
BioMed Central

Page 1 of 13

(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware

The Gaggle: An open-source software system for integrating
bioinformatics software and data sources
Paul T Shannon1, David J Reiss1, Richard Bonneau1,2 and Nitin S Baliga*1

Address: 1Institute for Systems Biology, 1441 N 34th Street, Seattle, WA 98103, USA and 2Department of Biology, New York University, 100
Washington Square E, New York, NY 10003, USA

Email: Paul T Shannon - pshannon@systemsbiology.org; David J Reiss - dreiss@systemsbiology.org;
Richard Bonneau - rbonneau@systemsbiology.org; Nitin S Baliga* - nbaliga@systemsbiology.org

* Corresponding author

Abstract

Background: Systems biologists work with many kinds of data, from many different sources, using

a variety of software tools. Each of these tools typically excels at one type of analysis, such as of

microarrays, of metabolic networks and of predicted protein structure. A crucial challenge is to

combine the capabilities of these (and other forthcoming) data resources and tools to create a data

exploration and analysis environment that does justice to the variety and complexity of systems

biology data sets. A solution to this problem should recognize that data types, formats and software

in this high throughput age of biology are constantly changing.

Results: In this paper we describe the Gaggle -a simple, open-source Java software environment

that helps to solve the problem of software and database integration. Guided by the classic

software engineering strategy of separation of concerns and a policy of semantic flexibility, it integrates

existing popular programs and web resources into a user-friendly, easily-extended environment.

We demonstrate that four simple data types (names, matrices, networks, and associative arrays)

are sufficient to bring together diverse databases and software. We highlight some capabilities of

the Gaggle with an exploration of Helicobacter pylori pathogenesis genes, in which we identify a

putative ricin-like protein -a discovery made possible by simultaneous data exploration using a wide

range of publicly available data and a variety of popular bioinformatics software tools.

Conclusion: We have integrated diverse databases (for example, KEGG, BioCyc, String) and

software (Cytoscape, DataMatrixViewer, R statistical environment, and TIGR Microarray

Expression Viewer). Through this loose coupling of diverse software and databases the Gaggle

enables simultaneous exploration of experimental data (mRNA and protein abundance, protein-

protein and protein-DNA interactions), functional associations (operon, chromosomal proximity,

phylogenetic pattern), metabolic pathways (KEGG) and Pubmed abstracts (STRING web resource),

creating an exploratory environment useful to 'web browser and spreadsheet biologists', to

statistically savvy computational biologists, and those in between. The Gaggle uses Java RMI and Java

Web Start technologies and can be found at http://gaggle.systemsbiology.net.

Published: 28 March 2006

BMC Bioinformatics2006, 7:176 doi:10.1186/1471-2105-7-176

Received: 27 October 2005
Accepted: 28 March 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/176

© 2006Shannon et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16569235
http://www.biomedcentral.com/1471-2105/7/176
http://creativecommons.org/licenses/by/2.0
http://gaggle.systemsbiology.net
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 2 of 13

(page number not for citation purposes)

Background
The practice of systems biology seeks to comprehend the
complexity of organisms, or their subsystems, by combin-
ing many different kinds of data (mRNA and protein lev-
els, protein-protein and protein-DNA interactions,
protein modifications, biochemistry, etc.) to create pre-
dictive models [1]. In current practice, as biologists
explore their data, they typically create manual, ad hoc
connections among software tools and databases, cutting
and pasting queries, creating temporary files, running web
searches, and taking notes. This strategy does not scale
well, and so, in response, several software projects have
arisen to offer computer-assisted data and software inte-
gration. Notable among these are ToolBus [2], Taverna
[3], caCore [4], each of which uses semantic mapping to
ensure that entities in one environment are appropriately
related to entities in another. While it is appealing in the
abstract, this approach can be quite costly, which may
explain why, despite many person-years of engineering
effort, these projects have not yet been widely adopted in
the biological community.

