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The future of sleep health: a data-driven revolution in sleep

science and medicine
Ignacio Perez-Pozuelo 1,2✉, Bing Zhai3, Joao Palotti4,5, Raghvendra Mall 4✉, Michaël Aupetit 4, Juan M. Garcia-Gomez6,

Shahrad Taheri7, Yu Guan3 and Luis Fernandez-Luque 4

In recent years, there has been a significant expansion in the development and use of multi-modal sensors and technologies to
monitor physical activity, sleep and circadian rhythms. These developments make accurate sleep monitoring at scale a possibility
for the first time. Vast amounts of multi-sensor data are being generated with potential applications ranging from large-scale
epidemiological research linking sleep patterns to disease, to wellness applications, including the sleep coaching of individuals with
chronic conditions. However, in order to realise the full potential of these technologies for individuals, medicine and research,
several significant challenges must be overcome. There are important outstanding questions regarding performance evaluation, as
well as data storage, curation, processing, integration, modelling and interpretation. Here, we leverage expertise across
neuroscience, clinical medicine, bioengineering, electrical engineering, epidemiology, computer science, mHealth and
human–computer interaction to discuss the digitisation of sleep from a inter-disciplinary perspective. We introduce the state-of-
the-art in sleep-monitoring technologies, and discuss the opportunities and challenges from data acquisition to the eventual
application of insights in clinical and consumer settings. Further, we explore the strengths and limitations of current and emerging
sensing methods with a particular focus on novel data-driven technologies, such as Artificial Intelligence.
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INTRODUCTION

Sleep is a crucial biological process, and has long been recognised
as an essential determinant of human health and performance.
Whilst not all of sleep’s functions are fully understood, it is known
to restore energy, promote healing, interact with the immune
system and impact upon both brain function and behaviour1,2.
Even transient changes in sleep patterns, such as acute sleep
deprivation, can impair judgement and cognitive performance,
whilst long-term aberrations have been linked to disease
development3,4. Global trends in sleep suggest a decrease on
average sleep duration5–8. Given these trends and the implications
of sleep for health and well-being, better characterisation of sleep
characteristics represents a public health priority9–11.
Sleep is known to be regulated by three main factors: circadian

rhythms, sleep–wake homoeostasis and cognitive-behavioural
influences1. With regards to behavioural determinants, poor sleep
quality12 (as defined by the National Sleep Foundation’s
recommendations based on total sleep time, sleep latency, wake
after sleep onset, number of awakenings >5min and sleep
efficiency) has been associated with stress, anxiety, smoking,
sugary drink consumption, workplace pressures, financial con-
cerns, regularity of working hours, physical activity, sleep
regularity and commuting times9,13. Indeed longitudinal research
has linked changes in physical activity to changes in the severity
of sleep-disordered breathing and, hence, disturbed sleep14.
Furthermore, dietary patterns have shown associations with sleep
quality15. It is now understood that the associations between diet,
physical activity and sleep are bidirectional. Thus, poor sleep, high
levels of inactivity and a poor diet comprise inter-related public
health priorities16. The mental and physical impairments

associated with a single night of poor sleep can outweigh those
caused by an equivalent lack of exercise or food17.
Sleep loss affects every major system in the human body.

Chronic changes in sleep have been associated with a plethora of
serious medical problems from obesity and diabetes to neurop-
sychiatric disorders13,18,19. For example, chronic insomnia is
associated with both incident cardiovascular disease and all-
cause mortality4,20. A 2011 meta-analysis of prospective studies,
which included 470,000 individuals, explored the association
between sleep duration and cardiovascular disease21. Relative to
those who slept between 7 and 8 h per night, those who slept less
than 6 h exhibited a 48% increase in the incidence of coronary
heart disease and 15% increase in the incidence of stroke, whilst
those who slept greater than 8 to 9 h exhibited a 38% increase in
coronary heart disease, a 65% increase in stroke and a 45% overall
increase in cardiovascular disease21. Other large epidemiological
studies have also reported associations between sleep and cardio-
metabolic disease, including reports studying the effects of shift-
work22–25. Short sleep duration has further been associated with
incident diabetes and weight gain, as well as impaired appetite
control18,26. Shortened sleep and poor sleep quality have also
been identified as risk factors for cognitive decline, neurodegen-
erative disease, mood changes and depression, as well as other
neuropsychiatric conditions27–30. There is also mounting evidence
linking sleep to both immune function31 and cancer32,33. In a
seminal study published in 2002, Spiegel et al. demonstrated an
association between sleep deprivation and a muted immune
response to flu vaccination34.
Besides its ramifications for the health of individuals, sleep has

macro-level economic implications. A recent study estimated the
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annual economic cost of poor sleep to the Australian population
at $45.2 billion, comprising direct healthcare costs, the cost of
associated health conditions, reduced productivity, accidents and
informal care10. Moreover, in a 2016 report, RAND Corp quantified
that the combined cost of insufficient sleep across five OECD
countries (Canada, USA, UK, Germany and Japan) exceeds $600
billion a year9.
Following mounting evidence of the role of sleep in well-being,

its relationship with disease and mortality and its economic impact,
there has been increased interest in measuring sleep character-
istics. This has led to an expansion in the development and use of
sleep-related technology. In particular, recent developments in
digital technologies designed to improve the measurement and
characterisation of sleep have demonstrated particular potential.
These advances facilitate the objective and unobtrusive measure-
ment of sleep characteristics in large, free-living populations at
scale, facilitating well-powered epidemiological investigations
designed to explore the relationships between sleep and disease35.
Furthermore, these developments are set to have clinical implica-
tions for the monitoring and diagnosis of sleep disorders and,
ultimately, could be used for the modulation of sleep36.
The core contribution of this paper is to discuss the implications

of digital technologies for the study, monitoring and modulation
of sleep. To aid this discussion, we introduce a five-step Digital
Sleep Framework, which comprises the complete process from
sleep data acquisition to end-user applications of insights. Figure 1
depicts the framework. This paper is structured around the
framework’s five steps: data acquisition; data storage and curation;
data processing; modelling and applications. Finally, we discuss
the biggest challenges and opportunities in this field followed by
conclusions based on our findings.

SLEEP DATA ACQUISITION

Sensors have been used to study sleep for decades. Traditionally,
polysomnography (PSG), paired with clinical evaluation, has been
the gold-standard and de-facto technique to study sleep in clinical
and laboratory settings, as well as to diagnose a subset of sleep
disorders37. However, in recent years, industry and academia have
invested heavily in the development of smaller, less obstructive
and more portable devices for the continuous monitoring of
sleep38. This is motivated by a desire to enable data acquisition in
larger participant groups over more extended periods and in a
more natural setting by decreasing both the cost of monitoring
and the burden to participants. However, challenges remain in
data acquisition, including the provision of ubiquitous, less
obtrusive and stigmatising long-term acquisition mechanisms.
Moreover, long-term patient monitoring usually suffers from
missing periods that may mislead the estimations of health
markers. Here, we discuss the current state-of-the-art of sleep data
acquisition in clinical and free-living settings, including an
overview of traditional and novel approaches and their strengths
and weaknesses.

