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Abstract
Several aspects of insulin-dependent diabetes mellitus are analyzed, including the glucose
metabolic system, diabetes complications, and previous and ongoing research aimed at controlling
glucose in diabetic patients. An expert review of various models and control algorithms developed
for the glucose homeostasis system is presented, along with an analysis of research towards the
development of a polymeric insulin infusion system. Recommendations for future directions in
creating a true closed-loop glucose control system are presented, including the development of
multivariable models and control systems to more accurately describe and control the multi-
metabolite, multi-hormonal system, as well as in vivo assessments of implicit closed-loop control
systems.
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Introduction
An important aspect of diabetes management is the improvement of our understanding of
how homeostasis is affected by external disturbances. From an engineering point of view
homeostasis denotes the steady state of a biological system with disturbances leading to
dynamic behavior characterized by instability issues. Thus, in order to provide homeostatic
control with respect to the body’s plasma glucose levels, several processes must be analyzed
and understood.

First among them is how a healthy patient is able to regulate his or her glucose levels, both
throughout the day and in response to non steady-state conditions. Second, the differences
between the diabetic patient and the healthy patient must be understood in order to establish
which system elements need to be controlled, what constraints exist, and which manipulated
variables can be used in developing a control scheme. Finally, it is important to evaluate
previous work performed in the area of glucose control, with respect to modeling, explicit
closed-loop control, and implicit closed-loop devices.
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Glucose Metabolism
Discussions on glucose metabolism and complications associated with glucose control can
provide significant understanding of the diabetes management process [1–5]. It is well
known that for adenosine triphosphate (ATP) synthesis, the body uses glucose. Therefore,
glucose is the primary metabolite required for the body to function properly.

In a healthy individual, the basal glucose level is approximately 80–90 mg/dL. Although
there is usually an abrupt concentration increase associated with ingesting a meal, especially
one high in carbohydrates, the plasma glucose levels of a healthy individual seldom go over
about 120–140 mg/dL. If the plasma levels are higher than homeostatic levels, the excess
glucose is taken into liver and muscle cells and stored as glycogen. However, there is an
upper limit on the amount of glycogen that can be stored, and additional glucose is usually
converted to fat.

When the glucose concentration is below the basal level, the liver produces glucose
endogenously through glycogenolysis, in which the stored glycogen of the liver is
catabolized to form glucose and gluconeogenesis, in which amino acids and fatty acids
stored in the liver are converted to glucose. Hormones play a major role in nearly every
significant glucose metabolic process. The primary hormones, including insulin, glucagon,
epinephrine, and certain gastrointestinal hormones, of which glucagon-like peptide-one
(GLP-1) is the most important, all play significant roles in allowing the healthy individual to
maintain glucose at basal levels.

Insulin is primarily responsible for two effects. First, insulin binding to muscle and liver
cells results in an order of magnitude increase in glucose uptake into those cells. Second,
insulin is primarily responsible for the conversion of glucose in excess of that required for
maximum glycogen storage into fat. Furthermore, insulin is responsible for the uptake of
amino acids and fatty acids into the liver cells, which allows the liver cells to have enough
starting materials to produce glucose via gluconeogenesis.

Insulin is produced in the beta cells of the pancreas. The basal insulin secretion is
approximately 25 ng/min/kg body weight. As glucose ingestion causes the plasma glucose
concentration to increase, the secretion rate of insulin is increased. The secretion rate usually
is increased by an order magnitude with 3–5 minutes of glucose elevation.

Glucagon is primarily responsible for providing the counter-regulatory response in glucose
control. As glucose levels descend to below the basal level, usually a result of either fasting
or exercise, glucagon binds to liver cells to stimulate glycogenolysis and gluconeogenesis.
The binding of glucagon to liver cells also increases the uptake of amino acids and fatty
acids, resulting in increased glucose production via gluconeogensis. Finally, glucagon
binding to adipose cells results in the endogenous production of fatty acids to be used in
glucose production. Like insulin, glucagon is produced in the pancreas. Glucagon is released
during exercise and during episodes of hypoglycemia [1].

Like glucagon, the secretion of epinephrine results in increased gluconeogenesis. It also
results in the increased mobilization of fatty acids for use in gluconeogenesis. However,
unlike glucagon, epinephrine, combined with norepinephrine, constricts the size of blood
vessels and dramatically decreases the flow of blood to other tissues. This results in
decreasing the uptake of glucose into the other cells. The secretion of both glucagon and
epinephrine/norepinephrine is increased in response to exercise. Epinephrine and
norepinephrine are also secreted in high stress situations and when the plasma glucose
concentration decreases well below the threshold level for glucagon release.
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For reasons not completely understood, incretin hormones, of which GLP-1 is the most
significant, are released in response to a meal. The incretin effect results in an increase in
both pancreatic insulin production and secretion. This results in an increase in plasma
insulin even before hyperglycemia is observed. In addition, the incretin effect also plays a
direct role in regulating plasma glucose levels, independent of any role it has in increasing
insulin levels.

Diabetes Mellitus
Diabetes mellitus is characterized by a breakdown in the glucose metabolic process. Of
more interest to this research is Type I diabetes, in which the pancreas is unable to provide
the necessary level of insulin to control plasma glucose levels. Type I diabetes is an
autoimmune disease in which the body destroys its pancreatic beta cells. This autoimmune
process normally occurs early in a person’s life, with later cases normally occurring when a
person is in his or her early to mid 20’s. For Type I diabetic patients and a large number of
Type II diabetic patients, insulin must be provided from a source other than the pancreas.

