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Microp rocessors—s in gl e- ch ip  co mpu ters—are 
the building blocks of the information world. Their 
performance has grown 1,000-fold over the past 20 
years, driven by transistor speed and energy scaling, as 
well as by microarchitecture advances that exploited 
the transistor density gains from Moore’s Law. In the

next two decades, diminishing tran-
sistor-speed scaling and practical en-
ergy limits create new challenges for 
continued performance scaling. As 
a result, the frequency of operations 
will increase slowly, with energy the 
key limiter of performance, forcing 
designs to use large-scale parallel-
ism, heterogeneous cores, and accel-
erators to achieve performance and 
energy efficiency. Software-hardware 
partnership to achieve efficient data 
orchestration is increasingly critical in 
the drive toward energy-proportional 
computing. 

Our aim here is to reflect and proj-
ect the macro trends shaping the fu-
ture of microprocessors and sketch in 
broad strokes where processor design 
is going. We enumerate key research 
challenges and suggest promising 
research directions. Since dramatic 
changes are coming, we also seek to 
inspire the research community to in-

vent new ideas and solutions address 
how to sustain computing’s exponen-
tial improvement. 

Microprocessors (see Figure 1) were 
invented in 1971,28 but it’s difficult to-
day to believe any of the early inventors 
could have conceived their extraor-
dinary evolution in structure and use 
over the past 40 years. Microprocessors 
today not only involve complex micro-
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 key insights

 � �Moore’s Law continues but demands 
radical changes in architecture and 
software.

 � �Architectures will go beyond 
homogeneous parallelism, embrace 
heterogeneity, and exploit the bounty  
of transistors to incorporate  
application-customized hardware. 

 � �Software must increase parallelism 
and exploit heterogeneous and 
application-customized hardware  
to deliver performance growth. 
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architectures and multiple execution 
engines (cores) but have grown to in-
clude all sorts of additional functions, 
including floating-point units, caches, 
memory controllers, and media-pro-
cessing engines. However, the defin-
ing characteristics of a microprocessor 
remain—a single semiconductor chip 
embodying the primary computation 
(data transformation) engine in a com-
puting system. 

Because our own greatest access 
and insight involves Intel designs and 
data, our graphs and estimates draw 
heavily on them. In some cases, they 
may not be representative of the entire 
industry but certainly represent a large 
fraction. Such a forthright view, solidly 
grounded, best supports our goals for 
this article. 

20 Years of Exponential 
Performance Gains 
For the past 20 years, rapid growth in 
microprocessor performance has been 
enabled by three key technology driv-
ers—transistor-speed scaling, core mi-
croarchitecture techniques, and cache 
memories—discussed in turn in the 
following sections: 

Transistor-speed scaling. The MOS 
transistor has been the workhorse for 
decades, scaling in performance by 
nearly five orders of magnitude and 
providing the foundation for today’s 
unprecedented compute performance. 
The basic recipe for technology scaling 
was laid down by Robert N. Dennard of 
IBM17 in the early 1970s and followed 
for the past three decades. The scal-
ing recipe calls for reducing transistor 

dimensions by 30% every generation 
(two years) and keeping electric fields 
constant everywhere in the transis-
tor to maintain reliability. This might 
sound simple but is increasingly diffi-
cult to continue for reasons discussed 
later. Classical transistor scaling pro-
vided three major benefits that made 
possible rapid growth in compute per-
formance. 

First, the transistor dimensions are 
scaled by 30% (0.7x), their area shrinks 
50%, doubling the transistor density 
every technology generation—the fun-
damental reason behind Moore’s Law. 
Second, as the transistor is scaled, its 
performance increases by about 40% 
(0.7x delay reduction, or 1.4x frequen-
cy increase), providing higher system 
performance. Third, to keep the elec-
tric field constant, supply voltage is re-
duced by 30%, reducing energy by 65%, 
or power (at 1.4x frequency) by 50% 
(active power = CV2f). Putting it all to-
gether, in every technology generation 
transistor integration doubles, circuits 
are 40% faster, and system power con-
sumption (with twice as many transis-
tors) stays the same. This serendipi-
tous scaling (almost too good to be 
true) enabled three-orders-of-magni-
tude increase in microprocessor per-
formance over the past 20 years. Chip 
architects exploited transistor density 
to create complex architectures and 
transistor speed to increase frequency, 
achieving it all within a reasonable 
power and energy envelope. 

