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THE G/GI/N QUEUE IN THE HALFIN–WHITT REGIME1
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In this paper, we study the G/GI /N queue in the Halfin–Whitt
regime. Our first result is to obtain a deterministic fluid limit for
the properly centered and scaled number of customers in the sys-
tem which may be used to provide a first-order approximation to the
queue length process. Our second result is to obtain a second-order
stochastic approximation to the number of customers in the system
in the Halfin–Whitt regime. This is accomplished by first centering
the queue length process by its deterministic fluid limit and then
normalizing by an appropriate factor. We then proceed to obtain an
alternative but equivalent characterization of our limiting approxima-
tion which involves the renewal function associated with the service
time distribution. This alternative characterization reduces to the
diffusion process obtained by Halfin and Whitt [Oper. Res. 29 (1981)
567–588] in the case of exponentially distributed service times.

1. Introduction. In this paper, we study the G/GI /N queue in the
Halfin–Whitt regime. This problem has received considerable attention in
the literature recently, however, to this date it has remained an open prob-
lem to extend the pioneering work of Halfin and Whitt [6] on the GI /M/N
queue to the more general G/GI /N queue. In this paper and its sequel [18],
we resolve this open problem by providing both fluid and diffusion limit
results for the queue length process of the G/GI /N queue in the Halfin–
Whitt regime. In addition to providing these results, we also hope that the
general methodology which is employed here, labeled the “Infinite Server
Queue Systems Equations” approach (see below), will be helpful in future
applications.
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2 J. REED

Loosely speaking, the Halfin–Whitt regime is achieved by considering a
sequence of many server queues indexed by the number of servers queues in-
dexed by the number of servers N where the arrival rate to the system grows
large but the service time distribution remains fixed. Specifically, denoting
by λN the arrival rate to the N th system, we assume that

λN →∞ as N →∞.

In order for the sequence of systems to remain stable, this then requires that
the number of servers be large enough to handle the growing arrival rate. In
particular, assuming without loss of generality that the mean service time
is equal to one and denoting by ρN = λN/N the traffic intensity to the N th
system, in the Halfin–Whitt regime we assume that

√
N(1− ρN )→ β as N →∞,

where −∞< β <∞. Thus, in the Halfin–Whitt regime we assume that the
traffic intensity of the system remains close to 1 while the number of servers
grows without bound. Note also by the results of Kiefer and Wolfowitz [13],
that, if β > 0, then, for large enoughN , the sequence of systems will be stable
in the pre-limit, while if β < 0, they will not. The case β = 0 is indeterminate.

Halfin and Whitt showed in their seminal paper [8] that in the regime
described above, the properly centered and scaled queue length process will
converge to a limiting diffusion. Unfortunately, they were not able to ex-
tend their results beyond the assumption of exponential service time dis-
tributions. This is mainly due to the fact that the infinitesimal generator
approach to their proof breaks down when the service times are no longer
exponentially distributed. This has naturally led to much speculation in the
literature as to how to approach the situation of general service time dis-
tributions and specifically in such situations what the limiting process of
the properly centered and scaled queue length process must be. In an effort
to answer this question, several authors have recently obtained convergence
results for carefully selected classes of service time distributions which are
particularly well suited to analysis. Puhalskii and Reiman [17] have demon-
strated convergence of the G/PH /N queue length process in the Halfin and
Whitt regime, where PH stands for phase type service time distributions.
Their approach is to consider a multi-dimensional Markovian process where
each dimension corresponds to a different phase of the service time distribu-
tion. Jelenković, Mandelbaum and Momčilović [10] have shown convergence
of the steady state distribution of the GI /D/N queue, where D stands for
deterministic service times. Their proof involves focusing on a single server
in the system and studying its queue length behavior as it evolves over
time. Whitt in [21] has shown process level convergence of the G/H∗

2/N/M
queue, whereH∗

2 stands for a mixture of an exponential random variable and
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a point mass at zero. In [16], Mandelbaum and Momčilović study the virtual
waiting time process of G/GI /N in the Halfin–Whitt regime assuming that
the service time distribution possess finite support. Their approach relies
on a combination of combinatorial and probabilistic arguments. Gamarnik
and Momčilović [5] analyze the GI /GI /N queue assuming that the service
time distribution is lattice valued with finite support. They analyze the sta-
tionary values of the queue length and waiting time processes and show
that the in the Halfin–Whitt regime, the diffusion scaled stationary value
of the queue length converges to a limiting random variable corresponding
to the stationary measure of a Markov chain, which, interestingly, may be
recovered from our limit as well. Kaspi and Ramanan [12] consider service
time distributions with a density and provide a fluid limit for the measure-
valued process which keeps track of the amount of time that each customer
has spent in the system. Nevertheless, with the exception of the results of
Kapsi and Ramanan [12], it does not appear that any of the aforementioned
approaches may be easily extended to the case of general service time dis-
tributions, and so to this date there has remained no general methodology
for analyzing the G/GI /N queue in the Halfin–Whitt regime. This is the
main contribution of the present set of papers.

In particular, in this paper and its sequel [18], we provide two separate
approaches for extending the results of Halfin and Whitt [6] to the G/GI /N
queue. Each of these approaches has its own unique set of advantages and
disadvantages and in subsequent work we intend to provide important ap-
plications in which one approach may be more advantageous than the other.
For the remainder of the present paper we focus our attention on the first
approach which we label the “Infinite Server Queue System Equations” ap-
proach and defer discussion of the second approach, the “Idle Time System
Equations” approach, until the sequel.

The main insight to the “Infinite Server Queue System Equations” ap-
proach is to write the system equations in a manner similar to the system
equations for the G/GI /∞ queue. Proposition 2.1 in Section 2 then provides
a crucial link between our system and the G/GI /∞ queue which allows the
asymptotic analysis to proceed. In an effort to give a quick idea of what our
main results, first recall the heavy traffic results found in Borovkov [2] and
Krichagina and Puhalskii [14]. Recall that heavy traffic for the G/GI /∞
queue is defined by letting the arrival rate to the system grow large while
holding the service time distribution fixed. In such a regime, it can be shown
that the properly centered and scaled queue length processes will converge
to a Gaussian process which we denote by Q̃I .

Let us therefore denote by Q̃I the limiting Gaussian process obtained for a
G/GI /∞ queue with the same sequence of arrival processes and an identical
service time distribution as in our original sequence of G/GI /N queues.
Then the limiting process of Theorem 5.1 of Section 5 for the properly
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centered and scaled queue length process in our original sequence ofG/GI /N
queues is given by the unique strong solution to

Q̃(t) = M̃Q(t) + Q̃I(t)− βFe(t) +

∫ t

0
Q̃+(t− s)dF (s)(1.1)

for t≥ 0, where Q̃+ =max(Q̃,0), F is the CDF of the service time distri-
bution, Fe is the equilibrium distribution associated with F [see (5.4)] and
M̃Q is an additional process which is related to the initial conditions of the
queue. Note that the additional integral term on the right-hand side of (1.1)
is naturally positive as one would expect more customers in a G/GI /N
queue than in a corresponding G/GI /∞ queue. Corollary 5.2 in Section 5
also shows that (1.1) may be equivalently expressed as

Q̃(t) = ζ(t) +

∫ t

0
ζ(t− s)dM(s)− βt−

∫ t

0
Q̃−(t− s)dM(s)(1.2)

for t≥ 0, where ζ = M̃Q+Q̃I , Q̃
− =min(0, Q̃) andM is the renewal function

associated with the pure renewal process with interarrival distribution F .
From (1.2), it is then a matter of a few direct calculations to recover Halfin
and Whitt’s original results. We also point out that in Section 4 we develop
fluid limit results which closely resemble (1.1) above.

The methodology of proof used in the present paper is heavily influenced
by the results found in [14]. In particular, the authors in [14] use martingale
techniques in order to show that certain processes associated with the queue
length process are tight. In this paper, many of these same arguments are re-
peated again but with the slight modifications necessary in order to account
for the finiteness of the number of servers. We therefore encourage the inter-
ested reader to concurrently review the results found in [14] in order to gain
a fuller understanding of the present paper. In particular, one of the main
insights from [14] is to show that the limiting process of Q̃I in (1.1) may be
decomposed into a sum of two processes M̃1 and M̃2, which represent the
randomness arising from the arrival process and service times, respectively.
Furthermore, the process M̃2 may represented as a double integral against
the Kiefer process.

The remainder of this paper is now organized as follows. Section 2 provides
the system equations for the G/GI /N queue. In Section 3, we provide a
regulator map result upon which our weak convergence argument will hinge.
Sections 4 and 5 contain our weak convergence results for the queue length
process. Specifically, in Section 4 we study the queue length process under
fluid scaling and our main result in this section is Theorem 4.1. Next, in
Section 5, we study the fluid centered queue length process under diffusion
scaling in the Halfin–Whitt regime and our main result there is Theorem
5.1. Corollary 5.2 of Section 5 also provides an equivalent characterization
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of the limiting process obtained in Theorem 5.1. This then serves as the link
between Halfin and Whitt’s results and ours. In Section 6, we conclude by
providing several directions for future research. The Appendix also includes
several proofs which are similar in nature to those found in [14] but are
necessary for our results and so are included here for completeness.

1.1. Notation. In what follows, all random variables are assumed to be
defined on a common probability space (Ω,F ,P). Stochastic processes are
assumed to measurable maps from (Ω,F) to (D[0,∞),D), where D[0,∞) is
the space of all right continuous with left limit (RCLL) functions on [0,∞)
and D is the Borel σ-algebra generated by the Skorohod J1-topology, see
Chapter 16 of [1] for further details.

We denote by B(R), the Borel σ-field on R. For any two measure spaces,
(S1,S1) and (S2,S2), we denote by (S1 × S2,S1 ×S2), the product measure
space which is endowed with the product σ-field, S1 × S2. Specifically, we
define (Dk[0,∞),Dk) to be the product measure space (D[0,∞) × · · · ×
D[0,∞),D× · · · × D).

We denote by dJ1 , the Skorohod metric on D[0,∞) and by u the uniform
metric. For each x ∈D[0,∞) and T ≥ 0, we denote by

‖x‖T = sup
0≤t≤T

|x(t)|,

the supremum metric on [0, T ]. We also denote by | · |, the Euclidian metric
on R. For any two metric spaces, (S1,m1) and (S2,m2), we denote by (S1×
S2,m1×m2), the product metric space which is endowed with the maximum
metric m1 ×m2 defined by

(m1 ×m2)((x1, x2), (y1, y2)) = max{m1(x1, y1),m2(x2, y2)}.
In particular, we define (Dk[0,∞), dkJ1) to be the product metric space

(Dk[0,∞), dkJ1) = (D[0,∞)×· · ·×D[0,∞), dJ1×· · ·×dJ1) and we set (Dk[0,∞),

uk) = (D[0,∞)× · · · ×D[0,∞), u× · · · × u).

2. System equations for theG/GI/N queue. In this section, we provide
the system equation for the G/GI /N queue. One of the key insights from
Halfin and Whitt [6] was that for large N , the GI /M/N queue will, for
stretches of time when the number of customers is low, behave as if it were
an GI /M/∞ queue. Our main results in Sections 4 and 5 show that the same
holds true for the G/GI /N queue as well. Our first step towards showing
that this is the case is to write down the system equations for the G/GI /N
queue in a similar way to those for the G/GI /∞ queue. For the reader’s
convenience, we will closely adhere to the notation used in [14] as many of
the arguments we use here cite results from that paper.
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Initially, at time 0−, we assume that there are Q0 customers in the sys-
tem. The first min(Q0,N) of these customers will be in service and the
remainder are waiting to be served. Those customers in service at time 0−
have already been in service for some amount of time and we denote by η̃i
the residual service time of the ith customer in service at time 0−. We as-
sume that {η̃i, i≥ 1} is an i.i.d. sequence of random variables with common
distribution F0.

Customers next arrive to the system according to the arrival process A=
{A(t), t ≥ 0} and are served on a first come first served (FCFS) basis. The
arrival time of the ith customer is defined to be the quantity

τi = inf{t≥ 0 :A(t)≥ i}, i≥ 1.

Setting τ0 = 0, we also define

ξi = τi − τi−1, i≥ 1,(2.1)

to be the interarrival times between the (i−1)st and ith customers to arrive
to the system.

The ith customer to enter service after time 0− is assigned the service
time ηi. We assume that {ηi, i≥ 1} is an i.i.d. sequence of mean 1, random
variables with common distribution F whose tail distribution we denote
by G = 1 − F . Note that we impose no assumptions on the service time
distribution, other than it have a finite first moment.

For each i ≥ 1, let wi denote the waiting time of the ith customer to
arrive to the system after time 0− and let w̃i denote the waiting time of
the (N + i)th initial customer in the system at time 0−, if such a customer
exists. We begin our indexing by N +1 since the first N initial customers in
the system will not have to wait. Using this notation as well as that of the
previous paragraphs, the total number of customers in the system at time t
is given by

Q(t) =

min(Q0,N)
∑

i=1

1{η̃i > t}+
(Q0−N)+
∑

i=1

1{w̃i + ηi > t}
(2.2)

+

A(t)
∑

i=1

1{τi +wi + η(Q0−N)++i > t}.

We henceforth refer to the process Q = {Q(t), t ≥ 0} as the queue length
process. It is important to note that Q does not only count those customers
in the queue waiting to be served but that indeed it counts the total number
of customers in the system. The number of customers waiting to be served
may however be recovered from Q and is given by (Q−N)+. Also note that
in general Q0 6=Q(0) since it is possible for customers to arrive to the system
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at time zero. One may think of Q0 as being equal to Q(0−), the left-hand
limit of Q at time t= 0.

Centering each of the indicator functions in the first summation on the
right-hand side of (2.2) by the means and the indicator functions in the
last two summations by their means conditional on their arrival times and
waiting times, we obtain

Q(t) = min(Q0,N)F̄0(t) +W0(t) +M2(t)
(2.3)

+

(Q0−N)+
∑

i=1

G(t− w̃i) +

A(t)
∑

i=1

G(t− τi −wi),

where

W0(t) =

min(Q0,N)
∑

i=1

(1{η̃i > t} − F̄0(t))(2.4)

and

M2(t) =

(Q0−N)+
∑

i=1

(1{w̃i + ηi > t} −G(t− w̃i))

(2.5)

+

A(t)
∑

i=1

(1{τi +wi + η(Q0−N)++i > t} −G(t− τi −wi)).

We also set W0 = {W0(t), t≥ 0} and M2 = {M2(t), t≥ 0}.
Next, adding in and subtracting out the terms

AG(t) =

∫ t

0
G(t− s)dA(s)(2.6)

and (Q0−N)+G(t) both to and from the right-hand side of (2.3), we obtain

Q(t) = I(t) +W0(t) +M2(t) +AG(t)

+

(Q0−N)+
∑

i=1

(G(t− w̃i)−G(t))(2.7)

+

A(t)
∑

i=1

(G(t− τi −wi)−G(t− τi)),

where

I(t) =min(Q0,N)F̄0(t) + (Q0 −N)+G(t).

Note that AG(t) as given in (2.6) is the expected number of customers
in G/GI /∞ queue at time t with same arrival process and service time
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distribution as in our G/GI /N queue conditional on the arrival process A.
We also set AG = {AG(t), t≥ 0} and I = {I(t), t≥ 0}.

We now have the following key proposition.

Proposition 2.1. For each t≥ 0,

A(t)
∑

i=1

(G(t− τi −wi)−G(t− τi))

=

∫ t

0
(Q(t− s)−N)+ dF (s)−

(Q0−N)+
∑

i=1

(G(t− w̃i)−G(t)).

Proof. First note that for each time t≥ 0, we have that the total num-
ber of customers waiting to be served at time t may be written as

(Q(t)−N)+ =

(Q0−N)+
∑

i=1

1{t < w̃i}+
A(t)
∑

i=1

1{τi ≤ t < τi +wi}.

We therefore have that

A(t)
∑

i=1

(G(t− τi −wi)−G(t− τi))

=

A(t)
∑

i=1

∫ t−τi

(t−(τi+wi))+
dF (s)

=

A(t)
∑

i=1

∫ ∞

0
1{t− (τi +wi)< s≤ t− τi}dF (s)

=

A(t)
∑

i=1

∫ ∞

0
1{τi ≤ t− s < τi +wi}dF (s)

=

∫ ∞

0

A(t)
∑

i=1

1{τi ≤ t− s < τi +wi}dF (s)

=

∫ t

0

(

(Q(t− s)−N)+ −
(Q0−N)+
∑

i=1

1{w̃i > t− s}
)

dF (s)

=

∫ t

0
(Q(t− s)−N)+ dF (s)−

∫ t

0

(Q0−N)+
∑

i=1

1{w̃i > t− s}dF (s).
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A reverse argument can now also be used to show that

∫ t

0

(Q0−N)+
∑

i=1

1{w̃i > t− s}dF (s) =
(Q0−N)+
∑

i=1

(G(t− w̃i)−G(t)).

