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Abstract 

The loss of upper-limb motor function can have a devastating effect on people’s lives. To restore 

upper-limb control and functionality, researchers and clinicians have developed interfaces to 

interact directly with the human body’s motor system. This review paper aims to provide detail 

of the peripheral nerve interfaces and brain machine interfaces that have been developed in the 

past 30 years for upper extremity control, and highlights the challenges that still remain to 

transition the technology into the clinical market. The findings from this review show that 

peripheral nerve interfaces and brain machine interfaces have many similar characteristics that 

enable them to be concurrently developed. Decoding neural information from both interfaces 

may lead to novel physiological models that may one day fully restore upper-limb motor 

function for a growing patient population. 

Key Words: Peripheral nerve interfaces, Brain machine interfaces, Neuroprosthetics, Neural 

decoding, Electrophysiology, Rehabilitation robotics  
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Introduction 

The sudden loss of motor function in the upper extremity can significantly alter a 

person’s way of life, creating many new physical and emotional burdens that can last a lifetime. 

For the past 30 years, clinicians and engineers have worked together to treat patient populations 

most affected by upper extremity loss and functional deficits. Their main goal is to provide and 

restore intuitive control of the patient’s own limb or an artificial limb. In the United Sates alone, 

approximately 2 million people live with limb loss with ~500,000 people who have undergone 

upper-extremity amputations.1  In addition to this, the prevalence of spinal cord injury (SCI), an 

injury that impairs limb mobility, ranges from 249,000 to 363,000 persons with approximately 

17,730 new SCI cases each year.2 Unfortunately, current clinical treatments for these problems 

are incapable of restoring full functional capabilities of an intact upper-limb. At most, people 

with amputations can be provided with simple prostheses, which unfortunately provide only 

basic or rudimentary movements. Similarly, rehabilitation can improve some hand function in 

people with SCIs at the cervical level, but falls short of providing full hand control. Among both 

populations, surveys have shown that restoration of hand function is the highest priority.3,4 

The past two decades have seen an acceleration in development of more articulated, life-

like prosthetic hands in the commercial sector.5-7 Despite these advancements, an appropriate 

prosthetic interface for the user to actively control all functionalities of the prosthesis in a natural 

and intuitive manner does not currently exist. The underlying problem for users not achieving 

full autonomy of their prosthesis is the limited number of available control signals.8 Current 

control methods can only provide a finite number of movements, and insufficiently provide 
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robust capabilities to control multiple independent finger movements.9 The control of multiple 

hand postures or movements with these basic controllers leads to unintuitive control, a prolonged 

learning curve, and lack of embodiment of the prosthesis.  

To provide enhanced prosthetic control, researchers have focused their efforts on building 

better prosthetic interfaces. In particular, more invasive interfaces can gain access to more 

independent control sites, thus providing more intuitive fine motor control. Since the body’s 

motor system generally remains intact outside of the injury site in both persons with amputations 

and paralysis, information about motor intent can be extracted and used to improve the control of 

advanced prostheses (Fig. 1).10–14 This review will focus on describing the pros and cons of these 

developing technologies for amputation and SCI, giving an overview of the different control 

strategies, and providing insight into the ways in which future research can expand these 

technologies to treat other populations with upper-extremity immobility. 

Myoelectric interfaces for amputation 

The human upper limb is composed of an intricate combination of muscles, tendons, and 

nerves providing people with fine motor control over their arms, fingers, and digits. Nerve fibers 

carry efferent motor action potentials which depolarize skeletal muscle fibers creating muscle 

contractions. Electromyography (EMG) signals can be recorded from muscles during voluntary 

contraction and can be used to control commercial myoelectric prostheses. Myoelectric 

prosthesis technology was first introduced in the 1950s.15 In the most basic setup, EMG is 

recorded from two muscle groups (agonist and antagonist muscle groups) with one or two 
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surface electrodes placed on the skin. The recorded activity is then used to control one or two 

simple movements, e.g. hand open/close. This setup has been sufficiently reliable in a clinical 

setting, but fails to achieve multifunctional control of an upper extremity prosthetic device.9,16 

Several factors regarding the characteristics of surface electrodes contribute to this limitation.8 

Ideally, one surface electrode would record from one muscle to control a specific degree of 

freedom (i.e. index finger flexion), providing a one-to-one mapping of EMG activity to finger 

movement. However, in practice, surface electrodes record EMG activity from multiple nearby 

muscles creating cross-talk that consequently limits the number of independent signals available 

for multi-functional movements. Additionally, surface electrodes can lose contact due to shear 

forces, lose connectivity due to sweating, and can begin recording different control signals from 

skin shifting over the underlying muscle, which can alter the EMG signals and negatively impact 

the interpretation of the intended movement 17,18.  