For a Type I diabetic patient, the insulin levels will be based entirely on the quality of
control that is being provided. If the amount of insulin provided is not enough, more glucose
will be produced in the liver than what can be taken up into cells, resulting in
hyperglycemia. If the hyperglycemic state is maintained for an extended period of time, the
diabetic patient will suffer many consequences [1]. First, the increased level of glucose in
the blood changes the osmotic balance of the body, resulting in the loss of water from and
ultimately the dehydration of many of the body’s cells. Second, as the glucose levels
increase in the body beyond a threshold of approximately 200 mg/dL, glucose is no longer
able to be reabsorbed in the kidneys and begins to be passed in urine. The high levels of
glucose in urine result in changes in the osmotic balance of urinary fluid, resulting in the
passing of other fluids and electrolytes not normally passed. The presence of high glucose
itself in the body can actually destroy tissue walls, including the walls of blood vessels,
kidneys, eyes, and limbs. Diabetic patients are at higher risk for heart failure and kidney
failure. In addition, it is not uncommon for diabetic patients to suffer blindness, and they
often must have limbs removed because of the development of gangrene. As a final effect of
frequent hyperglycemia, the inability of the body to use glucose as fuel results in the body’s
switching to fat metabolism and protein metabolism. This can result in the body’s pH
dropping to dangerous levels that can result in death from acidosis, or in the body’s
consuming the proteins of its tissues, also resulting in death.

While hyperglycemia could perhaps be prevented by purposely providing more insulin than
required for glucose utilization, hypoglycemia would result from providing too much
insulin. The amount of insulin available in the blood has a direct effect on the amount of
glucose being taken into the cells of the liver and muscle cells. As the insulin availability
increases, so does the uptake of glucose into the liver and muscle cells, regardless of the
needs of other cells. This is problematic because glucose is the only nutrient that can be used
by certain cells in sufficient quantity to allow them to sufficiently perform their metabolic
processes.

The most important of these include the brain and the retina. If the brain is unable to get the
necessary glucose to perform its metabolic functions, death will result. Adding to the
severity of the problem is that if the pancreas is regularly increasing its glucagon output to
increase the glucose levels in response to hypoglycemia, it will eventually become
insensitive to the low glucose levels, and eventually hypoglycemia will not result in the
production of glucagon. Because the central nervous system is responsible for the
production of epinephrine, this low level of hypoglycemia will result in the secretion of

Farmer et al. Page 3

J Pharm Pharmacol. Author manuscript; available in PMC 2011 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



epinephrine as well. Therefore, to maintain healthy basal conditions, it is very important that
a diabetic patient be able to exercise tight glucose control by using carefully determined
insulin dosages.

When a diabetic patient eats a meal, the outcome again strongly depends on the quality of
insulin therapy. Specifically, the patient’s glucose levels will depend on both the amount of
insulin administered and the time of administration. If insulin levels are too low, two
dramatic effects will result in extreme hyperglycemia. First, there will not be enough insulin
to allow the glucose to be taken into the liver and peripheral cells. Second, the low insulin
levels will result in relatively high glucagon levels, which will actually result in even higher
levels of glucose in the blood.

In addition to the amount of insulin administered for a meal, the time of administration plays
a major role in maintaining normoglycemic conditions. This time usually corresponds with
the production of the GI hormones associated with the meal. If the administration is too
early, the result will be the onset of hypoglycemia before the meal is absorbed and
hyperglycemia near the end of the meal, as there will not be sufficient insulin to allow the
glucose infusion from the end of the meal to be utilized. If the insulin is administered too
late, hyperglycemia will result at the beginning of the meal and hypoglycemia will result at
the end of the meal or shortly after.

During exercise, if too much insulin is present in the body prior to exercise, the result will be
an increase in glucose uptake in the liver and periphery and the inhibition of both glucose
and fatty acid production. Because fatty acid levels do not increase, the glucose utilization
by the cells increases. The consequence of all of these effects is the onset of hypoglycemia,
a common occurrence during exercise for diabetic patients.

When too little insulin is present during exercise, the result will be hyperglycemia. This is
not a problem during exercise, as the increased glucose levels provide additional fuel that
can be used. However, once exercise has been completed, the patient now has higher
glucose levels than normal, and there is no effort by the body to restore the levels to normal.

As the previous paragraphs discussed, diabetes can result in very serious consequences for
both hyper- and hypoglycemia. The ability to live a life of nearly the same quality as a
healthy patient largely depends on the ability of the patient to provide the right amount of
insulin at the right time. In order to achieve this optimal type of administration, several
insulin delivery methods have been proposed and developed.

Review of Insulin Delivery Techniques
To effectively control glucose in Type I and some Type II diabetic patients, insulin must be
administered in such a way that neither hyper- nor hypoglycemic episodes are regularly
experienced. Several different insulin administration techniques have been studied. Several
other methods have been proposed and are the focus of current research. Each method can
be classified by the type of control provided and by the site at which insulin is delivered.
Each will be discussed below.

Open Loop Methods
Open loop methods of insulin delivery focus on a patient administering insulin to his or
herself at different times of the day. The purpose here is to briefly describe open loop
methods of control. Any interested reader is directed to reference [6] for a more thorough
review of the open loop route.
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The most common method of open loop insulin delivery is the subcutaneous insulin
injection. Patients will often inject a slow acting insulin formulation in the morning to
provide the basal insulin requirement throughout the day. This analog, known as insulin
glargine, is developed by modifying certain amino acids on the different insulin chains [6].
Once altered, it is able to provide a steady release of insulin all day. In addition to the basal
requirement, patients will inject insulin into subcutaneous tissue prior to meals. The amount
of insulin to inject will depend on both a measurement of glucose and on an estimate of the
amount of food that is about to be eaten. To provide rapid insulin during this situation, a fast
acting insulin formulation such as insulin aspart or insulin lispro is used. This method
suffers from the requirement of three or more daily injections into a layer of subcutaneous
tissue. In addition, because the injected insulin must diffuse through the subcutaneous tissue
in order to be absorbed into the bloodstream, and because some of this insulin may be
degraded in the subcutaneous tissue during this diffusion, not all of the injected insulin will
be available for in the body. Also, the diffusion across the subcutaneous layer will create an
additional time delay in addition to the delay associated with insulin binding to mediate
glucose uptake. Finally, because the insulin will go straight from the subcutaneous layer to
the bloodstream, the first pass effect, in which approximately 40% of insulin secreted from
the pancreas is degraded in the liver before reaching the bloodstream, will not occur. This
will result in increased uptake into the muscle cells and decreased uptake into the liver
relative to a healthy patient.