Traditional sleep monitoring and monitoring in laboratory settings

Since the 1960s, polysomnography (PSG) has been used in clinical
settings to monitor sleep through a battery of simultaneous,
complementary sensors39. These sensors typically allow for the
measurement of (1) brain activity through electroencephalogram
(EEG), (2) airflow, (3) breathing effort and rate, (4) blood oxygen
levels, (5) body position, (6) eye movement, (7) electrical activity of
muscles and (8) heart rate. Traditionally, PSG requires participants
to sleep in a laboratory setting. The results are then scored by an
expert who has received training on how to interpret these
signals. Ambulatory PSG is an alternative modality which often
uses a reduced number of sensors and allows monitoring to occur
at home, outside of the laboratory. This facilitates the monitoring

of patients with disorders that may not be easy to evaluate in a
laboratory setting40.
To-date, PSG remains the gold-standard for sleep measurement.

However, the technology is limited in its use as it remains

Fig. 1 The digital sleep framework covers the path of sleep data
from its acquisition to when its insights are used for medical or
consumer applications. The framework begins with the acquisition
of sleep-related data. This can be done using a variety of sensors,
ranging from polysomnography to bed sensors. This data is then
stored and curated, a step that comprises privacy-aware storage,
cleaning, filtering and anonymisation. Once that data has been
appropriately treated, the processing step takes place whereby data
is transformed and integrated based on the end-model. For example
it may undergo different transformations like normalization or
featurization. The next step entails modeling, which can consist of
simple heuristic methods, statistical learning or deep learning
methods, for example. Finally, the resulting model can be deployed
for a variety either medical or consumer applications.
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impractical for long-term home use. This precludes its use in long-
term sleep monitoring or sleep in free-living settings beyond the
laboratory. Furthermore, PSG is expensive, time-consuming and
requires trained technicians to administer and interpret. As a
result, the scalability of this technique for large-scale population-
based studies is very limited, particularly when the aim is to assess
typical sleep patterns in free-living, naturalistic conditions. Whilst
ambulatory PSG provides a partial solution to some of the issues, it
remains both expensive and burdensome.
Another conventional method used in clinical settings to

evaluate sleep is Videosomnography (VSG). VSG encompasses a
range of video-based methods used to record a person as they
sleep. These video recordings are subsequently used score sleep
behaviours. VSG has been typically paired with PSG in clinical
settings to study sleep disorders. However, recent advances in
telemedicine have made the use of home VSG increasingly
possible. Although VSG is typically scored by experts in a time-
consuming manner, advances in signal processing and AI have led
to the new possibility of automatically scored VSG41. However,
VSG presents similar scalability issues as PSG. It is costly and, at
present, requires expert monitoring and scoring.

Sleep monitoring outside the laboratory

To understand the role of sleep in health and disease, sleep must
be monitored in a free-living environment and in a non-obtrusive
way to ensure the sleep captured is as representative of typical
sleep as possible. As such, low-cost, wearable sleep detection
systems are a promising tool to study sleep architectures in free-
living individuals at a population level. At present, there are
several options for the monitoring of sleep outside the laboratory.
These comprise actigraphy, heart rate sensing and other wearable
technologies. Multiple published works have demonstrated that a
single modality sensor representation, such as heart rate alone, is
not sufficient to accurately complete sophisticated sleep stage
classification42. The availability and range of digital technologies
for the measurement of sleep has significantly expanded in the
last decade. Both consumer and medical grade devices across a
variety of fields (wearable, remote sensing, mobile health, clinical
grade) have become more sophisticated and affordable. Never-
theless, comparing performance across different platforms and
methods remains a challenge, and few methods have been
validated against gold-standard PSG or undergone systematic
reliability assessment43.

Traditional free-living sleep sensing and measurement
approaches: actigraphy and accelerometry

Actigraphy and accelerometry are non-invasive methods to
monitor human activity and rest cycles. They have been used to
describe physical activity levels in large-scale populations44, and
can also be used to monitor sleep. These methods offer an
affordable, scalable alternative to PSG to monitor sleep–wake
cycles, and have now been recognised by the American Academy
of Sleep Medicine as a valid method for the assessment of sleep45.
Recent advances in AI and larger studies in conjunction with PSG
have resulted in the refinement of the method46. However, three
key limitations of actigraphy and accelerometry remain. These are
(1) the lack of validation studies for the different consumer-grade
devices, (2) lack of standardisation of approaches for human-
activity recognition and (3) the lack of assessment techniques for
daytime sleeping. Nowadays, wearable sensors are often used in
combination with other minimally invasive sensors (such as heart
rate monitors, miniaturised ECG, pulse-oximetry, blood pressure
monitors, galvanic skin conduction, light sensors, gyroscopes,
barometric altimeters and GPS trackers). Sleep can also be
monitored through a combination of wrist actigraphy, hip sensors,
smartphone sensors and under-mattress sensors47. Nevertheless,
this increased availability of sensors also results in a greater

challenges when optimising the match between the end-
application and the sensor used43. A description of actigraphy
specific sleep metrics is provided in the Supplementary Material.
Data on sleep can be also obtained from devices to treat sleep

apnoea, such as Continuous Positive Air Pressure (CPAP). For
example, Aggarwal et al.48 showed that CPAP can be used to
classify and track sleep metrics, which could be used to monitor
the response of CPAP therapy in sleep apnoea patients.

Emerging sleep-sensing technologies

The fundamental aim of ubiquitous computing in sleep tracking is
to achieve miniaturisation of sensors and non-intrusive sensing
that can pervasively monitor physiological signals related to sleep
activities. Embedding different types of ambient sensors into
objects that we interact daily is more attractive than using
multiple redundant sensors collecting homogeneous information.
Embedded devices, such as bed sensors, have been developed to
track different sleep-related metrics, such as sleep time, breathing,
snoring, heart rate, body and room temperature or humidity
levels49–51. Whilst these sensors are interesting and potentially
valuable for clinical and epidemiological research, as well as
wellness and sleep education, very little is known about how their
performance against gold-standard measures and more research
is required to evaluate their usability. Some have emerged in
recent years but remain at an early stage of development (e.g.,
WiFi and radio-signal approaches), whilst others have been around
for longer (e.g., smartwatches). They are depicted in Fig. 2 and
discussed below. Some of the potential techniques to unobtru-
sively measure sleep through the acquisition of physiological
signals include the following:

Bed sensors. Bed sensors may be defined as any sensor that sits
on the bed and can be used for monitoring physiological
processes. Body movements, breathing and even cardiac activities
can be detected by the volume change of the pneumatic
underneath an individual whilst they are lying in bed52–54. For
instance, using micro-bend fibre optic sensors underneath the
mattress allows for monitoring of breathing and body movement
activities that can be then used to extrapolate some valuable sleep
metrics55. Similarly, fibre-optic based systems have allowed not
only for the analysis of different motion types but also for the

Fig. 2 Emerging sleep-sensing technologies. Emerging sleep
technologies range from non-contact methods like RF sensors to
miniaturized, wireless or in-ear EEGs.
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introduction of retroactive feedback based on those move-
ments56. Unobtrusive sleep monitoring using bed sensors (either
on the mattress or the bed frame) usually entails monitoring of
movement and also respiration rate and occasionally heart rate.
Several companies, including Apple (Beddit), Nokia and Withings,
have released new sensor accessories that can be attached to a
person’s mattress or bed frame and often interact with a separate
mobile application or dashboard. Nevertheless, a range of
determinants can influence the performance of these methods,
from postural differences to inter-subject variability in BMI and
pre-existing clinical conditions54.

Consumer-graded wireless EEG and reduced-array EEG. EEG is an
integral part of PSG and is also used in a variety of neuropsychia-
tric tests and applications. Conventional EEG requires expert set-
up and can be burdensome, uncomfortable and is not portable.
Wireless EEGs have gained traction in recent years, with several
established companies, as well as start-ups, launching products.
Their performance for sleep monitoring has been compared with
conventional EEG that is part of PSG and has demonstrated strong
results57,58. Furthermore, Koley et al.59 showed that automatic
scoring using ensemble models on a single-channel EEG could
yield agreement rates of 0.87 when compared with expert scoring
of the same signal. Whilst this study was conducted in a clinical
environment, and hence lacks the recording conditions required
for free-living validation, together these investigations show that
the results of conventional EEG can be approximated by simpler
devices that may be able to be scored automatically.
Similarly, several miniaturised EEG devices have shown promis-

ing results with regards to their ability to classify sleep stages60,61.
In ear, EEG is a modality that has shown promise in recent years,
for instance, Mikkelsen et al.62 compared in-ear mobile EEG
analysed through machine learning-based automated scoring to

conventional, manual scored PSG and commercial-grade actigra-
phy showed promising results, although also constrained to a
laboratory environment. A 2019 study showed that automatic
sleep stage prediction based on a single in-ear sensor demon-
strated a 74% agreement with the hypnogram generated from full
PSG, which is promising but still requires further work for it to be
at a clinical standard of performance (�90% agreement)63. These
devices are particularly interesting given their potential for free-
living application. They also have the advantage of conserving
much of the granularity and information that a conventional PSG-
based EEG would offer in non-laboratory set-ups64.
Although the performance of these wireless, miniaturised and

in-ear EEG devices is promising, more extensive studies are
required to determine the feasibility for use in population science
and in a free-living environment as well as for applied sleep
research studies.

Smartwatches and fitness trackers. A plethora of wearable
smartwatches and activity bands have been developed to infer
sleep. These devices often derive their metrics using a combina-
tion of movement signals (accelerometry, as explored in previous
sections) and heart rate and heart rate variability. Henriksen
et al.65 assessed the validation or reliability of some of the most
common brands on the measurement of physical activity and
sleep (Fitbit, Garmin, Misfit, Apple, Polar, Samsung, Withings
and Mio).

Mobile phone sensing. Mobile phones offer a wide range of
sensors, such as gyroscopes, microphones and accelerometers,
that can be used to monitor sleep patterns66. For instance, iSleep,
developed by Hao et al.67, leverages a smartphone’s built-in
microphone to detect events that happened during sleep, such as
body movement, cough, and snoring by processing the acoustic

Fig. 3 Selected methods for the measurement of sleep and their accuracy and usability trade-off. This chart plots the accuracy of sleep-
sensing methods at infering sleep-related metrics against their ease of use. For example, while polysomnography is considered the “gold-
standard” technique to measure sleep, it is cumbersome and expensive.
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signals. The software achieves accuracy of over 90% for event
classification (snoring, cough, sleep) under different environmental
conditions. An important limitation of the system is that the high-
rate microphone sampling represents a significant source of
energy (and battery) consumption.
Several other sleep applications can be found on the different

app stores these days. Sleep cycle is among the most popular ones,
using both accelerometry and the built-in microphone to track
sleep and provide personalised alarm clocks, waking up the users
at ideal timings (during light sleep)68.

Ultrasound sensors. Ultrasound sensors can be used to detect
body movement and breathing patterns during sleep54,69,70. These
sensors provide information regarding the frequency and type of
body movement through the Doppler technique. This technique
mirrors that used in conventional radar systems and allows the
retrieval of parameters related to breathing rate, heart rate and
body motion. The method has been shown to detect physical
movements with an 86% recall rate and error rates of <10%71. The
most pressing limitations of this method are, however, the fine-
tuning required based on the type of targeted body and the
sensitivity to small movements72.

WiFi and radio-signal approaches. In the past decade, high
frequency and sub-millimetre wavelength radio technologies have
demonstrated the ability to capture physiological signals without
body contact. The principle is to send a low-energy radio wave
towards an individual who is in bed and then to detect the signal
bounced back from the body. Through signal processing, it is
possible to extract biological information, such as breathing
patterns, heart rate and full-body motion from these find-
ings71,73–75. These biological signals can be used to determine
sleep stages as shown by Zhao et al.76, as well as to monitor
insomnia77. The main challenge with this approach is that the
signal is subject to a lot of ‘noise’ and the information related to
sleep needs to be extracted. Moreover, the measurement
conditions are also strongly dependent on the individuals being
monitored. In particular, the signal reflects all objects in the
bedroom and is affected by the sleeping position of the
individual78.
Some of the methods described in this section are, in general,

more accurate or more usable than others. Figure 3 shows a
scheme of the accuracy versus usability trade-off for the main
methods described in this section.
Data collected from different modalities representing diverse

physiological information may have varying predictive power and

noise topology as explored in Fig. 4. However, different modalities
and the information they collect may be highly complementary
and, in practice, aggregating sleep data from various sources may
make models more robust and tolerant both to noise and missing
data. Such complementary fusion protocols have been shown to
significantly improve the classification performance of sleep
stages79,80.