Both hardware and software solutions have been proposed to mitigate electrode shift 19–

22. High-density surface EMG electrodes can cover a large surface area of the amputated limb, 

extracting a higher resolution of EMG signals and minimizing the electrode shift effect. In terms 

of software, Prahm et al.21, proposed an algorithm that first determines how much the electrode 

shifted during donning/doffing of the prosthetic hand, and then recalibrates the controller to 

compensate for the shift. Although these advances have shown progress in improving 

myoelectric technology, there still remains a fundamental problem. The number of available 

control sites is dependent on the presence of residual innervated muscles within the limb, e.g. 
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fewer control sites exist for a transhumeral amputation than a transradial amputation. For a 

patient with a distal transradial amputation, there are many residual innervated muscles which 

can provide a significant number of independent control signals. On the other hand, a patient 

with a transhumeral amputation will have no residual innervated muscles to provide control 

signals for wrist, hand, or finger control. In order to gain access to more control sites, interfacing 

directly with the peripheral nervous system is required. 

Peripheral Nerve Interfaces  

Even decades following amputation, the peripheral nervous system retains the ability to 

transmit volitional motor commands to the phantom limb.23,24 In theory, the peripheral nerve is a 

rich signal source that can provide the necessary number of control sites for intuitive prosthesis 

control. Over the past two decades, several peripheral nerve interface strategies have been 

developed.25,26 These methods are designed to record efferent motor signals directly from the 

nerve (extracellular action potentials from nerve fascicles) or on the surface of the nerve 

(electroneurogram (ENG) activity arising from populations of nerve fascicles). In order to gain 

access to these signals, peripheral nerve electrodes were engineered in two main categories, 

epineural and intraneural electrodes (Fig. 2).14 Epineural electrodes have contacts that wrap 

around the surface of the nerve or are placed on the surface of the nerve while intraneural 

electrodes have contacts that penetrate into the peripheral nerve. 
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The most common epineural electrode is the cuff electrode, which has two or more 

contacts placed within a flexible material and wrapped around the nerve.27,28 There are a few 

challenges with these types of peripheral nerve interfaces. Firstly, the ENG amplitudes are very 

small making it difficult to consistently record efferent motor action potentials directly from the 

nerves due to the small size of the signals and the electrical noise from motion, adjacent nerve 

firing, and adjacent muscle firing, creating an unfavorable signal-to-noise ratio (SNR).29,30 This 

situation becomes increasingly complicated as more biofouling of the electrode occurs over time 

creating a less favorable SNR. Secondly, ENG signal recording faces the same problems of 

cross-talk as surface EMG: recording neural activity from a population of fascicles instead of just 

a single fascicle. To address this, algorithms have been proposed to localize and separate ENG 

activity.31–33 More recently, these methods have been tested in long-term animal studies and 

show promise in separating and recovering nerve fascicle signal sources reliably.34,35 Further 

studies are warranted to show if these methods can be translated, and effectively utilized with 

human nerves. Another type of epineural electrode, the flat interface nerve electrode (FINE), 

wraps around the nerve and flattens the nerve so that the electrode contacts are in closer 

proximity to each of the individual fascicles.36 This design facilitates recording efferent motor 

action potentials more selectively from individual fascicles, without the need for a more 

invasive, intraneural approach. Overall, due to the difficulties in recording small efferent motor 

action potentials and unfavorable SNR, epineural electrodes have found more use as stimulating 

devices to provide tactile sensory feedback for prosthetic users.37 
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Intraneural electrodes, on the other hand, have had more success in recording higher 

amplitude signals because of their direct contact with nerve fascicles. Examples of intraneural 

electrodes include the longitudinal intrafascicular electrode (LIFE38), transverse intrafascicular 

multichannel electrode (TIME39), and the Utah slanted electrode array (USEA40). The LIFE has 

been used in multiple human studies including: real-time control of grip force and elbow 

position, offline classification of three different grasps, and sensory percepts (i.e. tactile 

sensations) that are evoked with electrical stimulation.41–44. Comparably, the TIME and USEA 

have been used to provide sensory feedback to human patients during bi-directional prosthesis 

control tasks.45,46  

Although intraneural electrodes have been heavily tested in human subjects, their 

expected longevity and durability are still uncertain.47 Previous studies have reported degradation 