This completes the proof. �

Proposition 2.1 now allows us to rewrite equation (2.7) for the queue
length at time t as

Q(t) = I(t) +W0(t) +M2(t) +AG(t)
(2.8)

+

∫ t

0
(Q(t− s)−N)+ dF (s).

Equation (2.8) is the starting point for our analysis in Sections 4 and 5. In
the next section, we develop a family of regulator map results which will be
useful in representing the queue length process in (2.8).

3. A family of regulator map results. In this section, a family of regu-
lator map results are provided which will be relied upon in the proof of our
main results. In particular, these maps will provide convenient representa-
tions for the queue length processes in Sections 4 and 5.

Let B be a cumulative distribution function on R and let a ∈R. For each
x ∈D[0,∞), we would like to find and characterize solutions z ∈D[0,∞) to
equations of the form

z(t) = x(t) +

∫ t

0
(z(t− s) + a)+ dB(s), t≥ 0.(3.1)

We therefore define the mapping ϕa
B :D[0,∞) 7→ D[0,∞) to be such that

ϕa
B(x) is a solution to (3.1) for each x ∈D[0,∞). The following proposition

now shows that ϕa
B is uniquely defined and provides some regularity results

for ϕa
B as well. Its proof may be found in the Appendix.

Proposition 3.1. For each x ∈D[0,∞), there exists a unique solution
ϕa
B(x) to (3.1). Moreover, the function ϕa

B :D[0,∞) 7→D[0,∞) is Lipschitz
continuous in the topology of uniform convergence over bounded intervals
and measurable with respect to the Borel σ-field generated by the Skorohod
J1 topology.

4. Fluid limit results. In this section, we obtain a nonlinear convolution
equation as the fluid limit for the queue length process of the G/GI /N
queue in the Halin–Whitt regime. The limit which we obtain may be seen to
be decomposed into four separate parts, one of which is the corresponding
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fluid limit for a G/GI /∞ queue with the same sequence of arrival processes
as our G/GI /N queue and also with the same service time distribution.
Although in many cases our fluid limit may not be directly solved for, we
also present a special case in which it can which also highlights the rather
unconventional behavior which our fluid limits may display.

Our underlying premise is that we are considering a sequence of G/GI /N
queues which we index by the number of servers N . In general, we will use
a superscript N to denote all processes and quantities associated with N th
system.

Initially, at time 0−, there are QN
0 customers in the N th system. The

residual service time distribution of those customers in service in the N th
system at time 0− are i.i.d. with common distribution F0. We denote by
{η̃i, i≥ 1} the i.i.d. sequence of residual service times.

Customers arrive to the N th system according to the arrival process AN =
{AN (t), t≥ 0}. We denote by

τNi = inf{t≥ 0 :AN (t)≥ i}, i≥ 1,

the time of the arrival of the ith customer after time 0− to the N th system.
The ith customer to enter service after time 0− in theN th system is assigned
the service ηi, where {ηi, i≥ 1} is an i.i.d. sequence of random variables with
common distribution F . Finally, we denote by G= 1−F the tail distribution
of F . Note that neither the sequence of residual service times or actual
service times is changing with N .

For the remainder of this section, we study the fluid scaled queue length
process Q̄N = {N−1QN (t), t ≥ 0}. Our high level approach will be similar
in spirit to fluid limit proofs for the queue length process in conventional
heavy-traffic in which the number of servers remains fixed but the service
rate is increased. In particular, we first provide a representation of the queue
length process in terms of the regulator mapping ϕa

F provided by Proposition
3.1 and an associated free process, say X̄ . We then provide several weak
convergence results related to X̄ which may be used in conjunction with
the Continuous Mapping theorem and the representation in terms of ϕa

F in
order to establish the main result of the section, Theorem 4.1, which details
the asymptotic behavior of the fluid scaled queue length process.

Let QN = {QN (t), t≥ 0} be the queue length process in the N th system
and recall that by equation (2.8) of Section 2, we have that

QN (t) = IN (t) +WN
0 (t) +MN

2 (t) +AN
G (t)

(4.1)

+

∫ t

0
(QN (t− s)−N)+ dF (s).

If we now define the fluid scaled quantities,

Q̄N (t) =
QN (t)

N
,(4.2)
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ĪN (t) =
IN (t)

N
,

W̄N
0 (t) =

WN
0 (t)

N
,

M̄N
2 (t) =

MN
2 (t)

N
(4.3)

and

ĀN
G (t) =

AN
G (t)

N
,(4.4)

it then follows from (4.1) that

Q̄N (t) = ĪN (t) + W̄N
0 (t) + M̄N

2 (t) + ĀN
G (t)

(4.5)

+

∫ t

0
(Q̄N (t− s)− 1)+ dF (s).

Furthermore, since by Proposition 3.1, the mapping ϕa
F is uniquely defined

with a=−1, setting

Q̄N = {Q̄N (t), t≥ 0},
ĪN = {ĪN (t), t≥ 0},
W̄N

0 = {W̄N
0 (t), t≥ 0},

M̄N
2 = {M̄N

2 (t), t≥ 0}
and

ĀN
G (t) = {ĀN

G (t), t≥ 0},
we have from (4.5) that

Q̄N = ϕa
F (Ī

N + W̄N
0 + M̄N

2 + ĀN
G ),(4.6)

with a=−1. The representation (4.6) above will turn out to be useful when
proving the main result of this section.

We now state several preliminary results in preparation for the statement
of the main result of the section, Theorem 4.1. Our first result shows that
W̄N

0 converges to zero as N goes to ∞.

Proposition 4.1. W̄N
0 ⇒ 0 as N →∞.

Proof. First, note that

W̄N
0 (t) =N−1

N min(N−1QN

0 ,1)
∑

i=1

(1{η̃i > t} − F̄0(t)).



12 J. REED

Thus, for each T > 0 and δ > 0, we have

P

(

sup
0≤t≤T

∣

∣

∣

∣

∣

N−1
N min(N−1QN

0 ,1)
∑

i=1

(1{η̃i > t} − F̄0(t))

∣

∣

∣

∣

∣

> δ

)

≤ P

(

sup
0≤x≤1

sup
0≤t≤T

∣

∣

∣

∣

∣

N−1
⌊xN⌋
∑

i=1

(1{η̃i > t} − F̄0(t))

∣

∣

∣

∣

∣

> δ

)

.

However, by Lemma 3.1 in [14],

P

(

sup
0≤x≤1

sup
0≤t≤T

∣

∣

∣

∣

∣

N−1
⌊xN⌋
∑

i=1

(1{η̃i > t} − F̄0(t))

∣

∣

∣

∣

∣

> δ

)

→ 0 as N →∞,

which completes the proof. �

We next show that M̄N
2 converges in distribution to zero. The full proof

of this result may be found in the Appendix.

Proposition 4.2. M̄N
2 ⇒ 0 as N →∞.

Proof. See the Appendix. �

The following is now the main result of this section. It provides a de-
terministic first-order approximation to the queue length process. Later, in
Section 5, we use this result to center the queue length process and obtain
a second-order approximation.

Let

Q̄N
0 =

QN
0

N
be the fluid scaled initial number of customer in the system at time 0− and

ĀN (t) =
AN (t)

N

be the fluid scaled number of arrivals by time t ≥ 0. We also set ĀN =
{ĀN (t), t≥ 0} to be the fluid scaled arrival process. We then have the fol-
lowing.

Theorem 4.1. If (Q̄N
0 , Ā

N ) ⇒ (Q̄0, Ā) in (R × D[0,∞), | · | × dJ1) as
N →∞, where Ā is a stochastic process with P-a.s. continuous sample paths,
then Q̄N ⇒ Q̄ as N →∞, where Q̄ is the unique strong solution to

Q̄(t) = min(Q̄0,1)F̄0(t) + (Q̄0 − 1)+G(t)
(4.7)

+

∫ t

0
G(t− s)dĀ(s) +

∫ t

0
(Q̄(t− s)− 1)+ dF (s)

for t≥ 0.
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Proof. First, note that by the definition of ĀN
G in (4.4) and the assump-

tion of the theorem that ĀN ⇒ Ā as N →∞, where Ā has P-a.s. continuous
sample paths, it follows as in the proof of Theorem 3 of [14] that

ĀN
G =

∫ ·

0
G(· − s)dĀN (s)

(4.8)

⇒
∫ ·

0
G(· − s)dĀ(s)

as N →∞. Next, setting

M̄N
3 = W̄N

0 + M̄N
2 + ĀN

G ,

it follows by Propositions 4.1 and 4.2 and (4.8) that

M̄N
3 ⇒

∫ ·

0
G(· − s)dĀ(s) as N →∞.

Since, by assumption, (Q̄N
0 , Ā

N ) ⇒ (Q̄0, Ā) in (R × D[0,∞), | · | × dJ1) as
N →∞, it now follows by Theorem 11.4.5 in [20] that

(M̄N
3 , Q̄

N
0 )⇒

(
∫ ·

0
G(· − s)dĀ(s), Q̄0

)

in (R×D[0,∞), | · | × dJ1)

as N →∞. By Theorem 11.4.1 in [20], the space R×D is separable under
the product topology induced by the maximum metric | · | × dJ1 and thus,
by the Skorohod representation theorem [20], there exists some alternate

probability space, (Ω̂, F̂ , P̂ ), on which are defined a sequence of processes

{(M̂N
3 , Q̂

N
0 ),N ≥ 1}(4.9)

such that

(M̂N
3 , Q̂

N
0 )

d
= (M̄N

3 , Q̄
N
0 ) for N ≥ 1,(4.10)

and also processes
(
∫ ·

0
G(· − s)dĀ(s), Q̂0

)

d
=

(
∫ ·

0
G(· − s)dĀ(s), Q̄0

)

,(4.11)

where

(M̂N
3 , Q̂

N
0 )→

(
∫ ·

0
G(· − s)dĀ(s), Q̂0

)

(4.12)
in (R×D, | · | × dJ1) P̂-a.s.

as N →∞. Furthermore, as the process
∫ ·
0G(· − s)dĀ(s) on the right-hand

side of (4.12) is, by the assumption of the continuity on Ā, continuous, it fol-
lows that the convergence in (4.12) can also be strengthened to convergence
in (R×D, | · | × u).
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Now set

ÎN =min(Q̂N
0 ,1)F̄0 + (Q̂N

0 − 1)+G

and note that by (4.10), we have

(M̂N
3 , Î

N )
d
= (M̄N

3 , Ī
N ) for N ≥ 1.(4.13)

Furthermore, letting

Î =min(Q̂0,1)F̄0 + (Q̂0 − 1)+G,

we have for each T ≥ 0, by (4.12),

sup
0≤t≤T

|ÎN (t)− Î(t)| = sup
0≤t≤T

|(min(Q̂N
0 ,1)−min(Q̂0,1))F̄0(t)

(4.14)
+ ((Q̂N

0 − 1)+ − (Q̂0 − 1)+)G(t)|
≤ |Q̂N

0 − Q̂0| sup
0≤t≤T

(F̄0(t) +G(t))

≤ 2|Q̂N
0 − Q̂0|

→ 0 P̂-a.s. as N →∞.(4.15)

Now let

Q̂N = ϕa
F (Î

N + M̂N
3 ),

where a= −1, and note that by the representation (4.6), (4.9), (4.13) and
the measurability of ϕa

F from Proposition 3.1, it follows that

Q̂N d
= Q̃N for N ≥ 1.(4.16)

Furthermore, it follows from (4.12), (4.14) and the continuity of ϕa
F with re-

spect to the topology of uniform convergence over compact sets from Propo-
sition 3.1, that

Q̂N = ϕa
F (Î

N + M̂N
3 )

→ ϕa
F

(

min(Q̂0,1)F̄0 + (Q̂0 − 1)+G+

∫ ·

0
G(· − s)dĀ(s)

)

in (D[0,∞), u) P̂-a.s. as N → ∞. Thus, since convergence in (D,u) im-
plies convergence in (D,dJ1) and almost sure convergence implies conver-
gence in distribution, it follows by the measurability of ψa

F : (D[0,∞),D) 7→
(D[0,∞),D) from Proposition 3.1 and (4.16) that

Q̃N ⇒ ϕa
F

(

min(Q̄0,1)F̄0 + (Q̄0 − 1)+G+

∫ ·

0
G(· − s)dĀ(s)

)

as N →∞,

which completes the proof. �
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Note that the fluid limit Q̄ given by (4.7) of Theorem 4.1 may be decom-
posed into four separate parts. The first two terms on the right-hand side
of (4.7) are representative of the fluid scaled number of customers in the
queue at time 0−. Specifically, min(Q̄0,1)F̄0(t) is the limiting fluid scaled
number of customers who were in the service at time 0− and still remain in
the system at time t and (Q̄0− 1)+G(t) is representative of those customers
who were waiting in the queue to be served at time 0−. Next, the term
∫ t
0 G(t− s)dĀ(s) may be viewed as the limiting fluid scaled number of cus-
tomers in the system at time t in an G/GI /∞ queue with the same sequence
of arrival processes and service time distribution as in our G/GI /N queue
and which starts out empty at time 0−. Finally, the integral term on the
right-hand side of (4.7) may be thought of as an adjustment to the infinite
server term immediately preceding it which takes into account the waiting
times of customers.

In general, the limiting process of Theorem 5.1, Q̄, cannot be directly
solved for. This is mainly due to the presence of the nonlinear ()+ operator in
the integral term. However, under certain special circumstances it can. The
following example now presents one such case in which an explicit solution
may be found.

Example 1. Consider the case of deterministic service times in which
we have Q̄0 = 1 and Ā= e. Further, we also assume that the residual service
times are constant with mean equal to 1 so that F0(x) = F (x) = 1{x ≥
1}, x≥ 0. In this case, (4.7) takes the rather simple form

Q̄(t) = 1+ t, 0≤ t < 1,(4.17)

and

Q̄(t) = 1+ (Q̄(t)− 1)+, t≥ 1.(4.18)

Solving this recursion, one finds that

Q̄(t) = 1+ t− ⌊t⌋, t≥ 0.(4.19)

Thus, Q̄ exhibits the sawtooth pattern as shown in Figure 1 above. Note the
rather unconventional nature of the fluid limit in Figure 1. In particular, it
is periodic with a period of 1 and it is also discontinuous. Thus, our limit
process may in general display rather irregular behavior. However, as is
shown in Section 5 below, if one starts out the queue length process under
general “equilibrium” conditions, then much more regular behavior of the
fluid limit may be obtained.
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Fig. 1. The graph of {Q̄(t), t≥ 0} for Q̄0 = 1, Ā= e and F0(t) = F (t) = 1{t≥ 1}.

5. Diffusion limit results. In this section, we obtain limiting results for
the G/GI /N queue in the Halfin–Whitt regime. Our main result of the
section is to provide a limiting approximation for the diffusion scaled queue
length process in this regime. This limiting approximation may be viewed
as the solution to a stochastic nonlinear convolution equation. In order to
proceed, we first express the queue length process for the G/GI /N queue via
the regulator map ϕa

F defined in Section 3. We then provide several useful
propositions in preparation for the statement of our main result, Theorem
5.1, which provides a limiting approximation for the diffusion scaled queue
length process. In Corollary 5.2, we provide an alternative representation
of the limiting process obtained in Theorem 5.1. This representation has
several desirable properties and we conclude the section by showing how in
the case of exponentially distributed service times and renewal arrivals it
reduces to the diffusion obtained by Halfin and Whitt [7].

5.1. The Halfin–Whitt regime heavy-traffic regime. In order to proceed,
we must first provide a detailed description of the Halfin–Whitt regime.
Our setup is similar to Section 4 where we obtained our fluid limit results.
Again, we consider a sequence of G/GI /N queues indexed by the number
of servers N . Initially, at time 0−, there are QN

0 customers in the system
and the first min(QN

0 ,N) of these customers have i.i.d. residual service times
with common distribution F0. We denote by η̃i, the residual service time of
the ith customer in service at time 0−.

Customers arrive to the N th system according to the arrival process AN =
{AN (t), t≥ 0} and we denote by

τNi = inf{t≥ 0 :AN (t)≥ i}, i≥ 1,

the time of the arrival of the ith customer after time 0− to the N th system.
We also assume that there exists a sequence of constants {ρN ,N ≥ 1} such
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that ρn → 1 as N →∞, and, where, setting

ÃN (t) =
AN (t)−NρN t√

N
, t≥ 0,(5.1)

and ÃN = {ÃN (t), t≥ 0}, we have that

ÃN ⇒ ξ̃ as N →∞,(5.2)

where ξ̃ is a stochastic process with P-a.s. continuous sample paths. Loosely
speaking, one may interpret ρN as the arrival rate of customers to the N th
system.