SLEEP DATA STORAGE AND CURATION

Regardless of its intended end-use, all the data collected using the
methods and sensors previously discussed requires appropriate
storage, curation and processing prior to analysis. Until the turn of
the century, analogue PSG systems, limited to analogue amplifiers
and paper tracings, were common practice for storing sleep
information. However, with the development of digital recording
systems, these types of analogue recordings have become
outdated, as different challenges have emerged for handling data
from new digital sleep technologies. For example, in the era of
digital medicine, systems often require real-time storage and
processing of data collected as part the so-called Internet of
Things (IoT)81 and Big Data Analytics82. IoT links all sorts of
connected devices into comprehensive networks of inter-
correlated computing intelligence without with need for human
input. With regards to sleep, the integration of IoT technology has
several challenges. These include data storage, management and
exchange across different devices and sensors, alongside privacy,
security and data access concerns.
Cloud computing integration with IoT is gaining traction in

healthcare, and is being used for digital sleep applications. For
instance, three-layered architectures composed of (1) an IoT layer
sensor acquisition/data compilation; (2) a fog computing layer for
event processing and (3) a cloud layer for data management and
Big Data Analytics have been proposed for sleep monitoring use
cases that integrate several sensors83. In Fig. 5, an overview of data
acquisition and the movement of information from sensors to the
cloud is explored. The remainder of this section discusses the fog
computing and cloud storage layer more fully.

Fog computing layer

Fog computing entails data analysis on edge devices, which
enables real-time data processing, reducing costs and also
improving data privacy. Fog computing is commonly deemed
mini-cloud computing, as it performs all the processing locally.
The fog computing layer abstracts the heterogeneity of the
incoming data formats, communication technologies and proto-
cols from the sleep-sensor IoT layer. Platforms, such as Smart IoT
Gateway, have emerged as solutions to communicate with all the
heterogeneous IoT sensors potentially deployed in home environ-
ments and perform local processing before transmitting the data
to the cloud layer84. Fog computing seeks to achieve a seamless
continuum of computing services connecting the cloud to the
devices (IoT). This contrasts to edge computing which isolates and
keeps the computing at the ‘network edges’85 and facilitates the
aggregation of multi-modal physiological data from different
devices and sensors that are then processed locally (e.g.,
processing data directly on an IoT Gateway). This architecture
can provide near real-time decision-making to support sleep
monitoring and intervention.
Following the receipt of signals from the devices, pre-

processing at the fog computing layer includes three main
operations: (1) the fusion of signals provided by different IoT
sensors; (2) detection of periods containing missed data and (3)
imputation of missed data. When sleep sensor signals contain
missing data, it is usually because the user did not wear or was not
in contact with the sensors. However, functional errors can also
occur. For example, smartwatches may run out of battery or

Fig. 4 Holistic evaluation of sleep-monitoring methods. Some
methods, such as PSG, are accurate but inappropriate for use in daily
sleep monitoring, as they require professional set up and are
intrusive. Other methods, such as bed sensors, are unobtrusive but
more prone to noise than PSG.
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memory and may fail to communicate with the user’s smartphone.
Missing data can be detected by various algorithms, including
through simply thresholding the smoothed signal.
Besides data pre-processing, the fog computing layer also

enables the inter-operability of heterogeneous sources of the
data. Inter-operability is a key function of Smart IoT Gateways. It
allows for communication and integration of devices, which are
operated on different protocols and use different technologies.
Furthermore, the Gateways facilitate the sharing of information
and the driving of actuators or components that meet the
required needs of the system86. For instance, it can be used to
detect sleep apnoea events and activate motors designed to
change the users’ body position or to play sounds or music during
particular sleep stages87.

Cloud storage layer

Cloud computing architectures include servers, networking, soft-
ware, databases and data analysis over the internet which enable
fast deployment, flexibility and economies of scale. Cloud
computing is often considered the centralised paradigm, while
the fog computing layer previously described would be a
decentralised paradigm. Nevertheless, as explained in Fig. 5, they
can effectively work together.
Sensor data integrity is paramount for successful application

and analysis in digital medicine and requires appropriate data
storage in order to be realised88. Relational databases can be
limited when storing and analysing semi-structured data obtained
from multi-modal sleep-sensing technologies. Hence, current
trends to store and query digital sleep data are based on Not
Only SQL (NoSQL) databases such as MongoDB, Cassandra, HBase

or CouchDB, which allow for better representation of hetero-
geneous data structures and batch data. Moreover, several of
these NoSQL databases provide connectors to cluster-computing
frameworks, such as Apache Spark, Storm, Flink and Hadoop,
enabling Big Data Analytics. These Apache products are a good fit
for both batch processing and stream processing via in-memory
computation and processing optimisation89. Resilient Distributed
Dataset (RDD) allows Apache Spark to simultaneously store data
on memory and write to storage media based on pre-defined
criteria from the real-time data stream. Hadoop allows for batch
processing and the use of MapReduce algorithms to analyse data
stored in Hadoop Distributed File System (HDFS). HDFS can handle
petabyte level data analysis, which can be used to provide in-
depth statistical analysis of clinical sleep data and can also be used
in large population epidemiology studies.

DATA PRE-PROCESSING

Before sleep data can be used for modelling, it must be pre-
processed. As discussed in the preceding sections, there is a
growing trend towards the integration of sleep data from various
sensors. As such, there is a preponderance of unstructured multi-
modal time-series data with substantial noise. For example,
different equipment brands and models may be equipped with
different quality of sensors, amplifiers and electrodes that result in
different noise topology as a result of their unique materials and
manufacturing process. Data measurement, processing and
storage may also differ between sensors. For example, depending
on the application and device, it might store RR interval, instead of
raw ECG. Hence, data need to be cleaned and filtered, removing
artefacts that differ depending on the modality employed before
any feature extraction or modelling can take place.
Depending on the nature of the data, several pre-processing

approaches can be applied. Smoothing and de-noising can
remove unwanted spikes, trends and outliers from a signal90.
For example, polynomial de-trending methods can remove
continuous quadratic or linear trends that may be caused by
impedance changes on the skin. Similarly, Hampel filtering can
remove unwanted spikes from sinusoidal signals. Noise arising
from other sources should also be be considered. This may include
power line interference, thermal-based resistive changes or
contact conductive artefacts. These noises can be filtered by
applying various bandpass filters. The ultimate objective of de-
noising is to ensure that the noise is subject to a specific
distribution, such as a Gaussian distribution, as far as possible.
Beyond de-noising and smoothing, re-sampling and standardis-

ing can be used to improve data integrity and consistency in the
pre-processing stages. Linear or higher-order interpolation can be
used to fill missing or corrupted data, as well as for data scaling,
through methods such as linear scale-transformation91. These
methods can suppress the noise levels and variability in the signal
and transform the data into a pre-defined range without altering
its distribution. Data standardisation, such as min–max standardi-
sation and z-score standardisation, can suppress noise levels and
variability in the signal and transform the signal such that it
approximates a normal distribution.