An improvement to the insulin injection is the externally worn insulin pump. The pump is
always attached to the diabetic patient, and a basal amount of insulin is provided throughout
the day. When the patient is going to modify his or her insulin delivery because of a meal or
exercise, the insulin infusion rate can be modified. Pumps have recently been developed to
determine the bolus size for a given situation [7]. The patient must input his or her blood
glucose levels and an estimate of the size of the load (meal size or exercise load) and the
change in infusion will be determined. This type of administration has two primary
advantages over injections. First, because the pump has a catheter that is always in contact
with the patient, multiple insertions will not be required, increasing the quality of life for the
patient. The exception for this is when the catheter is periodically changed, but his is still a
significant improvement to the three or more injections usually required. The second
advantage is ease in which a change in the insulin infusion can be made. If a patient is was
to eat a different amount of food than projected, or were to exercise for a different duration,
the insulin rate can be adjusted to account for this. However, the disadvantages associated
with subcutaneous delivery still exist. Furthermore, the patient is required to wear a bulky
device at the abdominal area. Such a device would definitely be noticeable and would have a
definite impact on the quality of life for the patient.

In addition to subcutaneous delivery, other open loop methods have been proposed that take
advantage of other administration sites. Recently, the Food and Drug Administration has
approved the use of Exuberant®, an inhaled form of insulin, to be used by insulin dependent
diabetic patients [8]. The biggest advantage of such a technique is the increase in patient
compliance, as a result of no longer having to receive injections or having to wear an
external pump. However, several disadvantages exist. First, the bioavailability of inhaled
insulin is less than that of a subcutaneous infusion. In addition, a slow releasing insulin
analog has not been developed in an inhaled form, so basal administration is still necessary.
Finally, because the absorption rate of insulin via the lungs can vary significantly for
circumstances such as if a patient smokes or develops a cold, the dose must be carefully
determined. Over-absorption of insulin can easily result in severe hypoglycemia [6].

In addition to inhalation, NIH funding is currently being applied toward the development of
oral insulin delivery. Like the inhalation route, the oral route would in theory prevent the
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patient from having to receive multiple daily injections. However, there do exist a few
drawbacks to oral delivery. The first disadvantage of the oral route is the difficulty in
maintaining the integrity of insulin in the harsh environment of the stomach. Insulin must be
able to pass through the stomach and into the intestines for absorption into the bloodstream.
However, the acidic gastric environment will degrade insulin, requiring a protective vehicle
to allow the insulin to pass safely to the small intestine. Peppas [9] has developed a
biomaterial for oral delivery of proteins that protects them in the harsh stomach environment
and releases them in the higher pH environment of the small intestine. While protein
degradation is one main cause of low bioavailability for protein delivery, another
disadvantage of oral delivery is the low bioavailability associated with poor absorption from
the intestine into bloodstream [10]. Ongoing research in many labs, including the Peppas
laboratory, is currently focused on improving the transport of insulin across the intestinal
epithelium.

In addition to oral and inhaled insulin delivery, other proposed methods include delivery via
the eyes, skin, and nasal passages [6]. All open loop delivery systems require some level of
patient or doctor involvement in the insulin administration. This will require a blood glucose
measurement, an estimate of the meal to be consumed, and a calculation in order determine
an empirical estimate of the insulin requirement. With the exception of the insulin pump, the
open loop method requires a patient to live a predictable lifestyle, one in which his or her
meal is prepared specifically for the given insulin bolus and exercise must be performed
only in accordance with the insulin received.

Closed-Loop Delivery
An effective alternative to open loop insulin delivery is closed-loop delivery, in which the
involvement of the patient in maintaining glucose control is minimal. Such a system would
be able to determine the insulin requirement in real time, regardless of the situation, and
deliver the proper insulin dosage. It would be able to change the infusion as the patient’s
activity changes and, ideally, would exist internally, eliminating the requirement of wearing
external equipment. Such a system would also aim to significantly reduce the number of
injections required or to eliminate them altogether.

The ideal method of closed loop delivery would be to repair the body’s natural ability to
infuse insulin. One method to achieve this would be the pancreas transplant. Ideally, the
transplantation of a healthy pancreas would enable a diabetic patient to produce insulin as a
healthy patient. However, there are many shortcomings associated with this approach. First,
this method depends strongly on the availability of a healthy pancreas for transplantation.
Second, the body of a pancreas recipient often undergoes an immune response that
ultimately rejects the foreign organ [6].

Another natural method would be to restore to the patient’s pancreas the ability to naturally
secrete insulin as a healthy patient [11]. While such a method has promise, a great deal of
research must be performed before this type of therapy can be useful to humans. A third
method involves implanting encapsulated islet cells from a healthy pancreas, in the hopes
that the immune response associated with the foreign pancreas can be avoided. At the same
time, the islet beta cells will be able to produce insulin as a healthy pancreas would. This
method is the subject of much ongoing research [6].

While natural pancreatic restoration methods are ideal, research must still be completed in
order to determine the feasibility of these methods becoming reality. Perhaps a more
realistic method of closed-loop control involves engineered solutions. First is the idea of
explicit closed-loop control, in which a glucose sensor, an insulin infusion algorithm, and an
insulin pump are used to form an artificial pancreas. Second is the idea of implicit-closed
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loop control, in which polymeric material is able to act as the sensor, control algorithm, and
infusion system. To test the validity of such methods, simulations are performed by first
developing a model of the infusion and then implementing the infusion model with a model
of glucose dynamics within a diabetic patient. Patient modeling, explicit closed-loop control,
and implicit closed-loop control will now be discussed.