Implementation
The Gaggle: an overview

The Gaggle [5] uses a minimalist approach to integrate
data and software. It is written in Java and uses standard
Java libraries. It is simple to install, and easy to update;
new data sources and software tools can be added with
minimal implementation costs. A small server program
(the 'Gaggle Boss') provides communication among analy-
sis and display programs (the 'geese') which are modest
adaptations of existing (or novel) bioinformatics and
computational biology programs and web resources. The
Boss and the geese all run as separate programs on the
user's desktop computer, communicating with each other,
at the user's behest, by passing simple messages.

In the Gaggle, semantic flexibility [6] – the notion that
"word meanings are not ... fixed and unchanging, but tend
to vary according to the context of their use" – is seen as a
solution to the complications of data integration, rather
than as a problem that must be solved before integration
can begin. Four data types (names, matrices, networks,
and associative arrays), distilled into a semantically sim-
ple form, are passed between the geese, whereupon they
take on richer meaning in the context of each goose. For

A simple introductory example for use of GaggleFigure 1
A simple introductory example for use of Gaggle. A set of genes (circular nodes with edges represents associations/
interactions) selected in Cytoscape (A) are broadcasted to the Gaggle Boss (B). The Gaggle Boss re-routes the broadcast
to a Java web browser connected to KEGG (C), further exploration wherein localizes H. pylori proteins to relevant subunits in
the flagellar apparatus map. A second goose that receives the broadcast is the DMV (D). A plot function therein provides
mRNA levels of the 15 H. pylori genes in 57 experimental conditions.

A. Cytoscape (Associations/interactions)

B. Gaggle Boss

C. KEGG (Pathways)

D. DMV (Data matrices)

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 3 of 13

(page number not for citation purposes)

example, the gene name "HP0352" identifies (1) a flagel-
lar motor switch protein in three KEGG [7] pathway
maps, (2) a node in a Cytoscape [8] association network,
(3) a row in a matrix to a microarray data viewer, and (4)
a set of PubMed abstracts to a literature search tool. The
biological semantics attached to the gene name in each of
these environments are rich, significant, and though over-
lapping, somewhat different. But in the Gaggle's approach
to software and data integration, no formal mapping and
no explicit integration are needed. It suffices to simply
pass the gene name (accompanied by the organism name,
which is required by some geese) to each environment,
where in each case a different web of meanings is invoked.

The Gaggle does not, however, preclude the use of appli-
cations and data repositories which are built upon, and
offer the benefits of, careful semantic mapping. This is
demonstrated by the KEGG goose, which submits queries
to and retrieves results from KEGG. All carefully curated
semantic mappings of gene name to metabolic pathways,
biochemical reactions, cellular structures, DNA
sequences, protein functions, and orthology groups in
KEGG are obtained by merely passing gene names to this
goose. As systems biology matures, we predict that many
more such semantically rigorous resources will become
available, and that they too will be easy to add to the Gag-
gle using this same approach. Similarly, large scale efforts
such as SBML (Systems Biology Markup Language,[9],
BioMoby [10] and BioPAX (a collaborative effort to create
a data exchange format for biological pathway data)[11]
will continue to be complementary to the Gaggle. How-
ever, we are also confident that, given the heterogeneity of
systems biology data, it is unlikely that a single unifying
language or unifying scheme will emerge. Valuable work
will continue to be done in more or less restricted
domains and semantic flexibility will always be required
to integrate them.

The Gaggle in action: A simple introductory example

In a simple, prototypical use of the Gaggle, genes of inter-
est are first selected in some program – perhaps nodes in
a Cytoscape network. Next, by pressing the "Broadcast"
button, the selected gene names are sent to other geese:
the KEGG goose and a microarray data viewer goose. The
KEGG goose will respond by displaying a list of pathways
and structures in which those genes are implicated, and
the microarray data viewer will plot the experimental data
for those genes (Fig 1).

Thus, a single mouse click performs all operations which
would otherwise require: (1) writing down, copying or
exporting the names of the selected Cytoscape nodes to a
file; (2) browsing to the 'Search Objects in KEGG Path-
ways' web page, and typing in, pasting, or otherwise load-
ing the gene names from the file, making sure to prefix

each name with the appropriate organism code; and
finally (3) plotting the microarray data, again requiring
the list of gene names to be typed, loaded, or pasted into
the microarray data viewing program's 'select' function. In
our experience, in absence of the Gaggle, such data explo-
ration involving more than a few genes can be tedious and
error-prone. With the Gaggle, even with a large number of
genes, such exploration can be fast and dependable and
can easily include a wide range of tools and data sources,
all of which respond to a single mouse-click.

