
may 2011 | vol. 54 | no. 5 | communications of the acm 67

Microp rocessors—s in gl e- ch ip co mpu ters—are
the building blocks of the information world. Their
performance has grown 1,000-fold over the past 20
years, driven by transistor speed and energy scaling, as
well as by microarchitecture advances that exploited
the transistor density gains from Moore’s Law. In the

next two decades, diminishing tran-
sistor-speed scaling and practical en-
ergy limits create new challenges for
continued performance scaling. As
a result, the frequency of operations
will increase slowly, with energy the
key limiter of performance, forcing
designs to use large-scale parallel-
ism, heterogeneous cores, and accel-
erators to achieve performance and
energy efficiency. Software-hardware
partnership to achieve efficient data
orchestration is increasingly critical in
the drive toward energy-proportional
computing.

Our aim here is to reflect and proj-
ect the macro trends shaping the fu-
ture of microprocessors and sketch in
broad strokes where processor design
is going. We enumerate key research
challenges and suggest promising
research directions. Since dramatic
changes are coming, we also seek to
inspire the research community to in-

vent new ideas and solutions address
how to sustain computing’s exponen-
tial improvement.

Microprocessors (see Figure 1) were
invented in 1971,28 but it’s difficult to-
day to believe any of the early inventors
could have conceived their extraor-
dinary evolution in structure and use
over the past 40 years. Microprocessors
today not only involve complex micro-

The Future
of
Microprocessors

doi:10.1145/1941487.1941507

Energy efficiency is the new fundamental
limiter of processor performance,
way beyond numbers of processors.

by Shekhar Borkar and Andrew A. Chien

 key insights

 � �Moore’s Law continues but demands
radical changes in architecture and
software.

 � �Architectures will go beyond
homogeneous parallelism, embrace
heterogeneity, and exploit the bounty
of transistors to incorporate
application-customized hardware.

 � �Software must increase parallelism
and exploit heterogeneous and
application-customized hardware
to deliver performance growth.

68 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

architectures and multiple execution
engines (cores) but have grown to in-
clude all sorts of additional functions,
including floating-point units, caches,
memory controllers, and media-pro-
cessing engines. However, the defin-
ing characteristics of a microprocessor
remain—a single semiconductor chip
embodying the primary computation
(data transformation) engine in a com-
puting system.

Because our own greatest access
and insight involves Intel designs and
data, our graphs and estimates draw
heavily on them. In some cases, they
may not be representative of the entire
industry but certainly represent a large
fraction. Such a forthright view, solidly
grounded, best supports our goals for
this article.

20 Years of Exponential
Performance Gains
For the past 20 years, rapid growth in
microprocessor performance has been
enabled by three key technology driv-
ers—transistor-speed scaling, core mi-
croarchitecture techniques, and cache
memories—discussed in turn in the
following sections:

Transistor-speed scaling. The MOS
transistor has been the workhorse for
decades, scaling in performance by
nearly five orders of magnitude and
providing the foundation for today’s
unprecedented compute performance.
The basic recipe for technology scaling
was laid down by Robert N. Dennard of
IBM17 in the early 1970s and followed
for the past three decades. The scal-
ing recipe calls for reducing transistor

dimensions by 30% every generation
(two years) and keeping electric fields
constant everywhere in the transis-
tor to maintain reliability. This might
sound simple but is increasingly diffi-
cult to continue for reasons discussed
later. Classical transistor scaling pro-
vided three major benefits that made
possible rapid growth in compute per-
formance.

First, the transistor dimensions are
scaled by 30% (0.7x), their area shrinks
50%, doubling the transistor density
every technology generation—the fun-
damental reason behind Moore’s Law.
Second, as the transistor is scaled, its
performance increases by about 40%
(0.7x delay reduction, or 1.4x frequen-
cy increase), providing higher system
performance. Third, to keep the elec-
tric field constant, supply voltage is re-
duced by 30%, reducing energy by 65%,
or power (at 1.4x frequency) by 50%
(active power = CV2f). Putting it all to-
gether, in every technology generation
transistor integration doubles, circuits
are 40% faster, and system power con-
sumption (with twice as many transis-
tors) stays the same. This serendipi-
tous scaling (almost too good to be
true) enabled three-orders-of-magni-
tude increase in microprocessor per-
formance over the past 20 years. Chip
architects exploited transistor density
to create complex architectures and
transistor speed to increase frequency,
achieving it all within a reasonable
power and energy envelope.

Core microarchitecture tech-
niques. Advanced microarchitectures
have deployed the abundance of tran-
sistor-integration capacity, employing
a dizzying array of techniques, includ-
ing pipelining, branch prediction,
out-of-order execution, and specula-
tion, to deliver ever-increasing perfor-
mance. Figure 2 outlines advances in
microarchitecture, showing increases
in die area and performance and en-
ergy efficiency (performance/watt),
all normalized in the same process
technology. It uses characteristics of
Intel microprocessors (such as 386,
486, Pentium, Pentium Pro, and Pen-
tium 4), with performance measured
by benchmark SpecInt (92, 95, and
2000 representing the current bench-
mark for the era) at each data point.
It compares each microarchitecture
advance with a design without the ad-

Figure 1. Evolution of Intel microprocessors 1971–2009.

Intel 4004, 1971
1 core, no cache
23K transistors

Intel 8088, 1978
1 core, no cache
29K transistors

Intel Mehalem-EX, 2009
8 cores, 24MB cache

2.3B transistors

Figure 2. Architecture advances and energy efficiency.

  Die Area
  Integer Performance (X)

  FP Performance (X)
  Int Performance/Watt (X)

386 to 486

486 to Pentium

Pentium to P6
P6 to Pentium 4

Pentium 4
to Core

4

3

2

1

0

On-die cache,
pipelined

In
cr

ea
se

 (
X

)

Super-scalar OOO-Speculative Deep pipeline Back to non-deep
pipeline

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 69

vance (such as introducing an on-die
cache by comparing 486 to 386 in 1μ
technology and superscalar microar-
chitecture of Pentium in 0.7μ technol-
ogy with 486).

