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Abstract

Complex mechanisms shape the genome of brain cells into transcriptional units, clusters of 

condensed chromatin, and many other features that distinguish between various cell types and 

developmental stages sharing the same genetic material. Only a few years ago, the field’s focus 

was almost entirely on a single mark, CpG methylation; the emerging complexity of neuronal and 

glial epigenomes now includes multiple types of DNA cytosine methylation, more than 100 

residue-specific posttranslational histone modifications and histone variants, all of which 

superimposed by a dynamic and highly regulated three-dimensional organization of the 

chromosomal material inside the cell nucleus. Here, we provide an update on the most innovative 

approaches in neuroepigenetics and their potential contributions to approach cognitive functions 

and disorders unique to human. We propose that comprehensive, cell type-specific mappings of 

DNA and histone modifications, chromatin-associated RNAs, and chromosomal “loopings” and 

other determinants of three-dimensional genome organization will critically advance insight into 

the pathophysiology of the disease. For example, superimposing the epigenetic landscapes of 

neuronal and glial genomes onto genetic maps for complex disorders, ranging from Alzheimer’s 

disease to schizophrenia, could provide important clues about neurological function for some of 

the risk-associated noncoding sequences in the human genome.

1. INTRODUCTION

1.1. Chromatin and epigenetic regulation: General principles

The elementary unit of chromatin is the nucleosome, or 146 bp of genomic DNA wrapped 

around an octamer of core histones, connected by linker DNA and linker histones. As further 

described below, the collective set of DNA and histone modifications and variant histones 

provide the molecular substrates of the epigenome, here broadly defined as the epigenetic 

landscapes that define the functional architecture of the chromosomal material, including 

CONFLICT OF INTEREST
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2016 May 11.

Published in final edited form as:
Prog Mol Biol Transl Sci. 2014 ; 128: 199–228. doi:10.1016/B978-0-12-800977-2.00008-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcriptional and many other features of genome organization that are differentially 

regulated in different cell types and developmental stages of the organism.1,2

1.1.1 DNA (hydroxy)methylation—Two related but functionally very different types of 

DNA modifications, cytosine C5-methylation (5mC) and hydroxymethylation (5hmC) of 

cytosines in CpG dinucleotides, provide the bulk of the epigenetic modifications in 

vertebrate DNA.3 There are additional types of DNA modifications, including 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC), which are viewed as chemical 

breakdown products, from mC5 to hmC5 to 5fC to 5caC, and in addition may carry 

regulatory functions.4,5 While the majority of DNA (hydroxy)methylation is found at sites of 

CpG dinucleotides and, more generally, in the CpG-enriched sequences of the genome, a 

much larger fraction, or up to 25% of mC5, is found at non-CpG sites in the brain.6 The 

mC5 and hmC5 markings show a differential pattern of genomic occupancy, with the hmC5 

mark concentrated toward the 5′ end of the genes and the proximal most portion of 

transcriptional units, broadly correlating with local gene expression levels,7–9 and a potential 

role in the regulation of intron/exon boundaries and splicing events of neuron-specific gene 

transcripts.10 On the other hand, less than 3% of methylcytosine (mC5) markings are 

positioned around the 5′ end of the genes.11

1.1.2 Histone modifications—There is evidence that far more than 100 amino acid 

residue-specific posttranslational modifications (PTMs) exist in the vertebrate cell,12 

including monomethylation (me1), dimethylation (me2), and trimethylation (me3); 

acetylation and crotonylation; poly-ADP-ribosylation; and small protein (ubiquitin, SUMO) 

modification of specific lysine residues, as well as arginine (R) methylation and 

citrullination, serine (S) phosphorylation, tyrosine (T) hydroxylation, and several 

others.12–14 These site- and residue-specific PTMs often define chromatin structure and 

function, with an epigenetic histone code (a combinatorial set of histone PTMs) 

differentiating between promoters, gene bodies, enhancer and other regulatory sequences, 

and condensed heterochromatin.15 It is important to emphasize that histone PTMs rarely 

occur in isolation and instead multiple histone PTMs appear to be coregulated and, as a 

group, define the aforementioned chromatin states.16 Many active promoters, for example, 

are defined by high levels of histone H3 lysine 4 trimethylation in combination with various 

histone lysine acetylation markings, while repressive histone PTMs, including the 

trimethylated forms of H3K9, H3K27, and H4K20, potentially colocalize to some of the 

same loci in the genome and so forth.15 Proteins associated with the regulation of histone 

PTMs are sometimes referred to as “writers” or “erasers” or “readers,” essentially 

differentiating the process of establishing or removing a mark as opposed to its docking 

functions for chromatin remodeling complexes that regulate transcription or induce and 

maintain chromatin condensation.14,17,18

1.1.3 Histone variants, chromatin remodeling, and nucleosome positioning—
In addition to the core histones H2A/H2B/H3/H4, a number of histone variants, with H3.3, 