Core microarchitecture tech-
niques. Advanced microarchitectures 
have deployed the abundance of tran-
sistor-integration capacity, employing 
a dizzying array of techniques, includ-
ing pipelining, branch prediction, 
out-of-order execution, and specula-
tion, to deliver ever-increasing perfor-
mance. Figure 2 outlines advances in 
microarchitecture, showing increases 
in die area and performance and en-
ergy efficiency (performance/watt), 
all normalized in the same process 
technology. It uses characteristics of 
Intel microprocessors (such as 386, 
486, Pentium, Pentium Pro, and Pen-
tium 4), with performance measured 
by benchmark SpecInt (92, 95, and 
2000 representing the current bench-
mark for the era) at each data point. 
It compares each microarchitecture 
advance with a design without the ad-

Figure 1. Evolution of Intel microprocessors 1971–2009. 
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Figure 2. Architecture advances and energy efficiency. 
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vance (such as introducing an on-die 
cache by comparing 486 to 386 in 1μ 
technology and superscalar microar-
chitecture of Pentium in 0.7μ technol-
ogy with 486). 

This data shows that on-die caches 
and pipeline architectures used tran-
sistors well, providing a significant 
performance boost without compro-
mising energy efficiency. In this era, 
superscalar, and out-of-order archi-
tectures provided sizable performance 
benefits at a cost in energy efficiency. 
Of these architectures, deep-pipe-
lined design seems to have delivered 
the lowest performance increase for 
the same area and power increase as 
out-of-order and speculative design, 
incurring the greatest cost in energy 
efficiency. The term “deep pipelined 
architecture” describes deeper pipe-
line, as well as other circuit and mi-
croarchitectural techniques (such as 
trace cache and self-resetting domino 
logic) employed to achieve even high-
er frequency. Evident from the data is 
that reverting to a non-deep pipeline 
reclaimed energy efficiency by drop-
ping these expensive and inefficient 
techniques. 

When transistor performance in-
creases frequency of operation, the 
performance of a well-tuned system 
generally increases, with frequency 
subject to the performance limits of 
other parts of the system. Historically, 
microarchitecture techniques exploit-
ing the growth in available transistors 
have delivered performance increases 
empirically described by Pollack’s 
Rule,32 whereby performance increas-
es (when not limited by other parts 
of the system) as the square root of 
the number of transistors or area of 
a processor (see Figure 3). According 
to Pollack’s Rule, each new technol-
ogy generation doubles the number 
of transistors on a chip, enabling a 
new microarchitecture that delivers a 
40% performance increase. The faster 
transistors provide an additional 40% 
performance (increased frequency), 
almost doubling overall performance 
within the same power envelope (per 
scaling theory). In practice, however, 
implementing a new microarchitec-
ture every generation is difficult, so 
microarchitecture gains are typically 
less. In recent microprocessors, the in-
creasing drive for energy efficiency has 

caused designers to forego many of 
these microarchitecture techniques. 

As Pollack’s Rule broadly captures 
area, power, and performance trade-
offs from several generations of mi-
croarchitecture, we use it as a rule 
of thumb to estimate single-thread 
performance in various scenarios 
throughout this article. 

Cache memory architecture. Dy-
namic memory technology (DRAM) 
has also advanced dramatically with 
Moore’s Law over the past 40 years but 
with different characteristics. For ex-
ample, memory density has doubled 
nearly every two years, while perfor-
mance has improved more slowly (see 
Figure 4a). This slower improvement 
in cycle time has produced a memory 
bottleneck that could reduce a sys-
tem’s overall performance. Figure 4b 
outlines the increasing speed dispar-
ity, growing from 10s to 100s of proces-
sor clock cycles per memory access. It 
has lately flattened out due to the flat-
tening of processor clock frequency. 

Unaddressed, the memory-latency gap 
would have eliminated and could still 
eliminate most of the benefits of pro-
cessor improvement. 

The reason for slow improvement 
of DRAM speed is practical, not tech-
nological. It’s a misconception that 
DRAM technology based on capacitor 
storage is inherently slower; rather, the 
memory organization is optimized for 
density and lower cost, making it slow-
er. The DRAM market has demanded 
large capacity at minimum cost over 
speed, depending on small and fast 
caches on the microprocessor die to 
emulate high-performance memory 
by providing the necessary bandwidth 
and low latency based on data locality. 
The emergence of sophisticated, yet 
effective, memory hierarchies allowed 
DRAM to emphasize density and cost 
over speed. At first, processors used a 
single level of cache, but, as processor 
speed increased, two to three levels of 
cache hierarchies were introduced to 
span the growing speed gap between 

Figure 3. Increased performance vs. area in the same process technology follows  
Pollack’s Rule.
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processor and memory.33,37 In these 
hierarchies, the lowest-level caches 
were small but fast enough to match 
the processor’s needs in terms of high 
bandwidth and low latency; higher lev-
els of the cache hierarchy were then 
optimized for size and speed. 

Figure 5 outlines the evolution of 
on-die caches over the past two de-
cades, plotting cache capacity (a) and 
percentage of die area (b) for Intel 
microprocessors. At first, cache sizes 
increased slowly, with decreasing die 

area devoted to cache, and most of the 
available transistor budget was devot-
ed to core microarchitecture advances. 
During this period, processors were 
probably cache-starved. As energy be-
came a concern, increasing cache size 
for performance has proven more en-
ergy efficient than additional core-mi-
croarchitecture techniques requiring 
energy-intensive logic. For this reason, 
more and more transistor budget and 
die area are allocated in caches. 