in signal amplitude and increased electrode impedance in USEAs over the course of four 

weeks.48 Histological analysis has shown that inserting these electrode tips into the nerve causes 

an inflammatory response with an increase of macrophages surrounding and attached to the 

device.49 Unfortunately, studies on other types of intraneural electrodes have not characterized 

signal degradation to the same degree or over the same period of time.50,51 Recently, the USEA 

has been reported to be functional for up to 14 months, but mainly for electrical stimulation to 

produce tactile sensory feedback.46 Consequently, the signal recording robustness of intraneural 

electrodes still remains undetermined. Until durability and signal stability are demonstrated 

within human subjects, intraneural electrodes may find more use as stimulating devices similar to 
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epineural electrodes, providing tactile and proprioceptive feedback to improve prosthetic 

performance.46  

Surgical methods to improve peripheral interfaces 

The challenges faced with epineural and intraneural electrodes have led some groups to 

devise alternative interfacing architectures that exploit surgical techniques. Targeted muscle 

reinnervation (TMR52) is a surgical technique that reroutes a transected nerve into a partially 

denervated, intact muscle (Fig. 3a). After a few months, the nerve reinnervates the muscle, and 

the muscle is able to contract normally under the efferent commands from the rerouted nerve. 

This in turn transforms the intact muscle into a biological amplifier for the once severed nerve, 

creating a new myoelectric site for prosthesis control. A report in 2013 noted that more than 60 

TMR procedures had been performed worldwide on shoulder disarticulation and transhumeral 

amputees.53 Since then, TMR has continued to gain popularity as a surgical option for patients 

with proximal amputations, as it has also been shown to treat neuroma and phantom limb pain.54 

In the early days of TMR, a patient with bilateral shoulder disarticulations was able to control 

elbow position and either hand opening/closure or wrist rotation using simultaneous proportional 

control.52 In 2007, Zhou et al. combined TMR signals with pattern recognition techniques, 

enabling users to control up to seven hand and arm postures.55,56 More recently in 2017, a 

randomized clinical trial of eight TMR participants showed that pattern recognition control 

outperformed a dual-site differential direct control system using antagonistic muscle pairs.57  
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Although TMR has expanded the capabilities of traditional myoelectric interfaces to 

control more advanced prosthetic technology, the spatial distribution of the rerouted nerves is 

limited. The technique requires the whole nerve to be transferred to a whole muscle or a partially 

denervated muscle. Consequently, the maximum number of independent control sites is 

dependent on the number of transferred whole nerves. This limitation is reflected in clinical 

practice, where users are only able to control three to four basic movements.58 At more proximal 

levels of amputation, the organization of motor and sensory fascicles in the nerve are mixed.59 

This makes differentiating the functions of the nerve during surgery more difficult, and does not 

guarantee representation of all functions at the reinnervation site.60 Furthermore, TMR currently 

relies on surface electrodes for signal extraction, which can be challenging for all of the reasons 

previously mentioned.  

The Regenerative Peripheral Nerve Interface (RPNI) peripheral nerve interface takes 

advantage of nerve and muscle regeneration to provide many distinct, unique control signals for 

high fidelity control of prosthetic devices.61–63 An RPNI is composed of a transected peripheral 

nerve, or peripheral nerve fascicle, that is implanted into a free muscle graft (Fig. 3b). The free 

muscle graft undergoes regeneration, revascularization, and reinnervation by the implanted 

peripheral nerve.64 An RPNI becomes a stable, peripheral nerve bioamplifier that is capable of 

producing high amplitude EMG signals.65–67 Previous work has shown that RPNIs can be 

successfully reinnervated and maintain a healthy electrical response up to 7 months post-

implantation in rats65  and 20+ months in non-human primates.67 Additionally, RPNIs exhibited 
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electrical properties equivalent to intact muscle that can be utilized to control a prosthetic 

device.67,68  

A more recent study demonstrated that RPNIs are anatomically viable in humans, 

enabling long-term recording of efferent motor action potentials.69 Instead of using surface 

electrodes, intramuscular bipolar electrodes have been implanted directly into RPNIs to produce 

large signal-to-noise ratio (SNR) signals that have been used to control a prosthetic hand with 

high performance.69 In addition, dynamic ultrasound demonstrated RPNI contractions during 

attempted flexion of the phantom fingers of their hand. This was demonstrated in an above-

elbow amputation residual limb in which there were no long finger flexors or extensors to 

correspond with the attempted movement. 