ARTIFICIAL INTELLIGENCE-BASED SLEEP MODELLING

Once sleep data has been pre-processed, data modelling can be
commenced for different applications. Today, many of these
modelling and application tasks are based on AI, which entails the
use of algorithms and techniques that mimic human cognitive
functions, reasoning and problem-solving skills and have brought
a paradigm shift to digital medicine. Indeed, the influence of AI in
medicine is growing rapidly and is being exploited in a variety of
fields from clinical medicine to population studies92. In essence,
the application of AI in medicine aims to aid clinical decision-

Fig. 5 Overview of cloud computing-based sleep data acquisition
and storage. This illustration provides an overview of the process
starting with device layer (which includes fast, real-time processing
and data visualisation, embedded systems, gateways and micro data
storage), followed by the fog layer (which includes local networks,
virtualisation, data analysis and reduction) and finally cloud layer
(which consists of data centres and big data storage and
processing).
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making through analysing complex medical data. The insights
generated can then be used in diagnosis, treatment, the
prediction of clinical scenarios and to aid scientific discovery93.
Increasingly, AI is changing research methodology and facilitating
the personalisation of medicine through its advancements92.
With regards to sleep science, the impact of AI is multifaceted.

First, it can aid clinicians in making sleep disorder diagnoses94.
This is achieved by translating collected sensor data into pre-
defined knowledge (e.g., class label), providing an inexpensive and
objective alternative to manual sleep stage scoring95. Similarly,
through its automated analysis capabilities, AI can provide
wellness and lifestyle recommendations based on the interpreta-
tion of data collected from wearable devices and mobile apps96,97,
enable clinicians and researchers to track changes in sleep
patterns from people’s homes98 or interact with smart-home
set-ups to provide better quality sleep through the adjustment of
lights and temperature in rooms99. Here, we discuss methods of
AI-based sleep modelling.

AI applied to sleep science

Traditional AI systems were rule-based, requiring the program-
ming of pre-conceived rule sets and demonstrating limited
flexibility. By contrast, machine learning (ML) provides a more
flexible alternative to data modelling, especially when applied to
the raw unstructured signals. In plain terms, ML aims to train, learn
and optimise a mathematical model which can transform or map
the collected (complex) signals into comprehensible knowledge.

Usually, ML approaches, which include logistic regression,
support vector machines and random forest, tend to use
structured data as input. This makes feature engineering or
feature extraction a standard procedure before model training.
Feature engineering can be achieved in various forms. For
example, given a sliding window (from the raw time-series data),
statistical features such as mean, standard deviation, energy,
entropy and so on, or time–frequency features such as wavelet/
Fourier transform coefficients can be extracted and used as input
for the traditional ML models. Moreover, in some applications,
domain experts can also design features based on their under-
standing of the signal in certain fields. Compared with the raw
signals, the engineered features tend to be low-dimensional with
information redundancy suppressed, making the model training
tasks more effective.
From a ML perspective, the most common tasks for sleep

research are the classification of sleep–wake cycles and stages as
well as the derivation of sleep–wake metrics. Although heuristic
approaches and some traditional ML approaches have demon-
strated reasonable performance in some tasks, the feature
engineering process tends to be time-consuming, and may
require domain knowledge in some circumstances, making the
whole system design an expensive process. On the other hand,
the new methodologies offer more flexibility in sleep modelling.
For example, deep-learning methods can be used to perform end-
to-end training, which directly maps the raw signal into the target
labels. It is a pure data-driven process, and latent patterns can be
automatically learned without the feature engineering process.
In Table 1, we highlight several popular ML models that can be

applied to different sensing modalities.

Conventional sleep classification methods

Following the American Academy of Sleep Medicine (AASM)
guidelines, traditional sleep scoring in neurophysiology labora-
tories assigns 1 of 6 labels to each 30-s epoch. These are as
follows: (1) awake; (2) rapid eye movement sleep (REM); (3) non-
rapid eye movement (Non-REM); (4) sleep stage 1 (N1); (5) sleep
stage 2 (N2) and (6) sleep stage 3 (N3). This task is performed
manually by trained sleep technicians based upon data generated
through PSG. Sleep stages themselves are associated with
physiological changes that are useful for the diagnosis and
assessment of specific sleep disorders such narcolepsy100. For
example, respiratory monitoring in PSG facilitates the detection of
sleep-disordered breathing, such as obstructive sleep apnoea. In
this disorder, abnormal breathing events are less severe in N3 than
N1 sleep due to the change in central control of breathing, and
more severe again during REM given upper airway muscle tone
reduction101.
Manual sleep scoring suffers from several drawbacks. It is time-

consuming, subject to biases, inconsistent, expensive and must be
done offline. Rosenberg et al. reported that the average inter-
scorer reliability for sleep stage scoring was approximately 83%102.
This estimate is similar to that reported in other studies103. By
contrast, the use of AI and automated sleep stage classification
algorithms represents a fast, non-subjective, inexpensive and
scalable alternative to this traditional sleep-scoring approach.
Aside from issues of reliability, it can take 1–2 h for an expert to
score a night of clinical PSG recordings104, whilst the automated
system can finish the same task in seconds. Thus, multiple
approaches and methods have been used to distinguish sleep
from wake automatically as well as to characterise specific sleep
stages. In broad terms, sleep classification algorithms fall into
different categories, but these categories can be closely inter-
related, as shown in Fig. 6. The different categories comprise
traditional algorithms and both ML and deep-learning
approaches. These are elaborated below.

Table 1. Sleep classification techniques across different sleep-sensing

modalities.

Technique Technique variations PSG/EEG Wearable
sensing

Statistical Latent
dirichlet allocation

167

Support vector machines 168 169

Hidden Markov model 170 171

Quadratic 172

Bayesian 173

Logistic regression 174 107

Instance base K-nearest neighbours 108 109

Decision tree Decision tree 175 35,176

Ensemble model Adaboost 177

Bagging 178

Random forest 179 180,181

XGBoost 182

Clustering K-means classifier 183

Spectral clustering GMM 184

ANN and DNN Convolutional NN 185 76,107

Recurrent NN
(LSTMs, GRUs)