H3.1, H3.2, H2A.Z, and H2A.X, are some of the best-studied examples. Variant histones, 

which differ from the canonical histone at few amino acid positions, could affect 

nucleosome stability and compaction.19
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Chromatin remodeling complexes are composed of multiple subunits that, according to their 

classical definition, regulate sliding and mobility of nucleosomes, powered by ATP 

hydrolysis, thereby regulating gene expression and RNA polymerase II access at 

transcription start sites.20 Examples of well-known chromatin remodelers with a critical role 

in brain development include the BAF (SWI/SNF) complex and CHD family of proteins.20 

Mutations in numerous members of the BAF complex and multiple CHD proteins have now 

been linked to psychiatric disease and developmental brain disorders, with additional 

investigations in mutant mice.20–22

1.1.4 Chromatin-associated RNAs—While the process of gene expression is obviously 

defined by nascent RNA emerging from genomic DNA packaged into chromatin, chromatin-

associated RNAs (caRNAs) (or cbRNA for chromatin-bound RNA) could be reserved to 

RNA species as part of a chromatin structure, thereby regulating its functions. According to 

some estimates, up to 2–3% of the nucleic acid content in chromatin is contributed by 

polyadenylated RNAs.23 One of the best-known examples of a caRNA is provided by the X-

chromosome inactive transcript that governs the silencing of the second X in female diploid 

cells.24,25 Some caRNAs, including a complex long noncoding RNA, composed of 148 

exons and introns, at a neurodevelopmental risk locus on chromosome 15q11–13,26 produce 

“RNA clouds” in cis, thereby triggering lasting decondensation of the surrounding 

chromosomal material.27,28 In addition, some of the caRNAs expressed in the human brain, 

including a noncoding RNA at the DPP10 (chromosome 2q14.1) locus, show human-

specific epigenetic regulation and could contribute to cognitive features and disease 

vulnerabilities not shared with other primate species.29

1.1.5 Higher order chromatin—DNA methylation, epigenetic decoration of nucleosomal 

(including variant) histones, and the various caRNAs/cbRNAs described to date still would 

fall short to adequately describe the epigenome and localized chromatin architectures at any 

given genomic locus. This is because the chromosomal arrangements in the interphase 

nucleus are not random. Specifically, loci at sites of active gene expression are more likely 

to be clustered together and situated toward a central position within the nucleus, while 

heterochromatin and silenced loci move more toward the nuclear periphery.30,31 

Chromosomal loopings, in particular, are among the most highly regulated 

supranucleosomal structures and are associated with transcriptional regulation, by, for 

example, positioning distal regulatory enhancer or silencer elements that—in the linear 

genome—are positioned potentially many hundred kilobases apart from a gene, to interact 

directly with that specific promoter.32,33 Proper regulation of such types of higher order 

chromatin is certainly of critical importance for orderly brain development and function. For 

example, Cornelia de Lange syndrome (CdLS) with an estimated incidence of 1:10–30,000 

live births among the more frequent genetic disorders (source: http://ghr.nlm.nih.gov) is 

associated with severe developmental delay and a range of neuropsychiatric symptoms.34 

CdLS (including Online Mendelian Inheritance in Man (OMIM) 122470 and 300590) 

involves causative mutations in the cohesin complex, a multisubunit protein that includes, 

among others, nipped-B-like protein (NIPBL), structural maintenance of chromosomes 1A 

and 3 (SMC1A and SMC3) proteins, and histone deacetylase 8 (HDAC8).35,36 Cohesin is 

thought to form ring-like structures bringing together DNA segments from different 
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locations, and by interaction with transcriptional coactivators, the complex could promote 

the physical interaction of promoters with enhancers separated by thousands of base pairs on 

the linear genome, thereby regulating cell type-specific gene expression programs.37

2. CHALLENGES FOR EPIGENETIC APPROACHES IN THE (HUMAN) BRAIN

2.1. Cellular specificity of epigenetic markings

Conventional chromatin assays designed to detect and quantify DNA methylation and 

histone modifications require an input material between 103 and 108 nuclei.38,39 Such types 

of assay typically lack cellular resolution, which poses a challenge given that brain tissue is 

composed of an extremely heterogeneous mixture of different cell types, including glia-to-

neuron ratios that could show considerable fluctuations across normal development or in 

certain disease states, such as conditions associated with neurodegeneration or 

neuroinflammation. To date, many studies exploring epigenetic dysregulation of gene 

expression in major psychiatric disease examined DNA methylation and histone 

modifications in tissue homogenates, while typically, the gene(s) of interest often is 

expressed only in a select subpopulation of neurons or other cells.40–48 On the other hand, 

there is evidence that each cell type is defined by differential regulation of DNA methylation 

and histone modifications at hundreds or thousands of promoter and enhancer sequences, 

resulting in considerable “epigenetic distance” even between cortical neurons and their 

surrounding glia and other nonneuronal cells.49–51 Of note, statistical methodology has been 

developed to decompose neuronal and nonneuronal signals in DNA methylation assays on 

tissue homogenate.52,53 These in silico approaches could be extremely valuable not only for 

already existing datasets but also for future studies in which sorting is not feasible, including 

in projects in which the cell type-specific nuclear epitope is not reliably expressed in every 

postmortem specimen. In these cases, cell type-specific epigenomic maps could be 

constructed in a smaller set of brains, while the larger cohort undergoes deconvolution based 

on epigenomic maps in tissue homogenate.

