problem: which are the relevant voxels for
deciding whether or not any given voxel is responding
differently in dyslexics and controls? In other words,
where is the relevant indirect information?

9. THE NORMAL HIERARCHICAL MODEL

My final example of indirect evidence and empiri-
cal Bayes inference concerns the normal hierarchical
model. This is a simple but important Bayesian model
where μ, a parameter of interest, comes from some
prior density g(·) and we get to observe a normal vari-
ate z centered at μ,

μ ∼ g(·) and z|μ ∼ N (μ,1).(12)

Both the James–Stein and Benjamini–Hochberg esti-
mators can be motivated from (12),

JS :g = N (M,A) and
(13)

BH :g = p0δ0 + p1g1.

In the latter, δ0 is a delta function at 0 while g1 is an
arbitrary density giving f1 in (7) by convolution, f1 =
g1 ∗ ϕ where ϕ is the standard normal density.

In the BH setting, we might call μi (the value of
μ for the ith case) the effect size. For prediction pur-
poses, we want to identify cases not only with μi �= 0
but with large effect size. A very useful property of the
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FIG. 8. z-values for the 15,443 voxels plotted versus their distance from the back of the brain. A disturbing wave pattern is evident, cresting
near x = 64. Most of the 281 significant voxels in Figure 7 come from this crest.

normal hierarchical model (12) allows us to calculate
the Bayes estimate of effect size directly from the con-
volution density f = g ∗ ϕ without having to calculate
g,

f (z) =
∫ ∞
−∞

ϕ(z − μ)g(μ)dμ.(14)

LEMMA 1. Under the normal hierarchical model
(12),

E{μ|z} = z + f ′(z)/f (z),(15)

where f ′(z) = df (z)/dz.

The marginal density of z in model (12) is f (z). So
if we observe z = (z1, z2, . . . , zN) from repeated re-
alizations of (μi, zi), we can fit a smooth density esti-
mate f̂ (z) to the zi ’s and use the lemma to approximate
E{μi |zi},

z −→ f̂ (z) −→ Ê{μi |zi} = zi + f̂ ′(zi)
/
f (zi).(16)

This has been done in Figure 9 for the prostate data of
Figure 3, with f̂ (z) a natural spline, fit with 7 degrees
of freedom to the heights of Figure 3’s histogram bars
(all of them, not just the central ones we used to esti-
mate empirical nulls).

The effect size estimates μ̂i = Ê{μi |zi} are nearly
zero for |zi | less than 2 but increase linearly outside of

this interval. Gene 610 has the largest z-value, z610 =
5.29, with estimated effect size μ̂610 = 4.11. Table 2
shows the top 10 genes in order of |zi |, and their cor-
responding effect sizes μ̂i . The μ̂i values are shrunk
toward the origin, but in a manner appropriate to the
BH prior in (13), not JS.

The necessity for shrinkage reflects selection bias:
the top 10 genes were winners in a competition with
6023 others; in addition to being “good” in the sense
of having genuinely large effect sizes, they’ve probably
been “lucky” in that their random measurement errors
were directed away from zero. Regression to the mean
is another name for the shrinkage effect.

A wonderful fact is that Bayes estimates are immune
to selection bias! If μ̂610 = 4.11 was the actual Bayes
estimate E{μ610|z} then it would not matter that we be-
came interested in Gene 610 only after examining all
6033 z-values: 4.11 would still be our estimate. This
may seem surprising, but it follows immediately from
Bayes theorem, a close cousin to results such as “Bayes
inference in a clinical trial is not affected by interme-
diate looks at the data.”

Any assumption of a Bayes prior is a powerful state-
ment of indirect evidence. In our example it amounts
to saying, “We have an infinite number N of relevant
prior observations (μ, z) with z = 5.29, and for those
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FIG. 9. Empirical Bayes effect size estimate Ê{μ|z} (16), prostate data of Figure 3. Dots indicate the top 10 genes, those with the greatest
values of |zi |. The top gene, i = 610, has zi = 5.29 and estimated effect size 4.11.

the average value of μ is 4.11.” The N = ∞ prior ob-
servations outweigh any selection effects in the com-
paratively puny current sample, which is another way
of stating the wonderful fact.

Of course, we usually don’t have an infinite amount
of relevant past experience. Our empirical Bayes es-
timate μ̂610 = 4.11 is based on just the N = 6033
observed zi values. One might ask how immune are
empirical Bayes estimates to selection bias? This
is the kind of important indirect-evidence question
that I’m hoping statisticians will soon be able to an-
swer.

TABLE 2
Top 10 genes, those with largest values of |zi |, in the prostate

study and their corresponding effect size estimates μ̂i

Gene z-value μ̂i = Ê{μi |zi}

1 610 5.29 4.11
2 1720 4.83 3.65
3 332 4.47 3.24
4 364 −4.42 −3.57
5 914 4.40 3.16
6 3940 −4.33 −3.52
7 4546 −4.29 −3.47
8 1068 4.25 2.99
9 579 4.19 2.92

10 4331 −4.14 −3.30

10. LEARNING FROM THE EXPERIENCE OF
OTHERS

As I said earlier, current statistical practice is domi-
nated by frequentist methodology based on direct evi-
dence. I don’t believe this kind of single-problem N =
1 thinking, even supplemented by aggressive regres-
sion technology, will carry the day in an era of enor-
mous data sets and large-scale inferences. The proper
use of indirect evidence—learning from the experience
of others—is a pressing challenge for both theoretical
and applied statisticians. Perhaps I should just say that
frequentists need to become better Bayesians.

This doesn’t let Bayesians off the hook. A “theory of
everything” can be a dangerous weapon in the messy
world of statistical applications. The tacit assumption
of having N = ∞ relevant past cases available for any
observed value of the data can lead to a certain reck-
less optimism in one’s conclusions. Frequentism is a
leaky philosophy but a good set of work rules. Its fun-
damentally conservative attitude encourages a careful
examination of what can go wrong as well as right with
statistical procedures and, as I’ve tried to say, there’s no
shortage of wrong steps possible in our new massive-
data environment.

Fisherian procedures, which I haven’t talked about
here, often provide a pleasant compromise between
Bayesian and frequentist methodology. Maximum like-
lihood estimation in particular can be interpreted from
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both viewpoints, as a preferred way of combining ev-
idence from different sources. Fisher’s theory was de-
veloped in a small-sample direct-evidence framework,
however, and doesn’t answer the questions raised here.
Mainly it makes me hope for a new generation of
Fishers, Neymans, Hotellings, etc., to deal with 21st-
century problems.

Empirical Bayes methods seem to me to be the most
promising candidates for a combined Bayesian/fre-
quentist attack on large-scale data analysis problems,
but they have been “promising” for 50-plus years now,
and have yet to form into a coherent theory. Most press-
ingly, both frequentists and Bayesians enjoy convinc-
ing information theories saying how well one can do
in any given situation, while empirical Bayesians still
operate on an ad hoc basis.

This is an exciting time to be a statistician: we have
a new class of difficult but not impossible problems to
wrestle with, which is the most any intellectual disci-
pline can hope for. The wrestling process is already
well underway, as witnessed in our journals and con-
ferences. Like most talks that have “future” in the title,
this one will probably seem quaint and limited not very
long from now, but perhaps the discussants will have
more to say about that.
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