The transistor-scaling-and-micro-

architecture-improvement cycle has 
been sustained for more than two 
decades, delivering 1,000-fold perfor-
mance improvement. How long will it 
continue? To better understand and 
predict future performance, we decou-
ple performance gain due to transistor 
speed and microarchitecture by com-
paring the same microarchitecture 
on different process technologies and 
new microarchitectures with the previ-
ous ones, then compound the perfor-
mance gain. 

Figure 6 divides the cumulative 
1,000-fold Intel microprocessor per-
formance increase over the past two 
decades into performance delivered by 
transistor speed (frequency) and due to 
microarchitecture. Almost two-orders-
of-magnitude of this performance in-
crease is due to transistor speed alone, 
now leveling off due to the numerous 
challenges described in the following 
sections. 

The Next 20 Years 
Microprocessor technology has deliv-
ered three-orders-of-magnitude per-
formance improvement over the past 
two decades, so continuing this tra-
jectory would require at least 30x per-
formance increase by 2020. Micropro-

Figure 5. Evolution of on-die caches. 
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Figure 7. Unconstrained evolution of a microprocessor results in excessive power  
consumption.
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Figure 6. Performance increase separated into transistor speed and microarchitecture 
performance. 
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Table 1. New technology scaling  
challenges. 

Decreased transistor scaling benefits:  
Despite continuing miniaturization, little 
performance improvement and little 
reduction in switching energy (decreasing 
performance benefits of scaling) [ITRS].

Flat total energy budget: package 
power and mobile/embedded computing 
drives energy-efficiency requirements.

Table 2. Ongoing technology scaling. 

Increasing transistor density (in area 
and volume) and count: through 
continued feature scaling, process  
innovations, and packaging innovations.

Need for increasing locality and  
reduced bandwidth per operation: 
as performance of the microprocessor  
increases, and the data sets for  
applications continue to grow.
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cessor-performance scaling faces new 
challenges (see Table 1) precluding 
use of energy-inefficient microarchi-
tecture innovations developed over the 
past two decades. Further, chip archi-
tects must face these challenges with 
an ongoing industry expectation of a 
30x performance increase in the next 
decade and 1,000x increase by 2030 
(see Table 2). 

As the transistor scales, supply 
voltage scales down, and the thresh-
old voltage of the transistor (when 
the transistor starts conducting) also 
scales down. But the transistor is not 
a perfect switch, leaking some small 
amount of current when turned off, 
increasing exponentially with reduc-
tion in the threshold voltage. In ad-
dition, the exponentially increasing 
transistor-integration capacity exacer-
bates the effect; as a result, a substan-
tial portion of power consumption is 
due to leakage. To keep leakage under 
control, the threshold voltage cannot 
be lowered further and, indeed, must 
increase, reducing transistor perfor-
mance.10 

As transistors have reached atomic 
dimensions, lithography and variabil-
ity pose further scaling challenges, af-
fecting supply-voltage scaling.11 With 
limited supply-voltage scaling, energy 
and power reduction is limited, ad-
versely affecting further integration 
of transistors. Therefore, transistor-
integration capacity will continue with 
scaling, though with limited perfor-
mance and power benefit. The chal-
lenge for chip architects is to use this 
integration capacity to continue to im-
prove performance. 

Package power/total energy con-
sumption limits number of logic tran-
sistors. If chip architects simply add 
more cores as transistor-integration 
capacity becomes available and oper-
ate the chips at the highest frequen-
cy the transistors and designs can 
achieve, then the power consumption 
of the chips would be prohibitive (see 
Figure 7). Chip architects must limit 
frequency and number of cores to keep 
power within reasonable bounds, but 
doing so severely limits improvement 
in microprocessor performance. 

Consider the transistor-integration 
capacity affordable in a given power 
envelope for reasonable die size. For 
regular desktop applications the pow-

er envelope is around 65 watts, and 
the die size is around 100mm2. Figure 
8 outlines a simple analysis for 45nm 
process technology node; the x-axis is 
the number of logic transistors inte-
grated on the die, and the two y-axes 
are the amount of cache that would fit 
and the power the die would consume. 
As the number of logic transistors on 
the die increases (x-axis), the size of the 
cache decreases, and power dissipa-
tion increases. This analysis assumes 
average activity factor for logic and 

cache observed in today’s micropro-
cessors. If the die integrates no logic at 
all, then the entire die could be popu-
lated with about 16MB of cache and 
consume less than 10 watts of power, 
since caches consume less power than 
logic (Case A). On the other hand, if it 
integrates no cache at all, then it could 
integrate 75 million transistors for log-
ic, consuming almost 90 watts of pow-
er (Case B). For 65 watts, the die could 
integrate 50 million transistors for 
logic and about 6MB of cache (Case C). 