This data shows that on-die caches
and pipeline architectures used tran-
sistors well, providing a significant
performance boost without compro-
mising energy efficiency. In this era,
superscalar, and out-of-order archi-
tectures provided sizable performance
benefits at a cost in energy efficiency.
Of these architectures, deep-pipe-
lined design seems to have delivered
the lowest performance increase for
the same area and power increase as
out-of-order and speculative design,
incurring the greatest cost in energy
efficiency. The term “deep pipelined
architecture” describes deeper pipe-
line, as well as other circuit and mi-
croarchitectural techniques (such as
trace cache and self-resetting domino
logic) employed to achieve even high-
er frequency. Evident from the data is
that reverting to a non-deep pipeline
reclaimed energy efficiency by drop-
ping these expensive and inefficient
techniques.

When transistor performance in-
creases frequency of operation, the
performance of a well-tuned system
generally increases, with frequency
subject to the performance limits of
other parts of the system. Historically,
microarchitecture techniques exploit-
ing the growth in available transistors
have delivered performance increases
empirically described by Pollack’s
Rule,32 whereby performance increas-
es (when not limited by other parts
of the system) as the square root of
the number of transistors or area of
a processor (see Figure 3). According
to Pollack’s Rule, each new technol-
ogy generation doubles the number
of transistors on a chip, enabling a
new microarchitecture that delivers a
40% performance increase. The faster
transistors provide an additional 40%
performance (increased frequency),
almost doubling overall performance
within the same power envelope (per
scaling theory). In practice, however,
implementing a new microarchitec-
ture every generation is difficult, so
microarchitecture gains are typically
less. In recent microprocessors, the in-
creasing drive for energy efficiency has

caused designers to forego many of
these microarchitecture techniques.

As Pollack’s Rule broadly captures
area, power, and performance trade-
offs from several generations of mi-
croarchitecture, we use it as a rule
of thumb to estimate single-thread
performance in various scenarios
throughout this article.

Cache memory architecture. Dy-
namic memory technology (DRAM)
has also advanced dramatically with
Moore’s Law over the past 40 years but
with different characteristics. For ex-
ample, memory density has doubled
nearly every two years, while perfor-
mance has improved more slowly (see
Figure 4a). This slower improvement
in cycle time has produced a memory
bottleneck that could reduce a sys-
tem’s overall performance. Figure 4b
outlines the increasing speed dispar-
ity, growing from 10s to 100s of proces-
sor clock cycles per memory access. It
has lately flattened out due to the flat-
tening of processor clock frequency.

Unaddressed, the memory-latency gap
would have eliminated and could still
eliminate most of the benefits of pro-
cessor improvement.

The reason for slow improvement
of DRAM speed is practical, not tech-
nological. It’s a misconception that
DRAM technology based on capacitor
storage is inherently slower; rather, the
memory organization is optimized for
density and lower cost, making it slow-
er. The DRAM market has demanded
large capacity at minimum cost over
speed, depending on small and fast
caches on the microprocessor die to
emulate high-performance memory
by providing the necessary bandwidth
and low latency based on data locality.
The emergence of sophisticated, yet
effective, memory hierarchies allowed
DRAM to emphasize density and cost
over speed. At first, processors used a
single level of cache, but, as processor
speed increased, two to three levels of
cache hierarchies were introduced to
span the growing speed gap between

Figure 3. Increased performance vs. area in the same process technology follows
Pollack’s Rule.

10.0

1.0

0.1

0.1 1.0 10.0

In
te

g
er

 P
er

fo
rm

an
ce

 (
X

)

Area (X)

Performance ~ Sqrt(Area)

Slope =0.5

Pentium 4 to Core

P6 to Pentium 4

Pentium to P6

486 to Pentium

386 to 486

Figure 4. DRAM density and performance, 1980–2010.

DRAM Density

CPU

Speed

GAP

DRAM Speed

100,000

10,000

1,000

100

10

1

1,000

100

10

1

1980 19801990 19902000 20002010 2010

R
el

at
iv

e

C
P

U
 C

lo
ck

s/
D

R
AM

 L

at
en

cy

(a) (b)

70 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

processor and memory.33,37 In these
hierarchies, the lowest-level caches
were small but fast enough to match
the processor’s needs in terms of high
bandwidth and low latency; higher lev-
els of the cache hierarchy were then
optimized for size and speed.

Figure 5 outlines the evolution of
on-die caches over the past two de-
cades, plotting cache capacity (a) and
percentage of die area (b) for Intel
microprocessors. At first, cache sizes
increased slowly, with decreasing die

area devoted to cache, and most of the
available transistor budget was devot-
ed to core microarchitecture advances.
During this period, processors were
probably cache-starved. As energy be-
came a concern, increasing cache size
for performance has proven more en-
ergy efficient than additional core-mi-
croarchitecture techniques requiring
energy-intensive logic. For this reason,
more and more transistor budget and
die area are allocated in caches.

The transistor-scaling-and-micro-

architecture-improvement cycle has
been sustained for more than two
decades, delivering 1,000-fold perfor-
mance improvement. How long will it
continue? To better understand and
predict future performance, we decou-
ple performance gain due to transistor
speed and microarchitecture by com-
paring the same microarchitecture
on different process technologies and
new microarchitectures with the previ-
ous ones, then compound the perfor-
mance gain.

Figure 6 divides the cumulative
1,000-fold Intel microprocessor per-
formance increase over the past two
decades into performance delivered by
transistor speed (frequency) and due to
microarchitecture. Almost two-orders-
of-magnitude of this performance in-
crease is due to transistor speed alone,
now leveling off due to the numerous
challenges described in the following
sections.

The Next 20 Years
Microprocessor technology has deliv-
ered three-orders-of-magnitude per-
formance improvement over the past
two decades, so continuing this tra-
jectory would require at least 30x per-
formance increase by 2020. Micropro-

Figure 5. Evolution of on-die caches.

10,000

1,000

100

10

1

60%

50%

40%

30%

20%

10%

0%

1u 1u0.5u 0.5u0.25u 0.25u0.13u 0.13u65nm 65nm

O
n

-d
ie

 c
ac

h
e

(K
B

)

O
n

-d
ie

 c
ac

h
e

%

of
 t

ot
al

 d
ie

 a
re

a

(a) (b)

Figure 7. Unconstrained evolution of a microprocessor results in excessive power
consumption.