Given the inherent problem of cellular heterogeneity in the brain, many groups have turned 

to fluorescence-activated cell sorting (FACS) for the isolation of more homogenous cell 

populations, including neurons, microglia, oligodendrocytes, astrocytes, and neural/glial 

progenitors at various stages of their lineage differentiation. Several useful markers exist to 

define these cell types in situ, but only few of them have shown the ability to label live cells 

for isolation (Table 8.1). A major obstacle to using most phenotypic markers for FACS is the 

necessity to target an extracellular cell-surface domain, particularly if downstream 

purification is needed.58,62 Several surface markers have been used to isolate 

oligodendrocyte progenitor cells (OPCs) A2B5,57 NG2,56 and CD140a-PDGFRα55; neural 

stem cells (NSCs) CD13360; microglia CD11b61; and most recently astrocyte-lineage cells 

from mice GLAST58 and from expanded human NSCs CD4459 (Table 8.1). While some of 

the abovementioned markers have sorted populations that are still quite 

heterogeneous,56,57,60 others have shown significant enrichment for specific cell 

types.55,58,61 The use of cell-surface antibodies to isolate cells is not ideal: cytoplasmic 

processes of more mature glia are often partially destroyed during enzymatic digestion and 

the rapidly flowing stream of FACS, leading to significant decrease in final cell yield. Cell 
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sorting with the surface markers CD44 and GLAST (ASCA-1 antibody) has allowed the 

isolation of adult glia from postmortem subventricular zone tissue, providing sufficient yield 

of high-quality DNA for downstream genomic analysis (1000–100,000 cell events 

depending on cell population, brain age, and postmortem time) but insufficient for chromatin 

immunoprecipitation analysis (Tsankova lab, unpublished data). Furthermore, the use of 

cell-surface antibodies for FACS necessitates fresh tissue, due to the inevitable cell lysis of 

many cells during freezing and thawing. This adds another constraint: fresh autopsy tissue 

with short postmortem time or surgical brain tissue is not readily available and easily 

accessible outside of large neurosurgical centers or close collaboration with 

neuropathologists and neurosurgeons.

The limitation of using surface markers has caused many to turn to transgenic strategies for 

FACS in rodents, allowing the use of cytoplasmic or nuclear markers with good cell-type 

specificity, coexpressed with a fluorescent reporter; one example is the use of GFP–GFAP 

reporter mice for isolation of astrocytes.63 This approach, unfortunately, is not applicable for 

human tissue. An alternative, successful strategy to collect nuclei from human tissue has 

been the isolation of neuronal nuclei labeled with the specific antibody NeuN.64 This 

overcomes the caveats of heterogeneity, fragility of cytoplasmic processes, and availability 

of fresh tissue and offers satisfactory yield for downstream epigenetic studies. Protocols are 

available for efficient purification and immunotagging of nuclei from frozen postmortem 

brain specimens, which then could be processed by fluorescence-activated sorting. Thus, the 

separate collection of 107–108 neuronal and nonneuronal nuclei from a few hundred 

milligram of postmortem cerebral cortex in a single day is possible, thereby enabling 

separate processing of neuronal and nonneuronal chromatin.54,65,66 A similar neuronal 

marker for astrocytes has not yet been described, but the oligodendrocyte-lineage nuclear 

marker Olig2 could offer a comparable nuclear isolation solution for immature and maturing 

oligodendrocytes.66 Another exciting avenue to explore is the use of molecular beacons as 

mRNA-specific targets for FACS in human brain tissue, which has already shown feasibility 

in rodents.62

2.2. With focus on the candidate gene approach, only few high-resolution epigenomic 
mappings

With the exception of neurosurgical cases, the bulk of human brain studies, including those 

focused on neuropsychiatric disorders, rely on postmortem tissue. There is general 

consensus that nucleosomal arrays, histone modifications, and the activity of histone-

modifying enzymes such as methyl- and acetyltransferases, DNA methylation markings, and 

even some of the chromosomal loop formations are preserved, at least partially, in 

postmortem brain tissue that typically is exposed to 5–30 or more hours of autolysis time 

before being stored in a −70 °C freezer.38,64,67–69 Thus, 20 years ago, epigenetic exploration 

of the diseased human brain started out with restriction enzyme-based DNA cytosine 