Traditional wisdom suggests investing maximum transistors in the 90% case, with 
the goal of using precious transistors to increase single-thread performance that can 
be applied broadly. In the new scaling regime typified by slow transistor performance 
and energy improvement, it often makes no sense to add transistors to a single core 
as energy efficiency suffers. Using additional transistors to build more cores produces 
a limited benefit—increased performance for applications with thread parallelism. 
In this world, 90/10 optimization no longer applies. Instead, optimizing with an 
accelerator for a 10% case, then another for a different 10% case, then another 10% 
case can often produce a system with better overall energy efficiency and performance. 
We call this “10×10 optimization,”14 as the goal is to attack performance as a set of 
10% optimization opportunities—a different way of thinking about transistor cost, 
operating the chip with 10% of the transistors active—90% inactive, but a different 10% 
at each point in time. 

Historically, transistors on a chip were expensive due to the associated design  
effort, validation and testing, and ultimately manufacturing cost. But 20 generations  
of Moore’s Law and advances in design and validation have shifted the balance. 
Building systems where the 10% of the transistors that can operate within the energy 
budget are configured optimally (an accelerator well-suited to the application) may  
well be the right solution. The choice of 10 cases is illustrative, and a 5×5, 7×7, 10×10,  
or 12×12 architecture might be appropriate for a particular design. 

Death of  
90/10 Optimization,  
Rise of  
10×10 Optimization

Figure 8. Transistor integration capacity at a fixed power envelope. 
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This design point matches the dual-
core microprocessor on 45nm technol-
ogy (Core2 Duo), integrating two cores 
of 25 million transistors each and 6MB 
of cache in a die area of about 100mm2. 

If this analysis is performed for fu-
ture technologies, assuming (our best 
estimates) modest frequency increase 
15% per generation, 5% reduction in 
supply voltage, and 25% reduction of 

capacitance, then the results will be 
as they appear in Table 1. Note that 
over the next 10 years we expect in-
creased total transistor count, follow-
ing Moore’s Law, but logic transistors 
increase by only 3x and cache transis-
tors increase more than 10x. Apply-
ing Pollack’s Rule, a single processor 
core with 150 million transistors will 
provide only about 2.5x microarchitec-
ture performance improvement over 
today’s 25-million-transistor core, 
well shy of our 30x goal, while 80MB of 
cache is probably more than enough 
for the cores (see Table 3). 

The reality of a finite (essentially 
fixed) energy budget for a microproces-
sor must produce a qualitative shift in 
how chip architects think about archi-
tecture and implementation. First, en-
ergy-efficiency is a key metric for these 
designs. Second, energy-proportional 
computing must be the ultimate goal 
for both hardware architecture and 
software-application design. While 
this ambition is noted in macro-scale 
computing in large-scale data cen-
ters,5 the idea of micro-scale energy-
proportional computing in micropro-
cessors is even more challenging. For 
microprocessors operating within a 
finite energy budget, energy efficiency 
corresponds directly to higher perfor-
mance, so the quest for extreme energy 
efficiency is the ultimate driver for per-
formance. 

In the following sections, we out-
line key challenges and sketch poten-
tial approaches. In many cases, the 
challenges are well known and the 
subject of significant research over 
many years. In all cases, they remain 
critical but daunting for the future of 
microprocessor performance: 

Organizing the logic: Multiple cores 
and customization. The historic mea-
sure of microprocessor capability is 
the single-thread performance of a 
traditional core. Many researchers 
have observed that single-thread per-
formance has already leveled off, with 
only modest increases expected in the 
coming decades. Multiple cores and 
customization will be the major driv-
ers for future microprocessor perfor-
mance (total chip performance). Mul-
tiple cores can increase computational 
throughput (such as a 1x–4x increase 
could result from four cores), and cus-
tomization can reduce execution la-

Figure 9. Three scenarios for integrating 150-million logic transistors into cores. 
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tency. Clearly, both techniques—mul-
tiple cores and customization—can 
improve energy efficiency, the new 
fundamental limiter to capability. 

Choices in multiple cores. Multiple 
cores increase computational through-
put by exploiting Moore’s Law to rep-
licate cores. If the software has no 
parallelism, there is no performance 
benefit. However, if there is parallel-
ism, the computation can be spread 
across multiple cores, increasing over-
all computational performance (and 
reducing latency). Extensive research 
on how to organize such systems dates 
to the 1970s.29,39 

Industry has widely adopted a mul-
ticore approach, sparking many ques-
tions about number of cores and size/
power of each core and how they co-
ordinate.6,36 But if we employ 25-mil-
lion-transistor cores (circa 2008), the 
150-million-logic-transistor budget 
expected in 2018 gives 6x potential 
throughput improvement (2x from 
frequency and 3x from increased log-
ic transistors), well short of our 30x 
goal. To go further, chip architects 
must consider more radical options 
of smaller cores in greater numbers, 
along with innovative ways to coordi-
nate them. 