Unconstrained Evolution 100mm2 Die

P
ow

er
 (

W
at

ts
)

500

400

300

200

100

0

2002 2006 2010 2014 2008

Figure 6. Performance increase separated into transistor speed and microarchitecture
performance.

  Integer Performance
  Transistor Performance

  Floating-Point Performance
  Transistor Performance

10,000

1,000

100

10

1

10,000

1,000

100

10

1

1.5u 1.5u0.5u 0.5u0.18u 0.18u65nm 65nm

R
el

at
iv

e

R
el

at
iv

e

(a) (b)

Table 1. New technology scaling
challenges.

Decreased transistor scaling benefits:
Despite continuing miniaturization, little
performance improvement and little
reduction in switching energy (decreasing
performance benefits of scaling) [ITRS].

Flat total energy budget: package
power and mobile/embedded computing
drives energy-efficiency requirements.

Table 2. Ongoing technology scaling.

Increasing transistor density (in area
and volume) and count: through
continued feature scaling, process
innovations, and packaging innovations.

Need for increasing locality and
reduced bandwidth per operation:
as performance of the microprocessor
increases, and the data sets for
applications continue to grow.

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 71

cessor-performance scaling faces new
challenges (see Table 1) precluding
use of energy-inefficient microarchi-
tecture innovations developed over the
past two decades. Further, chip archi-
tects must face these challenges with
an ongoing industry expectation of a
30x performance increase in the next
decade and 1,000x increase by 2030
(see Table 2).

As the transistor scales, supply
voltage scales down, and the thresh-
old voltage of the transistor (when
the transistor starts conducting) also
scales down. But the transistor is not
a perfect switch, leaking some small
amount of current when turned off,
increasing exponentially with reduc-
tion in the threshold voltage. In ad-
dition, the exponentially increasing
transistor-integration capacity exacer-
bates the effect; as a result, a substan-
tial portion of power consumption is
due to leakage. To keep leakage under
control, the threshold voltage cannot
be lowered further and, indeed, must
increase, reducing transistor perfor-
mance.10

As transistors have reached atomic
dimensions, lithography and variabil-
ity pose further scaling challenges, af-
fecting supply-voltage scaling.11 With
limited supply-voltage scaling, energy
and power reduction is limited, ad-
versely affecting further integration
of transistors. Therefore, transistor-
integration capacity will continue with
scaling, though with limited perfor-
mance and power benefit. The chal-
lenge for chip architects is to use this
integration capacity to continue to im-
prove performance.

Package power/total energy con-
sumption limits number of logic tran-
sistors. If chip architects simply add
more cores as transistor-integration
capacity becomes available and oper-
ate the chips at the highest frequen-
cy the transistors and designs can
achieve, then the power consumption
of the chips would be prohibitive (see
Figure 7). Chip architects must limit
frequency and number of cores to keep
power within reasonable bounds, but
doing so severely limits improvement
in microprocessor performance.

Consider the transistor-integration
capacity affordable in a given power
envelope for reasonable die size. For
regular desktop applications the pow-

er envelope is around 65 watts, and
the die size is around 100mm2. Figure
8 outlines a simple analysis for 45nm
process technology node; the x-axis is
the number of logic transistors inte-
grated on the die, and the two y-axes
are the amount of cache that would fit
and the power the die would consume.
As the number of logic transistors on
the die increases (x-axis), the size of the
cache decreases, and power dissipa-
tion increases. This analysis assumes
average activity factor for logic and

cache observed in today’s micropro-
cessors. If the die integrates no logic at
all, then the entire die could be popu-
lated with about 16MB of cache and
consume less than 10 watts of power,
since caches consume less power than
logic (Case A). On the other hand, if it
integrates no cache at all, then it could
integrate 75 million transistors for log-
ic, consuming almost 90 watts of pow-
er (Case B). For 65 watts, the die could
integrate 50 million transistors for
logic and about 6MB of cache (Case C).

Traditional wisdom suggests investing maximum transistors in the 90% case, with
the goal of using precious transistors to increase single-thread performance that can
be applied broadly. In the new scaling regime typified by slow transistor performance
and energy improvement, it often makes no sense to add transistors to a single core
as energy efficiency suffers. Using additional transistors to build more cores produces
a limited benefit—increased performance for applications with thread parallelism.
In this world, 90/10 optimization no longer applies. Instead, optimizing with an
accelerator for a 10% case, then another for a different 10% case, then another 10%
case can often produce a system with better overall energy efficiency and performance.
We call this “10×10 optimization,”14 as the goal is to attack performance as a set of
10% optimization opportunities—a different way of thinking about transistor cost,
operating the chip with 10% of the transistors active—90% inactive, but a different 10%
at each point in time.

Historically, transistors on a chip were expensive due to the associated design
effort, validation and testing, and ultimately manufacturing cost. But 20 generations
of Moore’s Law and advances in design and validation have shifted the balance.
Building systems where the 10% of the transistors that can operate within the energy
budget are configured optimally (an accelerator well-suited to the application) may
well be the right solution. The choice of 10 cases is illustrative, and a 5×5, 7×7, 10×10,
or 12×12 architecture might be appropriate for a particular design.

Death of
90/10 Optimization,
Rise of
10×10 Optimization

Figure 8. Transistor integration capacity at a fixed power envelope.

Case B

Case A, 0 Logic, 8W

Case A, 16MB of Cache

Case C
50MT Logic
6MB Cache

Power Dissipation

Cache Size

100

80

60

40

20

0

18

16

14

12

10

8

6

4

2

0

0 20 40 60 80

To
ta

l P
ow

er
 (

W
at

ts
)

Logic Transistors (Millions)

2008, 45nm, 100mm2

C
ac

h
e

(M
B

)

72 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

This design point matches the dual-
core microprocessor on 45nm technol-
ogy (Core2 Duo), integrating two cores
of 25 million transistors each and 6MB
of cache in a die area of about 100mm2.

If this analysis is performed for fu-
ture technologies, assuming (our best
estimates) modest frequency increase
15% per generation, 5% reduction in
supply voltage, and 25% reduction of

capacitance, then the results will be
as they appear in Table 1. Note that
over the next 10 years we expect in-
creased total transistor count, follow-
ing Moore’s Law, but logic transistors
increase by only 3x and cache transis-
tors increase more than 10x. Apply-
ing Pollack’s Rule, a single processor
core with 150 million transistors will
provide only about 2.5x microarchitec-
ture performance improvement over
today’s 25-million-transistor core,
well shy of our 30x goal, while 80MB of
cache is probably more than enough
for the cores (see Table 3).