methylation mapping at a predetermined set of CpG dinucleotides surrounding the 5′ end of 

amyloid-beta precursor (APP)70 and FMR1 genes in single cases diagnosed with 

Alzheimer’s disease and fragile X mental retardation syndrome,71–73 followed 10 years later 

by histone methylation mappings at the site of NMDA glutamate receptor genes in 

developing cerebral and cerebellar cortices.74 In the case of fragile X, the expansion of CGG 
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codon from (normally) 5 to 40 repeats to 50 to over 200 repeats triggers excessive DNA 

methylation at the promoter, effectively shutting down gene expression by silencing the 

surrounding chromatin.75 These highly reproducible molecular phenotypes in a monogenetic 

neurodevelopmental disorder then provided a road map for similar studies on disorders of a 

more heterogeneous and complex etiology, including Alzheimer’s dementia, depression, 

schizophrenia, and others.40–42,44,48,70 However, small cohort sizes, typically involving far 

less than 50–100 brains, in conjunction with the overall only very subtle differences between 

cases and controls45,46,48 and the considerable degree of sample heterogeneity in terms of 

etiology of disease, have thus far precluded a general consensus on which, if any, genomic 

locus shows a reproducible epigenetic defect in any of the aforementioned neuropsychiatric 

disorders.

In a very different line of research, large, multi-institutional consortia, such as the 

Encyclopedia of DNA Elements (ENCODE), have harnessed powerful, next-generation 

sequencing-based technologies76,77 to generate comprehensive genome-scale maps, often at 

(near) base-pair resolution, for DNA methylation and histone modification landscapes, 

chromatin accessibility as measured by DNase I hypersensitivity, and transcription factor 

binding profiles in a variety of peripheral cell lines and tissues.78,79 In contrast, only very 

few epigenetic markings, including DNA methylation and hydroxymethylation,80 and a 

small number of histone methylation and acetylation markings that differentiate between 

active and inactive/repressed promoter and enhancer sequences81 have been charted with 

next-generation sequencing technology in the human brain and with a narrow focus mostly 

on epigenetic changes that occur during normal development of the cerebral cortex. 

Furthermore, with few exceptions,82 such types of studies were based on very small and 

even single-digit cohorts.81 In the nearby future, government-sponsored program such as 

PsychENCODE (www.grants.gov) and/or private- or industry-sponsored efforts should 

catalyze the generation of a much larger brain epigenomic dataset than the one currently 

available, with the expectation of a deeper understanding about the epigenetic mechanisms 

of normal development and aging and changes in chronic neuropsychiatric disease.

2.3. Higher order chromatin studies in the human brain

Despite the growing realization of the importance of chromosomal looping and other higher 

order chromatin structures for transcriptional regulation (discussed above), very little is 

known about their role in the nervous system, including only a handful of studies with 

human brain tissue.29,83,84 This is surprising given that chromosome conformation capture 

(commonly referred to as 3C85,86) as the standard approach to map chromosomal loopings, 

is applicable to brain tissue collected postmortem, at least for some the genomic loci that 

were examined so far.83 The 3C technique explores physical interactions between DNA 

fragments separated by Kb or Mb of interspersed sequence; cross-linked chromatin is 

digested with a specific restriction enzyme, religated and amplified using primer pairs for 

which forward and reverse primers match to different portions of the genomic locus of 

interest.83

One interesting example of 3C applied on human brain involves GAD1, encoding the 67Kda 

glutamic acid decarboxylase GABA synthesis enzyme.84 A loop, initially detected in the 
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prefrontal cortex and then verified in neuronal cultures derived from pluripotent skin cells, 

connected sequences surrounding the GAD1 transcription start site with a region 50 kb 

further upstream. This loop showed a significant weakening in the prefrontal cortex of some 

subjects with schizophrenia that were affected by decreased GAD1 expression. There was 

evidence that the loop was conserved between the rodent and primate brain, and indeed, 

based on 3C studies in reporter mice, this loop appeared to be much stronger in cortical 

GABAergic interneurons (which express Gad1) compared with other cortical cells (which do 

not express Gad1). Such type of study could be viewed as “proof of principle” that higher 

order chromatin is (i) amenable to analyses in the human brain, (ii) potentially altered in 

common brain disorders, and (iii) potentially amenable to translational approaches and 

follow-up work in preclinical model systems, including human cell culture and animals.