Looking to achieve this vision, 
consider three potential approaches 
to deploying the feasible 150 million 
logic transistors, as in Table 1. In Fig-
ure 9, option (a) is six large cores (good 
single-thread performance, total po-
tential throughput of six); option (b) is 
30 smaller cores (lower single-thread 
performance, total potential through-
put of 13); and option (c) is a hybrid 
approach (good single-thread perfor-
mance for low parallelism, total poten-
tial throughput of 11). 

Many more variations are possible 
on this spectrum of core size and num-

ber of cores, and the related choices 
in a multicore processor with uniform 
instruction set but heterogeneous im-
plementation are an important part 
of increasing performance within the 
transistor budget and energy envelope. 

Choices in hardware customization. 
Customization includes fixed-function 
accelerators (such as media codecs, 
cryptography engines, and composit-
ing engines), programmable accelera-
tors, and even dynamically customiz-
able logic (such as FPGAs and other 
dynamic structures). In general, cus-
tomization increases computational 
performance by exploiting hardwired 
or customized computation units, cus-
tomized wiring/interconnect for data 
movement, and reduced instruction-
sequence overheads at some cost in 
generality. In addition, the level of par-
allelism in hardware can be custom-
ized to match the precise needs of the 
computation; computation benefits 
from hardware customization only 
when it matches the specialized hard-
ware structures. In some cases, units 
hardwired to a particular data repre-
sentation or computational algorithm 
can achieve 50x–500x greater energy 
efficiency than a general-purpose reg-
ister organization. Two studies21,22 of a 
media encoder and TCP offload engine 
illustrate the large energy-efficiency 
improvement that is possible. 

Due to battery capacity and heat-
dissipation limits, for many years 
energy has been the fundamental 
limiter for computational capabil-

ity in smartphone system-on-a-chip 
(SoC). As outlined in Figure 10, such 
an SoC might include as many as 10 
to 20 accelerators to achieve a supe-
rior balance of energy efficiency and 
performance. This example could also 
include graphics, media, image, and 
cryptography accelerators, as well as 
support for radio and digital signal 
processing. As one might imagine, 
one of these blocks could be a dynami-
cally programmable element (such as 
an FPGA or a software-programmable 
processor). 

Another customization approach 
constrains the types of parallelism 
that can be executed efficiently, en-
abling a simpler core, coordination, 
and memory structures; for example, 
many CPUs increase energy efficiency 
by restricting memory access structure 
and control flexibility in single-instruc-
tion, multiple-data or vector (SIMD) 
structures,1,2 while GPUs encourage 
programs to express structured sets 
of threads that can be aligned and ex-
ecuted efficiently.26,30 This alignment 
reduces parallel coordination and 
memory-access costs, enabling use of 
large numbers of cores and high peak 
performance when applications can 
be formulated with a compatible par-
allel structure. Several microprocessor 
manufacturers have announced future 
mainstream products that integrate 
CPUs and GPUs. 

Customization for greater energy 
or computational efficiency is a long-
standing technique, but broad adop-

Table 3. Extrapolated transistor 
integration capacity in a fixed power 
envelope. 

Year

Logic  
Transistors  

(Millions) Cache MB

2008 50 6

2014 100 25

2018 150 80

Table 4. Logic organization challenges, trends, directions. 

Challenge Near-Term Long-Term

Integration and 
memory model

I/O-based interaction, shared memory 
spaces, explicit coherence management 

Intelligent, automatic data movement
among heterogeneous cores, managed
by software-hardware partnership

Software 
transparency

Explicit partition and mapping, 
virtualization, application management

Hardware-based state adaptation  
and software-hardware partnership  
for management

Lower-power 
cores

Heterogeneous cores, vector extensions,
and GPU-like techniques to reduce
instruction- and data-movement cost

Deeper, explicit storage hierarchy within 
the core; integrated computation in 
registers

Energy 
management

Hardware dynamic voltage scaling 
and intelligent adaptive management, 
software core selection and scheduling

Predictive core scheduling and selection 
to optimize energy efficiency and 
minimize data movement

Accelerator 
variety

Increasing variety, library-based 
encapsulation (such as DX and OpenGL) 
for specific domains

Converged accelerators in a few 
application categories and increasing 
open programmability for the 
accelerators
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tion has been slowed by continued 
improvement in microprocessor sin-
gle-thread performance. Developers of 
software applications had little incen-
tive to customize for accelerators that 
might be available on only a fraction of 
the machines in the field and for which 

the performance advantage might 
soon be overtaken by advances in the 
traditional microprocessor. With slow-
ing improvement in single-thread per-
formance, this landscape has changed 
significantly, and for many applica-
tions, accelerators may be the only 

path toward increased performance 
or energy efficiency (see Table 4). But 
such software customization is diffi-
cult, especially for large programs (see 
the sidebar “Decline of 90/10 Optimi-
zation, Rise of 10x10 Optimization”). 