Diabetic Patient Models
Models describing the important metabolite and hormone dynamics in diabetic patients have
been developed since 1960 in order to gain understanding of the glucose homeostasis system
and to simulate what effect certain therapies would have on the patient. This review covers
different models developed during the last few decades. Others have written reviews on the
models and described their various advantages and shortcomings. The interested reader is
directed to Sorensen [12], Puckett [5], Parker and Doyle [13], and Steil [14] for more
insight.

Patient models can be broken down into two main groups. On one side is the
pharmacokinetic model, in which elimination and absorption kinetics are described for each
species, and a theoretical number of compartments is determined based on elimination and
absorption data [15]. The second type is the physiologically explanatory model, in which
organ system is considered to be a compartment, and mass balances are written for each
organ system by considering convection resulting from blood flow, diffusion from blood to
within organ cells, and metabolic processes [16,17]. Both types have been developed in the
past. While the pharmacokinetic (PK) models have the advantage of being easier to identify
from experimental data, Doyle [18] has shown that more complex models may be needed to
provide the necessary accuracy for effective control studies.

The first known PK model for glucose regulation was developed by Bolie [19]. The model
consisted of one linear equation for insulin and one for glucose. Elimination and absorption
kinetics were described by first order rate equations. While developed for a healthy patient,
assuming that insulin secretion was simply proportional to glucose, the diabetic patient can
be described by setting the first order insulin secretion rate constant to zero. Ackerman et al.
[20] modified the model by tying insulin and all other hormones involved in glucose
regulation together as a single variable. The model form remained the same however. The
main criticisms of these models are that they represent a clear oversimplification of the
glucose regulatory system. Besides the fact that insulin or hormone secretion is more
complex than a simple first order process, the use of a single insulin or hormone
compartment has been criticized by multiple reviewers, including Sorensen [12], and Parker
and Doyle [13].

Frost et al. [21] developed a two-compartment PK model for insulin in healthy and diabetic
patients. For healthy patients, the insulin secretion rate is given as an exponential function of
glucose. For diabetics the secretion is taken to zero. Insulin elimination was taken to be a
nonlinear saturation function of insulin for healthy patients and a first order process for
diabetic patients. Frost himself admits that this also is an oversimplification, but notes a
strong fit to patient data. His two compartment model with nonlinear sinks is also an
improvement over the earlier developed models.

Sherwin et al. [22] and Cerasi et al. [23] simultaneously developed a three-compartment PK
model in which a central compartment is continuously exchanging insulin with two side
compartments. While more complex with respect to the number of insulin compartments,
insulin appearance and elimination from each compartment is modeled as first order
elimination kinetics. The model of Cerasi also has six linear ordinary differential equations
(ODE’s) to describe physiological insulin secretion. While the three insulin compartments
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are said to provide more physiological accuracy than the one compartment models
previously used, the one compartment glucose model of Cerasi is likely inaccurate. Insel et
al. [24] developed a three-compartment glucose model that included nonlinear terms to
account for insulin effects on glucose uptake. However, the nonlinear term is effectively
zero order with respect to insulin, and thus does not really effectively show accurate insulin
effects in glucose consumption.

The majority of PK models developed since then have been modifications of the original PK
models previously developed. Tranberg and Dencker [25] developed a two-compartment
insulin model very much like that of Frost. Home et al. [26] and Kobayashi et al. [27] both
used a one-compartment model to fit kinetic parameters from patient data. Hipszer et al. [28]
recently used the one-, two-, and three-compartment insulin models to fit insulin data from
diabetic patients, concluding that a single insulin compartment is all that is needed to
describe insulin kinetics. Salszieder et al. [29] developed a one-compartment model for both
insulin and glucose, but increased model complexity in two ways. First, they assumed that
glucose production and uptake were best expressed as differential equations. Second, they
assumed that insulin accumulation was a function both of the glucose concentration and the
derivative of the glucose concentration, an assumption which, as discussed later, forms the
basis of many of the control systems designed for glucose control. Parker and Doyle [13]
indicated that this model was not able to accurately describe faster dynamic processes
associated with glucose regulation.

Perhaps the most widely used PK model to describe glucose and insulin kinetics is the
minimal model developed by Bergman and Cobelli [30]. The authors chose from seven
different PK model structures, including some of the previously developed models, to select
the model structure displaying both a strong representation of intravenous glucose tolerance
test (IVGTT) data and physiological relevance. The model consists of a single glucose
department and two insulin compartments. The pharmacokinetic diagram is given in Figure
1. Glucose elimination is considered to be a nonlinear function of both glucose and a term
representing insulin that is bound to liver and peripheral cells. While originally developed
based on animal studies, the model was later applied to human studies [31,32], to an oral
glucose tolerance test (OGTT) [33], and to a mixed meal test [34].

There have been several published studies displaying the shortcomings of the minimal
model, including the work of Quon et al. [35] and Finegood and Tzur [36]. Both groups
found that the minimal model does not accurately quantify the relative contributions of
insulin and glucose with respect to glucose uptake. Quon et al., including Cobelli [37] later
determined that the problem stemmed from the use of a single glucose compartment. This
lead to efforts to develop an improved minimal model, beginning with a two-compartment
glucose model by Cobelli et al. [38,39], and ultimately leading to the recently developed hot
IVGTT two-compartment minimal model [40]. The model continues to be improved today
[41].

More recently, control engineers have gained an interest in the PK model developed by
Hovorka et al. [42,43]. In a similar manner to Bergman and Cobelli with the minimal model,
Hovorka et al. proposed a number of different models before deciding on the one that both
best fit the data as well as corresponded to physiology. The model diagram is given in
Figure 2. It uses two glucose compartments and three insulin-action compartments,
describing the appearance and elimination of each species as a first order process. While
there is only a single actual insulin compartment, three different types of insulin action are
described and assumed to different with respect to their ability to affect glucose metabolism.
This coincides well with the original claims of minimal model critics, which may have a lot
to do with its rapid acceptance among control engineers. Hovorka et al. [44] recently
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improved upon the model to more accurately describe the kinetics associated with
subcutaneous insulin delivery.