Similar to DNA methylation and histone modification studies discussed above, there is a 

glaring vacuum of genome-scale and agnostic (not candidate gene-based) higher order 

chromatin studies in the human brain. This is not due to the lack of basic techniques. At the 

time this review was written, massively parallel sequencing has enabled the production of 

chromosome conformation libraries to detect interactions (i) between specific loci genome-

wide using circular chromosome conformation capture (4C), (ii) between a large set of loci 

using carbon-copy chromosome conformation capture (5C), (iii) between all regions in the 

genome using HiC, and (iv) between all regions in the genome bound by a specific protein 

or histone mark using chromatin immunoprecipitation for using paired-end sequencing 

(ChIA-PET).87–90 The datasets that are grounded in these techniques have provided unique 

insights into the organizational complexities and nonrandomness of spatial genome 

architectures, with multiple types of looping interaction groups between highly transcribed 

genes, gene-rich active regions, nonactive centromere proximal clusters, coregulated genes, 

gene ontology groups, and so on.91–93 We predict that for the human brain too, a similar or 

perhaps even more complex organization will emerge, once neuroscientists and 

neuropsychiatrists embark on these types of studies.

HiC is the most high-throughput method, investigating interactions across the entire genome 

with a resolution of 5–10 kb using the best current algorithms starting with 300 million 

mappable reads or four lanes of Illumina sequencing.94,95 This technique, though powerful, 

is not always the most amendable method to detect higher order chromatin organization due 

to the depth of sequencing required. 4C, however, can be used to determine genome-wide 

interaction contacts for specific loci with a 1–8 kb resolution using only 500,000 mappable 

reads, allowing for the multiplexing of several experiments in one lane of Illumina 

sequencing.96,97 Both HiC and 4C are limited, however, due to the sheer number of 

interactions that exist at neighboring loci, which tend to result in a large majority of 

interaction read counts. 5C can overcome neighboring interaction artifacts from high-

throughput sequencing by only designing neighboring primers on opposite strands and 

primers on the same strand apart by 15–30 kb. Thus, the determination of which “C” to use 

for individual experiments depends on the hypothesis in question.
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3. EVIDENCE AND DEBATE

3.1. Epigenetic markings in the brain: State or trait?

The rationale of exploring certain types of epigenetic modifications in postmortem brain of 

subjects diagnosed with psychiatric disease is, as mentioned above, often based on the 

hypotheses that changes in RNA expression are associated with altered epigenetic decoration 

at the site of the corresponding gene promoter and related regulatory sequences. Quite often, 

the accompanying abnormalities in DNA methylation and histone modifications are then 

interpreted in terms of a stable and long-lasting epigenetic “lesion” in response to an 

environmental insult or some other pathogenic effect operating in early life, many years 

before the brain was obtained at autopsy. For example, different grades of maternal care in 

the early postnatal period lead to differential regulation of promoter-associated DNA 

methylation and histone acetylation at the aforementioned disease gene, Gad1, in the 

hippocampus of adult rats,98 and likewise, deficits in open chromatin-associated histone 

methylation at GAD1 in the prefrontal cortex of adult schizophrenics was discussed in the 

context of defective neurodevelopment in conjunction with a risk haplotype at the 

promoter.43 Furthermore, based on postmortem studies in adult suicide victims, there is 

evidence that the suffering of abuse in early childhood years leaves a lasting DNA 

methylation imprint on the stress-regulated glucocorticoid receptor NR3C1 promoter99 in 

the hippocampus and on DNA repeats encoding ribosomal RNAs.100 In addition, normal 

aging may be associated with widespread age-related changes in gene expression in the 

cerebral cortex, including downregulation of many neuronal genes.48,101–103

However, it is fair to admit that little is known about the stability and dynamic turnover of 

epigenetic markings in human brain, and therefore, it remains unclear whether any of the 

aforementioned epigenetic alterations in the brain of adult psychiatric subjects indeed reflect 

a (mal)adaptive “trait” stably maintained for years or, alternatively, whether disease-

associated chromatin changes merely reflect the brain’s functional state at the time of death. 

The “trait” hypothesis appears very plausible in the context of monogenetic disorders 

associated with aberrant and excessive repressive DNA and histone methylation in cis (at the 

site of the mutation). Examples include the aforementioned CGG triplet expansion at the 

FMR1 (fragile X) gene promoter75 or the GAA triplet repeat expansion in the first intron of 

the FRATAXIN gene associated with Friedreich’s ataxia, an autosomal recessive 

neurodegenerative condition.104 In these cases, the epigenetic dysregulation is firmly linked 

to the pathophysiology of disease (resulting from silenced gene expression), and there can be 

little doubt that the observed changes in (postmortem) brain chromatin, like the impairments 

in neurological functions, most likely existed across the entire life span.73,104 Furthermore, 

there are many other examples strongly suggesting that the DNA sequence variation is a 

major driver for epigenetic differences between subjects. In addition to the abovementioned 

example gene, GAD1, many other single-nucleotide polymorphisms (SNPs) across the entire 

genome, including those that have been genetically implicated in the risk of major 

psychiatric disease (including bipolar disorder and schizophrenia), exhibit a robust effect on 

methylcytosine levels at the site of nearby genes.103,105 However, studies in mono- and 

dizygotic twins and related work in animals convincingly demonstrated that molecular 

mechanisms of heritability are unlikely due to DNA sequence differences alone.106
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On the other hand, it will be difficult to confirm whether many of the reported epigenetic 

alterations observed in small cohorts of “sporadic” cases with schizophrenia, autism, 

depression, and other psychiatric diseases represent a type of molecular alteration stably 

related to the underlying disease. Given that most or perhaps all epigenetic markings studied 

to date are subject to bidirectional regulation in the cell culture system and animal model, it 

is reasonable to assume that the epigenetic decoration of human brain genomes is subject to 

similar types of dynamic regulation.