Note that assumption (5.2) is flexible from a modeling point of view. In
heavy traffic theory, one often assumes that AN (e) =A(Ne), where A is a
renewal process, in which case, by Donsker’s theorem, the process ξ̃ in (5.2)
turns out to be a Brownian motion. The interpretation this assumption is
that customers are emanating from a single source, albeit at a rapid rate.
However, in many applications, with telephone call centers being just one
such example, it is perhaps more natural to assume that customers are
emanating from many sources. This then leads to the assumption that AN

is a superposition of many i.i.d. renewal arrival processes, that is, AN =
∑N

i=1Ai. Under such an assumption, the process ξ̃ turns out to be a centered
Gaussian process whose covariance structure is inherited from that of each
of the individual Ai’s. The interested reader is referred to Section 7.2 of [20]
for further details on this remark.

As in Section 4, the service time distribution is held fixed as we index
through N . We therefore denote by ηi the service time of the ith customer
to enter service after time 0−, where {ηi, i≥ 1} is an i.i.d. sequence of mean
1 random variables with common distribution F . We denote by G= 1− F
the tail distribution of F . Note also that we place no additional restrictions
on F beyond a first moment.

It now remains to provide the key relationship characterizing the Halfin–
Whitt regime. As noted above, we have that by (5.1) and (5.2), the quantity
NρN may be loosely interpreted as the arrival rate to the N th system.
Next, since there are N servers in the N th system and it is assumed that
the service rate is fixed at one, it also follows that ρN may also be interpreted
as the traffic intensity of the N th system. The Halfin–Whitt regime is now
achieved by specifying the rate at which the traffic intensity of the system
converges to one as N grows to infinity. Specifically, we assume that

√
N(1− ρN )→ β as N →∞,(5.3)

where −∞< β <∞.
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5.2. Initial conditions. In proving our main diffusion limit result, it will
be useful to assume that the limiting fluid scaled number of customers in
the system is constant for all t≥ 0. Let

Fe(x) =

∫ x

0
G(u)du, x≥ 0,(5.4)

be the equilibrium distribution associated with F . The following result may
now be seen as a corollary to Theorem 5.1 of Section 4.

Corollary 5.1. If F0 = Fe and Q̄N
0 ⇒ 1 as N →∞, then Q̄N ⇒ 1 as

N →∞.

Proof. First note that (5.1), (5.2) and the Halfin–Whitt assumption
(5.3) imply the functional weak large of law large numbers result, ĀN ⇒ e as
N →∞, where e= {t, t≥ 0} is the identity process. Thus, by Theorem 3.9 in
[1] and the assumption Q̄N

0 ⇒ 1 as N →∞, we have that (Q̄N
0 , Ā

N )⇒ (1, e)
in (R×D, | · | × dJ1) as N →∞.

It now follows by Theorem 5.1 in Section 4 that Q̄N ⇒ Q̄ as N → ∞,
where Q̄ is given by the unique solution to

Q̄(t) = min(1,1)F̄e(t) + (1− 1)+G(t) +

∫ t

0
G(t− s)de(s)

+

∫ t

0
(Q̄(t− s)− 1)+ dF (s)

= F̄e(t) +

∫ t

0
G(t− s)ds+

∫ t

0
(Q̄(t− s)− 1)+ dF (s)

= 1+

∫ t

0
(Q̄(t− s)− 1)+ dF (s)

for t≥ 0. By inspection, one sees that Q̄(t) = 1 for t≥ 0 is the unique solution
to this equation, which completes the proof. �

For the remainder of this section, we assume that the simplifying as-
sumptions of the above corollary hold. That is, we assume that the initial
residual service time distribution is equal to the equilibrium distribution Fe

and that Q̄N ⇒ 1 as N →∞. In future papers, we intend to remove these
assumptions.

5.3. Weak convergence results. We now proceed to provide our weak
convergence results. We begin by providing a convenient representation for
the queue length process in terms of the regulator map of Proposition 3.1.
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Recall that by equation (2.8) of Section 2, we have that the queue length at
time t may be written as

QN (t) = IN (t) +WN
0 (t) +MN

2 (t) +AN
G (t)

(5.5)

+

∫ t

0
(QN (t− s)−N)+ dF (s).

We would next like to the center the queue length process by its fluid
limit, appropriately scaled. By Corollary 5.1 above, we have that the limiting
fluid number of customers in the system, Q̄, is equal to 1 for all t≥ 0. We
therefore choose to center the queue length process in the N th system by
N . Performing such a centering as well as some algebraic manipulations and
recalling the definition of Fe from (5.4), one then obtains that

QN (t)−N =MN
Q (t) +HN (t) +WN

0 (t) +MN
2 (t) +MN

1 (t)
(5.6)

−N(1− ρN )Fe(t) +

∫ t

0
(QN (t− s)−N)+ dF (s),

where

MN
Q (t) = (QN

0 −N)+(G(t)− F̄e(t)),

HN (t) = (QN
0 −N)F̄e(t)

and

MN
1 (t) =

∫ t

0
G(t− s)d(AN (s)−NρNs).(5.7)

Let MN
Q = {MN

Q (t), t≥ 0},HN = {HN (t), t≥ 0} and MN
1 = {MN

1 (t), t≥ 0}.
If we now define the diffusion scaled quantities,

Q̃N (t) =
QN (t)−N√

N
,

M̃N
Q (t) =

MN
Q (t)√
N

,(5.8)

H̃N (t) =
HN (t)√

N
,

W̃N
0 (t) =

WN
0 (t)√
N

,

M̃N
1 (t) =

MN
2 (t)√
N

and

M̃N
2 (t) =

MN
1 (t)√
N

,(5.9)
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it then follows, dividing (5.6) by
√
N , that

Q̃N (t) = M̃N
Q (t) + Q̃N

I (t)−
√
N(1− ρN )Fe(t)

(5.10)

+

∫ t

0
Q̃N,+(t− s)dF (s),

where

Q̃N
I (t) = H̃N (t) + W̃N

0 (t) + M̃N
1 (t) + M̃N

2 (t).

Letting

Q̃N = {Q̃N (t), t≥ 0},
M̃N

Q = {M̃N
Q (t), t≥ 0},

H̃N = {H̃N (t), t≥ 0},
W̃N

0 = {W̃N
0 (t), t≥ 0},

M̃N
2 = {M̃N

2 (t), t≥ 0},
M̃N

1 = {M̃N
1 (t), t≥ 0}

and

Q̃N
I = H̃N + W̃N

0 + M̃N
1 + M̃N

2 ,

we then have, since the mapping ϕa
F with a= 0 is by Proposition 3.1 uniquely

defined, that (5.10) may also be written as

Q̃N = ϕa
F (M̃

N
Q + Q̃N

I −
√
N(1− ρN )Fe),(5.11)

with a= 0.
The representation (5.11) will be useful in the proof our main result. How-

ever, before stating this result, we first provide several preliminary proposi-
tions and lemmas which are interesting in their own right and will be crucial
in the proof of our main result.

The proof of the following result may now be found in the Appendix.
It provides a limiting process which represents the randomness of the ser-
vice times in the limit. For further details on the limit process below, the
interested reader may consult [14].

Proposition 5.1. Let

M̂N
2 (t) =N−1/2

Nt
∑

i=1

(1{N−1i+ ηi ≥ t}−G(t−N−1i)), t≥ 0,

and set M̂N
2 = {M̂N

2 (t), t≥ 0}. Then,
(M̃N

2 , M̂
N
2 )⇒ (M̃2, M̃2) in (D2[0,∞), d2J1) as N →∞,
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where M̃2 is a centered Gaussian process with covariance structure

E[M̃2(t)M̃2(t+ δ)] =

∫ t

0
G(t+ δ− u)F (t− u)du for t, δ ≥ 0.

Proof. See the Appendix. �

We next prove a joint convergence result on the diffusion scaled processes
defined at the beginning of this section. Let

Q̃N
0 =

QN
0 −N√
N

(5.12)

be the diffusion scaled number of customers in the system at time 0−.
Next, let W̃0 = {W̃0(t), t≥ 0} be a Brownian bridge. In other words, W̃0

is the unique continuous, centered Gaussian process on [0,1] with covariance
function

E[W̃0(s)W̃0(t)] = (s ∧ t)− st, 0≤ s≤ t≤ 1.

Moreover, set W̃0(Fe) = {W̃0(Fe(t)), t≥ 0}, where Fe is the equilibrium dis-
tribution associated with F as defined in (5.4). One may view W̃0(Fe) as a
time changed Brownian bridge.

We then have the following result.

Proposition 5.2. If Q̃N
0 ⇒ Q̃0 as N →∞, then

(Q̃N
0 , W̃

N
0 , Ã

N , M̃N
2 )⇒ (Q̃0, W̃0(Fe), ξ̃, M̃2) in (R×D3[0,∞), | · | × d3J1)

as N →∞, where each of the limiting processes appearing on the right-hand
side above are independent of one another.

Proof. We first show convergence of the marginals. The convergence
of Q̃N

0 to Q̃0 is clear by assumption (5.12).
Let

ŴN (t) =N−1/2
N
∑

i=1

(1{η̃i > t} − F̄e(t))

and set ŴN = {ŴN (t), t≥ 0}. The convergence

(ŴN
0 , W̃

N
0 )⇒ (W̃0(Fe), W̃0(Fe)) in (D2[0,∞), d2J1) as N →∞,(5.13)

follows by the representation

W̃N (t) =N−1/2
N min(N−1QN

0 ,1)
∑

i=1

(1{η̃i > t} − F̄e(t)),
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the Random Time Change theorem [1] and Lemma 3.1 of [14], since, by the
Continuous Mapping theorem and assumption (5.12),

min(N−1QN
0 ,1)⇒ 1 as N →∞.

The convergence of ÃN to ξ̃ follows by assumption (5.2) and the convergence
of M̃N

2 to M̃2 is immediate by Proposition 5.1.
It remains to show the joint convergence as stated in the proposition. The

convergence

(Q̃N
0 , Ŵ

N
0 , Ã

N , M̂N
2 )⇒ (Q̃0, W̃0(Fe), ξ̃, M̃2) in (R×D3[0,∞), | · | × d3J1)

as N →∞, follows by Theorem 11.4.4 in [20] since each of the component
processes appearing in the prelimit above are independent of one another
and further, they converge to their desired limits as shown in the previous
paragraph. Next, note that

(| · | × d3J1)((Q̃
N
0 , W̃

N
0 , Ă

N , M̃N
2 ), (Q̃N

0 , Ŵ
N
0 , Ă

N , M̂N
2 ))

≤ dJ1(W̃
N
0 , Ŵ

N
0 ) + dJ1(M̃

N
2 , M̂

N
2 )

and thus, if we can show that

dJ1(W̃
N
0 , Ŵ

N
0 ) + dJ1(M̃

N
2 , M̂

N
2 )⇒ 0 as N →∞,(5.14)

then by Theorem 11.4.7 in [20] the proof will be complete. However, (5.14)
follows by (5.13), Proposition 5.1 and Theorem 11.4.8 in [20]. The proof is
now complete. �

We are now ready to state the main result of this section. Assume first
that Q̃N

0 ⇒ Q̃0 as N →∞ and let

H̃ = Q̃0F̄e and M̃Q = Q̃+
0 (G− F̄e).(5.15)

Next, set

M̃1(t) =

∫ t

0
G(t− s)dξ̃(s), t≥ 0,(5.16)

and M̃1 = {M̃1(t), t ≥ 0}, where the process ξ̃ appearing in (5.16) is the
limiting process appearing in (5.2) at the beginning of this section. Note
also that the integral above may be interpreted as the result of integration
by parts.

Next, let βFe be the process {βFe(t), t≥ 0}, where we recall the definition
of Fe from (5.4) above.

Finally, let

Q̃I = H̃ + W̃0(Fe) + M̃1 + M̃2.(5.17)



THE G/GI /N QUEUE IN THE HALFIN–WHITT REGIME 23

Note that by Theorem 3 of [14], Q̃I is the limiting queue length process
associated with a sequence of G/GI /∞ queues with identical arrival pro-
cesses and service time sequence as our original sequence of G/GI /N queues
and with QN

0 customers in service at time zero with residual service time
distribution Fe.

The following is now our second main result.

Theorem 5.1. If the residual service time distribution F0 = Fe and
Q̃N

0 ⇒ Q̃0 as N →∞, then Q̃N ⇒ ϕ0
F (M̃Q + Q̃I − βFe) as N →∞.

Proof. Let f :R×D3 7→R×D3 be the map defined for (x1, x2, x3, x4) ∈
R×D3 by

f((x1, x2, x3, x4)) = (f1(x1), f2(x2), f3(x3), f4(x4)),(5.18)

where f1(x1) = x1, f2(x2) = x2, f4(x4) = x4 and

f3(x3)(·) =
∫ ·

0
G(· − s)dx3(s),(5.19)

where the above integral above may be interpreted as the result of integra-
tion by parts.

Next, note that since by assumption F0 = Fe and Q̃N
0 ⇒ Q̃0 as N →∞,

it follows by Proposition 5.2 that

(Q̃N
0 , W̃

N
0 , Ã

N , M̃N
2 )⇒ (Q̃0, W̃0(Fe), ξ̃, M̃2)(5.20)

in (R×D3[0,∞), | · | × d3J1) as N →∞, where each of the limiting processes
above are independent of one another. Furthermore, we have that each of the
limiting processes above are P-a.s. continuous. Thus, since by Lemma A.9
of the Appendix, f : (R × D3[0,∞), | · | × d3J1) 7→ (R ×D3[0,∞), | · | × d3J1)

is continuous at continuous limit points (x1, x2, x3, x4) ∈R×D3[0,∞) such
that x2, x3, x4 ∈C[0,∞), we have that

P ((Q̃0, W̃0(Fe), ξ̃, M̃2) ∈Disc(f)) = 0.(5.21)

Now note by (5.1), (5.7), (5.9) and the definition of f in (5.18) and (5.19),
we have the representation

(Q̃N
0 , W̃

N
0 , M̃

N
1 , M̃

N
2 ) = f((Q̃N

0 , W̃
N
0 , Ã

N , M̃N
2 )).

It therefore follows by (5.20), the measurability of f : (R×D3[0,∞),B(R)×
D3) 7→ (R×D3[0,∞),B(R)×D3) by Lemma A.9 in the Appendix, (5.21),
the Continuous Mapping theorem [1] and the definition M̃1 in (5.16) that

(Q̃N
0 , W̃

N
0 , M̃

N
1 , M̃

N
2 )⇒ (Q̃0, W̃0(Fe), M̃1, M̃2)

in (R×D3[0,∞),B(R)×D3) as N →∞, where each of the limiting processes
appearing on the right-hand side above are independent of one another.
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Next, since (R,R) and (D,D) are both separable spaces, it follows by
Theorem 11.4.1 in [20] that R×D3 is separable under the product topology
induced by the maximum metric | · | × d3J1 . Thus, by the Skorohod represen-

tation theorem [20], there exists some alternate probability space, (Ω̂, F̂ , P̂ ),
on which are defined a sequence of processes

{(Q̂N
0 , Ŵ

N
0 , M̂

N
1 , M̂

N
2 ),N ≥ 1},

where

(Q̂N
0 , Ŵ

N
0 , M̂

N
1 , M̂

N
2 )

d
= (Q̃N

0 , W̃
N
0 , M̃

N
1 , M̃

N
2 ), N ≥ 1,(5.22)

and also processes

(Q̂0, Ŵ0(Fe), M̂1, M̂2)
d
= (Q̃0, W̃0(Fe), M̃1, M̃2),(5.23)

such that

(Q̂N
0 , Ŵ

N
0 , M̂

N
1 , M̂

N
2 )→ (Q̂0, Ŵ0(Fe), M̂1, M̂2)(5.24)

in (R×D3[0,∞), | · |× d3J1) P̂-a.s. as N →∞. Furthermore, since each of the
processes appearing on the right-hand side of (5.24) is continuous, we may
assume that above convergence also occurs in (R×D3[0,∞), | · | × u3).

Now, set

M̂N
Q = Q̂N,+

0 (G− F̄e)

and

M̂Q = Q̂+
0 (G− F̄e).