The second major type of patient model are those that describe biochemical species
dynamics at each significant organ site. These models are developed by selecting as the
main compartments only those organs in which significant species appearance or
disappearance occur, and writing mass balances accordingly [16]. The first model of this
type was developed by Foster et al. [45] in 1973. This model assumed a glucose
compartment for blood, muscle, and the liver, while assuming a single compartment each for
insulin, glucagon, and fatty acids. Guyton et al., including Foster [46] increased the
complexity of Foster’s model. A central organs compartment was added to the glucose
model, insulin secretion from the pancreas was made more complex, and diffusion was
included in the transport equations. Sorensen [12] improved Guyton’s work by dividing the
central organs compartment into the brain and gut compartments and by including the
counter-regulatory effects of glucagon. A model diagram of Sorensen’s glucose model is
given in Figure 3. The model of Foster et al. is the only one to include fatty acid metabolism.

Other physiologically relevant models include the models of glucose [47] and insulin [48] of
Tiran et al., the model of Cobelli et al. [49], and the model of Puckett [5]. The many
parameters of Tiran’s models were estimated using dog data. The models also did not
include the affects of glucagon. The models are also given in transfer function form,
meaning that they represent linear representations of the systems. The model of Cobelli
considers glucose to be a single subsystem, and contradicts his own minimal model
improvements made years later. Puckett developed a model very similar to Sorensen’s, but
did not include glucagon effects, and removed all transport terms besides the metabolic
sources and sinks. In this way, her model represents a multi-compartment PK model. As
such, any dynamics associated with other transport will not be captured by this model.

While Sorensen’s model has been the most widely used physiological model with respect to
glucose control, it has been criticized for not accurately representing observed glucose
behaviors in diabetic patients. Steil [14] has pointed out that the model underpredicts the
threshold glucose concentration at which insulin action becomes saturated. He also mentions
that the model poorly represents the glucose concentration of a patient with zero insulin and
that the sharp drop in glucose that is experienced by patients whose insulin levels rise
quickly is also not predicted. However, despite these shortcomings, it remains the most
accurate physiologically accurate model developed to date.

In addition to the development of a model, the model parameters must be accurately
estimated in order to ensure reasonable simulation results. While the assumed accuracy of
physiological models relative to PK models makes them enticing for control simulations,
they suffer from the drawback of having tens to hundreds of parameters that must be
identified. Because specific patient metabolic rates cannot usually be measured, many
different techniques have had to be used in order to estimate model parameters. Some
authors, such as Bolie [19], Guyton et al. [46], Tiran [47,48], and Sorensen [12], used
average reported parameters, such as compartment volumes and blood flows. Sorensen and
Bolie chose to extrapolate human parameters from reported dog and rat parameters,
assuming a linear relationship based only on bodyweight. In other instances, specific data
were acquired that allowed specific model parameters to be determined, such as most of the
kinetic parameters of Sorensen’s mode and the diffusion terms of Tiran’s models. Most
often, however, the model parameters were estimated by comparing model responses to
glucose and insulin data, and selecting the parameter set that minimizing the sum of the
squared residuals. It would appear that the lower order models have an advantage in that
they can be estimated with a single set of glucose or insulin data, whereas the larger models

Farmer et al. Page 9

J Pharm Pharmacol. Author manuscript; available in PMC 2011 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



will have to either assume average parameters values from literature or be able to use
experimental data for a specific biochemical species in a specific tissue compartment.
Finally, it should be noted that most average patient parameter values are given for a 70 kg
adult male, independent of age, and that values for a human not matching this description
would still have to be determined, either through experiment or approximation.

Explicit Closed-Loop Control
By utilizing the principles of process control, the body can be treated as a chemical process.
Glucose metabolism can be simplified to the control of a single variable, glucose, through
the use of a single manipulated variable, insulin. The effectiveness of such methods depends
on the effective development of glucose sensors, insulin pumps, and control algorithms
relating the insulin infusion to past, present, and predicted glucose values.

The development of improved glucose sensing methods is probably the most active
component of research being applied toward the development of an explicit closed-loop
system. Even without the pump and algorithm, the use of a glucose sensor that is able to
give frequent blood glucose measurements in real time is a dramatic improvement to
drawing blood via a fingerstick and measuring glucose directly. Joseph and Torjman [50]
summarized the different types of sensors being developed, including sensor design and
biological issues associated with each. Among the sensors discussed are those implanted in
either the subcutaneous tissue or the bloodstream. Most invasive sensors are based on
enzyme catalyzed glucose oxidation. One issue associated with implanted sensors is the
immune response of the body to foreign species. This can reduce the life of the sensor and
can also interfere with its ability to give accurate readings. Another issue is the frequency of
measurements. Medtronic-Minimed (Minnapolis, MN) has developed external sensors
capable of giving measurements less than five minutes apart [51]. However, the device is
not implantable. Devices implanted in the subcutaneous tissue also have the issue of not
reading the actual glucose values of blood. The diffusion of glucose from blood to the
subcutaneous tissue can result in time delays of around 30 minutes. Schmidtke et al. [52]
and Freeland and Bonnecaze [53] have worked on developing dynamic models so that blood
glucose values can be inferred from subcutaneous values. Much research is still needed,
however, in order to develop implantable devices that can frequently report accurate glucose
values for long periods of time [54,55]. In addition, the lack of developed sensor technology
for the other biochemical species to be determined in real time severely limits the
possibilities of control to be based on glucose measurements only.

The second mechanical component of the system is the insulin infusion pump. Insulin
pumps currently developed by Medtronic-Minimed are able to provide rapid-acting insulin
throughout the day either as a basal pulse or as a bolus for a meal [56]. With the patented
“Bolus Wizard” the insulin bolus will be calculated based on the size of the meal and the
current glucose measurement. However, implantation of such a device is still a work in
progress. Many issues must be resolved, including the immune response of the body, the
location of the device, and how often the pump’s insulin must be replaced. While Renard
[57] argues that the pump should be placed within the peritoneum, a device planted under
the skin may be easier to refill. However, such a device would likely be supplying insulin to
the subcutaneous tissue, and delivery would not be like that of a healthy patient.