Orchestrating data movement: 
Memory hierarchies and intercon-
nects. In future microprocessors, the 
energy expended for data movement 
will have a critical effect on achiev-
able performance. Every nano-joule 
of energy used to move data up and 
down the memory hierarchy, as well 
as to synchronize across and data be-
tween processors, takes away from the 
limited budget, reducing the energy 
available for the actual computation. 
In this context, efficient memory hi-
erarchies are critical, as the energy to 
retrieve data from a local register or 
cache is far less than the energy to go 
to DRAM or to secondary storage. In 
addition, data must be moved between 
processing units efficiently, and task 
placement and scheduling must be 
optimized against an interconnection 
network with high locality. Here, we 
examine energy and power associated 
with data movement on the processor 
die. 

Today’s processor performance is 
on the order of 100Giga-op/sec, and 
a 30x increase over the next 10 years 
would increase this performance to 
3Tera-op/sec. At minimum, this boost 
requires 9Tera-operands or 64b x 
9Tera-operands (or 576Tera-bits) to be 
moved each second from registers or 
memory to arithmetic logic, consum-
ing energy. 

Figure 11(a) outlines typical wire 
delay and energy consumed in moving 
one bit of data on the die. If the oper-
ands move on average 1mm (10% of 
die size), then at the rate of 0.1pJ/bit, 
the 576Tera-bits/sec of movement con-
sumes almost 58 watts with hardly any 
energy budget left for computation. If 
most operands are kept local to the ex-
ecution units (such as in register files) 
and the data movement is far less than 
1mm, on, say, the order of only 0.1mm, 
then the power consumption is only 
around 6 watts, allowing ample energy 
budget for the computation. 

Cores in a many-core system are 
typically connected through a net-
work-on-a-chip to move data around 
the cores.40 Here, we examine the ef-

Figure 12. Hybrid switching for network-on-a-chip. 
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Table 5. Data movement challenges, trends, directions. 

Challenge Near-Term Long-Term

Parallelism Increased parallelism Heterogeneous parallelism and 
customization, hardware/runtime 
placement, migration, adaptation  
for locality and load balance

Data Movement/
Locality

More complex, more exposed hierarchies; 
new abstractions for control over 
movement and “snooping”

New memory abstractions and 
mechanisms for efficient vertical 
data locality management with low 
programming effort and energy 

Resilience More aggressive energy reduction; 
compensated by recovery for resilience

Radical new memory technologies  
(new physics) and resilience techniques

Energy 
Proportional 
Communication

Fine-grain power management in packet 
fabrics

Exploitation of wide data, slow clock, 
and circuit-based techniques 

Reduced Energy Low-energy address translation Efficient multi-level naming and 
memory-hierarchy management

Figure 11. On-die interconnect delay and energy (45nm). 
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fect of such a network on power con-
sumption. Figure 11(b) shows the en-
ergy consumed in moving a bit across 
a hop in such a network, measured in 
historic networks, and extrapolated 
into the future from previous assump-
tions. If only 10% of the operands move 
over the network, traversing 10 hops 
on average, then at the rate of 0.06pJ/
bit the network power would be 35 
watts, more than half the power bud-
get of the processor. 

As the energy cost of computation is 
reduced by voltage scaling (described 
later), emphasizing compute through-
put, the cost of data movement starts 
to dominate. Therefore, data move-
ment must be restricted by keeping 
data locally as much as possible. This 
restriction also means the size of local 
storage (such as a register file) must 
increase substantially. This increase 
is contrary to conventional thinking of 
register files being small and thus fast. 
With voltage scaling the frequency of 
operation is lower anyway, so it makes 
sense to increase the size of the local 
storage at the expense of speed. 

Another radical departure from 
conventional thinking is the role of 
the interconnect network on the chip. 
Recent parallel machine designs have 
been dominated by packet-switch-
ing,6,8,24,40 so multicore networks ad-
opted this energy-intensive approach. 
In the future, data movement over 
these networks must be limited to con-
serve energy, and, more important, 
due to the large size of local storage 
data bandwidth, demand on the net-
work will be reduced. In light of these 
findings on-die-network architectures 
need revolutionary approaches (such 
as hybrid packet/circuit switching4). 

Many older parallel machines used 
irregular and circuit-switched net-
works31,41; Figure 12 describes a re-
turn to hybrid switched networks for 
on-chip interconnects. Small cores in 
close proximity could be interconnect-
ed into clusters with traditional bus-
ses that are energy efficient for data 
movement over short distances. The 
clusters could be connected through 
wide (high-bandwidth) low-swing (low-
energy) busses or through packet- or 
circuit-switched networks, depending 
on distance. Hence the network-on-a-
chip could be hierarchical and hetero-
geneous, a radical departure from the 

traditional parallel-machine approach 
(see Table 5). 