Brain machine interfaces for spinal cord injury 

 In contrast to amputation, spinal cord injury (SCI) leaves the musculature and peripheral 

nerves intact, but eliminates the patient’s control over them. It has been shown that people with 

quadriplegia highly desire regaining upper extremity function and would prefer improved 

function of their own limb over use of an artificial limb.70,71 To achieve this goal, researchers 

have employed functional electrical stimulation (FES) of the non-functional muscles of the upper 

extremity to produce controlled movement.72 FES was originally described in the 1980s and has 

been successful used to reanimate paralyzed limbs.73,74 Similar to controlling an advanced 

prosthesis, FES requires high fidelity control signals to control an intact limb. Early FES control 

systems have used either a physical switch75 or EMG control signals from intact, innervated 
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muscles, post-SCI, to provide voluntary commands.76 This strategy can provide limited motor 

control signals to produce simple grasping movements.72 In order to harness more control signals 

to increase functionality, several groups have utilized cortical interfaces to extract control signals 

directly from the brain. 

 For the past 50 years, research groups have been recording and deciphering motor signals 

from the brain. Like myoelectric and peripheral nerve interfaces, there are several ways to extract 

neural activity (Fig. 4). The least invasive is electroencephalography (EEG), which uses surface 

electrodes that are placed on the scalp. EEG has been mainly used for assistive technology such 

as typing devices,77 but has more recently demonstrated capabilities of controlling a robotic 

hand.78 A more invasive technology is electrocorticography (ECoG), where electrodes are placed 

either above or below the dura mater layer.79 Successful control of arm and hand movements, a 

computer cursor, and a robotic hand using ECoG signals has been shown in a number of 

studies.80–85 Though progress has been made for these technologies, their main limitation is the 

effectiveness of the control signals. Similar to how surface electrodes record from a population 

of muscle activity, EEG and ECoG electrodes record from a population of brain activity from the 

motor cortex, making control of multiple independent movements challenging.  

 To gain access to more spatially specific signals and more detailed cortical information, 

intracortical electrodes have been developed to penetrate directly into the brain to record from 

individual or local groups of neurons.86–92 Studies have demonstrated the control of computer 

cursors and advanced prosthetic arms in three-dimensional space using these interfaces.13,93–95  
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There has also been great success in animating paralyzed musculature in non-human primates via 

FES controlled by the recorded neural activity.96–98  That success has translated to a clinical 

setting where two human case studies have demonstrated the ability of SCI patients to control 

grip force of paralyzed hands via FES delivered by surface electrodes99 or self-feed with the use 

of implanted FES electrodes.100 In general, these studies have focused mainly on controlling only 

arm movements and hand grasps. Further studies are warranted to expand the control scheme to 

cover multi-digit functionality. In the past few years, there has been progress in this area with 

studies demonstrating control of individuated virtual finger movements in non-human 

primates.101,102 These promising results may one day enhance future FES systems and provide 

more dexterous hand control to SCI patients.  

Control methods 

Building an interface that effectively extracts intuitive signals for prosthesis or paralyzed 

upper-limb control represents one critical element to provide functional restoration. However, 

the interpretation of these signals and prediction of the user’s intention is equally critical. 

Whether a subject is controlling a prosthesis or paralyzed limb, controllers can either function in 

a discrete or continuous mode (Fig. 5).9  In the case of hand function, discrete control means one 

of several hand postures is selected for execution. For example, in a simple on/off control 

scheme, the quiet period of neurological activity could represent a hand open state, whereas an 

amplitude or frequency of the neurological activity that is higher than some predetermined 

threshold could represent a hand closed state. This type of control scheme restricts the prosthetic 
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hand to move at a pre-defined fixed velocity for both open and closed states. In the continuous 

mode, the change in signal amplitude or frequency over time could be used to control the 

velocity or force output of the hand. Defined as proportional control, modulation of one set of 

signals could control how fast the hand closes, and modulation of a second set could control how 

fast the hand opens. Unfortunately, both discrete and continuous methods become more difficult 

and unintuitive to use with increasing numbers of limb movements or degrees of freedom (DoF), 

mainly because the number of independent control sources are fewer than the increasing number 

of movement dimensions.8  

To gain increased intuitive control of prosthetic or paralyzed limbs, researchers have 

focused their attention on pattern recognition algorithms as a possible replacement for 

conventional control.103 In this control scheme, multiple recording electrodes capture the natural 

generation of neural activity, which can be classified to a specific hand posture or grasp.103–105 

As different patterns arise, multiple postures or complex movements can be classified. Users can 

then naturally switch between movements simply by thinking of moving to their desired posture, 

which would naturally activate the desired posture in their phantom limb or generate the relevant 

effector cortical signals. Multiple pattern recognition algorithms have been tested in laboratory 

settings. 55,106,107 Researchers continue to test pattern recognition algorithms in both the 

laboratory and clinical setting, further improving the technology for conventional use.108 These 

algorithms have taken one step further in providing prosthesis users intuitive and natural control. 