Parker and co-workers [58] reviewed many of the algorithms developed for glucose control
prior to 2000. Bequette [59] also reviewed many of the older developments while also
reviewing algorithms developed through 2005. The aim of this work is to summarize those
reviews and to review algorithms developed since 2005.
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The first algorithm of real significance with respect to the development of the artificial
pancreas was proposed by Albisser [60]. This algorithm provided insulin when glucose was
higher than the desired level and dextrose when glucose was lower than desired. The
dextrose infusion rate was proportional to glucose infusion, and the insulin infusion rate was
based on a nonlinear proportional plus derivative (PD) algorithm. The “Biostator”
algorithms [61] improved upon Albisser’s work to try to improve the response of blood
glucose to a meal. This algorithm suffered from many problems. First, the control algorithm
consisted of many patient-dependent parameters, meaning the algorithm would have to be
developed for a specific patient [58]. If patient parameters changed over time, the algorithm
may also have to be reprogrammed. The second major problem is that the derivative was
calculated using finite difference for the previous four measurements [59]. Because each
measurement was one minute apart, the rate immediately after the beginning or end of a
meal will inevitably suffer from a time lag before it is properly adjusted. In addition,
measurement noise associated with any of the four points could also dramatically affect the
infusion rate. Many authors [58] tried to create improvements to the Albisser’s algorithm,
but no controllers were found to outperform the original nonlinear PD algorithm.

As validation that the PD algorithm is indeed the best representation, Nomura et al. [62]
studied the response of beta cells of healthy rats to a step disturbance of glucose. Glucose
was infused at a constant rate, and the insulin concentration was noted with time. A biphasic
response was observed, and the time constants associated with each phase were estimated.
The biphasic response of the pancreas is shown in Figure 4. Steil et al. [63] investigated
Albisser’s algorithm and the algorithms of “Biostator” while also proposing a PID algorithm
for insulin infusion. Controller effectiveness was studied by performing simulations using
the model of Cobelli et al. [49]. For the simulation, the model was initially in the
hyperglycemic state, and the ability of the controller to return glucose levels to normal was
investigated. The algorithm has been implemented in the implantable pumps of Medtronic
Minimed, and the ability to return glucose levels to normal in hyperglycemic diabetic dogs
was observed. The pump was also implanted into human subjects, and the control algorithm
was demonstrated to result both hyperglycemia after the consumption of a meal and
hypoglycemia after the meal. An argument against the use of PID controllers to mimic the
biphasic insulin profile is provided in reference [59]. The author argues that such a response
can be the result of any control system in which integral action is present, and that internal
model controllers can also have the same response. He also argues that integral control can
result in hypoglycemia as a result of infusing too much insulin.

Many authors have studied control algorithms by performing simulations using the well
known patient models. Furler et al. [64] investigated the use of a semiclosed-loop algorithm
based only on current glucose levels by performing simulations with the minimal model.
The ability to return glucose levels from hyperglycemia to normal was observed, but no
attempt was made to prevent glucose levels from approaching hyperglycemia after
consumption of a meal. Sorensen [12] developed on internal model controller, and
simulations were performed using his developed patient model. The controller is able to
keep glucose levels under 140 mg/dL during a 100 g oral glucose tolerance test (OGTT).
Parker et al. argue in reference [58] that the effectiveness of the controller is highly
parameter dependent and that changing the model parameters results in the controller no
longer being able to reject the disturbance.

Recent efforts in algorithm development have focused on advanced control methods.
Among the first advanced control systems were the optimal controllers developed by
Ollerton [65] and Fisher [65]. Ollerton used optimal control to minimize the integral of the
squares of the differences between a glucose measurement and the glucose set point. The
minimal model was discretized with a 10 minute sampling interval, and the insulin infusion

Farmer et al. Page 11

J Pharm Pharmacol. Author manuscript; available in PMC 2011 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



profile minimizing the objective function was chosen as the optimal profile. A 180 minute
sampling time is also used, but such a long sampling time would be unable to correct for a
meal disturbance that was present in between the samples. The author shows that the
algorithm is able to return an initially hyperglycemic patient to normal levels, even in the
present of a 100 g/day infusion of glucose. However, the algorithm is unconstrained with
respect to the states, inputs, and outputs, and the optimal solution results in insulin levels
below zero mU/L, which are not physically attainable. Even with negative insulin levels, the
control system is unable to prevent the onset of hypoglycemia. Fisher also used the integral
squared error objective function to apply optimal control to the minimal model, but chose
three different semiclosed-loop insulin delivery systems to investigate. The first system was
comprised of a basal infusion and injections when necessary, the second consisted of an
infusion pump only that was optimized every hour, and the third system consisted of the
optimal hourly infusion and the injection when needed. The optimal injection and pump
infusion, where applicable, were determined using the objective function. Fisher shows that
the best controllers consist of the optimal insulin injection, and that the optimal infusion
alone will not be able to reject a meal disturbance without the onset of hypoglycemia.

Other methods of advanced control that have been applied include the application of H∞
control by Parker et al. [67]. The authors applied H∞ control to a modified version of
Sorensen’s model in which model parameter uncertainty is considered. The control was
applied after the model was reduced. Simulations showed that neither hyper- nor
hypoglycemia are approached.