The reality of a finite (essentially
fixed) energy budget for a microproces-
sor must produce a qualitative shift in
how chip architects think about archi-
tecture and implementation. First, en-
ergy-efficiency is a key metric for these
designs. Second, energy-proportional
computing must be the ultimate goal
for both hardware architecture and
software-application design. While
this ambition is noted in macro-scale
computing in large-scale data cen-
ters,5 the idea of micro-scale energy-
proportional computing in micropro-
cessors is even more challenging. For
microprocessors operating within a
finite energy budget, energy efficiency
corresponds directly to higher perfor-
mance, so the quest for extreme energy
efficiency is the ultimate driver for per-
formance.

In the following sections, we out-
line key challenges and sketch poten-
tial approaches. In many cases, the
challenges are well known and the
subject of significant research over
many years. In all cases, they remain
critical but daunting for the future of
microprocessor performance:

Organizing the logic: Multiple cores
and customization. The historic mea-
sure of microprocessor capability is
the single-thread performance of a
traditional core. Many researchers
have observed that single-thread per-
formance has already leveled off, with
only modest increases expected in the
coming decades. Multiple cores and
customization will be the major driv-
ers for future microprocessor perfor-
mance (total chip performance). Mul-
tiple cores can increase computational
throughput (such as a 1x–4x increase
could result from four cores), and cus-
tomization can reduce execution la-

Figure 9. Three scenarios for integrating 150-million logic transistors into cores.

(a) (b) (c)

Large-Core
25 MT

2

43

5 6

Large-Core Homogeneous

Large-core
throughput

1

Small-core
throughput

Total
throughput

6

Small-Core Homogeneous

Large-core
throughput

Small-core
throughput

Pollack’s Rule
(5/25)0.5=0.45

Total
throughput

13

Small-Core Homogeneous

Large-core
throughput

1

Small-core
throughput

Pollack’s Rule
(5/25)0.5=0.45

Total
throughput

11

5 MT 2 3

30

5 MT 2 3

20

Large-Core
25MT

Figure 10. A system-on-a-chip from Texas Instruments.

ARM
Cortex

A8
CPU

C64x+ DSP
and video

accelerators
(3525/3530 only)

Display Subsystem

Peripherals

Camera I/F

Connectivity

Serial Interfaces

System

Program/Data Storage

2D/3D Graphics
(3515/3530 only)

LCD
Controller

USB 2.0 HS
OTG Controller

McBSP x5 I2C x3 UART x2 HDQ/1-wire SDRC

GPMCUART w/
IRDAMcSPI x4

Timers
GP x12
WDT x2

MMC/SD/SDIO
x3

Image
Pipe

Video
Enc

USB Host
Controller x2

10-bit DAC

Parallel I/F

10-bit DAC

L3/L4 Interconnect

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 73

tency. Clearly, both techniques—mul-
tiple cores and customization—can
improve energy efficiency, the new
fundamental limiter to capability.

Choices in multiple cores. Multiple
cores increase computational through-
put by exploiting Moore’s Law to rep-
licate cores. If the software has no
parallelism, there is no performance
benefit. However, if there is parallel-
ism, the computation can be spread
across multiple cores, increasing over-
all computational performance (and
reducing latency). Extensive research
on how to organize such systems dates
to the 1970s.29,39

Industry has widely adopted a mul-
ticore approach, sparking many ques-
tions about number of cores and size/
power of each core and how they co-
ordinate.6,36 But if we employ 25-mil-
lion-transistor cores (circa 2008), the
150-million-logic-transistor budget
expected in 2018 gives 6x potential
throughput improvement (2x from
frequency and 3x from increased log-
ic transistors), well short of our 30x
goal. To go further, chip architects
must consider more radical options
of smaller cores in greater numbers,
along with innovative ways to coordi-
nate them.

Looking to achieve this vision,
consider three potential approaches
to deploying the feasible 150 million
logic transistors, as in Table 1. In Fig-
ure 9, option (a) is six large cores (good
single-thread performance, total po-
tential throughput of six); option (b) is
30 smaller cores (lower single-thread
performance, total potential through-
put of 13); and option (c) is a hybrid
approach (good single-thread perfor-
mance for low parallelism, total poten-
tial throughput of 11).

Many more variations are possible
on this spectrum of core size and num-

ber of cores, and the related choices
in a multicore processor with uniform
instruction set but heterogeneous im-
plementation are an important part
of increasing performance within the
transistor budget and energy envelope.

Choices in hardware customization.
Customization includes fixed-function
accelerators (such as media codecs,
cryptography engines, and composit-
ing engines), programmable accelera-
tors, and even dynamically customiz-
able logic (such as FPGAs and other
dynamic structures). In general, cus-
tomization increases computational
performance by exploiting hardwired
or customized computation units, cus-
tomized wiring/interconnect for data
movement, and reduced instruction-
sequence overheads at some cost in
generality. In addition, the level of par-
allelism in hardware can be custom-
ized to match the precise needs of the
computation; computation benefits
from hardware customization only
when it matches the specialized hard-
ware structures. In some cases, units
hardwired to a particular data repre-
sentation or computational algorithm
can achieve 50x–500x greater energy
efficiency than a general-purpose reg-
ister organization. Two studies21,22 of a
media encoder and TCP offload engine
illustrate the large energy-efficiency
improvement that is possible.

Due to battery capacity and heat-
dissipation limits, for many years
energy has been the fundamental
limiter for computational capabil-

ity in smartphone system-on-a-chip
(SoC). As outlined in Figure 10, such
an SoC might include as many as 10
to 20 accelerators to achieve a supe-
rior balance of energy efficiency and
performance. This example could also
include graphics, media, image, and
cryptography accelerators, as well as
support for radio and digital signal
processing. As one might imagine,
one of these blocks could be a dynami-
cally programmable element (such as
an FPGA or a software-programmable
processor).