For example, DNA methylation at specific promoter sequences is subject to rapid up- or 

downregulation on the scale of minutes to hours.107,108 Hippocampal DNA methylation 

signatures are highly sensitive to acute depolarization109,110 and electroconvulsive seizures, 

affecting regulatory sequences regulating NMDA and GABA-A receptor genes, Notch 

signaling pathways, and other systems with a key regulatory role for synaptic signal and 

plasticity.111

Furthermore, changes in neuronal activity result in robust changes in expression and activity 

of multiple DNA methylation-associated proteins with an essential role for neuronal health 

and function, including the methyl-CpG-binding protein MeCP2 or Gadd45b that recruits 

cytidine deaminases and thymidine glycosylases at genomic sites subject to active DNA 

methylation.112–114 Furthermore, physiological activation of hippocampal circuitry during 

learning and memory is sufficient to elicit highly dynamic DNA methylation changes at PP1, 

REELIN, and other gene promoters regulating synaptic plasticity.115,116 The complex 

molecular machineries mediating demethylation of CpG dinucleotides or histone lysine 

residues are becoming increasingly understood, which is a remarkable progress given that 

these and other types of epigenetic modifications were not long ago considered to be 

potentially irreversible.117–120 These findings, taken together, would suggest that some of 

the epigenetic alterations reported in diseased postmortem brain are not necessarily stable 

for very long periods of time and, instead, are regulated by mechanisms that operate on a 

much shorter timescale, perhaps lasting only a few weeks or days or even less. Clinically 

relevant conditions that reportedly affect chromatin structure and function in the brain 

include ischemia,121 exposure to environmental toxins,122–124 abuse of nicotine,125,126 

alcohol,127 psychostimulants,128–130 and antipsychotic and mood-stabilizing drugs.45,131–136

3.2. Mapping brain epigenomes from the culture dish?

While a significant portion of the epigenomic organization in brain nuclei is preserved in 

postmortem specimens stored at brain banks (with autolysis time typically in the range of 5–

35 h), animal models suggest that some histone modification types and chromosomal 

loopings and other higher order chromatin structures show significant signal decay and other 

secondary effects already after 12–15 h of tissue autolysis and decay.38,68 Because access to 

fresh, neurosurgically obtained brain tissue is not an option for the vast majority of subjects 

diagnosed with neuropsychiatric disease, it is not surprising that many investigators in the 

field are harnessing pluripotent stem cells (iPS) from the skin or other cell types as the 

starting material to model brain tissue in the culture dish.

Once the generation of pluripotent stem cells by reprogramming somatic cells via retroviral 

transduction of four transcription factors (i.e., Oct4, Sox2, Klf4, and c-Myc)137 had been 
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accomplished, the technique has been further advanced138 and applied by multiple groups to 

generate iPS-derived neuronal and glial cultures or even a three-dimensional organoid 

mimicking the cerebral cortex in a dish.139 These include neurodevelopmental 

syndromes140,141 and schizophrenia.142 Such type of studies undoubtedly will pave the way 

for broader future iPS-based approaches that most certainly will become a mainstay in the 

field of biological psychiatry. Cellular reprogramming with subsequent neural 

differentiation, including neural circuitry and active synapse formation in the dish, is likely 

to mimic many key steps of neurodevelopment and opens up the possibility of conducting 

electrophysiological recordings and other functional assays on nervous tissues of living 

subjects.142 Therefore, iPS technology provides an unprecedented opportunity to study the 

molecular and cellular biology of the nervous system from any patient (or at least from those 

who are able to give consent). A subset of psychiatric susceptibility genes may even, as in 

case of the MYLT1 transcription factor, which when mutated confers high risk for 

neurodevelopmental disability, promote the process of neuronal differentiation from stem 

cell preparations ex vivo.143,144

These recent advances in reprogramming technologies have also fueled general interest in 

the field to explore epigenetic regulation of the nervous system in patient- and control-

derived iPS. For example, several studies explored chromatin structures and synaptic 

signaling in neuronal cultures of Rett syndrome (RTT) patients with MECP2 mutations and 

controls.141,145 The MECP2 gene product, methyl-CpG-binding protein 2, is highly 

expressed in the nervous system and occupies widespread territories of neuronal chromatin, 

dependent on the local density of methyl-CpG-dinucleotides.146 Loss-of-function mutations 

and other MECP2 structural variants have been linked to RTT, a disorder of early childhood 

associated with developmental and cognitive regression and a broad range of neurological 

symptoms.147,148 Furthermore, work on reprogrammed skin cells of Rett patients, which 

then was further confirmed in the Mecp2 mutant mouse brain, uncovered a genomic 

instability phenotype defined by disinhibition and increased mobility of retrotransposon and 

other parasitic DNA element activities due to altered DNA and histone methylation, in 

conjunction with changes in the global chromatin state.145,146 This work illustrates the 

promising potential of neural cultures, derived from skin fibroblasts, to study epigenetic 