The most recent developments in closed-loop control focus on model predictive control
(MPC) to provide the optimal control profile while considering constraints. Given measured
outputs, model parameters are estimated using state estimation, and an objective function is
solved based on the model prediction of the future glucose trajectory resulting from that
particular insulin profile. Parker et al. [68] developed a model-based algorithm employing a
linearized version of the Sorensen model, a Kalman filter, and a linear quadratic objective
function. Like other methods applied to Sorensen’s model, neither hyper- nor hypoglycemia
were approached. Bequette and Lynch [69] applied linear MPC to the Sorensen model by
using the minimal model to determine the insulin infusion profile. The authors later applied
MPC directly to the minimal model, showing that neither hyper- nor hypoglycemia are
approached during a meal [70]. Hovorka et al. [43] applied nonlinear MPC to Hovorka’s
original model. While the authors were able to show that NMPC used along with an
injection at mealtime is able to reduce hyperglycemia and prevent hypoglycemia, no work
was presented in which only the MPC controller was used.

Diaz et al. [71] applied predictive functional control Carson’s model. While able to simulate
the reduction of hyperglycemia during a meal and the prevention of hypoglycemia, the
results were achieved by utilizing insulin infusion rates that lead to hyperinsulinism [1].
Finally, Cinar et al. [72] developed an online simulation tool employing MPC to control a
patient using Puckett’s model as both model and patient.

Implicit Closed-Loop Control
The development of an effective explicit closed-loop control system depends on the ability
of engineers to develop an effective sensor for each output, an effect control algorithm that
allows the controlled variables to be maintained at normal levels during many different
conditions, and an effective infusion pump. The pump and the sensor must be able to be
implanted and they must be able to respond quickly to the changing environment.

An alternative that removes the necessity of developed equipment is the implicit-closed loop
control system, in which a chemical system is acting as all three components of the control
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system. The system, which contains insulin, is able to modify its insulin release profile in
response to a change in the local environment. By mechanically changing in response to its
environment, the system acts as a sensor. By releasing insulin through natural transport
processes, the device acts as the infusion system. By being optimally designed to release the
right amount of insulin for each condition, the device development is the control algorithm.

Because the required stimulus is the state of the local environment, a logical candidate to
serve as such a device is the environmentally responsive hydrogel. Hydrogels are cross-
linked hydrophilic polymer networks that are able to absorb large amounts of water [73].
The functional groups of the polymer backbone can be modified to allow the hydrogel to
swell or deswell in response to many different stimuli, including pH and temperature.

To be used as glucose sensors, Albin et al. [74], as well as Peppas et al. [75–77], have
incorporated enzyme-catalyzed glucose oxidation into the hydrogels by immobilizing
glucose oxidase into the gel network. Because one of the reaction products is gluconic acid,
it is logical to develop the gels to be pH-responsive. Because the release of insulin should
increase in response to increased glucose, it is also natural that the hydrogel system be
designed to swell in response to an increase in acid concentration, or a pH decrease.

Hydrogel systems that are responsive to pH changes can be divided into two groups. The
first are the anionic hydrogels the swell in response to a high pH. These gels contain acid
groups that deprotonate at a high pH. This ionization results in repulsions among functional
groups within the chains. Examples of anionic hydrogels include the poly(methacrylic acid-
graft-ethylene glycol) gels developed by Peppas et al. [9] for oral delivery, and the poly(N-
isopropylacrylamide-co-methacrylic acid) gels developed Siegel et al. to serve as a
chemomechanical oscillator [78,79].

Cationic hydrogels are hydrogels that swell in response to a decrease in pH. These gels
contain basic functional groups, such as methacrylates. Below the pK of the functional
group, the functional groups become protonated, which results in a change in hydrophilicity
of the network, causing an increase in water uptake into the gel [76]. This results in
increased swelling at the pH below the pK of the functional groups.

Many people have studied the swelling and release characteristics of pH-sensitive cationic
hydrogels. Firestone and Siegel [80] investigated the swelling kinetics of copolymer gels of
methacrylic acid and dimethylaminoethyl methacrylate, poly(MMA-co-DMAEM) as a
function of pH, ionic strength, and temperature, showing that these systems can take in as
much as 8 times their collapsed weight in water. Siegel et al. [81] showed that the pK of the
buffer solution has a strong effect on the swelling of these gel systems. Firestone and Siegel
[82] showed that these systems are able to demonstrate oscillatory swelling and deswelling
and that successive pH increases with time resulted in successive deswelling to a specific
swelling ratio. Cornejo-Bravo and Siegel [83] studied water sorption for copolymers of
diethylaminoethyl methacrylate and methyl methacrylate (poly(DEAEM-co-MMA)), but no
dynamic swelling or release results were given. Finally, Siegel et al. [84] investigated the
release of caffeine from a hydrogel disk approximately 13 mm in diameter and 0.33 mm
thick, and the effects of buffers on release [85]. At a pH of 3, the loaded disk no longer
released caffeine at approximately 100 minutes from the start of the experiment. The
completion time had increased to 200 minutes for pHs of 5 and 7. All of Siegel’s swelling
studies showed the gels reaching their equilibrium swelling ratios on the order of hours.

In our laboratory, we have investigated the swelling and release of pH-sensitive cationic
hydrogels as well. Peppas and Hariharan [86] studied both dynamic and equilibrium
swelling for a poly(diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate)
(poly(DEAEM-co-HEMA)), poly(diethylaminoethyl acrylate-co-hydroxyethyl
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methacrylate) (poly(DEAEA-co-HEMA), and poly(methacrylaminopropyl ammonium
chloride-co-hydroxyethyl methacrylate) (poly(MAPTAC-co-HEMA)). They were able to
demonstrate that poly(DEAEA-co-HEMA) showed no water sorption at a pH of 8, while
water the gels were able to uptake more than 10 times weight of the collapsed gel at a pH of
3. Using poly(DEAEM-co-HEMA) they demonstrated that 1mm thick disks would reach
equilibrium swelling in approximately 3 hours, displaying weight swelling ratios ranging
from 1.5 to 2.5 times the original weight of the gel. Peppas, Hariharan, and am Ende [90]
performed release studies of oxprendol HCl from poly(DEAEA-co-HEMA) and
poly(DEAEM-co-HEMA). Maximum drug release was observed to occur from 1 mm disks
within 12 hours for poly(DEAEA-co-HEMA) and on the order of one day for
poly(DEAEM-co-HEMA), with rapid release occurring in the first 5 hours, followed by
slower release until the device no longer releases.