Another customization approach
constrains the types of parallelism
that can be executed efficiently, en-
abling a simpler core, coordination,
and memory structures; for example,
many CPUs increase energy efficiency
by restricting memory access structure
and control flexibility in single-instruc-
tion, multiple-data or vector (SIMD)
structures,1,2 while GPUs encourage
programs to express structured sets
of threads that can be aligned and ex-
ecuted efficiently.26,30 This alignment
reduces parallel coordination and
memory-access costs, enabling use of
large numbers of cores and high peak
performance when applications can
be formulated with a compatible par-
allel structure. Several microprocessor
manufacturers have announced future
mainstream products that integrate
CPUs and GPUs.

Customization for greater energy
or computational efficiency is a long-
standing technique, but broad adop-

Table 3. Extrapolated transistor
integration capacity in a fixed power
envelope.

Year

Logic
Transistors

(Millions) Cache MB

2008 50 6

2014 100 25

2018 150 80

Table 4. Logic organization challenges, trends, directions.

Challenge Near-Term Long-Term

Integration and
memory model

I/O-based interaction, shared memory
spaces, explicit coherence management

Intelligent, automatic data movement
among heterogeneous cores, managed
by software-hardware partnership

Software
transparency

Explicit partition and mapping,
virtualization, application management

Hardware-based state adaptation
and software-hardware partnership
for management

Lower-power
cores

Heterogeneous cores, vector extensions,
and GPU-like techniques to reduce
instruction- and data-movement cost

Deeper, explicit storage hierarchy within
the core; integrated computation in
registers

Energy
management

Hardware dynamic voltage scaling
and intelligent adaptive management,
software core selection and scheduling

Predictive core scheduling and selection
to optimize energy efficiency and
minimize data movement

Accelerator
variety

Increasing variety, library-based
encapsulation (such as DX and OpenGL)
for specific domains

Converged accelerators in a few
application categories and increasing
open programmability for the
accelerators

74 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

tion has been slowed by continued
improvement in microprocessor sin-
gle-thread performance. Developers of
software applications had little incen-
tive to customize for accelerators that
might be available on only a fraction of
the machines in the field and for which

the performance advantage might
soon be overtaken by advances in the
traditional microprocessor. With slow-
ing improvement in single-thread per-
formance, this landscape has changed
significantly, and for many applica-
tions, accelerators may be the only

path toward increased performance
or energy efficiency (see Table 4). But
such software customization is diffi-
cult, especially for large programs (see
the sidebar “Decline of 90/10 Optimi-
zation, Rise of 10x10 Optimization”).

Orchestrating data movement:
Memory hierarchies and intercon-
nects. In future microprocessors, the
energy expended for data movement
will have a critical effect on achiev-
able performance. Every nano-joule
of energy used to move data up and
down the memory hierarchy, as well
as to synchronize across and data be-
tween processors, takes away from the
limited budget, reducing the energy
available for the actual computation.
In this context, efficient memory hi-
erarchies are critical, as the energy to
retrieve data from a local register or
cache is far less than the energy to go
to DRAM or to secondary storage. In
addition, data must be moved between
processing units efficiently, and task
placement and scheduling must be
optimized against an interconnection
network with high locality. Here, we
examine energy and power associated
with data movement on the processor
die.

Today’s processor performance is
on the order of 100Giga-op/sec, and
a 30x increase over the next 10 years
would increase this performance to
3Tera-op/sec. At minimum, this boost
requires 9Tera-operands or 64b x
9Tera-operands (or 576Tera-bits) to be
moved each second from registers or
memory to arithmetic logic, consum-
ing energy.

Figure 11(a) outlines typical wire
delay and energy consumed in moving
one bit of data on the die. If the oper-
ands move on average 1mm (10% of
die size), then at the rate of 0.1pJ/bit,
the 576Tera-bits/sec of movement con-
sumes almost 58 watts with hardly any
energy budget left for computation. If
most operands are kept local to the ex-
ecution units (such as in register files)
and the data movement is far less than
1mm, on, say, the order of only 0.1mm,
then the power consumption is only
around 6 watts, allowing ample energy
budget for the computation.

Cores in a many-core system are
typically connected through a net-
work-on-a-chip to move data around
the cores.40 Here, we examine the ef-

Figure 12. Hybrid switching for network-on-a-chip.

Bus to connect
a cluster

Second-level bus to connect
clusters (hierarchy of busses)

Second-level router-based
network (hierarchy of networks)

C

C

Bus

C

C

C

C

Bus

C

C

C

C

Bus

C

C

C

C

Bus

C

C

C

C

Bus

C

C

C

C

Bus

C

C

C

C

Bus

C

C

C

C

Bus

C

C

C

C

Bus

C

C

R R

R R

Table 5. Data movement challenges, trends, directions.

Challenge Near-Term Long-Term

Parallelism Increased parallelism Heterogeneous parallelism and
customization, hardware/runtime
placement, migration, adaptation
for locality and load balance

Data Movement/
Locality

More complex, more exposed hierarchies;
new abstractions for control over
movement and “snooping”

New memory abstractions and
mechanisms for efficient vertical
data locality management with low
programming effort and energy

Resilience More aggressive energy reduction;
compensated by recovery for resilience

Radical new memory technologies
(new physics) and resilience techniques

Energy
Proportional
Communication

Fine-grain power management in packet
fabrics

Exploitation of wide data, slow clock,
and circuit-based techniques

Reduced Energy Low-energy address translation Efficient multi-level naming and
memory-hierarchy management

Figure 11. On-die interconnect delay and energy (45nm).

10,000

1,000

100

10

1

1,000

100

10

1

0.1

0.01

2

1.5

1

0.5

0
0 0.5u

Wire Delay

On-die network energy per bit

Wire Energy Measured

Extrapolated

5 0.18u10 65nm15 22nm20 8nm

D
el

ay
 (

p
s)

(p
J

)

p
J

/B
it

On-die interconnect length (mm)

(a) (b)

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 75

fect of such a network on power con-
sumption. Figure 11(b) shows the en-
ergy consumed in moving a bit across
a hop in such a network, measured in
historic networks, and extrapolated
into the future from previous assump-
tions. If only 10% of the operands move
over the network, traversing 10 hops
on average, then at the rate of 0.06pJ/
bit the network power would be 35
watts, more than half the power bud-
get of the processor.