It is then clear that

sup
0≤t≤T

|M̂N
Q (t)− M̂Q(t)| ≤ |Q̂N

0 − Q̂0| sup
0≤t≤T

|G(t)− F̄e(t)|

≤ 2|Q̂N
0 − Q̂0|,

and so it follows by (5.24) that

M̂N
Q → M̂Q in (D[0,∞), u) P̂-a.s. as N →∞.(5.25)

Next, letting

ĤN = Q̂N
0 F̄e,

a similar augment shows that

ĤN → Ĥ in (D[0,∞), u) P̂-a.s. as N →∞,(5.26)

where

Ĥ = Q̂0F̄e.
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Finally, it is clear by the Halfin–Whitt condition (5.3) and the boundedness
of Fe, that

√
N(1− ρN )Fe → βFe in (D[0,∞), u) P̂-a.s.(5.27)

as N →∞.
Thus, letting

Q̂N
I = ĤN + ŴN

0 + M̂N
1 + M̂N

2 ,

we have by (5.24)–(5.27) that

M̂N
Q + Q̂N

I −
√
N(1− ρN )Fe → M̂Q + Q̂I − βFe(5.28)

in (D[0,∞), u) P̂-a.s. as N →∞, where

Q̂I = Ĥ + Ŵ (Fe) + M̂1 + M̂2.

Furthermore, it follows by (5.23) that

M̂N
Q + Q̂N

I −
√
N(1− ρN )Fe

d
= M̃N

Q + Q̃N
I −

√
N(1− ρN )Fe(5.29)

for N ≥ 1.
Now set

Q̂N = ϕ0
F (M̂

N
Q + Q̂N

I −
√
N(1− ρN )Fe).(5.30)

Since by Proposition 3.1, the map ϕ0
F : (D[0,∞),D) 7→ (D[0,∞),D) is mea-

surable, it follows by (5.11), (5.29) and (5.30) that

Q̂N d
= Q̃N , N ≥ 1.(5.31)

Furthermore, by the continuity portion of Proposition 3.1 and (5.28),

Q̂N = ϕ0
F (M̂

N
Q + Q̂N

I −
√
N(1− ρN )Fe)→ ϕ0

F (M̂Q + Q̂I − βFe)(5.32)

in (D[0,∞), u) P̂-a.s. as N → ∞. Since convergence in (D[0,∞), u) im-
plies convergence in (D[0,∞), dJ1) and almost sure convergence implies
convergence in distribution, it now follows by (5.31), the measurability of
ϕ0
F : (D[0,∞),D) 7→ (D[0,∞),D) from Proposition 3.1 and (5.32) that Q̃N ⇒
ϕ0
F (M̃Q + Q̃I − βFe) as N →∞, which completes the proof. �

Note that the diffusion limit for the queue length process given by Theo-
rem 5.1 may be written out in expanded form as the solution to the stochastic
convolution equation

Q̃F (t) = M̃Q(t) + Q̃I(t)− βFe(t) +

∫ t

0
Q̃+

F (t− s)dF (s), t≥ 0.(5.33)
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In this representation, we see that Q̃F may be decomposed into four separate
parts. The second term on the right-hand side of (5.33), Q̃I , defined by
(5.17) above, is the diffusion limit for the G/GI /∞ queue with the same
number of initial customers as in our G/GI /N queue and with the same
sequence of arrival processes and identical service time distribution as in
our G/GI /N queue. It is the primary stochastic component which drives the
convolution equation above. The third term on the right-hand side above,
βFe(t), arises out of the Halfin–Whitt condition (5.3). The first term on
the right-hand side above, M̃Q, takes into account the discrepancy between
the G/GI /N and G/GI /∞ queue in the initial number of customers in the
system at time 0− who remain in the system at time t. Finally, similar to
as in the fluid limit of Section 4, the integral term on the right-hand side of
(5.33) represents an adjustment term to the infinite server queue limit, Q̃I

which takes into account the waiting times of the customers in the G/GI /N
queue. Note also that the adjustment integral term is positive as one would
expect since the number of customers in the G/GI /N queue will always be
stochastically larger than in a corresponding G/GI /∞ queue. Furthermore,
only the positive portion of the queue length process, Q̃+

F , appears in the
limit since it is only when there are more customers than servers in the
system that the finite server approximation to the infinite server queue will
be off.

5.4. The virtual waiting time process. In this subsection, we study the
diffusion scaled virtual waiting time process and the diffusion scaled cus-
tomer waiting time process for the G/GI /N queue in the Haflin–Whitt
regime. For each t ≥ 0, let V N (t) denote the hypothetical amount of time
that a customer arriving to the N th system at time t would have to wait
before being served and, for i≥ 1, let V N

i denote the waiting time of the ith
customer to arrive the system after time 0−. Note that denoting by DN (t)
the number of departures from the N th system by time t≥ 0, we have that

V N (t) + t= inf{s≥ 0 :DN (s)≥AN (t) +QN
0 }

for t≥ 0 and V N
i = V N (τNi −). In this subsection, we obtain asymptotic re-

sults for the diffusion scaled virtual waiting time process Ṽ N (t) = {N1/2V N (t),
t ≥ 0} and the also for the diffusion scaled customer waiting time process
˜̂
V N (t) = {N1/2V N

⌊Nt⌋, t≥ 0}. Our main approach will be to leverage off of the

results of Section 5.3 on the diffusion scaled queue length process.
The main result of this subsection is the following theorem which provides

a weak limit for the sequences of diffusion scaled virtual waiting time and
customer waiting time processes in the Halfin–Whitt regime. Note that as a
byproduct, this limit implies that waiting times in the Halfin–Whitt regime
are of order N−1/2 and thus decrease as the number of servers become large.
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Furthermore, we also note that as expounded upon further below, the limit
we obtain is similar in form to that informally obtained by Mandelbaum
and Momčilović in [16] for the diffusion scaled virtual waiting time process.
We then have the following.

Proposition 5.3. If AN (0) = 0 P-a.s. for each N ≥ 1, and the residual
service time distribution F0 = Fe and Q̃N

0 ⇒ Q̃0 as N →∞, then Ṽ N ⇒ Ṽ

as N →∞ and
˜̂
V N ⇒ Ṽ as N →∞, where Ṽ is given by the unique solution

to the integral equation

Ṽ (t) =

(

M̃Q(t) + Q̃I(t)− βFe(t) +

∫ t

0
Ṽ (t− s)dF (s)

)+

, t≥ 0.(5.34)

In [16], in the case of renewal arrivals, the diffusion scaled limiting station-
ary virtual waiting time process was conjectured to be expressed in terms
of the supremum over an infinite weighted full K-ary tree

Ṽ∞(t) = sup
T⊂F [t]

(WT )
+, t ∈R.(5.35)

Furthermore, it was shown in Lemma 10 of [16] that the process Ṽ∞ =
{Ṽ∞(t), t≥ 0} defined by (5.35) satisfies the stochastic integral equation

Ṽ∞(t) =

(

X̃(t)− β +

∫ ∞

0
Ṽ (t− u)dF (u)

)+

, t ∈R,(5.36)

where X̃ = {X̃(t), t≥ 0} is a stationary Gaussian process whose covariance
function may be explicitly calculated.

We now show informally by taking the limit as t approaches ∞ on both
sides of (5.34) that (5.36) may actually be viewed as the stationary version
of the limiting diffusion scaled virtual waiting time process. First, note that

by the definition of M̃Q in (5.15), we have that M̃Q(t)→ 0 P-a.s. as t→∞.
Next, since Fe is a distribution function, it follows that βFe(t)→ β P-a.s. as
t→∞. Thus, for t large, we have from (5.34) that

Ṽ (t+ s)≈
(

Q̃I(t+ s)− β +

∫ t+s

0
Ṽ (t+ s− u)dF (u)

)+

(5.37)

for s≥ 0, where the ≈ sign is meant to mean approximately equal. One may
next check that for t large the process {Q̃I(t+ s), s ≥ 0} is approximately
equal in law to that of X̃ in (5.37). Finally, for t large, the integral on the
right-hand side of (5.37) may be taken to be an interval over the entire
nonnegative portion of the real line. Thus, setting Ṽt = {Ṽ (t+ s), s≥ 0}, we
obtain from (5.37) and the preceding discussion that

Ṽt(s)≈
(

X̃(s)− β +

∫ ∞

0
Ṽt(s− u)dF (u)

)+

, s≥ 0,(5.38)
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which is the similar to (5.38). As t approaches ∞, the approximation in
(5.38) becomes more precise and indeed a completely rigorous argument of
the discussion above may be given but we omit the details here.

In order to prove Proposition 5.3, we must first provide an intermediary
result for the diffusion scaled number of customers waiting to be served.
Note that since the system is operating under a nonidling policy, the total
number of customers waiting to be served at time t is given by the quantity
(QN (t)−N)+. We also define

Q̃N,+(t) =
(QN (t)−N)+

N1/2
, t≥ 0,

to be the diffusion scaled number of customers waiting to be served at time
t and set Q̃N,+ = {N−1/2(QN (t) − N)+, t ≥ 0} to be the diffusion scaled
number of customers waiting to be served process. Note also the relationship
Q̃N,+(t) = (Q̃N (t))+ which will be taken advantage of in the following result.

Proposition 5.4. If the residual service time distribution F0 = Fe and
Q̃N

0 ⇒ Q̃0 as N → ∞, then we have the joint convergence (Q̃N , Q̃N,+) ⇒
(Q̃F , Q̃

+
F ) in (D2[0,∞),D2) as N →∞.

Proof. Define the function f : (D[0,∞), dJ1) 7→ (D2[0,∞), d2J1) by

f(x1) = (x1, x
+
1 ) for x1 ∈ D[0,∞), where x+1 = (max{0, x1(t)}, t ≥ 0). We

now claim that the function f : (D[0,∞), dJ1) 7→ (D2[0,∞), d2J1) is continu-
ous. Assume that xn1 → x1 in dJ1 . We then have that

d2J1(f(x
n
1 ), f(x1)) = d2J1((x

n
1 , x

n,+
1 ), (x1, x

+
1 ))

= max{dJ1(xn1 , x1), dJ1(xn,+1 , x+1 )}
≤ dJ1(x

n
1 , x1)

→ 0 as n→∞,

and thus the claim is proven. The proof now follows by the representa-
tion (Q̃N , Q̃N,+) = f(Q̃N), the Continuous Mapping theorem [20] and The-
orem 5.1 above. �

Using Lemma A.10 in the Appendix, we may now prove the proposition
above.

Proof of Proposition 5.3. By Proposition 5.4, Q̃N,+ ⇒ Q̃+ as N →
∞ and by assumption we have that ÃN ⇒ ξ̃ as N →∞. Furthermore, by
(5.1) and the heavy traffic condition (5.3), ρN → 1 as N → ∞. Thus, by
Lemma A.10 in the Appendix, Ṽ N ⇒ Ṽ = Q̃+ as N → ∞, which by the
representation (5.33), completes the proof. �
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5.5. An alternative representation. The representation of the limiting
diffusion scaled queue length process given by (5.33) provides a convenient
expression for Q̃F in terms of a corresponding infinite server queue limit,
Q̃I . However, it is not evident that the limiting process of (5.33) is equiv-
alent to the diffusion limit of Theorem 2 of Halfin and Whitt [8] for the
specific case of exponentially distributed service times. The following corol-
lary provides an alternative representation of the limit of (5.33) which may
be used to rigorously verify this equivalency. Let M = {M(t), t≥ 0} be the
renewal function associated with the pure renewal process with interarrival
distribution given by the service time distribution F . Recall that for t≥ 0,
M(t) is by definition equal to the expected number of renewals by time t.
Furthermore, by Exercise 3.4 of [19], M is given by the unique solution to
the renewal equation

M(t) = F (t) +

∫ t

0
M(t− u)dF (u) for t≥ 0.(5.39)

Let us also set

ζ̃(t) = M̃Q(t) + Q̃I(t), t≥ 0,(5.40)

and ζ̃ = {ζ̃(t), t≥ 0}. We then have the following result.

Corollary 5.2. The limiting process, Q̃F , of Theorem 5.1 may be
equivalently expressed as the unique strong solution to

Q̃M (t) = ζ̃(t) +

∫ t

0
ζ̃(t− u)dM(u)− βt−

∫ t

0
Q̃−

M (t− u)dM(u)(5.41)

for t≥ 0, where Q̃−
M (t) = min(Q̃M (t),0).

Proof. Let F = {F (t), t≥ 0} be a distribution function and r = {r(t), t≥
0} be an unknown function satisfying the integral equation of renewal type,

r(t) =H(t) +

∫ t

0
r(t)dF (t− u) for t≥ 0(5.42)

for some H = {H(t), t≥ 0}. If H is a locally bounded function, then (5.42)
has a unique locally bounded solution [11], which is given by

r(t) =H(t) +

∫ t

0
H(t− u)dM(u),(5.43)

where M = {M(t), t≥ 0} is the solution to the renewal equation (5.39).
By the definition of ζ̃ in (5.40) and the representation (5.33), the limiting

process of Theorem 5.1 may be written as

Q̃F (t) = ζ̃(t)− βFe(t) +

∫ t

0
Q̃+

F (s)dF (t− s) for t≥ 0.
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Next, since Q̃F = Q̃+
F + Q̃−

F , we have

Q̃+
F (t) = ζ̃(t)− βFe(t)− Q̃F (t)

− −
∫ t

0
Q̃+

F (s)dF (t− s).

Furthermore, it follows that ζ̃−βFe+ Q̃
−
F is almost surely a locally bounded

function since it is almost surely an element of D[0,∞). It therefore follows
from (5.42) and (5.43) that

Q̃+
F (t) = ζ̃(t)− βFe(t)− Q̃−

F (t) +

∫ t

0
ζ̃(t− u)dM(u)

− β

∫ t

0
Fe(t− u)dM(u)−

∫ t

0
Q̃−

F (t− u)dM(u),

or, equivalently,

Q̃F (t) = ζ̃(t) +

∫ t

0
ζ̃(t− u)dM(u)

− β

(

Fe(t) +

∫ t

0
Fe(t− s)dM(s)

)

(5.44)

−
∫ t

0
Q̃−

F (t− u)dM(u).

However, since

Fe(t) +

∫ t

0
Fe(t− s)dM(s) = t, t≥ 0,

if follows by (5.44) that

Q̃F (t) = ζ̃(t) +

∫ t

0
ζ̃(t− u)dM(u)− βt−

∫ t

0
Q̃−

F (t− u)dM(u),(5.45)

which completes the proof. �

Note that Corollary 5.2 also implies the convergence Q̃N ⇒ Q̃M as N →
∞, where Q̃M is the stochastic process given by the unique strong solution
to (5.41). The proof of this result is trivial and essentially proceeds in two
stages. First, one may use Theorem 5.1 to show the weak convergence Q̃N ⇒
Q̃F as N → ∞ and then use Corollary 2 to show the equivalency in law
between Q̃F and Q̃M . In a sequel [18] to this paper, we provide a more direct
proof of the convergence of Q̃N to Q̃M . This follows along more traditional
line of conventional heavy-traffic proofs in where the queue length process is
modeled by a conservation of flow as the difference between the number of
arrivals and the number of departures. The integral term on the right-hand
side of (5.41) then turns out to representative of the idle time processes of
the servers in the system.
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As noted above, in the case of the GI/M/N queue, Corollary 5.2 may
be used to obtain the original diffusion limit result provided by Halfin and
Whitt [6]. This may be seen by first noting that for exponentially distributed
service times, the renewal function M in (5.41) is the renewal function for a
rate 1 Poisson process, which is simply given byM(t) = t. Thus, the limiting
process of Corollary 5.2 may be written as

Q̃M (t) = ζ̃(t) +

∫ t

0
ζ̃(s)ds− βt−

∫ t

0
Q̃−

M (s)ds, t≥ 0.(5.46)

Furthermore, using (5.40), (5.15) and (5.17), extensive covariance calcula-
tions show that

B(t) = ζ̃(t) +

∫ t

0
ζ̃(s)ds, t≥ 0,

is a Brownian motion with infinitesimal variance 1 + σ2, where σ2 is the
variance of the interarrival times. Therefore, the process (5.46) is a diffusion
with infinitesimal drift m(x) = −β for x≥ 0 and m(x) = −x− β for x < 0
and infinitesimal variance 1 + σ2, which is in agreement with Theorem 3 of
Halfin and Whitt [6].

6. Conclusion. In this paper, we have studied the G/GI /N queue in
the Halfin–Whitt regime. In our first main result, we obtained a first-order
approximation to the queue length process. This approximation turned out
to be the solution to a nonlinear convolution equation. Next, after centering
the queue length process by its deterministic fluid limit and scaling by an
appropriate constant, we obtained a second-order stochastic approximation
as well. Our limiting stochastic process is nonlinear, stochastic convolution
equation which is driven by a Gaussian process and includes a drift term
which incorporates a time lag. In the case of exponentially distributed service
times, it can be shown that this process is equivalent to the diffusion process
obtained by Halfin and Whitt [6].