Because increasing the number of functional groups results in a lower transition pH for
swelling, cationic hydrogels of poly(diethylaminoethyl methacrylate-co-ethylene glycol
monomethyl ether monomethacrylate) (poly(DEAEM-g-EGMMA)) were developed by
Podual, Doyle, and Peppas [76–77,88–89], and Podual, Peppas, and Schwarte [75]. A small
amount of PEGMMA was added to the gels to impart stealth capabilities in the body,
preventing a rapid immune response from occurring. The gels displayed a transition pH of
around 7.1, and displayed volume swelling ratios ranging from 8 for highly cross-linked gels
to over 40 for lightly cross-linked devices. Dynamic studies showed that disks measuring 1
cm in diameter and 1 mm in thickness would reach equilibrium swelling in response to a pH
change below the transition pH in approximately 5–6 hours. Microparticles of
poly(DEAEM-g-EGMMA) were developed, and results showed that the gels reached
equilibrium swelling nearly instantaneously to a decrease in pH below the transition pH
[77]. The gels were also shown to be glucose sensitive by observing their swelling in
solutions of different glucose concentrations [88]. Finally, insulin release was demonstrated
in response to change in glucose. Insulin was shown to be completely released from the
system within 20 minutes [89].

Based on the currently developed formulations of poly(DEAEM-g-EGMMA), the hydrogel
system would function as an implicit closed-loop system by way of the following
mechanism, as shown in Figure 5. Small hydrogel particles would be injected directly into
the bloodstream, where they would be protected from the body’s immune response by the
ethylene glycol grafts. As the glucose concentration of the blood increases, there will be
increased diffusion of glucose to within the gel system. Within the gel, the presence of
immobilized glucose oxidase will result in the enzyme catalyzed oxidation of glucose,
forming gluconic acid. This acid formation will result in a slight pH change. The pH change
will not be large because of the presence of buffers in the bloodstream, most importantly the
bicarbonate buffer system [1]. When the pH decreases below the transition pH of the gel,
swelling will occur, resulting in an increase in the diffusivity of species from the gel by up
to a factor of ten. This results in an order of magnitude increase in insulin infusion from the
gel, which results in increased glucose uptake. As the glucose concentration decreases,
oxidation will decrease, and as hydrogen ions naturally diffuse out of the gel, the pH will
increase again, resulting in a collapse of the particle.

There have been a number of modeling efforts associated with hydrogels. These can be
grouped according to the various steps in the swelling and release process. A review of the
different models assuming different transports mechanisms and different methods of
viscoelastic chain relaxation can be found in reference [90]. With respect the development
of control relevant transport models, Lustig and Peppas [91] developed scaling laws to
describe the diffusion of solutes in hydrogels that do not exhibit swelling behavior. Peppas,
Harland, et al. [92] modeled the combined dissolution and diffusion of a drug that is released
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from the non-swelling system. Peppas and Hariharan [93] and Albin et al. [74] both
developed models describing swelling and release from pH responsive hydrogel films, and
Podual et al. [94,95] developed a model describing swelling and release from poly(DEAEM-
g-EGMMA) spherical particles. To the knowledge of the authors, there have been no
previous attempts to simulate the response of pH-responsive hydrogels in vivo.

Conclusions
This expert review addresses engineering aspects associated with the control of glucose
metabolism, diabetes, and current and proposed therapeutic methods for treating diabetes,
including all pertinent patient models, control algorithms, and efforts toward developing an
implicit closed-loop control system. As the diabetes problem gains more acceptance as one
of multiple inputs and perhaps multiple outputs, future modeling and closed-loop control
efforts for glucose homeostasis will be based on species in addition to glucose and insulin.
Parker and Roy have recently developed a fatty acid minimal model [96], and control
systems utilizing both insulin and glucagon are currently being studied [97], demonstrating
the transition to more complex models and systems. Future efforts toward implicit closed-
loop control will include in vivo assessments of hydrogel swelling and release. While human
patient testing is still a few years away, simulations based on developed patient models and
polymeric delivery system models will assist in the design process by allowing researchers
to investigate the in vivo effectiveness of many different formulations. These developments,
as well as future developments in oral insulin delivery, ensure that great progress will
continue to be made toward the development of improved insulin therapies.
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Figure 1.
Pharmacokinetic diagram of the minimal model. Solid lines represent material appearance or
disappearance, and dashed lines represent contributions toward the kinetic appearance or
disappearance. The ki’s represent the rate coefficients for each term with respect to the
kinetic process.
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Figure 2.
Pharmacokinetic diagram from Hovorka model [43]. Q1 and Q2 represent the mass of
glucose in compartments 1 and 2, respectively. I represents plasma insulin, and x1, x2, and
x3 represent insulin action toward glucose uptake, production, and exchange between the
two compartments. Solid lines represent kinetic appearance or disappearance. Dashed lines
represent action by insulin. Large solid arrows represent a single non-continuous source of
either glucose or insulin.
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Figure 3.
Flow diagram of the Sorensen glucose model [12].
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Figure 4.
Biphasic insulin response to step increase in glucose, as modeled by Nomura et al. [62]. At
time zero the glucose concentration is increased from 80 mg/dL to 160 mg/dL and
maintained at the new level. A basal insulin concentration of 15 mU/L was assumed, as the
results of the model simulation are given as insulin levels above basal. At the time of the
glucose change, a sharp spike in insulin occurs, known as first phase release. This response
falls off rapidly, followed by a second delayed release phase that gradually increases to the
steady state insulin value.
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Figure 5.
Schematic of mechanics of pH-responsive cationic hydrogels with glucose oxidase, based on
the work of Podual [93]. Glucose appearance results in the production of gluconic acid,
which decreases the system pH. pH-induced swelling results in increased diffusion of insulin
from within the gel. As glucose is utilized, the mechanism is reversed.
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