As the energy cost of computation is
reduced by voltage scaling (described
later), emphasizing compute through-
put, the cost of data movement starts
to dominate. Therefore, data move-
ment must be restricted by keeping
data locally as much as possible. This
restriction also means the size of local
storage (such as a register file) must
increase substantially. This increase
is contrary to conventional thinking of
register files being small and thus fast.
With voltage scaling the frequency of
operation is lower anyway, so it makes
sense to increase the size of the local
storage at the expense of speed.

Another radical departure from
conventional thinking is the role of
the interconnect network on the chip.
Recent parallel machine designs have
been dominated by packet-switch-
ing,6,8,24,40 so multicore networks ad-
opted this energy-intensive approach.
In the future, data movement over
these networks must be limited to con-
serve energy, and, more important,
due to the large size of local storage
data bandwidth, demand on the net-
work will be reduced. In light of these
findings on-die-network architectures
need revolutionary approaches (such
as hybrid packet/circuit switching4).

Many older parallel machines used
irregular and circuit-switched net-
works31,41; Figure 12 describes a re-
turn to hybrid switched networks for
on-chip interconnects. Small cores in
close proximity could be interconnect-
ed into clusters with traditional bus-
ses that are energy efficient for data
movement over short distances. The
clusters could be connected through
wide (high-bandwidth) low-swing (low-
energy) busses or through packet- or
circuit-switched networks, depending
on distance. Hence the network-on-a-
chip could be hierarchical and hetero-
geneous, a radical departure from the

traditional parallel-machine approach
(see Table 5).

The role of microprocessor archi-
tect must expand beyond the proces-
sor core, into the whole platform on
a chip, optimizing the cores as well as
the network and other subsystems.

Pushing the envelope: Extreme
circuits, variability, resilience. Our
analysis showed that in the power-
constrained scenario, only 150 mil-
lion logic transistors for processor
cores and 80MB of cache will be af-
fordable due to energy by 2018. Note
that 80MB of cache is not necessary
for this system, and a large portion of
the cache-transistor budget can be uti-
lized to integrate even more cores if it
can be done with the power-consump-
tion density of a cache, which is 10x
less than logic. This approach can be
achieved through aggressive scaling of
supply voltage.25

Figure 13 outlines the effective-
ness of supply-voltage scaling when
the chip is designed for it. As the
supply voltage is reduced, frequency

also reduces, but energy efficiency in-
creases. When the supply voltage is
reduced all the way to the transistor’s
threshold, energy efficiency increases
by an order of magnitude. Employing
this technique on large cores would
dramatically reduce single-thread
performance and is hence not recom-
mended. However, smaller cores used

Table 6. Circuits challenges, trends, directions.

Challenge Near-Term Long-Term

Power, energy
efficiency

Continuous dynamic voltage and
frequency scaling, power gating, reactive
power management

Discrete dynamic voltage and frequency
scaling, near threshold operation,
proactive fine-grain power and energy
management

Variation Speed binning of parts, corrections with
body bias or supply voltage changes,
tighter process control

Dynamic reconfiguration of many cores
by speed

Gradual,
temporal,
intermittent,
and permanent
faults

Guard-bands, yield loss, core sparing,
design for manufacturability

Resilience with hardware/software
co-design, dynamic in-field detection,
diagnosis, reconfiguration and repair,
adaptability, and self-awareness

Figure 13. Improving energy efficiency through voltage scaling.

320mV 320mV

320mV

65nm CMOS, 50° C 65nm CMOS, 50° C

S
ub

th
re

sh
ol

d
R

eg
io

n

450

400

350

300

250

200

150

100

50

0

104

103

102

101

1

102

101

1

10–1

10–2

101

1

10–1

10–2

0.2 0.20.4 0.40.6 0.60.8 0.81.2 1.21.0 1.01.4 1.4

M
ax

im
u

m
 F

re
q

u
en

cy
 (

MH

z)

E
n

er
g

y
E

ffi
ci

en
ty

 (
G

O
P

/W
at

t)

To
ta

l P
ow

er
 (

W
at

ts
)

A
ct

iv
e

L
ea

ka
g

e
P

ow
er

 (
m

W
)

Supply Voltage (V) Supply Voltage (V)

Figure 14. A heterogeneous many-core
system with variation.

Single-thread
performance

Throughput
performance

Energy
efficient with
fine-grain
power
management

Large-Core Large-Core

f/2

f/2

f/2

f

f

f f

f/4

f/4

f/4

f/4

f/2

76 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

for throughput would certainly benefit
from it. Moreover, the transistor bud-
get from the unused cache could be
used to integrate even more cores with
the power density of the cache. Aggres-
sive voltage scaling provides an avenue
for utilizing the unused transistor-in-
tegration capacity for logic to deliver
higher performance.

Aggressive supply-voltage scaling
comes with its own challenges (such
as variations). As supply voltage is re-
duced toward a transistor’s threshold
voltage, the effect of variability is even
worse, because the speed of a circuit
is proportional to the voltage over-
drive (supply voltage minus threshold
voltage). Moreover, as supply voltage
approaches the threshold, any small
change in threshold voltage affects the
speed of the circuit. Therefore, varia-
tion in the threshold voltage mani-
fests itself as variation in the speed
of the core, the slowest circuit in the
core determines the frequency of op-
eration of the core, and a large core is
more susceptible to lower frequency
of operation due to variations. On the
other hand, a large number of small
cores has a better distribution of fast
and slow small cores and can better
even out the effect of variations. We
next discuss an example system that
is variation-tolerant, energy-efficient,
energy-proportional, and fine-grain
power managed.

A hypothetical heterogeneous pro-
cessor (see Figure 14) consists of a
small number of large cores for single-
thread performance and many small
cores for throughput performance.
Supply voltage and the frequency of any

given core are individually controlled
such that the total power consumption
is within the power envelope. Many
small cores operate at lower voltages
and frequency for improved energy ef-
ficiency, while some small cores oper-
ate near threshold voltage at the lowest
frequency but at higher energy effi-
ciency, and some cores may be turned
off completely. Clock frequencies need
not be continuous; steps (in powers of
two) keep the system synchronous and
simple without compromising perfor-
mance while also addressing variation
tolerance. The scheduler dynamically
monitors workload and configures the
system with the proper mix of cores
and schedules the workload on the
right cores for energy-proportional
computing. Combined heterogene-
ity, aggressive supply-voltage scaling,
and fine-grain power (energy) manage-
ment enables utilization of a larger
fraction of transistor-integration ca-
pacity, moving closer to the goal of 30x
increase in compute performance (see
Table 6).