The role of microprocessor archi-
tect must expand beyond the proces-
sor core, into the whole platform on 
a chip, optimizing the cores as well as 
the network and other subsystems. 

Pushing the envelope: Extreme 
circuits, variability, resilience. Our 
analysis showed that in the power-
constrained scenario, only 150 mil-
lion logic transistors for processor 
cores and 80MB of cache will be af-
fordable due to energy by 2018. Note 
that 80MB of cache is not necessary 
for this system, and a large portion of 
the cache-transistor budget can be uti-
lized to integrate even more cores if it 
can be done with the power-consump-
tion density of a cache, which is 10x 
less than logic. This approach can be 
achieved through aggressive scaling of 
supply voltage.25

Figure 13 outlines the effective-
ness of supply-voltage scaling when 
the chip is designed for it. As the 
supply voltage is reduced, frequency 

also reduces, but energy efficiency in-
creases. When the supply voltage is 
reduced all the way to the transistor’s 
threshold, energy efficiency increases 
by an order of magnitude. Employing 
this technique on large cores would 
dramatically reduce single-thread 
performance and is hence not recom-
mended. However, smaller cores used 

Table 6. Circuits challenges, trends, directions. 

Challenge Near-Term Long-Term

Power, energy 
efficiency

Continuous dynamic voltage and 
frequency scaling, power gating, reactive 
power management

Discrete dynamic voltage and frequency 
scaling, near threshold operation, 
proactive fine-grain power and energy 
management

Variation Speed binning of parts, corrections with 
body bias or supply voltage changes, 
tighter process control

Dynamic reconfiguration of many cores 
by speed

Gradual, 
temporal, 
intermittent, 
and permanent 
faults

Guard-bands, yield loss, core sparing, 
design for manufacturability

Resilience with hardware/software 
co-design, dynamic in-field detection, 
diagnosis, reconfiguration and repair, 
adaptability, and self-awareness

Figure 13. Improving energy efficiency through voltage scaling.
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system with variation. 
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for throughput would certainly benefit 
from it. Moreover, the transistor bud-
get from the unused cache could be 
used to integrate even more cores with 
the power density of the cache. Aggres-
sive voltage scaling provides an avenue 
for utilizing the unused transistor-in-
tegration capacity for logic to deliver 
higher performance. 

Aggressive supply-voltage scaling 
comes with its own challenges (such 
as variations). As supply voltage is re-
duced toward a transistor’s threshold 
voltage, the effect of variability is even 
worse, because the speed of a circuit 
is proportional to the voltage over-
drive (supply voltage minus threshold 
voltage). Moreover, as supply voltage 
approaches the threshold, any small 
change in threshold voltage affects the 
speed of the circuit. Therefore, varia-
tion in the threshold voltage mani-
fests itself as variation in the speed 
of the core, the slowest circuit in the 
core determines the frequency of op-
eration of the core, and a large core is 
more susceptible to lower frequency 
of operation due to variations. On the 
other hand, a large number of small 
cores has a better distribution of fast 
and slow small cores and can better 
even out the effect of variations. We 
next discuss an example system that 
is variation-tolerant, energy-efficient, 
energy-proportional, and fine-grain 
power managed. 

A hypothetical heterogeneous pro-
cessor (see Figure 14) consists of a 
small number of large cores for single-
thread performance and many small 
cores for throughput performance. 
Supply voltage and the frequency of any 

given core are individually controlled 
such that the total power consumption 
is within the power envelope. Many 
small cores operate at lower voltages 
and frequency for improved energy ef-
ficiency, while some small cores oper-
ate near threshold voltage at the lowest 
frequency but at higher energy effi-
ciency, and some cores may be turned 
off completely. Clock frequencies need 
not be continuous; steps (in powers of 
two) keep the system synchronous and 
simple without compromising perfor-
mance while also addressing variation 
tolerance. The scheduler dynamically 
monitors workload and configures the 
system with the proper mix of cores 
and schedules the workload on the 
right cores for energy-proportional 
computing. Combined heterogene-
ity, aggressive supply-voltage scaling, 
and fine-grain power (energy) manage-
ment enables utilization of a larger 
fraction of transistor-integration ca-
pacity, moving closer to the goal of 30x 
increase in compute performance (see 
Table 6). 

Software challenges renewed: Pro-
grammability versus efficiency. The 
end of scaling of single-thread perfor-
mance already means major software 
challenges; for example, the shift to 
symmetric parallelism has created per-
haps the greatest software challenge 
in the history of computing,12,15 and 
we expect future pressure on energy-
efficiency will lead to extensive use of 
heterogeneous cores and accelerators, 
further exacerbating the software chal-
lenge. Fortunately, the past decade has 
seen increasing adoption of high-level 
“productivity” languages20,34,35 built on 

advanced interpretive and compiler 
technologies, as well as increasing use 
of dynamic translation techniques. We 
expect these trends to continue, with 
higher-level programming, extensive 
customization through libraries, and 
sophisticated automated performance 
search techniques (such as autotun-
ing) will be even more important.