In the sequel to this paper [18], we provide a direct approach to the proof
of Corollary 5.2. This is based off of a conservation of flow equation where
we write the queue length process as the difference between the number of
arrivals and the number of departures. In this case, central limit theorem
type results for sums of i.i.d. renewal process will have to be invoked.

In the future, it would be nice to have a better understanding of the limit-
ing process we have obtained. Ideally, one would like to solve for its limiting
distribution. Unfortunately, this in general appears to be a difficult prob-
lem. Therefore, if analytical solutions cannot be found, efficient numerical
procedures might perhaps be developed. Simulation studies could also be
conducted to test the accuracy of the proposed approximations relative to
their actual values. This would be especially interesting when the system is
close to being in the Halfin–Whitt regime.
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APPENDIX

In the appendix, we provide the proofs of Propositions 3.1, 4.2 and 5.1
and Lemmas A.9 and A.10. We begin with the proof of Proposition 3.1.

Proof of Proposition 3.1. Suppose first that B is concentrated on
the point c > 0. In this case, it is clear that the solution to (3.1) satisfies the
recursion

z(t) = x(t), 0≤ t < c,(A.1)

and

z(t) = x(t) + (z(t− c) + a)+, t≥ c,

in which case it is clearly unique. Furthermore, defining ϕa
B :D[0,∞) 7→

D[0,∞) to be the solution to this recursion, it follows that

‖ϕa
B(x1)−ϕa

B(x2)‖t = ‖x1 − x2‖t
for 0≤ t < c. Now suppose that for some integer k, we have

‖ϕa
B(x1)−ϕa

B(x2)‖t ≤ k‖x1 − x2‖t(A.2)

for (k − 1)c≤ t < kc. It then follows that for k < t≤ (k+ 1)c,

‖ϕa
B(x1)− ϕa

B(x2)‖t ≤ ‖x1 − x2‖t + ‖ϕa
B(x1)− ϕa

B(x2)‖t−c

≤ ‖x1 − x2‖t + k‖x1 − x2‖t
= (k+1)‖x1 − x2‖t.

By induction, this implies that the relationship (A.2) must hold for all t,
which show that ϕa

B is Lipschitz continuous if B is concentrated on a single
point. The proof of measurability of ϕa

B for the case of B concentrated at a
single point will be included below.

Suppose now that there exists a δ > 0 such that B(y + δ) − B(y) < ε
for some 0 < ε < 1 for all y ≥ 0. Such a δ will always exist so long as B
is not concentrated on a single point. We now provide proofs of existence,
uniqueness and Lipschitz continuity for this case.

Existence: We use the method of successive approximations. Let u0 = 0
and recursively define

un+1(t) = x(t) +

∫ t

0
(un(t− s) + a)+ dB(s), t≥ 0,(A.3)

for n≥ 1 and note that

un+1(t)− un(t)
(A.4)

=

∫ t

0
((un(t− s) + a)+ − (un−1(t− s) + a)+)dB(s), t≥ 0.
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We now show by induction that for each integer 1≤ k ≤ ⌈δ−1T ⌉,
‖un+1 − un‖jδ < jjnjεn‖x‖T for j = 1, . . . , k,(A.5)

for n≥ 1. For the base case k = 1, observe by (A.4) that

‖un+1 − un‖δ ≤B(δ)‖un − un−1‖δ < ε‖un − un−1‖δ ,
and so, since

‖u1 − u0‖δ = ‖x1 − 0‖δ ≤ ‖x1‖T ,(A.6)

we have the relationship

‖un+1 − un‖δ < εn‖x‖T ≤ nεn‖x‖T(A.7)

for n≥ 1. We now proceed with the induction step. Assume that (A.5) holds
for some k and we will now show that it holds for (k+1). Note that by (A.4)
and the induction hypothesis (A.5),

‖un+1 − un‖(k+1)δ(A.8)

≤
k
∑

j=1

ε‖un − un−1‖jδ + ε‖un − un−1‖(k+1)δ

≤
k
∑

j=1

εjj(n− 1)jεn−1ε‖x‖T + ε‖un − un−1‖(k+1)δ

≤ kk+1nkεn‖x‖T + ε‖un − un−1‖(k+1)δ.(A.9)

Furthermore, since as in (A.6),

‖u1 − u0‖lδ ≤ ‖x‖T
for all l= 1, . . . , ⌈δ−1T ⌉, it follows by repeated iteration of (A.9) that

‖un+1 − un‖(k+1)δ ≤ kk+1

(

n
∑

i=0

ik
)

εn‖x‖T

≤ kk+1(nk+1 + 1)εn‖x‖T
≤ (k+1)k+1nk+1εn‖x‖T ,

and so the induction hypothesis has been proved.
Thus, since

∞
∑

n=1

‖un+1 − un‖T ≤
∞
∑

n=1

‖un+1 − un‖⌈δ−1T ⌉δ

≤
∞
∑

n=1

⌈δ−1T ⌉⌈δ−1T ⌉n⌈δ
−1T ⌉εn‖x‖T

<∞,
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it follows that {un} is a Cauchy sequence. Furthermore, since the space
D[0,∞) is a Banach space under the supremum metric u, there exists a
limit point u⋆ of {un}. Taking limits on both sides of (A.3), we now see that
u⋆ is a solution to (3.1), which completes the proof of existence for the case
of nondegenerate distributions.

Uniqueness: Suppose that u and v both satisfy (3.1) and let

∆(t) = u(t)− v(t) =

∫ t

0
((u(t− s) + a)+ − (v(t− s) + a)+)dB(s), t≥ 0.

We then have for 0≤ t≤ δ, that

|∆(t)| ≤
∫ t

0
|(u(t− s) + a)+ − (v(t− s) + a)+|dB(s)≤ ε‖∆‖δ ,

which implies that ∆(t) = 0 on [0, δ]. Next, for δ < t≤ 2δ, we have that

|∆(t)| ≤ ε‖∆‖δ + ε‖∆‖2δ = ε‖∆‖2δ ,
which implies that ∆(t) = 0 on [δ,2δ]. Iterating the above argument until
we reach T completes the proof.

Lipschitz continuity: Note that for 0≤ t < δ, we have

‖ϕa
B(x2)−ϕa

B(x1)‖δ ≤ ‖x2 − x1‖δ + ε‖ϕa
B(x2)−ϕa

B(x1)‖δ ,
which implies that

‖ϕa
B(x2)− ϕa

B(x1)‖δ ≤ (1− ε)−1‖x2 − x1‖δ.
Next, for δ < t≤ 2δ, we have

‖ϕa
B(x2)− ϕa

B(x1)‖2δ
≤ ‖x2 − x1‖2δ + ε‖ϕa

B(x2)− ϕa
B(x1)‖δ + ε‖ϕa

B(x2)−ϕa
B(x1)‖2δ

≤ 1

(1− ε)
‖x1 − x2‖2δ + ε‖ϕa

B(x2)−ϕa
B(x1)‖2δ ,

which implies that

‖ϕa
B(x2)− ϕa

B(x1)‖2δ ≤
1

(1− ε)2
‖x1 − x2‖2δ .

Iterating the above argument for k = ⌈δ−1T ⌉ − 2 more time intervals com-
pletes the proof.

Finally, we provide a proof of measurability of ϕa
B for the case of a general

B.
Measurability: We begin by defining the function Ψa

B :D[0,∞)→D : [0,∞)
by

Ψa
B(u)(t) =

∫ t

0
(u(t− s) + a)+ dB(s), t≥ 0.
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We now show that Ψa
B is measurable with respect to the Borel σ-field D

generated by the Skorohod J1 topology. Note that since D is equal to the
Kolmogorov σ-field, which is generated by the finite-dimensional cylinder
sets, it is sufficient to check that for each n≥ 1 and A1,A2, . . . ,An ∈B(R),

{u ∈D[0,∞) : (Ψa
B(u)(t1), . . . ,Ψ

a
B(u)(tn)) ∈ (A1, . . . ,An)} ∈ D

for 0≤ t1 < t2 < · · ·< tn. However, since σ-algebras are closed under finite
intersections, it is sufficient to check that for each t≥ 0,Ψa

B(·)(t) is measur-
able. In order to show this, we first decompose B into its continuous and
discrete parts so that

B(t) =Bc(t) +Bd(t), t≥ 0,

where we write

Bd(t) =
∞
∑

n=1

cnδ(pn)(t)(A.10)

for the discrete part of B. We then show that both Ψa
Bc

and Ψa
Bd

are mea-
surable functions and so, since the sum of two measurable functions from
(D,D) to (D,D) is measurable, and Ψa

B =Ψa
Bc

+Ψa
Bd

, we have the desired
measurability of Ψa

B .
We begin with the proof of measurability for Ψa

Bc
for which it will be

sufficient to show that for each t≥ 0,Ψa
Bc
(·)(t) is continuous when viewed

as a function from (D[0,∞), dJ1) to (R, | · |). Let un → u under the metric
dJ1 . This then implies that un(t)→ u(t) for all but a countable number of
t (see, for instance, page 247 of [1]). Furthermore, the measure defined by
Bc assigns measure 0 to all countable sets. Thus, since for each t≥ 0, the
sequence {sup0≤s≤t |un(s)|, n≥ 1} is bounded, it follows by Theorem 3 of [4]
that

|Ψa
Bc
(un)(t)−Ψa

Bc
(u)(t)|(A.11)

=

∣

∣

∣

∣

∫ t

0
((un(t− s) + a)+ − (u(t− s) + a)+)dB(s)

∣

∣

∣

∣

≤
∫ t

0
|un(t− s)− u(s)|dB(s)

→ 0 as n→∞.(A.12)

This completes the proof of the measurability of Ψa
Bc
.

Now consider Ψa
Bd

. It is clear from (A.10) that

Ψa
Bd

(u)(t) =
∞
∑

k=1

Υk(u)(t), t≥ 0,
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where

Υk(u)(t) = ck1{t≥ pk}(u(t− pk) + a)+.

For each n≥ 1, define

Ψa,n
Bd

(u)(t) =
n
∑

k=1

Υk(u)(t), t≥ 0.

We then have that for each u ∈D[0,∞) and t≥ 0,

sup
0≤s≤t

|Ψa
Bn

d

(u)(s)−Ψa
Bd

(u)(s)|

= sup
0≤s≤t

∣

∣

∣

∣

∣

∞
∑

k=n

ck1{s≥ pk}(u(s− pk) + a)+
∣

∣

∣

∣

∣

≤ sup
0≤s≤t

|u(s) + a|
∞
∑

k=n

ck

→ 0 as n→∞,

and so it follows that Ψa
Bd

(u) is the pointwise limit in (D[0,∞), u) of Ψa,n
Bd

(u)

as n→ ∞. Thus, if each Ψa,n
Bd

(u) is measurable, it will follow that Ψa
Bd

is

measurable as well. However, in order to show that Ψa,n
Bd

is measurable, it
will suffice to show that each Υk is measurable since the sum of a finite
number of measurable functions is measurable. The fact that Υk is measur-
able may been seen by noting that Υk is first the translation of the function
u by a constant pk and then a multiplication by a constant ck. Both of
these functions are easily seen to be measurable functions and so Υk, being
the composition of two measurable functions, is measurable as well. This
completes the proof of the measurability of Ψa

Bd
.

Now define the map Ξa
B : (D[0,∞),D) 7→ (D[0,∞),D) by

Ξa
B(u)(t) = x(t) +Ψa

B(u)(t), t≥ 0.

It is clear that Ξa
B is measurable since Ψa

B is measurable. Furthermore,
from the existence portion of the arguments above, it follows that for each
x ∈D[0,∞),

ϕ(x) = lim
n→∞

Ξa,n
B (0),

where Ξa,n
B (x) = Ξa,n−1

B ◦ Ξa
B is the n-fold composition of Ξa

B with itself
and the limit is taken with respect to the metric of uniform convergence
over bounded intervals, u. Thus, since the composition of two measurable
functions is measurable, it follows that Ξa,n

B is measurable for each n. But this
then implies that ϕa

B , being the pointwise limit of a sequence of measurable
functions, is measurable as well, and so the proof is now complete. �



THE G/GI /N QUEUE IN THE HALFIN–WHITT REGIME 37

The next portion of the Appendix is devoted to the proofs of Proposi-
tions 4.2 and 5.1. Our proof of Proposition 4.2 closely parallels the proofs of
Lemmas 3.4–3.8 of [14]. In order to begin, we must first set up the following

notation. Let ÂN (t) be equal to the number of customers in the N th system
who entered service after time 0− but before or at time t. We then define
the two parameter process

V N (t, x) =

ÂN (t)
∑

i=1

(1{ηi ≤ x} −F (x)), t≥ 0, x≥ 0,(A.13)

where we recall the definition in Section 2 of ηi as the service time of the
ith customer to arrive to the system after time 0−. Note that by setting

UN (t, x) =

⌊Nt⌋
∑

i=1

(1{F (ηi)≤ x} − x), t≥ 0,0≤ x≤ 1,

we have

V N (t, x) = UN (ǍN (t), F (x)),(A.14)

where

ǍN (t) =
ÂN (t)

N
, t≥ 0.(A.15)

It then follows from the definition of MN
2 in (2.5) that

MN
2 (t) =

∫ t

0

∫ t

0
1{s+ x≤ t}dV N (s,x),(A.16)

where the integrals above are taken over the closed intervals [0, t]. We now
decompose MN

2 in two processes, GN and HN . Let

LN (t, x) =

ÂN (t)
∑

i=1

(

1{ηi ≤ x} −
∫ x∧ηi

0

dF (y)

1−F (y−)

)

, t≥ 0, x≥ 0,(A.17)

where F (y−) = limx→y F (x).
By (A.13) and (A.17), we have that

V N (t, x) =−
∫ x

0

V N (t, y−)

1−F (y−)
dF (y) +LN (t, x).(A.18)

Therefore, by (A.16) and (A.18), we have

MN
2 (t) =GN (t) +HN (t),(A.19)

where

GN (t) =−
∫ t

0

V N (t− x,x−)

1−F (x−)
dF (x), t≥ 0,
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and

HN (t) =

∫ t

0

∫ t

0
1{s+ x≤ t}dLN (s,x), t≥ 0.(A.20)

We set GN = {GN (t), t≥ 0} and HN = {HN (t), t≥ 0} and note that (A.19)
is the desired decomposition of MN

2 . It will be useful in proving several
results related to MN

2 such as tightness and weak convergence.
Now, for each k ≥ 1, let

HN
k (t) =

ÂN (t)∧k
∑

i=1

(

1{0< ηi ≤ t− τ̂Ni } −
∫ ηi∧(t−τ̂N

i
)+

0+

dF (u)

1− F (u−)

)

for t≥ 0, where

τ̂Ni = inf{t≥ 0 : ÂN (t)≥ i}
is the time at which the ith customer to enter service after time 0− begins
being served. We also set HN

k = {HN
k (t), t≥ 0}. Furthermore, we define the

filtration HN = (HN
t , t≥ 0) by

HN
t = σ{QN

0 } ∨ σ{η̃i, i≥ 1} ∨ σ{ξi, i≥ 1}
∨ σ{1{ηi = 0},1{ηi ≤ s− τ̂Ni }, s≤ t, i= 1, . . . , ÂN (t)}
∨ σ{ÂN (s), s≤ t} ∨N ,

where ξi is as defined in (2.1) of Section 2 and N is the P completion of
F . It easy to see that HN satisfies the usual conditions and is actually a
filtration.

The following lemma is similar to Lemma 3.5 of [14]. Consequently, the
proof that follows is a straightforward adaptation of that found in [14].

Lemma A.1. The process HN
k is an HN -square-integrable martingale

with predictable quadratic variation process

〈HN
k 〉(t) =

ÂN (t)∧k
∑

i=1

∫ ηi∧(t−τ̂N
i

)+

0+

1− F (u)

(1−F (u−))2
dF (u), t≥ 0.

Proof. We first decompose HN
k by writing

HN
k (t) =

k
∑

i=1

HN,i(t),

where

HN,i(t) = 1{0< ηi ≤ t− τ̂Ni } −
∫ ηi∧(t−τ̂N

i
)+

0+

dF (u)

1− F (u−)
.(A.21)

As in [14], the proof now proceeds in three parts. They are:
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1. For each i ≥ 1, the process HN,i = (HN,i(t), t ≥ 0) is an HN -square-
integrable martingale.

2. The predictable quadratic covariation process of HN,i is given by

〈HN,i〉(t) =
∫ ηi∧(t−τ̂N

i
)+

0+

1−F (u)

(1−F (u−))2
dF (u).(A.22)

3. The martingales HN,i and HN,j are orthogonal for i 6= j.

These three statements are then sufficient to imply the conclusion of the
lemma. We begin with the proof of part 1.