Software challenges renewed: Pro-
grammability versus efficiency. The
end of scaling of single-thread perfor-
mance already means major software
challenges; for example, the shift to
symmetric parallelism has created per-
haps the greatest software challenge
in the history of computing,12,15 and
we expect future pressure on energy-
efficiency will lead to extensive use of
heterogeneous cores and accelerators,
further exacerbating the software chal-
lenge. Fortunately, the past decade has
seen increasing adoption of high-level
“productivity” languages20,34,35 built on

advanced interpretive and compiler
technologies, as well as increasing use
of dynamic translation techniques. We
expect these trends to continue, with
higher-level programming, extensive
customization through libraries, and
sophisticated automated performance
search techniques (such as autotun-
ing) will be even more important.

Extreme studies27,38 suggest that
aggressive high-performance and ex-
treme-energy-efficient systems may
go further, eschewing the overhead of
programmability features that soft-
ware engineers have come to take for
granted; for example, these future sys-
tems may drop hardware support for
a single flat address space (which nor-
mally wastes energy on address manip-
ulation/computing), single-memory
hierarchy (coherence and monitoring
energy overhead), and steady rate of
execution (adapting to the available
energy budget). These systems will
place more of these components un-
der software control, depending on in-
creasingly sophisticated software tools
to manage the hardware boundaries
and irregularities with greater energy
efficiency. In extreme cases, high-per-
formance computing and embedded
applications may even manage these
complexities explicitly. Most architec-
tural features and techniques we’ve
discussed here shift more responsi-
bility for distribution of the computa-
tion and data across the compute and
storage elements of microprocessors
to software.13,18 Shifting responsibility
increases potential achievable energy
efficiency, but realizing it depends on
significant advances in applications,
compilers and runtimes, and operat-
ing systems to understand and even
predict the application and workload
behavior.7,16,19 However, these ad-
vances require radical research break-
throughs and major changes in soft-
ware practice (see Table 7).

Conclusion
The past 20 years were truly the great
old days for Moore’s Law scaling and
microprocessor performance; dra-
matic improvements in transistor
density, speed, and energy, combined
with microarchitecture and memory-
hierarchy techniques delivered 1,000-
fold microprocessor performance
improvement. The next 20 years—the

Table 7. Software challenges, trends, directions.

Challenge Near-Term Long-Term

1,000-fold
software
parallelism

Data parallel languages and “mapping”
of operators, library and tool-based
approaches

New high-level languages,
compositional and deterministic
frameworks

Energy-efficient
data movement
and locality

Manual control, profiling, maturing to
automated techniques (auto-tuning,
optimization)

New algorithms, languages,
program analysis, runtime,
and hardware techniques

Energy
management

Automatic fine-grain hardware
management

Self-aware runtime and
application-level techniques that
exploit architecture features for
visibility and control

Resilience Algorithmic, application-software
approaches, adaptive checking and
recovery

New hardware-software partnerships
that minimize checking and
recomputation energy

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 77

pretty good new days, as progress
continues—will be more difficult,
with Moore’s Law scaling producing
continuing improvement in transis-
tor density but comparatively little
improvement in transistor speed and
energy. As a result, the frequency of
operation will increase slowly. Energy
will be the key limiter of performance,
forcing processor designs to use large-
scale parallelism with heterogeneous
cores, or a few large cores and a large
number of small cores operating at
low frequency and low voltage, near
threshold. Aggressive use of custom-
ized accelerators will yield the highest
performance and greatest energy effi-
ciency on many applications. Efficient
data orchestration will increasingly
be critical, evolving to more efficient
memory hierarchies and new types of
interconnect tailored for locality and
that depend on sophisticated software
to place computation and data so as to
minimize data movement. The objec-
tive is ultimately the purest form of
energy-proportional computing at the
lowest-possible levels of energy. Het-
erogeneity in compute and commu-
nication hardware will be essential to
optimize for performance for energy-
proportional computing and coping
with variability. Finally, programming
systems will have to comprehend
these restrictions and provide tools
and environments to harvest the per-
formance.

While no one can reliably predict
the end of Si CMOS scaling, for this
future scaling regime, many electrical
engineers have begun exploring new
types of switches and materials (such
as compound semiconductors, carbon
nanotubes, and graphene) with dif-
ferent performance and scaling char-
acteristics from Si CMOS, posing new
types of design and manufacturing
challenges. However, all such technol-
ogies are in their infancy, probably not
ready in the next decade to replace sili-
con but will pose the same challenges
with continued scaling. Quantum
electronics (such as quantum dots)
are even farther out and when realized
will reflect major challenges of its own,
with yet newer models of computation,
architecture, manufacturing, variabil-
ity, and resilience.

Because the future winners are far
from clear today, it is way too early to

predict whether some form of scaling
(perhaps energy) will continue or there
will be no scaling at all. The pretty
good old days of scaling that processor
design faces today are helping prepare
us for these new challenges. More-
over, the challenges processor design
will faces in the next decade will be
dwarfed by the challenges posed by
these alternative technologies, render-
ing today’s challenges a warm-up exer-
cise for what lies ahead.

Acknowledgments
This work was inspired by the Exas-
cale study working groups chartered in
2007 and 2008 by Bill Harrod of DAR-
PA. We thank him and the members
and presenters to the working groups
for valuable insightful discussions
over the past few years. We also thank
our colleagues at Intel who have im-
proved our understanding of these is-
sues through many thoughtful discus-
sions. Thanks, too, to the anonymous
reviewers whose extensive feedback
greatly improved the article. 	

References
1.	A dvanced Vector Extensions. Intel; http://en.wikipedia.

org/wiki/Advanced_Vector_Extensions
2.	A ltiVec, Apple, IBM, Freescale; http://en.wikipedia.org/

wiki/AltiVec
3.	A mdahl, G. Validity of the single-processor approach

to achieving large-scale computing capability. AFIPS
Joint Computer Conference (Apr. 1967), 483–485.

4.	A nders, M. et al. A 4.1Tb/s bisection-bandwidth
560Gb/s/W streaming circuit-switched 8x8 mesh
network-on-chip in 45nm CMOS. International Solid
State Circuits Conference (Feb. 2010).

