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To the editor. Despite great strides in the development and wide acceptance of standards for 

exchanging structured information about genomic variants, progress in standards for 

computational phenotype analysis for translational genomics has lagged behind. Phenotypic 

features (signs, symptoms, laboratory and imaging findings, results of physiological tests, etc.) 

are of high clinical importance, yet exchanging them in conjunction with genomic variation is 

often overlooked or even neglected. In the clinical domain, substantial work has been dedicated 

to the development of computational phenotypes.1 Traditionally, these approaches have largely 

relied on rule-based methods and large sources of clinical data to identify cohorts of patients 

with or without a specific disease.2–5 However, they were not developed to enable deep 

phenotyping of abnormalities, to facilitate computational analysis of interpatient phenotypic 

similarity, or to support computational decision support. To address this, the Global Alliance for 

Genomics and Health6 (GA4GH) has developed the Phenopacket schema, which supports 

exchange of computable longitudinal case-level phenotypic information for diagnosis of and 

research on all types of disease, including Mendelian and complex genetic diseases, cancer, and 

infectious diseases (Fig 1). The Phenopacket software is available at https://github.com/

phenopackets/. 

The ‘PhenotypicFeature’ is the central element of the Phenopacket schema. A 

‘PhenotypicFeature’ can be used to describe any phenotypic characteristic (often, but not 

necessarily, clinical abnormalities), including signs and symptoms, laboratory findings, 

histopathology findings, imaging, and electrophysiological results, along with modifier and 

qualifier concepts. Each phenotypic feature is described using an ontology term. Although the 

Phenopacket schema does not mandate which ontology to use, it provides recommendations, 



such as the Human Phenotype Ontology7 (HPO) for rare diseases and the National Cancer 

Institute Thesaurus (NCIT) for transmission of information about a cancer specimen (e.g., 

pathological staging or more detailed information about histology or tumor markers).8 Within 

the schema, it is possible to indicate whether an abnormality was excluded during the diagnostic 

process (e.g., whether a morphological cardiac defect was excluded by echocardiography) or to 

use other optional HPO terms to denote the severity, frequency (e.g., number of occurrences of 

seizures per week), laterality (e.g., unilateral), or other pattern of a phenotypic feature in the 

patient being described. Finally, the onset (and if applicable the resolution) of specific features 

can be indicated.  

Other key elements of the schema are ‘Measurement’, which is used to capture 

quantitative (i.e., numerical), ordinal (e.g., absent/present), or categorical measurements; 

‘Biosample,’ a description of biological material obtained from the individual represented in the 

Phenopacket and used for phenotypic, genotypic, or other -omics analysis; and 

‘MedicalAction,’ which includes a hierarchical representation of medical actions, including 

medications, procedures, and other actions taken for clinical management. The ‘Treatment’ 

element is a subelement of ‘MedicalAction’ and represents administration of a pharmaceutical 

agent, broadly defined as prescription and over-the-counter medicines, vaccines, and other 

therapeutic agents, such as monoclonal antibodies or chimeric antigen receptor (CAR)-T-cell-

therapy.  

The ‘Interpretation’ element specifies interpretations of genomic findings. This element 

leverages complementary resources developed by the GA4GH Genomic Knowledge Standards 

Work Stream: the Variation Representation Specification (VRS) and VRS Added Tools for 

Interoperable Loquacious Exchange (VRSATILE).6 Further information on this and other 

elements is available in the online documentation (https://phenopacket-schema.readthedocs.io/). 

The Phenopacket schema was designed to support several use cases. Many of these use 

cases have been successfully implemented and tested in the community, particularly in the field 

of rare disease diagnostics and biobanking, whereas others, such as electronic health record 

integration, are in the process of being implemented (Supplementary Table 1). 



The Phenopacket schema (version 2.0) was formally reviewed and approved as a 

GA4GH standard6 in 2021. It is designed to be interoperable with other relevant standards, 

including the traditional PED (pedigree format) file as well as the GA4GH pedigree standard, 

the GA4GH Beacon,9 and the GA4GH Variation Representation Specification. The GA4GH has 

committed to coordinate its activities and future roadmaps with those of other standards 

development organizations, including the International Organization for Standardization (ISO) 

Technical Subcommittee for Genomics Informatics (ISO/TC215/SC1) and HL7 Clinical 

Genomics (CG). Consequently, a Fast Interoperable Healthcare Resources (FHIR) 

implementation guide for Phenopacket interoperability is being developed and the Phenopacket 

schema is in the process of ISO certification (Supplementary Table 2). 

The variant call format (VCF) standard for storing genotyping data allowed a wide range 

of research groups to write software for analyzing such data.10 The GA4GH Phenopacket 

schema aspires to be similarly transformative in the landscape of genome analysis using 

phenotype data. Multiple providers of phenotypic data include patients and clinicians, via a 

variety of mechanisms, including clinical notes and electronic health records, interfaces such as 

FHIR, app-based entry, and mobile devices. The Phenopacket schema acts as a common model 

that can capture data from many sources with a unified software representation and in turn can 

be used by multiple receivers of the phenotypic information, including journals, databases, 

registries, and clinical laboratories. Phenopackets can support diverse users and use cases, 

including patient-matchmaking services, diagnostics, and cohort identification. Software has 

become an essential resource for genomic medicine. We anticipate that the Phenopacket schema 

will encourage the development of a collection of software for the analysis of genomic data in 

the context of clinical information that will accelerate innovation and discovery. Genomic data 

will become ever more important in translational research and clinical care in the coming years 

and decades. The Phenopacket schema represents a standard for capturing clinical data and 

integrating it with genomic data that will help to obtain the maximal utility of this data for 

understanding disease and developing precision medicine approaches to therapy. 
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Figure 1. Phenopacket schema overview. The GA4GH Phenopacket schema consists of 

several optional elements, each of which contains information about a certain topic, such as 

phenotype, variant or pedigree. An element can contain other elements, which allows a 

hierarchical representation of data. For instance, Phenopacket contains elements of type 

Individual, PhenotypicFeature, Biosample, and so on. Individual elements can therefore be 

regarded as building blocks that are combined to create larger structures. Colors represent the 

major themes of elements within the schema.  
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