186 107,187,188

Others/heuristic Fuzzy classifier 189

Wavelet methods 190

Sadeh 45

Sazonov 191

Oakley 192

Cole-Kripke 193

Webster 194

ADAS 195

Scripps clinic 196
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Traditional algorithms for scoring of sleep from either PSG or
actigraphy signals tend to be based on heuristic approaches105.
These heuristic approaches are themselves based on prior
knowledge of the sensing modality and sleep physiology. In
actigraphy, the use of the magnitude feature as a proxy of
movement for sleep/wake classification provides one example.
This approach offers quick solutions with fast implementation and
also tends to be biased by the programmer’s understanding and
interpretation of the problem and to perform differently depend-
ing on the population, in which they are applied. For example, the
algorithm developed for a nocturnal sleep pattern may not
suitable for non-nocturnal sleep. Penzel et al. provided an in depth
review of some of these approaches in clinical settings, offering a
quantitative analysis of their performance and requirements106.
Palotti et al. evaluated the performance of some of the most
common approaches, including statistical ML, on actigraphy
data107.
Machine learning and deep learning approaches have gained

traction in recent years for the task of classifying sleep–wake
cycles and sleep stages in multi-modal sensor data108,109. With the
availability of raw actigraphy signals, several deep-learning
techniques such as convolutional neural networks110 and recur-
rent neural networks111 have been used to exploit the temporal
nature of this unstructured data to distinguish the sleep–wake
cycles107 robustly and understand the role of activity in sleep-
related disorders112. Whilst the evaluation of most traditional and
ML algorithms are performed using standard quality metrics such
as accuracy, precision and recall per class, it is also important to
measure clinically relevant metrics such as waking after sleep
onset (WASO) and sleep efficiency107. By optimising clinical
metrics, ML methods enable the physicians to make informed,
clinically relevant decisions. Adequate performance defined by
quality metrics varies depending on the task intended. For
instance some sleep disorders may not require high levels of
granularity for their diagnosis whereas interventions that aim to
boost deep sleep ought to rely on accurate granular classifications
of sleep stages.
Table 1 provides a holistic overview of the most common

classification methods based on the modality used (PSG/EEG,

wearable device (accelerometry/actigraphy), others (heart rate/
PPG/etc)). References are provided for methods by modality in the
appropriate cells. It is important to note that different methods are
ought to be used based on the objective at hand. For instance,
deep-learning methods often provide better performance than
traditional statistical learning methods, but require large compu-
tational power and lack the interpretability that other models
offer107. Performance and model evaluation is discussed in further
detail on the Supplementary Material.

Emerging approaches for sleep classification

There are a plethora of methods available for the predictive
modelling of sleep-related problems, as mentioned in previous
sections. However, several outstanding questions remain regard-
ing their application. Issues such as model sustainability, handling
the heterogeneity of the data and variability in the demographics,
behaviour and lifestyle of the population and generalisation to
unseen data, need to be investigated more comprehensively.
Below, we highlight some of the emerging technological solutions
for the handling of these issues.

Model sustainability. An important consideration is that the
majority of existing ML models perform a task (such as sleep–wake
classification and sleep-related disorder prediction) by learning
from an underlying distribution of data. However, in real-world
conditions, the data generated from participants can change over
time due to age, lifestyle changes, new sensing modalities, the
progression of sleep/health disorders or other changes. An
imperative question then is how to make the trained model
sustainable in response to changing domains. Life-long learning
might be the first step to address some of these challenges. This
would facilitate sustainability by allowing the model to evolve
over time113.

Personalised sleep classification. One of the major challenges that
AI encounters when facing sleep classification tasks is inter-subject
differences. That is, the intra-class variability (e.g., differences in
length of REM sleep between participants) can be too large to be
captured by the trained model, making inference process prone to

Fig. 6 Sleep classification algorithms can be based on heuristic approaches or Artificial Intelligence. We describe machine learning/
statistical learning approaches and deep-learning approaches within AI.
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errors. By contrast, by taking personal information into account, a
human analyst can address this problem easily. In the case of PSG
scoring, a skilled neurophysiologist may consider demographic
characteristics (such as age and gender) and adjust their scores
accordingly. Despite advances in AI methods for sleep classifica-
tion across different sensing modalities, most of the current
models do not adapt to individual characteristics. There may exist
large inter-subject variation and the trained model (on the
population-level data) may not be the optimised one for certain
individuals.
In the future, personalisation could be a useful approach to

improving the performance of the AI-based sleep modelling
systems, improving the performance of algorithms114,115. It has
been suggested that personalisation may be especially useful
when using data from noisy modalities, such as wearable
devices116. Model personalising has been successfully applied in
other fields, such as mood recognition117 and seizure detection118.
However, it remains relatively untapped in sleep science. Recent
works have shown that transfer learning could be used to realise
personalisation. For example, based on EEG modality deep neural
networks were trained on a large population, followed by a fine-
tuning process at the subject-level116. The results suggested that
substantial performance gain can be achieved116.
The process of personalisation can also be applied in the

aforementioned distributed networking environment. Federated

learning proposes a distributed way of updating a centralised
model by aggregating each patient’s local updates into a central
server119. The distributed update framework not only provides a
model parameter update mechanism but also creates a persona-
lised predictive model by feeding individual data to a global
model in the localised updating process.

Generalised sleep classification. Another way of improving the
performance of AI-based systems is to reduce the effect of the
contextual information for better generalisation120. Based on
adversarial training process, some of the most recent works
performed subject-invariant learning, which makes the system less
sensitive to personal and environmental factors112,121. Similarly, by
undergoing an adversarial training procedure, temporal depen-
dencies can be learned. These then transfer well to new subjects
and different environments in sleep classification tasks76. Pillay
et al. used EEG data in combination with a generative modelling
process to obtain agreement between the labels estimated and
clinician’s labels for automatic four stage sleep classification in
infants67. In general, by learning the representative features that
are less sensitive to contextual factors and thus robust in various
(complex) sleep classification tasks (such as diagnosing sleep
apnoea or insomnia), these approaches aim to increase the
generalisation capabilities for better performance. This is an
alternative to the aforementioned personalisation approaches.

DATA-DRIVEN SLEEP APPLICATIONS

There is a wide and growing range of commercial, health and
clinical situations for which data-driven sleep applications are
being used. In hospitals, sleep medicine units have traditionally
used PSG and more recently actigraphy/accelerometry, for the
diagnosis and monitoring of sleep disorders122. One of the main
challenges in sleep medicine is the increasing incidence of sleep
disorders, which in turn leads to higher demand on sleep labs to
provide diagnoses. Consequently, software for sleep medicine is
being gradually upgraded to include automated sleep-metric
calculations and seamless integration of sleep data sources, such
as sleep questionnaires. These upgrades have the potential to
compliment Electronic Health Records, enabling healthcare
practitioners to better manage their patients sleep disorders123.
Figure 7 gives a brief overview of key areas that will be affected by
the impact of sleep technologies and newly generated sleep data.