5.	 Barroso, L.A. and Hölzle, U. The case for energy-
proportional computing. IEEE Computer 40, 12 (Dec.
2007).

6.	 Bell, S. et. al. TILE64 processor: A 64-core SoC with
mesh interconnect. IEEE International Solid-State
Circuits Conference (2008).

7.	 Bienia, C. et. al. The PARSEC benchmark suite:
Characterization and architectural implications.
The 17th International Symposium on Parallel
Architectures and Compilation Techniques (2008).

8.	 Blumrich, M. et. al. Design and Analysis of the Blue
Gene/L Torus Interconnection Network. IBM Research
Report, 2003.

9.	 Borkar, S. Designing reliable systems from unreliable
components: The challenges of transistor variability
and degradation. IEEE Micro 25, 6 (Nov.–Dec. 2005).

10.	 Borkar, S. Design challenges of technology scaling.
IEEE Micro 19, 4 (July–Aug. 1999).

11.	 Borkar, S. et al. Parameter variations and impact
on circuits and microarchitecture. The 40th Annual
Design Automation Conference (2003).

12.	 Catanzaro, B. et. al. Ubiquitous parallel computing
from Berkeley, Illinois, and Stanford. IEEE Micro 30, 2
(2010).

13.	 Cray, Inc. Chapel Language Specification. Seattle, WA,
2010; http://chapel.cray.com/spec/spec-0.795.pdf

14.	 Chien, A. 10x10: A general-purpose architectural
approach to heterogeneity and energy efficiency. The
Third Workshop on Emerging Parallel Architctures
at the International Conference on Computational
Science (June 2011).

15.	 Chien, A. Pervasive parallel computing: An historic
opportunity for innovation in programming and
architecture. ACM Principles and Practice of Parallel
Programming (2007).

16.	 Cooper, B. et al. Benchmarking cloud serving systems

with YCSB. ACM Symposium on Cloud Computing
(June 2010).

17.	 Dennard, R. et al. Design of ion-implanted MOSFETs
with very small physical dimensions. IEEE Journal of
Solid State Circuits SC-9, 5 (Oct. 1974), 256–268.

18.	 Fatahalian, K. et al. Sequoia: Programming the memory
hierarchy. ACM/IEEE Conference on Supercomputing
(Nov. 2006).

19.	 Flinn, J. et al. Managing battery lifetime with energy-
aware adaptation. ACM Transactions on Computer
Systems 22, 2 (May 2004).

20.	 Gosling, J. et al. The Java Language Specification,
Third Edition. Addison-Wesley, 2005.

21.	 Hameed, R. et al. Understanding sources of inefficiency
in general-purpose chips. International Symposium on
Computer Architecture (2010).

22.	 Hoskote, Y. et al. A TCP offload accelerator for 10Gb/s
Ethernet in 90-nm CMOS. IEEE Journal of Solid-State
Circuits 38, 11 (Nov. 2003).

23.	 International Technology Roadmap for
Semiconductors, 2009; http://www.itrs.net/
Links/2009ITRS/Home2009.htm

24.	 Karamcheti, V. et al. Comparison of architectural
support for messaging in the TMC CM-5 and Cray T3D.
International Symposium on Computer Architecture
(1995).

25.	 Kaul, H. et al. A 320mV 56W 411GOPS/Watt ultra-low-
voltage motion-estimation accelerator in 65nm CMOS.
IEEE Journal of Solid-State Circuits 44, 1 (Jan. 2009).

26.	 The Khronos Group. OpenCL, the Open Standard for
Heterogeneous Parallel Programming, Feb. 2009;
http://www.khronos.org/opencl/

27.	 Kogge, P. et al. Exascale Computing Study:
Technology Challenges in Achieving an Exascale
System; http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/exascale_final_
report_100208.pdf

28.	 Mazor, S. The history of microcomputer-invention and
evolution. Proceedings of the IEEE 83, 12 (Dec. 1995).

29.	N oguchi, K., Ohnishi, I., and Morita, H. Design
considerations for a heterogeneous tightly coupled
multiprocessor system. AFIPS National Computer
Conference (1975).

30.	N vidia Corp. CUDA Programming Guide Version 2.0,
June 2008; http://www.nvidia.com/object/cuda_home_
new.html

31.	 Pfister, G. et al. The research parallel processor
prototype (RP3): Introduction and architecture.
International Conference on Parallel Processing (Aug.
1985).

32.	 Pollack, F. Pollack’s Rule of Thumb for Microprocessor
Performance and Area; http://en.wikipedia.org/wiki/
Pollack’s_Rule

33.	 Przybylski, S.A. et al. Characteristics of performance-
optimal multi-level cache hierarchies. International
Symposium on Computer Architecture (June 1989).

34.	R ichter, J. The CLR Via C#, Second Edition, 1997.
35.	R uby Documentation Project. Programming Ruby: The

Pragmatic Programmer’s Guide; http://www.ruby-doc.
org/docs/ProgrammingRuby/

36.	 Seiler, L. et al. Larrabee: Many-core x86 architecture
for visual computing. ACM Transactions on Graphics
27, 3 (Aug. 2008).

37.	 Strecker, W. Transient behavior of cache memories.
ACM Transactions on Computer Systems 1, 4 (Nov.
1983).

38.	 Sarkar, V. et al. Exascale Software Study:
Software Challenges in Extreme-Scale
Systems; http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSS%20report%20
101909.pdf

39.	 Tartar, J. Multiprocessor hardware: An architectural
overview. ACM Annual Conference (1980).

40.	Weingold, E. et al. Baring it all to software: Raw
machines. IEEE Computer 30, 9 (Sept. 1997).

41.	 Wulf, W. and Bell, C.G. C.mmp: A multi-miniprocessor.
AFIPS Joint Computer Conferences (Dec. 1972).

Shekhar Borkar (Shekhar.Y.Borkar@intel.com) is an
Intel Fellow and director of exascale technology at Intel
Corporation, Hillsboro, OR.

Andrew A. Chien (Andrew.Chien@alum.mit.edu) is
former vice president of research at Intel Corporation and
currently adjunct professor in the Computer Science and
Engineering Department at the University of California,
San Diego.

© 2011 ACM 0001-0782/11/05 $10.00