First, note that HN,i is HN -adapted and, furthermore, we have that

sup
t≥0

E(HN,i(t))2 <∞.

We now prove the martingale property for HN,i by showing that for s < t,

1{τ̂Ni > s}E[HN,i(t)|HN
s ] = 0(A.23)

and

1{τ̂Ni ≤ s}E[HN,i(t)|HN
s ] =HN,i(s).(A.24)

We begin with (A.23). First, note that τ̂Ni is an HN -stopping time since

σ(ÂN (s), s≤ t)⊂HN
t for each t≥ 0 and so we may define the σ-field HN

τ̂N
i

.

Furthermore,

1{τ̂Ni > s}E[HN,i(t)|HN
s ] = 1{τ̂Ni > s}E[E(HN,i(t)|HN

τ̂N
i

)|HN
s ].

In order to prove (A.23), we now show that

E(HN,i(t)|HN
τ̂N
i

) = 0.(A.25)

This follows informally since on the event {ηi > 0}, we have

E(HN,i(t)|HN
τ̂N
i

) = 1{ηi > 0}E(HN,i(t)|τ̂Ni )

P (ηi > 0)
= 0,(A.26)

where the last equality is by (A.21) and the independence of ηi and τ̂Ni .
In order to rigorously to prove the first equality in (A.26), we make use of
Lemma 3.6 of [14].

Specifically, we show that

HN
τ̂N
i

∩ {ηi > 0} ⊂ (σ{QN
0 } ∨ σ{η̃i, i≥ 1}(A.27)

∨ σ{ξr, r ≥ 1, ηp, p≥ 1, p 6= i} ∨ σ{τ̂Ni } ∨N )(A.28)

∩ {ηi > 0}.
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Note that it is enough to check (A.27) for sets which generate HN
τ̂N
i

. However,

by the definition of HN
t , it is not difficult to see that

HN
τ̂N
i

= σ{QN
0 } ∨ σ{η̃i, i≥ 1} ∨ σ{ξr, r≥ 1}

∨ σ{τ̂Nr ,1{ηr = 0},1{0< ηr ≤ s∧ τ̂Ni − τ̂Nr },(A.29)

s≥ 0, r= 1, . . . , ÂN (τ̂Ni )} ∨N
(use, for example, the argument of Brémaud [3]). Then, for l= i, i+1, . . . ,m=
1,2, . . . , n = 1,2, . . . , s1, s2, . . . , sl > 0 and Borel sets A,B1, . . . ,Bm,C1, . . . ,
Cn,D1, . . . ,E1, . . . ,El and F1, . . . , Fl, we have, since ÂN (τ̂Ni ) ≥ l > i, then
τ̂Nr = τ̂Ni , r = i+ 1, . . . , l, that

{QN
0 ∈A} ∩

(

m
⋂

r=1

{η̃r ∈Br}
)

∩
(

n
⋂

r=1

{ξr ∈Cr}
)

∩ {ÂN (τ̂Ni )≥ l}

∩
(

l
⋂

r=1

{τ̂Nr ∈Dr}
)

∩
(

l
⋂

r=1

{1{ηr = 0} ∈Er}
)

∩
(

l
⋂

r=1

1{0< ηr ≤ sr ∧ τ̂Ni − τ̂Nr } ∈ Fr

)

∩ {ηi ≥ 0}

= {QN
0 ∈A} ∩

(

m
⋂

r=1

{η̃r ∈Br}
)

∩
(

n
⋂

r=1

{ξr ∈Cr}
)

(A.30)

∩
(

l
⋂

r=i+1

{τ̂Ni = τ̂Nr }
)

∩
(

i−1
⋂

r=1

{τ̂Nr ∈Dr}
)

∩
(

l
⋂

r=i

{τ̂Nr ∈Dr}
)

∩
(

l
⋂

r=1,r 6=i

{1{ηr = 0} ∈Er}
)

∩
(

i−1
⋂

r=1

1{0< ηr ≤ sr ∧ τ̂Ni − τ̂Nr } ∈ Fr

)

∩ {ηi ≥ 0},

when 0 ∈Ei,0 ∈ Fr, i≤ r≤ l, and the left-hand side is ∅ otherwise. We show
that the event on the right-hand side of (A.30) is in (σ{QN

0 } ∨ σ{η̃i, i ≥
1} ∨ σ{ξr, r ≥ 1, ηp, p ≥ 1, p 6= i} ∨ σ{τ̂Ni } ∨ N ) ∩ {ηi > 0}. It is enough to
prove that this holds for the event

l
⋂

r=i+1

{τ̂Ni = τ̂Nr } ∩ {ηi > 0}.

First, note that for i+ 1, there exists a Borel function hNi+1 such that

τ̂Ni+1 = τi+1 ∨ ((τ̂Ni + ηi)∧ hNi+1(Q
n
0 , η̃l, l≥ 1, ξr, r≥ 1, ηp, p≥ 1, p 6= i)).
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The random variable hNi+1(Q
n
0 , η̃l, l ≥ 1, ξr, r ≥ 1, ηp, p ≥ 1, p 6= i) is either

equal to τi if a server is idle in the system after the arrival of customer
i or, if not, the time of the next departure from the queue after the arrival
of customer i not including customer i. Since,

{τ̂Ni+1 = τ̂Ni }= {τNi+1 ≤ τ̂Ni } ∩ {ηi = 0}
∪ {hNi+1(Q

n
0 , η̃l, l≥ 1, ξr, r≥ 1, ηp, p≥ 1, p 6= i)≤ τ̂Ni },

we have that

{τ̂Ni = τ̂Nr } ∩ {ηi > 0}
= {τNi+1 ≤ τ̂Ni } ∩ {hNi+1(ξr, r ≥ 1, ηp, p≥ 1, p 6= i)≤ τ̂Ni }(A.31)

∩ {ηi > 0}.
A similar argument shows that for r = i+2, . . . , l

{τ̂Nr = τ̂Ni } ∩ {ηi > 0}
(A.32)

= {τNr ≤ τ̂Ni } ∩ {hNr (ξr, r≥ 1, ηp, p≥ 1, p 6= i)≤ τ̂Ni } ∩ {ηi > 0},
where hNr is also a Borel function and hNr (ξr, r ≥ 1, ηp, p ≥ 1, p 6= i) is the
time of the (r− i)th departure from the queue after the arrival of customer
i not taking into account customer i. By (A.31) and (A.32),

l
⋂

r=i+1

{τ̂Ni = τ̂Nr } ∩ {ηi > 0}

=
l
⋂

r=i+1

{τNr ≤ τ̂Ni } ∩
l
⋂

r=i+1

{hNr (ξr, r ≥ 1, ηp, p≥ 1, p 6= i) = τ̂Ni }

∩ {ηi > 0},
which yields (A.27). By Lemma 3.6 of [14], (A.27) implies the first equality
in (A.26) which show that (A.25) holds and so (A.23) is proved.

We now proceed to show that (A.24) holds. We have

1{τ̂Ni ≤ s}E[HN,i(t)|HN
s ]

= 1{ηi ≤ s− τ̂Ni }E[HN,i(t)|HN
s ] + 1{ηi > s− τ̂Ni ≥ 0}E[HN,i(t)|HN

s ].

However, since both 1{ηi ≤ s − τ̂Ni } and 1{ηi > s − τ̂Ni } are both HN
s -

measurable, and by (A.21) we have that

1{ηi ≤ s− τ̂Ni }HN,i(t)

= 1{0< ηi ≤ s− τ̂Ni }

− 1{ηi ≤ s− τ̂Ni }
∫ ηi∧(s−τ̂N

i
)+

0+

dF (u)

1− F (u−)
,
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where the latter is HN
s -measurable, it follows that

1{τ̂Ni ≤ s}E[HN,i(t)|HN
s ]

= 1{0< ηi ≤ s− τ̂Ni }
(A.33)

− 1{ηi ≤ s− τ̂Ni }
∫ ηi∧(s−τ̂N

i
)+

0+

dF (u)

1−F (u−)

+ 1{ηi > s− τ̂Ni ≥ 0}E[HN,i(t)|HN
s ].

We now proceed to evaluate the quantity 1{ηi > s− τ̂Ni ≥ 0}E[HN,i(t)|HN
s ].

First observe that on the event that customer i has not completed service
by time s, mathematically, the event {ηi > s− τ̂Ni ≥ 0}, we have that ηi is

independent of the process ÂN up to time s which keeps track of the number
of customers who have entered service by time s. Also, since ηi is independent
of ηl for l 6= i, we conclude from the definition of HN

t and (A.21) that, on the
event {ηi > s− τ̂Ni ≥ 0},HN,i(t) is dependent upon HN

s only though ηi and
τ̂Ni . To put it more accurately, let ǍN (u), u ≥ 0, be the number of arrivals
to the servers up until time u that would have occurred if the customer with
service time ηi remained in service forever. Then, ǍN (u) is a Borel function

of ξr, r ≥ 1, ηp, p ≥ 1, p 6= i, on the one hand, and coincides with ÂN (u) for
u≤ s on the event {τ̂Ni +ηi > s}, on the other hand. In analogy with (A.27),
this yields by the definition of HN

s ,

HN
s ∩ {ηi > s− τ̂Ni ≥ 0}

⊂ (σ{ξr, r≥ 1, ηp, p≥ 1, p 6= i} ∨ σ{τ̂Ni } ∨N )(A.34)

∩ {ηi > s− τ̂Ni ≥ 0}.
Now noting that 1{ηi > s− τ̂Ni ≥ 0} is HN

s -measurable and applying Lemma
3.6 of [14], it then follows that

1{ηi > s− τ̂Ni ≥ 0}E[HN,i(t)|HN
s ]

= 1{ηi > s− τ̂Ni ≥ 0}E[1{ηi > s− τ̂Ni }HN,i(t)|τ̂Ni ]

P (ηi > s− τ̂Ni |τ̂Ni )
,

where 0/0 = 0. Now evaluating the right-hand side of the above using (A.21),
it follows

1{ηi > s− τ̂Ni ≥ 0}E[HN,i(t)|HN
s ]

=−1{ηi > s− τ̂Ni ≥ 0}
∫ s−τ̂N

i

0+

dF (u)

1−F (u−)
,

which, together with (A.33), implies (A.24). We now have that (A.23) and
(A.24) have been proved and so the martingale property of HN,i has been
proved.
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The proof of part 2 follows identically to the proof of part 2 of Lemma
3.5 of [14]. In particular, since the second term on the right-hand side of
(A.21) is HN -predictable, the HN -predictable measure of the jumps of the
process (1{0 < ηi ≤ t− τ̂Ni }, t≥ 0) is (see Liptser and Shiryaev [15], Jacod
and Shiryaev [9])

νN,i([0, T ],A) = {1 ∈A}
∫ t

0
1{τ̂Ni < u≤ ηi + τ̂Ni } dF (u− τ̂Ni )

1− F ((u− τ̂Ni )−)

and so the predictable quadratic-variation process of HN,i is (see, e.g.,
Liptser and Shiryaev [15], Problem 11, Chapter 4, Section 1)

〈HN,i〉(t) =
∫ t

0

∫

R

x2νN,i(du, dx)−
∑

0<u≤t

(
∫

R

xνN,i({u}, dx)
)2

=

∫ t

0
1{τ̂Ni <u≤ ηi + τ̂Ni } dF (u− τ̂Ni )

1−F ((u− τ̂Ni )−)

−
∑

0<u≤t

1{τ̂Ni < u≤ ηi + τ̂Ni }
(

∆F (u− τ̂Ni )

1−F ((u− τ̂Ni )−)

)2

=

∫ ηi∨(t−τ̂N
i

)+

0

dF (u)

1−F (u−)
−

∑

0<u≤ηi∧(t−τ̂N
i

)+

(

∆F (u)

1− F (u−)

)2

,

where the sum is over all of the jumps. Since the above is equal to the
right-hand side of (A.22), this then completes the proof of part 2.

We now demonstrate step 3 by proving the martingale property forHN,iHN,j

in a similar to manner to the proof of the martingale property for HN,i.
Specifically, for s < t, j < i, we prove that

1{τ̂Ni > s}E[HN,i(t)HN,j(t)|HN
s ] = 0(A.35)

and

1{τ̂Ni ≤ s}E[HN,i(t)HN,j(t)|HN
s ] =HN,i(t)HN,j(t).(A.36)

For (A.35), we have

1{τ̂Ni > s}E[HN,i(t)HN,j(t)|HN
s ](A.37)

= 1{τ̂Ni > s}E[E[HN,i(t)HN,j(t)|HN
τ̂N
i

]|HN
s ].(A.38)

However, since

E[HN,i(t)HN,j(t)|HN
τ̂N
i

]

= 1{ηj ≤ τ̂Ni − τ̂Nj }E[HN,i(t)HN,j(t)|HN
τ̂N
i

](A.39)

+ 1{ηj > τ̂Ni − τ̂Nj }E[HN,i(t)HN,j(t)|HN
τ̂N
i

],
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and 1{ηj ≤ τ̂Ni − τ̂Nj } and 1{ηj ≤ τ̂Ni − τ̂Nj }HN,j(t) = 1{ηj ≤ τ̂Ni − τ̂Nj }HN,j(t∧
τ̂Ni ) are HN

τ̂N
i

-measurable [use (A.29)], it follows that

1{ηj ≤ τ̂Ni − τ̂Nj }E[HN,i(t)HN,j(t)|HN
τ̂N
i

]

=E[1{ηj ≤ τ̂Ni − τ̂Nj }HN,i(t)HN,j(t)|HN
τ̂N
i

]

= 1{ηj ≤ τ̂Ni − τ̂Nj }HN,j(t)E[HN,i(t)|HN
τ̂N
i

],

and so, since HN,i is a square-integrable martingale, by Doob’s stopping
theorem ([9], I.1.19, I.1.42), E[HN,i(t)|HN

τ̂N
i

] =HN,i(τ̂Ni ) = 0 and thus, the

first term on the right-hand side of (A.39) is 0.
Consider now the second term. On the event {ηj > τ̂Ni − τ̂Nj }, we have

that customer j finishes service after customer i arrives and so customer j’s
service time has no no effect on τ̂Ni , the time at which customer i enters
service. Thus, ηj and τ̂Ni are independent on the event {ηj > τ̂Ni − τ̂Nj }.
To put it more accurately, there exists a random variable τ̌Ni which is a
Borel function of ξr, r≥ 1, ηp, p≥ 1, p 6= i, p 6= j, such that {ηj > τ̂Ni − τ̂Nj }=
{ηj > τ̌Ni − τ̂Nj } and τ̂Ni = τ̌Ni on either event. One may view τ̌Ni as the time
at which customer i would enters service if customer j’s service time were
infinitely long. Thus, applying Lemma 3.6 of [14] and using the fact that ηi
and ηj are independent of τ̌Ni and τ̂Nj , we have that

1{ηj > τ̂Ni − τ̂Nj }E[HN,i(t)HN,j(t)|HN
τ̂N
i

]

= 1{ηj > τ̌Ni − τ̂Nj }
E[1{ηj > τ̌Ni − τ̂Nj }ȞN,i(t)HN,j(t)|τ̌Ni , τ̂Nj ]

P (ηj > τ̌Ni − τ̂Nj |τ̌Ni , τ̂Nj )
,

where ȞN,i denotes HN,i with τ̌Ni substituted for τ̂Ni . Furthermore, since ηi
is independent of τ̌Ni , ηj and τ̂Nj , we obtain that

E[1{ηj > τ̌Ni − τ̂Nj }ȞN,i(t)HN,j(t)|τ̌Ni , τ̂Nj ]

=E[1{ηj > τ̌Ni − τ̂Nj }HN,j(t)|τ̌Ni , τ̂Nj ]E[ȞN,i(t)|τ̌Ni ],

where the last multiplier on the right-hand side is equal to 0 by the definition
of HN,i and the fact that ηi is independent of τ̌

N
i . Thus, the right-hand side

of (A.39) is 0, and so E[HN,i(t)HN,j(t)|HN
τ̂N
i

] = 0 so that (A.35) is proved.