Sleep data in health and disease

As discussed, disturbed sleep has been linked to reductions in
quality of life and to a higher risk of a plethora of chronic
conditions124,125. Thus, it is of vital importance for digital self-
management and monitoring solutions to include tools that allow
accurate monitoring and assessment of sleep quality. Aside from
its direct role in ill-health, poor sleep quality can worsen the
symptoms of many serious and chronic conditions, including
cancer and multiple sclerosis126–128. Moreover, pharmacological
treatments may in turn worsen sleep disorders as side effects. For
example, smoking-cessation drugs and some treatments for
cancer have been shown to reduce patients’ sleep quality126,129.
Due to the complexity of the relationship between sleep and
health, there is a need for the design of digital intervention
methods to address the unique requirements of sleep within long-
term or chronic conditions. There are early examples of mHealth
interventions to improve sleep quality on people with cancer and
diabetes, amongst others130–132.
Amongst otherwise healthy individuals, there is also an

increasing interest in mobile and wearable applications for health
and wellness97. Ultimately, it has been proposed that such
technologies could be used to direct personalised sleep health
recommendations to individual users36. Furthermore, other

Fig. 7 Key areas of impact for sleep health. Emerging sleep health
technologies will have an impact on patient monitoring, clinical
care, insurance, the pharmaceutical industry and health and
wellness applications, as well as other impacts including on digital
therapeutics and sports performance.
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consumer sleep technologies have gained traction in recent years,
and although they still need appropriate clinical evaluation, they
could enhance patient–clinician interaction and sleep self-
management133. Some of the most common commercial and
familiar technologies, such as Fitbit or SleepAsAndroid, offer
monitoring and tracking sleep quality. In addition, new sensing
technologies, such as those discussed in the sleep data acquisition
section, are gaining traction and devices like Beddit have attracted
investments from large technology companies134. These monitor-
ing technologies are complemented by applications aimed at
improving quality of sleep by supporting a more suited wake
timing using approaches such as smart lighting or smart alarms
that only ring when the user is in light sleep. Despite their growing
popularity, at present, most of these consumer-oriented technol-
ogies lack validation and their underlying models change
frequently97,133. This fast growing industry needs to be matched
by multidisciplinary scientific efforts that evaluate the perfor-
mance, usability and value proposition of new sleep technologies.
When exploring the impact of the digitisation of sleep on

wellness and health promotion, it is also important to mention
occupational health applications. Often sleep disorders are the
result of lifestyle factors including, for example, prolonged screen
time before bed. The resulting poor quality of sleep can feedback
to that lifestyle, by reducing productivity. Consequently, corporate
and health insurance wellness programmes are starting to offer
incentives and personalised coaching to clients and employees,
with some initiatives directly promoting sleep quality at the
workplace135. For instance, FirstBeat provides a solution for
companies that comprises personalised sleep and physical activity
monitoring for employees combined with personal face-to-face
coaching with the aim of increasing employee health and
employment satisfaction136. However, these technologies can also
be exploited, as in West Virginia prior to the teacher’s strike, where
declining to wear a fitness tracker and meet a certain step count
resulted in a $500 penalty annually for their healthcare payments.

Data visualisation and visual analytics

Data visualisation, in general terms, is the graphic representation
of data. Abstract data are processed such that they can be
represented using visual objects (e.g., points, lines, bars, etc.) ease
of interpretation and better understanding. Visualisation relies on
human’s high throughput visual perception channel, and the
ability to connect data representations to human knowledge and
expertise which are not encoded directly in the data137.
Visualising health-related data goes back to the days of paper

charts and maps. Since the rise of internet and mobile application,
digital displays are ubiquitous and people are now widely
educated to read standard graphics representing data. Typically,
activity data are presented based on the time component, which
is usually visualised using line charts, where the horizontal x-axis is
time. Raw signal visualisation is mainly meaningful for domain
experts trained and experienced to interpret complex patterns.
Specific patterns can be automatically detected or highlighted on
the chart, for instance, when activity levels go above or below a
threshold138. Projection techniques are also a popular means of
reducing the dimension of high-dimensional data for better
visualisation and knowledge generation139,140.
Sleep data visualisation is only meaningful if the resulting

visualised data make sense to the end-user, which can be
challenging for non-expert users of wearable technology.
SleepExplorer is an example of visualisation research aimed at
understanding how users can benefit from visualising their own
personal sleep data141. SleepExplorer organises a flux of sleep data
into sleep structure, guides sleep-tracking activities and highlights
connections between sleep and other related factors such as
napping, coffee and alcohol intake, as well as mood. Recent
studies have analysed behavioural change resulting from

techniques implemented in activity trackers and their visualisa-
tion, but few studies are focused on sleep142. Ravichandran et al.
conducted a study of user’s experience and understanding of
sleep metrics provided by sleep sensing devices. Their findings
suggest that visual feedback may be helpful to users143.
However, several challenges remain in regards to sleep data

visualisation. (1) Scalability: for large-scale historical health data,
visualisation requires adapting to large time scales (from minute-
level to year-level information) and displaying meaningful data
summaries to the user or primary care practitioner. (2) Hetero-
geneity: the data collected from different devices varies greatly
from, for example, GPS location or glucose levels to pictures of
food or phone-screen time. This poses a challenge for the
visualisation of personal data for patients and for the healthcare
professional144,145. (3) Usability: sleep data visualisation should be
tailored to end-users and their specific needs146.

CHALLENGES AND OPPORTUNITIES

With advances in technology, the volume of physiological and
clinical data resources available to biomedical research is expand-
ing147. This includes open-source data from Electronic Health
Records, medical image repositories, genomic archives and massive
person-generated data from wearable technologies147–149.
Recently, sleep data repositories, such as Sleepdata.org, have been
created to advance the field150. These repositories include multi-
modal sleep data (from clinical-grade PSG to actigraphy and
questionnaires)150, and are being used to create ML bench-
marks107. These developments are crucial for the creation of
generalised ML models that can be applied reliably to clinical and
commercial settings to further our understanding of the role of
sleep in well-being and disease.
Sleep-related technologies are not only useful for monitoring

but may also be used to aid intervention. For example, the
portability and pervasive use of mobile phones makes them an
attractive option for the delivery of interventions and several
studies have already shown promising results when using mobile
phone platforms for sleep interventions. These interventions
include, but are not limited to sleep advice for behavioural
change151,152, optimised alarms based on sleep stage153 and sleep
tracking and feedback96,154. Furthermore, new sleep technologies
may be able to complement or augment current clinical-grade
diagnostic tools for sleep disorders. A 2017 review by Shin
provides an in depth overview of this area of research as well as
the strengths and limitations of the current efforts155.
Despite the potential of technologies and open resources,

challenges must be overcome if their potential is to be realised.
Their heterogeneity, variability (both between sources and over
time) and data quality is, at present, a strong barrier to efficient
data reuse. Appropriate analysis also remains a challenge. To
overcome this, temporal and source variability of signal reposi-
tories must be characterised156,157 and common representation
spaces should be defined to exploit shared latent information
among data distributions. Indeed, appropriately representing data
and metadata originating from different sensors (type, make,
version, etc) is critical in order to later harmonise and integrate
data from disparate sources as well as for sensor data fusion.
Models should adapt their inferences from different data sources
and at different points in time.
In addition to data handling and analysis challenges, new