Extreme studies27,38 suggest that 
aggressive high-performance and ex-
treme-energy-efficient systems may 
go further, eschewing the overhead of 
programmability features that soft-
ware engineers have come to take for 
granted; for example, these future sys-
tems may drop hardware support for 
a single flat address space (which nor-
mally wastes energy on address manip-
ulation/computing), single-memory 
hierarchy (coherence and monitoring 
energy overhead), and steady rate of 
execution (adapting to the available 
energy budget). These systems will 
place more of these components un-
der software control, depending on in-
creasingly sophisticated software tools 
to manage the hardware boundaries 
and irregularities with greater energy 
efficiency. In extreme cases, high-per-
formance computing and embedded 
applications may even manage these 
complexities explicitly. Most architec-
tural features and techniques we’ve 
discussed here shift more responsi-
bility for distribution of the computa-
tion and data across the compute and 
storage elements of microprocessors 
to software.13,18 Shifting responsibility 
increases potential achievable energy 
efficiency, but realizing it depends on 
significant advances in applications, 
compilers and runtimes, and operat-
ing systems to understand and even 
predict the application and workload 
behavior.7,16,19 However, these ad-
vances require radical research break-
throughs and major changes in soft-
ware practice (see Table 7). 

Conclusion 
The past 20 years were truly the great 
old days for Moore’s Law scaling and 
microprocessor performance; dra-
matic improvements in transistor 
density, speed, and energy, combined 
with microarchitecture and memory-
hierarchy techniques delivered 1,000-
fold microprocessor performance 
improvement. The next 20 years—the 

Table 7. Software challenges, trends, directions. 

Challenge Near-Term Long-Term

1,000-fold 
software 
parallelism

Data parallel languages and “mapping” 
of operators, library and tool-based 
approaches

New high-level languages, 
compositional and deterministic 
frameworks

Energy-efficient
data movement
and locality

Manual control, profiling, maturing to 
automated techniques (auto-tuning, 
optimization)

New algorithms, languages,  
program analysis, runtime,  
and hardware techniques

Energy 
management

Automatic fine-grain hardware 
management

Self-aware runtime and  
application-level techniques that  
exploit architecture features for  
visibility and control

Resilience Algorithmic, application-software 
approaches, adaptive checking and 
recovery

New hardware-software partnerships 
that minimize checking and 
recomputation energy 



contributed articles

may 2011  |   vol.  54  |   no.  5  |   communications of the acm     77

pretty good new days, as progress 
continues—will be more difficult, 
with Moore’s Law scaling producing 
continuing improvement in transis-
tor density but comparatively little 
improvement in transistor speed and 
energy. As a result, the frequency of 
operation will increase slowly. Energy 
will be the key limiter of performance, 
forcing processor designs to use large-
scale parallelism with heterogeneous 
cores, or a few large cores and a large 
number of small cores operating at 
low frequency and low voltage, near 
threshold. Aggressive use of custom-
ized accelerators will yield the highest 
performance and greatest energy effi-
ciency on many applications. Efficient 
data orchestration will increasingly 
be critical, evolving to more efficient 
memory hierarchies and new types of 
interconnect tailored for locality and 
that depend on sophisticated software 
to place computation and data so as to 
minimize data movement. The objec-
tive is ultimately the purest form of 
energy-proportional computing at the 
lowest-possible levels of energy. Het-
erogeneity in compute and commu-
nication hardware will be essential to 
optimize for performance for energy-
proportional computing and coping 
with variability. Finally, programming 
systems will have to comprehend 
these restrictions and provide tools 
and environments to harvest the per-
formance. 

While no one can reliably predict 
the end of Si CMOS scaling, for this 
future scaling regime, many electrical 
engineers have begun exploring new 
types of switches and materials (such 
as compound semiconductors, carbon 
nanotubes, and graphene) with dif-
ferent performance and scaling char-
acteristics from Si CMOS, posing new 
types of design and manufacturing 
challenges. However, all such technol-
ogies are in their infancy, probably not 
ready in the next decade to replace sili-
con but will pose the same challenges 
with continued scaling. Quantum 
electronics (such as quantum dots) 
are even farther out and when realized 
will reflect major challenges of its own, 
with yet newer models of computation, 
architecture, manufacturing, variabil-
ity, and resilience. 

Because the future winners are far 
from clear today, it is way too early to 

predict whether some form of scaling 
(perhaps energy) will continue or there 
will be no scaling at all. The pretty 
good old days of scaling that processor 
design faces today are helping prepare 
us for these new challenges. More-
over, the challenges processor design 
will faces in the next decade will be 
dwarfed by the challenges posed by 
these alternative technologies, render-
ing today’s challenges a warm-up exer-
cise for what lies ahead. 
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