In order to prove (A.36), we proceed similarly to (A.24) and so some of
the details are omitted. First, note that

1{τ̂Ni ≤ s}E[HN,i(t)HN,j(t)|HN
s ]

= 1{ηi ≤ s− τ̂Ni }1{ηj ≤ s− τ̂Nj }E[HN,i(t)HN,j(t)|HN
s ]
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+ 1{ηi > s− τ̂Ni ≥ 0}1{ηj ≤ s− τ̂Nj }E[HN,i(t)HN,j(t)|HN
s ]

(A.40)
+ 1{ηi > s− τ̂Ni ≥ 0}1{ηj ≤ s− τ̂Nj }E[HN,i(t)HN,j(t)|HN

s ]

+ 1{ηi > s− τ̂Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}
×E[HN,i(t)HN,j(t)|HN

s ]

and, further,

1{ηi ≤ s− τ̂Ni }1{ηj ≤ s− τ̂Nj }E[HN,i(t)HN,j(t)|HN
s ]

= 1{ηi ≤ s− τ̂Ni }1{ηj ≤ s− τ̂Nj }
(A.41)

×E[1{ηi ≤ s− τ̂Ni }HN,i(t)1{ηj ≤ s− τ̂Nj }HN,j(t)|HN
s ]

= 1{ηi ≤ s− τ̂Ni }1{ηj ≤ s− τ̂Nj }HN,i(t)HN,j(t),

1{ηi ≤ s− τ̂Ni }1{ηj > s− τ̂Nj ≥ 0}E[HN,i(t)HN,j(t)|HN
s ]

= 1{ηi ≤ s− τ̂Ni }HN,i(s)1{ηj > s− τ̂Nj ≥ 0}E[HN,j(t)|HN
s ](A.42)

= 1{ηi ≤ s− τ̂Ni }HN,i(s)1{ηj > s− τ̂Nj ≥ 0}HN,j(s),

1{ηi > s− τ̂Ni ≥ 0}1{ηj ≤ s− τ̂Nj }E[HN,i(t)HN,j(t)|HN
s ]

= 1{ηj ≤ s− τ̂Nj 0}HN,j(s)1{ηi > s− τ̂Ni ≥ 0}E[HN,i(t)|HN
s ](A.43)

= 1{ηj ≤ s− τ̂Nj 0}HN,j(s)1{ηi > s− τ̂Ni ≥ 0}HN,i(s),

where in (A.42) and (A.43) we use the martingale property of HN,i and
HN,j .

Consider now the last term on the right of (A.40). Since {s− τ̂Ni ≥ 0, ηj >
s − τ̂Nj } ⊂ {ηj > τ̂Ni − τ̂Nj }, it follows as above that {s − τ̂Ni ≥ 0, ηj > s −
τ̂Nj }= {s− τ̌Ni ≥ 0, ηj > s− τ̂Nj } and τ̂Ni = τ̌Ni on either event. Hence,

1{ηi > s− τ̂Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}E[HN,i(t)HN,j(t)|HN
s ]

= 1{ηi > s− τ̌Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}E[ȞN,i(t)HN,j(t)|HN
s ],

where ηi and ηj are independent of τ̌Ni and τ̂Nj . Also, similar to (A.27) and
(A.34),

HN
s ∩ {ηi > s− τ̌Ni } ∩ {ηj > s− τ̂Nj }

⊂ (σ{ξr, r≥ 1, ηp, p≥ 1, p 6= i, p 6= j} ∨ σ{τ̌Ni , τ̂Nj } ∨N )

∩ {ηi > s− τ̌Ni } ∩ {ηj > s− τ̂Nj },
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and so by Lemma 3.6 of [14],

1{ηi > s− τ̂Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}E[HN,i(t)HN,j(t)|HN
s ]

= 1{ηi > s− τ̂Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}
× (E[1{ηi > s− τ̌Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}ȞN,i(t)(A.44)

×HN,j(t)|τ̌Ni , τ̂Nj ])

/(P (ηi > s− τ̌Ni ≥ 0, ηj > s− τ̂Nj ≥ 0|τ̌Ni , τ̂Nj )).

However, since ηj and ηi are independent of each other and τ̌Ni and τ̂Nj , we
have that

E[1{ηi > s− τ̌Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}ȞN,i(t)HN,j(t)|τ̌Ni , τ̂Nj ]

=E[1{ηi > s− τ̌Ni ≥ 0}ȞN,i(t)|τ̌Ni ](A.45)

×E[1{ηj > s− τ̂Nj ≥ 0}HN,j(t)|τ̂Nj ]

and

P (ηi > s− τ̌Ni ≥ 0, ηj > s− τ̂Nj ≥ 0|τ̌Ni , τ̂Nj )
(A.46)

= P (ηi > s− τ̌Ni ≥ 0|τ̌Ni )P (ηj > s− τ̂Nj ≥ 0|τ̂Nj ).

Applying Lemma 3.6 of [14] and using analogues of (A.34), we have that

1{ηi > s− τ̌Ni ≥ 0}E[1{ηi > s− τ̌Ni ≥ 0}ȞN,i(t)|τ̌Ni ]

P (ηi > s− τ̌Ni ≥ 0|τ̌Ni )

= 1{ηi > s− τ̌Ni ≥ 0}E[ȞN,i(t)|HN
s ]

and

1{ηj > s− τ̂Nj ≥ 0}
E[1{ηj > s− τ̂Nj ≥ 0}HN,j(t)|τ̂Nj ]

P (ηj > s− τ̂Nj ≥ 0|τ̂Nj )

= 1{ηj > s− τ̂Nj ≥ 0}E[HN,j(t)|HN
s ],

so that dividing (A.45) by (A.46), using (A.44), the fact that τ̂Ni = τ̌Ni on
{s − τ̂Ni ≥ 0, ηj > s − τ̂Nj } = {s − τ̌Ni ≥ 0, ηj > s− τ̂Nj } and the martingale

property of HN,i and HN,j we get

1{ηi > s− τ̂Ni ≥ 0}1{ηj > s− τ̂Nj ≥ 0}E[HN,i(t)HN,j(t)|HN
s ]

= 1{ηi > s− τ̂Ni ≥ 0}E[HN,i(t)|HN
s ]

(A.47)
× 1{ηj > s− τ̂Nj ≥ 0}E[HN,j(t)|HN

s ]

= 1{ηi > s− τ̂Ni ≥ 0}HN,i(s)1{ηj > s− τ̂Nj ≥ 0}HN,j(s).
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Substituting (A.41)–(A.43) and (A.47) into (A.40), we obtain (A.36), which
completes the proof of the lemma. �

Now note that by (4.3) and (A.19), we have

M̄N
2 (t) = ḠN (t) + H̄N (t),(A.48)

where

ḠN =
GN

N
(A.49)

and

H̄N =
HN

N
.(A.50)

It therefore follows by (A.48) that in order to show M̄N
2 ⇒ 0 as N → ∞,

it will be sufficient to show that ḠN ⇒ 0 and H̄N ⇒ 0 as N → ∞. First,
however, we must provide the following result.

Let

ǍN (t) =
ÂN (t)

N
,(A.51)

be the fluid scaled number of customers to enter service by time t. We then
have the following.

Lemma A.2. For each T ≥ 0, there exists a κ≥ 0 such that P (ǍN (T )≥
κ)→ 0 as N →∞.

Proof. In order to show that the result is true, we stochastically bound
{ǍN (T )} by another sequence of random variables for which the result holds.
This will then imply that the result holds for {ǍN (T )} as well.

Let min(QN (T ),N) be the total number of customers in service at time
T . We then have that

min(QN (T ),N) =min(QN
0 ,N) + ÂN (T )−DN (T ),(A.52)

where DN (T ) is the number of departures from the system by time T .
Equation (A.52) then implies that

ÂN (T ) = min(QN (T ),N) +DN (T )−min(QN
0 ,N)

≤min(QN (T ),N) +DN (T )(A.53)

≤N +DN (T ).

We next bound DN (T ). Let SN
i (t) be the number of departures from

server i in its first t units of processing time for t≥ 0 and let BN
i (t) be the
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amount of time that server i is busy in the first t time units. We then have
that

DN (T ) =
N
∑

i=1

SN
i (BN

i (T ))≤
N
∑

i=1

SN
i (T ),

since BN
i (T )≤ T .

Now note that for each i, SN
i (T ) is either the number of renewals by time

T of a pure renewal process with interarrival distribution F or a delayed
renewal process with delay distribution F0 and interarrival distribution F .
Furthermore, for i 6= j, we have that SN

i (T ) and SN
j (T ) are independent of

one another. Letting {Pi, i ≥ 1} be an i.i.d. sequence of pure renewal pro-
cesses with interarrival distribution F and {Qi, i≥ 1} an i.i.d. sequence of
delayed renewal processes with delay distribution F0 and interarrival distri-
bution F , it therefore follows that

N−1
N
∑

i=1

SN
i (T )≤st N−1

N
∑

i=1

Pi(T ) +N−1
N
∑

i=1

Qi(T )

⇒ M(T ) +MD(T ) as N →∞,

where M is the renewal function associated with P1 and MD is the renewal
function associated with Q1. This completes the proof. �

We now show that M̄N
2 ⇒ 0 as N →∞. We begin by showing that ḠN ⇒ 0

as N →∞. Let

ŪN =
UN

N
.(A.54)

We then have the following.

Lemma A.3. ḠN ⇒ 0 as N →∞.

Proof. The proof of is nearly identical to the proof of Lemma 3.4 of
[14] but for completeness we will include it here as well.

We first show that for each δ > 0 and T > 0,

lim
ε↓0

lim sup
N

P

(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

V̄ N (t− x,x−)

1−F (x−)

× 1{F (x−)> 1− ε}dF (x)
∣

∣

∣

∣

> δ

)

(A.55)

= 0,

where V̄ N (t, x) =N−1V N (t, x).
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By (A.14) and recalling the definition of ŪN from (A.54), we have that
for any k > 0,

P

(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

V̄ N (t− x,x−)

1−F (x−)
1{F (x−)> 1− ε}dF (x)

∣

∣

∣

∣

> δ

)

≤ P (ǍN (T )> kT )

+ P

(
∫ ∞

0

1{F (x−)> 1− ε}
1−F (x−)

sup
0≤t≤kT

|ŪN (t,F (x−))|dF (x)> δ

)

.

For k sufficiently large, we have by Lemma A.2 that

P (ǍN (T )> kT )→ 0 as N →∞.

Thus, by applying Chebyshev’s inequality and Fubini’s theorem, we now
must prove that

lim
ε↓0

lim sup
N

∫ ∞

0

1{F (x−)> 1− ε}
1−F (x−)

E sup
0≤t≤kT

|ŪN (t,F (x−))|dF (x) = 0.

However, the proof of this proceeds identically to as in Lemma 3.4 of [14],
which completes the proof. �

We next show that H̄N converges to 0 as N goes to ∞. Again, the mod-
ifications to the proof of Lemma 3.7 of [14] are slight but we include a full
proof for completeness.

Lemma A.4. H̄N ⇒ 0 as N →∞.

Proof. Let

ĤN (t) =N−1
ÂN (t)
∑

i=1

(

1{0< ηi ≤ t− τ̂Ni } −
∫ ηi∧(t−τ̂N

i
)+

0+

dF (u)

1− F (u−)

)

, t≥ 0,

and note that by (A.17), (A.20) and (A.50) we have that

H̄N (t) =N−1
ÂN (t)
∑

i=1

(1{ηi = 0} −F (0)) + ĤN (t).

We first show that the term involving the summation converges to 0. Let
T ≥ 0 and δ > 0. We have

P

(

sup
0≤t≤T

∣

∣

∣

∣

∣

N−1
ÂN (t)
∑

i=1

(1{ηi = 0} − F (0))

∣

∣

∣

∣

∣

> δ

)

≤ P (N−1ÂN (T )> k) + P

(

sup
0≤t≤1

∣

∣

∣

∣

∣

N−1
⌊Nkt⌋
∑

i=1

(1{ηi = 0} −F (0))

∣

∣

∣

∣

∣

> δ

)

.
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However, for sufficiently large k, we have by Lemma A.2 that P (N−1ÂN (T )>
k)→ 0 as N →∞. Furthermore, by the functional strong law of large num-
bers and the i.i.d. assumption of {ηi, i≥ 1}, it follows that

P

(

sup
0≤t≤1

∣

∣

∣

∣

∣

N−1
⌊Nkt⌋
∑

i=1

(1{ηi = 0} − F (0))

∣

∣

∣

∣

∣

> δ

)

→ 0 as N →∞.

It thus remains to show the convergence of ĤN to 0.
Fix T > 0. For each ε > 0, we have

P
(

sup
0≤t≤T

ĤN (t)> ε
)

≤ P (N−1ÂN (T )> k) +P
(

sup
0≤t≤T

|H̄N
Nk(t)|> ε

)

,

where

H̄N
Nk =

HN
Nk

N
.

By definition (A.15) and Lemma A.2, for k sufficiently large,

P (N−1ÂN (T )> k)→ 0 as N →∞.

Next, recall by Lemma A.1 that H̄N
Nk is an HN -square-integrable martingale

with predictable quadratic variation process

〈H̄N
Nk〉(t)

(A.56)

=N−2
ÂN (t)∧Nk
∑

i=1

∫ ηi∧(t−τ̂N
i

)+

0+

1− F (u)

(1− F (u−))2
dF (u), t≥ 0.

Thus, by the Lenglart–Rebolledo inequality [15], it follows that for any γ > 0,

P
(

sup
0≤t≤T

|H̄N
Nk(t)|> ε

)

≤ γ

ε2
+P (〈H̄N

Nk〉(T )> γ).

However, by (A.56),

〈H̄N
Nk〉(T )≤N−2

ÂN (T )
∑

i=1

∫ ηi

0

dF (u)

1−F (u−)
.(A.57)

Furthermore, since E[
∫ ηi
0 (1− F (u−))−1 dF (u)] = 1, it follows by the func-

tional strong law of large numbers that

N−2
⌊N ·⌋
∑

i=1

∫ ηi

0

dF (u)

1−F (u−)
⇒ 0 as N →∞.

By (A.57), the Random Time Change theorem [1] and Lemma A.2, this then
implies that for any γ > 0,

P (〈H̄N
Nk〉(T )> γ)→ 0 as N →∞,
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which completes the proof. �

We are now in a position to give a proof of Proposition 4.2.

Proof of Proposition 4.2. The proof follows by the decomposition
(A.48) and Lemmas A.3 and A.4 above. �

We now proceed to proving Proposition 5.1. We first begin with the fol-
lowing result. Recall the definition of ÂN (t) as the number of customers in
the N th system who entered service after time 0− but before or at time t.
Also, recall the definition of ǍN from (A.51) as the fluid scaled version of

ÂN . We then have the following result.

Lemma A.5. Under the assumptions of Section 5, ǍN ⇒ e as N →∞.

Proof. First, note the relationship

ÂN (t) =AN (t)− (QN (t)−N)+ + (QN (0)−N)+, t≥ 0,

which, dividing by N , may be equivalently expressed as

ǍN (t) = ĀN (t)− (Q̄N (t)− 1)+ + (Q̄N
0 − 1)+, t≥ 0.

By (5.1), (5.2) and the Halfin–Whitt assumption (5.3), it follows that ĀN ⇒
e as N →∞. Thus, by Corollary 5.1, the assumption that Q̄N

0 ⇒ 1 as N →∞
and the Continuous Mapping theorem [20], it follows that

ǍN = ĀN − (Q̄N − 1)+ + (Q̄N
0 − 1)+ ⇒ e as N →∞,

which completes the proof. �

Now, define the processes

G̃N =
GN

√
N

and

H̃N =
HN

√
N
,

and note that by (5.9) and (A.19) it follows that

M̃N
2 = G̃N + H̃N .(A.58)

Our next result will be to show that the sequence {M̃N
2 } is tight. In order

to show this, it will be sufficient to show that both {G̃N} and {H̃N} are
tight. The proofs of these results are similar to proofs of Lemmas 3.4 and
3.7 of [14], and hence have not been included. We begin with a proof of the
tightness of {G̃N}.
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Lemma A.6. The sequence {G̃N} is tight.

Proof. By virtue of Lemma A.5 and the fact that the identity process
e(t) = t is a continuous process, the proof now follows identically to the proof
of Lemma 3.4 in [14]. The modifications to this proof are essentially trivial
and the interested reader is referred to Lemma 3.4 of [14] for further details.
�

Next, we show that {H̃N} is tight.

Lemma A.7. The sequence {H̃N} is tight.

Proof. Since by Lemma A.1, the processHN
k is anH

N -square-integrable-
martingale for each N and k, by Lemma A.5 the proof now follows similarly
to the proof of Lemma 3.7 of [14] and will not be included. Again, the
interested reader is referred to [14] for further details. �

We may now state the following result.

Proposition A.1. The sequence {M̃N
2 } is tight.

Proof. The result follows by the decomposition (A.58) and Lemmas A.6
and A.7 above. �

We are now ready to give a proof of Proposition 5.1. Before doing so,
however, we must first recall Lemma 5.2 from [14]. The proof of this result
is similar in our case and therefore will not be included for the sake of brevity.