However, this technique is characteristically discrete, meaning that only one posture can be 
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chosen at a time, and users cannot proportionally control the speed of the prosthesis.  This takes 

away the user’s ability to control the amount of force being applied to an object, which may 

degrade functional performance. Although pattern recognition algorithms have become today’s 

state-of-the-art controllers, they are still far from replicating the natural movements of the human 

hand. 

In order to match the natural dexterity of the human hand, several groups have proposed 

using regression-based algorithms or continuous methods.109–113 Unlike pattern recognition, 

regression algorithms can use the rate of change in neurological activity to continuously and 

simultaneously estimate multiple control signals. Both peripheral nerve and brain interfaces have 

had success in implementing these algorithms for continuous control of multiple DoFs.13,102,113–

115 Although these algorithms show promise in accelerating the progress towards natural arm and 

hand control, there still remain some limitations. Regression controllers may not generalize well 

when performing functional tasks of daily living. This is because regression algorithms can only 

learn from the collected training data, and that data is typically gathered in a controlled 

laboratory environment. For example, perturbations from the external environment that were not 

included in the collected data are not understood by the regression controllers. Thus, when an 

external perturbation occurs on a prosthetic limb, the controller may fail in interpreting the user’s 

intention, which may lead to a serious accident.  

One approach that may generalize better is determining the true mathematical 

relationships between joint finger moments, muscle activations, and motor neuron spike trains 
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from motor cortex. Upper-limb movement forces are generated from muscles innervated by 

pools of firing alpha motor neurons,116,117 which are generated directly from motor cortex. 

Studies have shown that EMG activity can be predicted from populations of neurons in motor 

cortex.118,119  Likewise, some groups have used neuromusculoskeletal modeling to understand 

the non-linear transformations between muscle activations and joint kinematics.120 These 

neuromusculoskeletal models have shown promise in providing continuous control for prosthesis 

users, but often these models need to be scaled and calibrated to an individual’s limb shape, size, 

and EMG-force properties, which is impractical in a clinical setting.121 However, a more recent 

study has simplified the calibration process and achieved a robust, high performance prosthetic 

control.122 More physiological approaches may be warranted in order to regain intuitive and 

dexterous upper-limb control for both the amputation and SCI patient population. 

On top of the algorithmic challenges shared between peripheral nerve and brain machine 

interfaces, the control signals extracted from motor cortex for brain machine interface prostheses 

are several synapses displaced from the end effector muscles. As a result, motor cortical 

recordings have an additional layer of abstraction in their relationship to muscular outputs. To 

combat this slight dissociation, several studies have tried to uncover the latent neural population 

dynamics that generate the recorded signals.123,124 In particular, groups have recently applied a 

deep learning solution called latent factor analysis via dynamical systems (LFADS) to use neural 

activity to accurately predict behavior in typical brain machine interface task paradigms. In 

addition to brain machine interface applications, LFADS have demonstrated the capability of 
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predicting firing rates of untrained neurons across months and perturbations in neural state space 

corresponding to behavioral choices, suggesting the dynamics characteristic of LFADS may be 

accurately modeling the dynamics of neural populations.125,126  As promising as LFADS seems 

for bringing naturalistic brain machine interfaces closer to clinical use, its computational 

complexity is too great for a modern closed-loop, real-time system. Although being able to 

estimate latent neural states from samples of cortical neurons may allow more accurate 

estimations of a user’s intent and greater prosthetic control, the algorithms are too 

computationally intense for modern real-time computational hardware to process in a clinical 

setting. 

Conclusion and future directions   

Acceleration in the development of peripheral nerve and brain machine interfaces have 

led to substantial improvements in patient care. However, there still remain many challenges 

before peripheral nerve and brain machine interfaces can be readily available for the clinical 

market. Further advances in these technologies will require additional studies in both animal 

models and human subjects. One such advancement is the development of portable systems 

which would allow the user to “leave the lab” and return to society using their assistive device 

(prosthetic limb or FES device). Currently, many of the systems mentioned above require the 

user to be tethered to several computers for signal processing, feature extraction, decoding, task 

management, data storage, and prosthesis control. Although many of those processing steps 

would only be required of a laboratory prosthesis, clinical prostheses still require powerful 
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hardware for signal processing and decoding. Several recent research developments have 

attempted to tackle this issue, but necessary safety regulations have made translation of these 

devices to human use difficult. In the commercial sector, clinical systems for human 

implantation have been developed127, but do not yet have FDA approval. 