(dys)regulation in specific disease cases and to gain knowledge about the molecular 

underpinnings of neurological disorders. Furthermore, the short-chain fatty acid derivative 

and anticonvulsant and mood-stabilizing drug valproic acid (VPA) induces pluripotency 

from skin fibroblasts when coadministered with Oct-4 and Sox-2 transcription factors.149 

Furthermore, VPA promotes neuronal differentiation from progenitor stages150,151 and the 

drug induces, in cell culture and the brain, the upregulation of open chromatin-associated 

histone acetylation and methylation markings at promoters of genes with a key role in 

neurotransmission.43,152,153 It will be interesting to quantify these VPA-dependent effects on 

pluripotency and neuronal differentiation and to compare VPA treatment responders to non-

responders. More broadly, pharmacoepigenomics, or a drug’s direct and indirect effects on 

chromatin structure and function, may perhaps in the future emerge as an interesting 

biomarker to predict treatment response and side effects or illuminate novel, hitherto 

unsuspected mechanisms of drug action.
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However, despite all these unprecedented perspectives of generating nervous tissue in the 

dish from skin cells, it is important to point out that the technique still faces hurdles and 

challenges, particularly in the context of epigenetic regulation. This is because the eraser and 

subsequent redecoration of epigenetic markings across the genome—a key mechanism for 

successful reprogramming—may be incomplete at some loci, resulting in carryover effects 

so that the reprogrammed cells (iPS) maintain DNA methylation signatures that define the 

original donor cell type (e.g., fibroblasts).154,155 Furthermore, while some of the 

chromosomal loopings and higher order chromatin structures that regulate neuronal gene 

expression in the human brain are tractable in stem cell-derived neuronal cultures, others are 

not.83,84

Given the considerable variability of epigenetic and cellular phenotypes after 

reprogramming,156,157 it will be difficult to faithfully “rebuild” in the culture dish the 

cortical neuronal networks with their constituents such as pyramidal neurons and their 

surrounding inhibitory cells. This is a challenge for any disease-related study, including 

many psychiatric disorders that are likely to show only subtle differences in cellular 

response patterns, as compared with controls. While purely speculative at this point in time, 

imagine the potential benefits of the iPS technology for pharmaco(epi)genomics and 

treatment response paradigm. For example, iPS-derived cells could be “challenged” with a 

compound and the epigenome signature measured to distinguish between treatment-resistant 

and treatment-responsive patients. In this context, one interesting biomarker appears to relate 

to histone methylation levels and acetylation levels in the peripheral blood cells of subjects 

exposed to the histone deacetylase inhibitor, valproate.158

3.3. Functional neuroepigenomics to inform disease-associated variants

Over the last decade, multiple genome-wide association (GWA) studies have produced 

strongly significant evidence that specific common DNA genetic variants among people 

influence their genetic susceptibility to a number of complex neuropsychiatric illnesses, 

including schizophrenia159 and bipolar disorder.160 The majority of common variant loci 

associated with genetic risk for these complex diseases reside within noncoding sequence of 

unknown function, and many are far from discovered genes. To mention just one example, 

consider the major histocompatibility complex (MHC) locus that has long been implicated 

in psychiatric disease, including three large genome-wide association studies (GWAS) 

published jointly in 2009.161–163 These studies identified up to 45 disease-associated SNPs 

in the 26–33 megabase region of the MHC locus on chromosome 6, but strikingly, fifty 

percent of these SNPs were not located near genes. Some of the SNPs with the statistically 

strongest disease association were approximately 30 kb away from the nearest gene.

Furthermore, the disease-associated genomic regions are frequently large and often 

contained multiple implicated genetic variants due to local linkage disequilibrium patterns. 