sensing technologies require systematic validation158. These
validation requirements vary based on the end-use of the
technology, and must be held to higher standards if they are to
be used in clinical settings158. On a population level, there is a
wide and growing interest from the general public in wellness
mobile and wearable applications, which in many cases are
related to sleep and inform people’s lifestyle decisions and
understanding of their health143. Nowadays, there are hundreds of
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sleep applications and a plethora of wearable devices that claim to
track sleep quality159. However, most of those devices have little
or no information regarding their reliability and validity, the
testing they underwent or how the data is acquired (i.e., sampling
rates, pre-processing, etc) and processed160,161. As such, indivi-
duals could become concerned or reassured about their sleep
based on unreliable data. Further, concerns have been raised
about the performance of these devices in populations with
chronic conditions and mobility problems162. Whilst this has, to-
date, mainly been confined to concern regarding the tracking
steps and physical activity, these devices must be tested in a
range of populations, in particular, those with sleep problems.
Massive usage of consumer-grade sleep tools may also increase
individual’s health concerns and have a ripple effect on over-
stretched healthcare systems133.
Lack of reliability and validity testing also poses several

obstacles to the use of data-driven applications in sleep medicine
and research. As explained in a 2016 editorial by Wilbanks and
Topol163, the lack of transparency in these technologies limits
researchers’ capabilities to study any potential bias due to the lack
of information on the characteristics of the cohorts. Further, this
lack of transparency makes it more difficult for researchers and
clinicians to use these devices and mobile applications. Despite
some initiatives, such as Apple HealthKit or C3-PRO164, which aim
to facilitate data sharing across platforms, these data tend to be
highly summarised and in a post-processed state. Summary-level
data is not always appropriate for use in academic research or
some AI applications, as the processing steps are often not
described.
To generate maximum benefit to the end-user or other

stakeholders (e.g., hospitals, researchers, public health officials,
regulators, industry), there is an increasing need for a safe and
effective clinical biomarker ecosystem with algorithmic transpar-
ency, inter-operable components and sensors and open interfaces
that allow for high integrity measurement systems165. This will
allow for the verification and validation of digital biomarkers for
sleep health.
Finally, there are data-privacy concerns. Sleep tracking mobile

applications and wearable technologies often collect information
such as movement, GPS location and sound, which could have
potential applications beyond the tracking of sleep. These privacy
concerns may be mitigated through the deployment of data-
processing functions on the user’s mobile equipment, without
requiring server processing166. Similarly, an alternative is to
empower users to decide what data they want to send to the
server166.

CONCLUSIONS

The impact that sleep has on human health is undeniable. Recent
advances in sensing technology, big data analytics and AI allow
for truly ubiquitous and unobtrusive monitoring of sleep and
circadian rhythms. However, challenges remain to realisation of
the benefits of this monitoring for individuals, research and
clinicans. Here, we introduced the Digital Sleep Framework, a
framework outlining the steps required from the multi-modal
acquisition of sleep-related data through to its clinical and
commercial application and exploring all aspects of this chain.
As the number and scope of sleep monitoring technologies
continues to grow and the diversity of digital sleep solutions and
applications continues to multiply, the need for careful, risk-based
product validation has become increasingly important. The
heterogeneity of sensors used for the monitoring of sleep–wake
cycles and circadian rhythms poses a unique set of challenges for
modelling and interpretability. Hence, the identification and
standardisation of robust, reproducible digital sleep biomarkers
is of paramount importance. Modelling based on these signals
must be as free as possible from conscious and unconscious bias

and the development of algorithms must be transparent and
readily available for all stakeholders.
The digitisation of sleep is likely to have repercussions across

industry, healthcare, academia and personal health. With regards
to disorders of sleep, reliable and scalable sleep monitoring is set
to provide a better understanding of sleep disorder progression
and severity. This could facilitate better and earlier diagnosis and
decision-making for individual patients, including in instances
where individuals need to be progressed to a new treatment.
Digitisation may also be used in disease prevention and to provide
lifestyle recommendations. Objective ubiquitous monitoring of
sleep–wake cycles, combined with multi-modal data inputs
reflecting an individual’s physical activity profiles, nutrition, all-
day heart rate and genetic information will allow users to receive
personalised feedback for health and well-being purposes and
disease prevention. New technological advancements will allow
for improved sleep coaching interventions that are aimed to
improve sleep hygiene or provide with better recovery for
example. Furthermore, data generated from these technologies
could be used to help monitor the impact of pharmaceutical and
post-operative interventions. Similarly, the accrued data gathered
from clinical and epidemiological studies, as well as from
commercial wearable devices, represents an unparalleled oppor-
tunity to deepen our understanding of the role of sleep in well-
being and disease.
From the perspective of pharmaceutical companies, there are

several benefits to the digitisation of sleep. Wearables offer the
potential to deploy sleep monitoring at scale, in large populations
that are required for late-phase clinical trials and can be used to
provide better and earlier evidence of treatment efficacy in sleep
disorders, thus facilitating the progression of promising candi-
dates through trial phases. Further, there are implications for
patient centricity. Across diseases, sleep is meaningful to patients
and their health. It is therefore important to objectively assess
sleep metrics such as sleep quality, WASO or time spent sleeping
through quantitative measures, instead of relying on question-
naires. A summary of these metrics is provided in the
Supplementary Fig. 1. Low-burden monitoring will facilitate sleep
collection in trials and potentially help to increase trial participa-
tion and reduce attrition. Moreover, many metrics of sleep are
strongly tied to the quality of life, thus, industry may welcome the
use of these sensing technologies for post-market surveillance.
The added knowledge of a potential positive impact of medicine
on patients’ sleep quality may enable better reimbursement rates.
Ultimately, the digitisation of sleep could facilitate a truly

personalised sleep monitoring experience, empowering people to
improve their sleep92. However, the reproducibility and robustness
of novel sleep monitoring and data analysis methods must be
addressed prior to their use on large, longitudinal and multi-
modal collaborative studies. The impact that these technologies
can have on the management and understanding of sleep, as well
as the treatment and prevention of sleep disorders, is set to be
paradigm-changing. Industry, academic, public policy and clinical
stakeholders should collaboratively enable this process of valida-
tion to take place, moving a step closer to truly personalised
digital health.
In sum, digitisation of sleep and ubiquitous sleep monitoring

will have important implications on the characterisation of sleep,
diagnostics and therapeutics. Large-scale collection of objective,
longitudinal sleep data through unobtrusive sleep sensing devices
will facilitate epidemiological studies exploring the impact of sleep
on health and disease. Furthermore, these applications will likely
expand into sleep health, becoming increasingly accessible to
individuals with the potential to empower and enable individuals
to understand, manage and change their sleeping habits36.
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