Although progress is being made towards portable neural prostheses, patient populations 

with amputations and spinal cord injuries have articulated their desires to have fully implantable 

and integrated prosthetic devices.71 Several studies have developed implantable neuroprosthetic 

technologies for recording and wireless transmission of neural data, but these devices still require 

proximity to processing machines.128,129  A network of implantable electronic modules has been 

developed that is capable of recording EMG signals for prosthetic control and performing 

functional electrical stimulation (FES) for functional restoration in patients with paralysis.130 

(Fig. 6). While this system is approved for limited use in humans, it continues to face the many 

challenges plaguing implantable devices. Hermetic sealing of the internal electronics while 

allowing a large quantity of feedthroughs to provide the many independent control signals 

required for a high dimensional prosthesis remains a major materials science and packaging 

challenge. Further, greater processing requirements generate more heat, which can be dangerous 

to tissue when implanted. Although wonderful strides are being made towards implantable 

prostheses, many engineering steps must be taken before their translation to clinical use. 
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 Figure. 1 Diagram of a brain machine interface system with functional electrical stimulation and a 

peripheral nerve interface system. (A) A brain machine interface records signals directly from the brain. 

The signals are then interpreted to predict the user’s intentional movement. Stimulation of the muscles 

(functional electrical stimulation) executes the predicted movement. (B) A peripheral nerve interface 

records signals from the nerves. Like brain signals, the nerve signals are also decoded to decipher the 

user’s intention. For patients with amputations, the predicted movement is sent to an artificial prosthesis.  

 

Figure 2 Different types of electrodes have been made to interface directly with the peripheral nerve. The 

most common electrode types are the cuff electrode (top) and the Utah Slanted electrode array (bottom). 

With the cuff electrode recording from a population of nerve fascicles and the Utah slanted array 

recording directly from nerve fascicles, the resolution of the nerve signals differs between each interface. 

Cuff electrode picture and signals were adapted from Polasek et al., 2009 and Sahin et al., 1997, 

respectively.30,131 Utah slanted electrode array picture and signals were adapted from Branner et 

al., 2001 and Warren et al., 2016, respectively.14,40  

 

Figure 3 Examples of surgical techniques to help improve peripheral interfaces. (A) Targeted muscle 

reinnervation involves re-routing the nerves to intact muscles following amputation. The nerves 

reinnervate the “target” muscle, allowing signal transmission from that muscle, to provide control 

signals for a missing arm or hand. (B) Regenerative peripheral nerve interfaces (RPNIs) are created by 

implanting the end of a divided peripheral nerve, or nerve fascicle, into a free skeletal muscle graft. The 
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RPNIs can then be used to amplify the efferent motor action potentials. Independent control signals can 

then be extracted to control a prosthesis from each of the RPNIs. 

 

Figure 4 Various types of electrodes have been made to interface directly with the brain. The most 

common invasive electrode types are electrocorticography (EcoG) electrodes (left), and the Utah 

electrode array and floating microelectrode array (right). Similar to how certain types of peripheral 

nerve electrodes record different signal resolutions, various types of brain electrodes also extract 

different signal resolutions. EcoG electrodes record local field potentials, whereas Utah electrode arrays 

can record extracellular action potentials from individual neurons. EcoG electrodes and signals were 

adapted from Leuthardt et al., 2004.79 Floating microelectrode array picture and Utah slanted array 

pictures adapted from Microprobes and Kim et al., 2006.132 

 

Figure 5 Discrete and continuous control methods. (A) Discrete control methods interpret patterns from 

neural signals and then chooses a specific posture or movement associated with that pattern. The 

predicted posture is then transmitted to the prosthesis. (B) Unlike discrete control, continuous control can 

continuously predict multiple postures at once. For example, a user could flex the wrist and close the 

hand at the same time, or extend the wrist and open the hand. 

 

Figure 6 Example of a portable functional electrical stimulation system for clinical use. All modules 

would be surgically implanted to achieve full device portability. Illustration adapted from Case Western 

Reserve University/Synapse Biomedical Inc.. 
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