In order to be able to understand these associations mechanistically, it is critical to develop 

strategies for honing in on regions and genetic variants more likely to have functional 

effects. Thus, the elucidation of the function of noncoding disease-associated loci through 

neuroepigenomics is an important next step toward the development of testable hypotheses 

regarding biological processes involved in the pathogenesis of neuropsychiatric disorders.
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Several lines of evidence suggest the involvement of a proportion of genome-wide 

associated variants in transcriptional regulatory mechanisms, including enrichment within 

expression quantitative trait loci (eQTL)164–167 and modulation of cis-regulatory elements 

(CREs).165,168–170 A CRE, such as a promoter, enhancer, or silencer, is a noncoding DNA 

sequence in, near, or distal to a gene that contains binding sites for regulatory factors and is 

required for proper spatiotemporal expression of the gene. The proposed mechanism is that 

disease-associated variants that lie within CREs affect the binding of regulatory proteins, 

such as transcription factors, leading to allele-specific differences in transcription and 

subsequent disease-related alterations in molecular pathways. The importance of 

neuroepigenomic annotations for informing the genetic influence on transcriptional 

regulation is supported by recent studies in human lymphoblastoid cell lines, where more 

than 50% of eQTLs were found to lie within CREs.166

Integration of neuroepigenomic annotations identifies a reduced set of functional SNPs to be 

tested for association with the disease in the GWAS datasets (Figs. 8.1 and 8.2). While still a 

young field with methods still under development, this approach bears significant promise 

because it would decrease the number of association tests from a couple of million variants 

(using imputed genotypes) to a couple of thousands. This approach leads to enhanced power 

by eliminating the excessive multiple testing corrections, (ii) identifying the true causal SNP 

out of nearby tag SNPs that are in linkage disequilibrium, and (iii) providing a plausible 

mechanistic and testable explanation for the effect of SNPs that can affect related functions, 

such as changes in gene expression, through allele-specific alterations in transcription factor 

binding site or alterations in the three-dimensional genome architecture associated with 

chromosomal loopings and transcriptional regulation in the brain.

4. SYNOPSIS AND OUTLOOK

Over the course of only a few years, we have witnessed a proliferation of epigenetic studies 

in the human brain, ranging from exploration of chromatin structures at a specific genomic 

locus to genome-wide epigenome mapping in defined cell types, generally with signal-to-

noise ratios and signal quality comparable with those obtained in animal brains. Work from 

multiple groups, focusing mainly on human association cortex, points to large-scale 

remodeling of DNA and histone methylation landscapes during the late prenatal phase and 

early postnatal phase and early childhood, with comparatively less dramatic changes during 

subsequent stages of development and aging.51,80,103 Still, hundreds of promoters are 

subject to epigenetic changes that seemingly continue into old age, and these data, taken 

together, leave little doubt that chromatin structures undergo remodeling throughout the life 

span of the human brain,48,103,175 including neurons and other terminally differentiated 

cells.51 Based on postmortem brain work, epigenetic risk architectures are beginning to 

emerge for a number of common psychiatric conditions and disorders, including autism,176 

schizophrenia,177 depression and bipolar disorder,105,178 and alcoholism.179 We predict that 

only very few, if any, loci will show replicated group-based differences when assayed in 

genome-wide epigenetic screens. Instead, we argue that epigenetic exploration of brain cells 

and tissue is ideally done in large cohorts, ideally hundreds, of phenotypically well-

characterized subjects, in conjunction with next-generation sequencing-based epigenome 

and transcriptome profiling and high-coverage whole-genome sequencing of the same cases 
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and tissues. Such type of datasets, when combined with the rapidly refining genetic risk 

maps for common neuropsychiatric diseases,159,180,181 will provide a powerful tool to gain 

deep and unprecedented insights into the genomic foundations of cognition and emotion, 

including disorders unique to human.
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Figure 8.1. 
The epigenome, from nucleus to nucleosome. Schematic illustration of (green) gene poised 

for transcription by polymerase II (Pol II) initiation complex, with nucleosome-free interval 

at transcription start site (TSS); (blue) distal enhancer sequence that in loop-like structure 

moves in close proximity to active gene; and (red) marks a small subset of heterochromatic 

portions of the genome, including silenced gene and heterochromatic structures bordering 

the nuclear envelope and pore complex and also the nucleolar periphery. A small subset of 

representative histone variants and H3 site-specific lysine (K) residues at N-terminal tail 

(K4, K9, K27, and K36) or core fold domain of the (histone) octamer (K79) and the H4K20 

residue are shown as indicated, together with panel of mono- and trimethyl or acetyl 

modifications that differentiate between active promoters, transcribed gene bodies, and 

repressive chromatin, as indicated. DNA cytosines that are hydroxymethylated at the C5 

position are mostly found at active promoters, while methylated cytosines are positioned 

within the body of actively transcribed genes and around repressed promoters and in 

constitutive heterochromatin.
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Figure 8.2. 
Neuroepigenomic annotations could prioritize variants with additional functional support. 

Example of four SNPs that are in strong LD (r2 ≈ 1). SNP1 is the associated variant with a 

phenotype in a GWAS. SNP2 is an eQTL associated with changes in gene expression in a 

different study. SNP4 overlaps a DNase I hypersensitivity peak (a measure for open 

chromatin and accessibility of the DNA by regulatory proteins)171,172 and a ChIP-seq peak 

for predicted enhancers (H3K4me1).173,174 Therefore, multiple sources of evidence support 

that SNP4 is in a regulatory region that regulates gene expression of specific transcript and is 

associated with the phenotype of interest.
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