Let βi(x, y) be bounded real-valued Borel functions such that E[βi(x, ηi) =
0] and define the processes by RN

m = {RN
m(t), t≥ 0} and 〈RN

m〉= {〈RN
m〉(t), t≥

0}, m= 1,2, . . . , by

RN
m(t) =

ÂN (t)∧m
∑

i=1

βi(τ̂
N
i , ηi) and 〈RN

m〉(t) =
ÂN (t)∧m
∑

i=1

β̄i(τ̂
N
i ),(A.59)

where

β̄i(x) =Eβ2i (x, ηi).

We also set the σ-fields F̂N
t = σ{τ̂Ni , ηi,1≤ i≤ ⌊t⌋} ∨N and FN

t = σ{τ̂Ni ∧
τ̂N
ÂN (t)+1

, ηi∧ÂN (t), i ≥ 1} ∨ N , and define the filtrations F̂
N = {F̂N

t , t ≥ 0}
and F

N = {FN
t , t≥ 0}.

We then have the following result.
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Lemma A.8. 1. The τ̂Ni , i = 1,2, . . . , are F
N -stopping times, and the

following inclusions hold: FN
τ̂N
i

⊃ F̂N
i+1,GN

i ⊂ F̂N
i , where GN

i = σ{B ∩ {τ̂Ni >

t}, t≥ 0,B ∈FN
t };

2. The process ÂN is FN -predictable;
3. The processes RN

m,m= 1,2, . . . , are F
N -square-integrable martingales

with the processes 〈RN
m〉 as predictable quadratic-variation processes.

Proof. The proof is identical to the proof of Lemma 5.2 of [14]. �

We are now prepared to give a proof of Proposition 5.1.

Proof od Proposition 5.1. Ourproof is similar to the proof of Lemma
5.3 of [14] but we restate it here for the sake of completeness. Our first step

is to show that the finite-dimensional distributions of (M̃N
2 , M̂

N
2 ) converge

to those of (M̃2, M̃2). We denote finite-dimensional convergence by
f.d.⇒ .

Let

ŨN =
UN

√
N

and note that by Lemma 3.1 of [14], ŨN ⇒ Ũ inD([0,∞),D[0,1]) as N →∞,
where Ũ is the Kiefer process. Next, let

M̃N
2,k(t) =

k
∑

i=1

�ŨN ((ÂN (ski−1), F (0)), (Â
N (ski ), F (t− ski ))),(A.60)

where the increment

�ŨN ((a1, a2), (b1, b2)) = ŨN (b1, b2)− ŨN (a1, b2)

− ŨN (b1, a2) + ŨN (a1, a2),

and the points 0 = sk0 < sk1 < · · ·< skk = t are chosen such that

max
1≤i≤k

|ski − ski−1| → 0 as k→∞.

We also define in analogy,

M2,k(t) =
K
∑

i=1

(�Ũ((e(ski−1), F (0)), (e(s
k
i ), F (t− ski )))

+ (Ũ(e(ski ), F (0))− Ũ(e(ski−1), F (0)))),

where

�Ũ((a1, a2), (b1, b2)) = Ũ(b1, b2)− Ũ(a1, b2)− Ũ(b1, a2) + Ũ(a1, a2).

We now show that
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(a) M̃N
2,k

f.d.⇒M2,k,

(b) limk→∞ lim supN→∞P (|M̃N
2,k(t)− M̃N

2 (t)|> η) = 0 for η > 0, t > 0,

(c) limn→∞P (|M̂N
2 (t)− M̃N

2 (t)|> η) = 0 for η > 0, t > 0.

Since M2,k(t)
P⇒M2(t) as k → ∞ by definition, this will prove the finite-

dimensional convergence stated in the paragraph above.
The proofs of (a) and (b) are identical to the proofs in Lemma 5.3 of

[14] but we include them here for the sake of completeness. We proceed as
follows.

By the Lemma 3.1 of [14] and the continuity of the Keifer process Ũ , it
follows, setting

M̌N
2,k(t) =

k
∑

i=1

�ŨN ((e(sKi ), F (0)), (e(ski ), F (t− ski ))), t≥ 0,(A.61)

that

M̌N
2,k ⇒M2,k as N →∞.

Next, by Lemma A.5, Lemma 3.1 of [14] and the continuity of Ũ and e, we
obtain from (A.60) and (A.61) that

lim
N→∞

P
(

sup
0≤t≤T

|M̃N
2,k(t)− M̌N

2,k(t)|> ε
)

= 0, T > 0, ε > 0.(A.62)

This then implies that M̃N
2,k ⇒M2,k as N →∞, which completes the proof

of (a).
We will next prove (b), making use of Lemma A.8. In the conditions of

the lemma, we take, fixing t and k for the moment,

βi(x, y) =
k
∑

p=1

1{skp−1 < x≤ skp}(1{t− skp < x< t− x}

− (F (t− x)− F (t− skp))).

Then

β̄i(x) = E[βi(x, ηi)
2]

=
k
∑

p=1

1{skp−1 < x≤ skp}(F (t− x)−F (t− skp))

× (1−F (t− x)− F (t− skp))

and (A.59) yields, by (A.13), (A.16) and (A.60),

N−1/2RN
m(t) = M̃N

2 (t)− M̃N
2,k(t) on {ÂN (t)≤m}.(A.63)
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By (A.63) and (A.59),

N−1〈RN
m〉(t)

≤N−1
ÂN (t)
∑

i=1

k
∑

p=1

1{skp−1 < τ̂Ni ≤ skp}(F (t− skp−1)−F (t− skp))

=N−1
k
∑

p=1

(F (t− skp−1)− F (t− sk + p))(ÂN (skp)− ÂN (skp−1))

≤ sup
1≤p≤k

(N−1ÂN (skp)−N−1ÂN (skp−1)).

Then, by Lemma A.8, applying the Lenglart–Rebolledo inequality and (A.63),
for η > 0, ε > 0,

P (|M̃N
2 (t)− M̂N

2,k(t)|> η)

≤ P (ÂN (t)>mN) +P (N−1/2|RN
m(t)|> η)

≤ P (N−1ÂN (t)>m) +
ε

η2

+ P
(

sup
1≤p≤k

(N−1ÂN (skp)−N−1ÂN (skp−1))> ε
)

.

By Lemma A.5, continuity of the identity function e(t) = t and the fact that
max1≤p≤k(s

k + p− skp−1)→ 0 as k→∞,

lim
m→∞

lim sup
N→∞

P (N1ÂN (t)>m) = 0,

lim
k→∞

lim sup
N→∞

P
(

sup
1≤p≤k

(N−1ÂN (skp)−N−1ÂN (skp−1))> ε
)

= 0,

ending the proof of (b).
We next prove part (c). The proof proceeds in a similar manner to the

proof of parts (a) and (b). Letting BN (t) = ⌊Nt⌋, we first note that

M̂N
2 (t) =N−1/2

∫ t

0

∫ t

0
1{s+ x≤ t}dUN (BN (s), x).

Furthermore, setting B̄N = {N−1BN (t), t≥ 0}, it is clear that
B̄N ⇒ e as N →∞.(A.64)

Next, letting

B̌N
2,k(t) =

k
∑

i=1

�ŨN ((B̂N (ski−1),0), (B
N(ski ), F (t− ski ))),
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it follows by (A.64), Lemma 3.1 of [14] and the continuity of Ũ and e, that
by (A.60),

lim
N→∞

P
(

sup
0≤t≤T

|B̌N
2,k(t)− M̌N

2,k(t)|> ε
)

= 0, T > 0, ε > 0.(A.65)

A similar proof to that of part (b) above can also be used to show that

lim
k→∞

lim sup
N→∞

P (|B̌N
2,k(t)− M̂N

2 (t)|> η) = 0 for η > 0, t > 0.(A.66)

Part (b), (A.62), (A.65) and (A.66) above now imply part (c).

Parts (a)–(c) imply the finite-dimensional convergence (M̃N
2 , M̂

N
2 ) ⇒df

(M̃2, M̃2) as N →∞. It therefore remains to show that the sequence {(M̃N
2 ,

M̂N
2 )} is tight in order to complete the proof. However, by Proposition

A.1, the sequence {M̃N
2 } is tight and a similar if not identical proof also

shows that {M̂N
2 } is tight. Thus, the sequence {(M̃N

2 , M̂
N
2 )} is tight in

(D2[0,∞), d2J1), which completes the proof. �

The remainder of the appendix is now devoted to providing proofs of Lem-
mas A.9 and A.10. We begin with Lemma A.10. Recall first the definition
of f :R×D3[0,∞) 7→R×D3[0,∞) in (5.18) and (5.19) as

f((x1, x2, x3, x4)) = (f1(x1), f2(x2), f3(x3), f4(x4)),(A.67)

for (x1, x2, x3, x4) ∈ R ×D3[0,∞), where f1(x1) = x1, f2(x2) = x2, f4(x4) =
x4 and

f3(x3)(·) =
∫ ·

0
G(· − s)dx3(s),(A.68)

where the above integral above may be interpreted as the result of integra-
tion by parts.

We then have the following result.

Lemma A.9. The function f defined by (A.67) and (A.68) is measurable
as a map from (R × D3[0,∞),B(R) × D3) to (R × D3[0,∞),B(R) × D3).
Furthermore, it is continuous at continuous limits points (x1, x2, x3, x4) ∈
R×D3[0,∞) such that x2, x3, x4 ∈C[0,∞).

Proof. We first show that the function f : (R×D3[0,∞),B(R)×D3) 7→
(R ×D3[0,∞),B(R) × D3) is measurable. It is clear that f1 : (R,B(R)) 7→
(R,B(R)), f2 : (D[0,∞),D) 7→ (D[0,∞),D) and f4 : (D[0,∞),D) 7→ (D[0,∞),D)
are measurable since each of these functions are the identity functions.
Therefore, if we may now show that f3 : (D[0,∞),D) 7→ (D[0,∞),D) is mea-
surable, then, by (A.67), we will have shown the measurability of f .
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In order to show that f3 : (D[0,∞),D) 7→ (D[0,∞),D) is measurable, first
note that, integrating by parts, we have

f3(x3) = a(x3)− b(x3)− c(x3),(A.69)

where a(x3) =G(0)x3, b(x3) = x(0)G and

c(x3)(·) =
∫ ·

0
x3(· − s)dG(s).(A.70)

The functions a(x3) is measurable since it is the identity function multiplied
by a constant and b(x3) is measurable as well since by [1] we have that
the projection map is π0(x3) = x3(0) is a measurable function too. Thus,
since the sum of a finit number of measurable functions is measurable, it
remains to show that c(x3) is measurable from (D[0,∞),D) to (D[0,∞),D)
in order to complete the proof of the measurability of f . However, this may
be shown in a manner similar to the proof of the measurability of Ψa

B in the
measurability portion of the proof of Proposition 3.1. We omit the details
for the sake of brevity. This completes the proof of the measurability of f .

We now show that f : (R×D3[0,∞), | · |× d3J1) 7→ (R×D3[0,∞), | · |× d3J1)
is continuous at continuous limit points (x1, x2, x3, x4) ∈R×D3[0,∞) such
that x2, x3, x4 ∈C[0,∞). First, it is clear that the functions f1 : (R, | · |) 7→ (R,
| · |), f2 : (D[0,∞), u) 7→ (D[0,∞), u) and f4 : (D[0,∞), u) 7→ (D[0,∞), u) are
continuous. This follows easily since each of these functions are the identity
functions. We now show that the function f3 : (D[0,∞), u) 7→ (D[0,∞), u)
is continuous. This then implies that f : (R × D3[0,∞), | · | × u3) 7→ (R ×
D3[0,∞), | · | × u3) is continuous. However, since converge in (D[0,∞), dJ1)
to a continuous limit point x ∈ C[0,∞) is equivalent to convergence in
(D[0,∞), u), this then implies that f : (R×D3[0,∞), | · |×u3) 7→ (R×D3[0,∞),
| · |×d3J1) is continuous a continuous limit points (x1, x2, x3, x4) ∈R×C3[0,∞),
which completes the proof.

Suppose first that xn3 → x3 in (D[0,∞), u) as n→∞. It then follows that
for each T ≥ 0,

sup
0≤t≤T

|xn3 (t)− x(t)| → 0 as n→∞.

However, recalling the representation of f3(x3) in (A.70), this then implies
that

sup
0≤t≤T

|f3(xn3 )(t)− f3(x3)(t)|

= sup
0≤t≤T

|(a(xn3 )(t)− b(xn3 )(t)− c(xn3 )(t))

− (a(x3)(t)− b(x3)(t)− c(x3)(t))|
= sup

0≤t≤T
|(a(xn3 )(t)− a(x3)(t))− (b(xn3 )(t)− b(x3)(t))
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− (c(xn3 )(t)− c(x3)(t))|

= sup
0≤t≤T

∣

∣

∣

∣

(G(0)xn3 (t)−G(0)x3(t))− (xn3 (0)G(t)− x3(0)G(t))

−
(
∫ t

0
xn3 (t− s)dG(s)−

∫ t

0
x3(t− s)dG(s)

)∣

∣

∣

∣

= sup
0≤t≤T

∣

∣

∣

∣

G(0)(xn3 (t)− x3(t))−G(t)(xn3 (0)− x3(0))

−
∫ t

0
(xn3 (t− s)− x3(t− s))dG(s)

∣

∣

∣

∣

≤ sup
0≤t≤T

|G(0)(xn3 (t)− x3(t))|+ sup
0≤t≤T

|G(t)(xn3 (0)− x3(0))|

+ sup
0≤t≤T

∣

∣

∣

∣

∫ t

0
(xn3 (t− s)− x3(t− s))dG(s)

∣

∣

∣

∣

≤ sup
0≤t≤T

|G(0)(xn3 (t)− x3(t))|+ sup
0≤t≤T

|G(t)(xn3 (0)− x3(0))|

+ sup
0≤t≤T

∫ t

0
|xn3 (t− s)− x3(t− s)|dG(s)

≤G(0) sup
0≤t≤T

|xn3 (t)− x3(t)|+G(T )|xn3 (0)− x3(0)|

+G(T ) sup
0≤t≤T

|xn3 (t)− x3(t)|

= (G(0) + 2G(T )) sup
0≤t≤T

|xn3 (t)− x3(t)|

→ 0 as n→∞,

and so the function f3 is continuous as a map from (D[0,∞), u) to (D[0,∞),
u), which completes the proof. �

We now provide a proof of Lemma A.10 which is instrumental in the proof
of Proposition 5.3. Our setup is the same as in the proof of Lemma A2 of
Puhalskii and Reiman [17]. In particular, we consider a sequence of queueing
systems indexed by N , each operating under the FIFO service discipline and
each with a single arrival process AN = {AN (t), t≥ 0} and a single departure
process DN = {DN (t), t≥ 0}. We denote by QN (t) the queue length of the
N th system at time t, by V N (t) the virtual waiting time at time t, and by
V N
i the waiting time of the ith customer to arrive to the system. Finally,

we set Q̃N (t) =N−1/2QN (t), ÃN (t) = N−1/2(AN (t)− λN t) where {λN} is
a sequence of constants and we assume that AN (0) =DN (0) = 0. We then
have the following result.
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Lemma A.10. If Q̃N ⇒ Q̃ and ÃN ⇒ ξ̃ as N →∞, each on D[0,∞),
and λN/N → λ > 0, then the processes {N1/2V N (t), t≥ 0} and {N1/2V N

⌊Nt⌋,

t≥ 0} converge in distribution on (D[0,∞), dJ1) to the respective processes
{Q̃(t) /λ, t≥ 0} and {Q̃(t/λ)/λ, t≥ 0}.

Proof. First, note that since Q̃N ⇒ Q̃ and ÃN ⇒ ξ̃ as N → ∞, it
follows by Prohorov’s theorem [1] that the sequences {Q̃N ,N ≥ 1} and
{ÃN ,N ≥ 1} are both tight. Thus, we have that sequence {(Q̃N , ÃN ),N ≥ 1}
is tight in (D2[0,∞), d2J1) and hence, by a second application of Prohorov’s

theorem [1], the sequence {(Q̃N , ÃN ),N ≥ 1} is relatively compact. Thus,
for any subsequence {Nk}, there exists a further subsequence {N ′

k} such

that (Q̃N ′
k , ÃN ′

k) ⇒ ( ˆ̃Q, ˆ̃A) as k → ∞. Thus, by Lemma A2 of Puhalskii

and Reiman [17], we have that {N ′
k
1/2V N ′

k(t), t ≥ 0} and {N ′
k
1/2V

N ′
k

⌊Nt⌋, t ≥
0} converge in distribution on (D[0,∞), dJ1) to the respective processes

{ ˆ̃Q(t)/λ, t ≥ 0} and { ˆ̃Q(t/λ)/λ, t ≥ 0}. However, since it must be the case

that ˆ̃Q
d
= Q̃ and the sequence {Nk} was arbitrary, this completes the proof.

�
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