Gaggle data types

There are four data types used in the Gaggle, and broad-
cast at the user's request from program to program. They
are all implemented as Java classes, and they are all free of
explicit biological semantics. They are: a list of names, a
matrix, a network, and an associative array (a collection of
name/value pairs). These four are sufficient to capture all
the kinds of data used in systems biology. Instances of
these data types are transmitted in serialized form using
Java RMI within the Gaggle. Name lists and associative
arrays are standard Java classes; Network and DataMatrix
are Gaggle-specific, and are documented at the Gaggle
website. Some straightforward translation of these types
into 'native' types is usually required when adapting a new
program to the Gaggle.

The Gaggle boss

The Gaggle always has a Boss. This is a standalone Java
program (usually, but see Section 4 below for an alternate
approach) that relays messages between the programs in
the Gaggle. The Boss's graphical user interface (GUI) dis-
plays the names of the currently registered programs, and
provides the user with some basic controls: to hide or
reveal particular programs, and to specify whether they are
to accept or ignore messages. The Boss can, in addition, be
given extra capabilities, which are added via a plugin
mechanism. In the example below (see Section 3), we use
a species-specific annotation search capability which
appears as a tab in the Boss's GUI.

Current Geese

When any Java program has been adapted to run in the
Gaggle, we call it a 'goose', and we say that it has been 'gag-
gled'. This is a relatively simple operation: to gaggle a pro-
gram requires only that it implement a dozen or so new
programming calls (see software design and engineering
below). Current geese in the Gaggle include:

1. DMV: the DataMatrixViewer, for navigating and select-
ing from experiments (microarray, ChIP-chip, proteom-
ics), and for displaying and plotting their numerical data
(Johnson et al, in preparation).

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 4 of 13

(page number not for citation purposes)

2. Cytoscape, with assorted plugins, for viewing protein-
protein interactions, protein-DNA interactions, associa-
tion networks, biclusters discovered by the cMonkey algo-
rithm (see below; Reiss et al., submitted)[8].

3. TIGR's microarray expression viewer (TMev): a popu-
lar tool for microarray analysis [12].

4. The R Goose: using Java-to-R translation classes pro-
vided by RoSuDa the R Goose provides full access to the R
statistical programming language and its many packages,
including BioConductor [13].

5. Simple Bioinformatics Web Browser: which provides
easy access to web-based bioinformatics resources, e.g.,
KEGG, EMBL's STRING, BioCyc [8,14,15].

Starting the Gaggle

The Gaggle is often launched using Java Web Start [16] –
a standard Java technology for launching programs from
a single click in a web browser. The Gaggle Boss and any
number of geese may be set up, for example, as links on a
laboratory's web page, perhaps including shared labora-
tory data; any scientist can then launch the programs with
a few mouse clicks. With Java Web Start, each goose is
downloaded from the web server the first time it is run; it
then runs locally on one's desktop computer like a stand-
ard installed program. On every subsequent launch of the
program, a fresh version is downloaded only if the pro-
gram has been updated on the web server. Web Start
therefore simplifies distribution and maintenance of the
Gaggle, and of shared data. Java Web Start, however, is not
with a requirement of the Gaggle; traditional installation
and update procedures work fine as well.

Supporting other programming languages in the Gaggle

Though Java is an excellent general purpose language, it is
not the right tool for every job and many bioinformatics
tools are written in other languages. R [17,18], for exam-
ple, is the language of choice for statistics, C++ is preferred
for applications in which speed is essential, and Python
and Perl are scripting languages popular in the bioinfor-
matics community. Three strategies are available for
accommodating these and other languages: cross-lan-
guage interoperability (using the Java Native Interface, JNI
[19]), JVM-rehosting (i.e., Jython as a rehosted
Python[20]), and web services (in which Simple Object
Access Protocol [SOAP] [21] provides remote, language-
neutral access to programs written in other languages).

We employ the first strategy (JNI) in the R goose. The sec-
ond strategy, JVM-rehosting, allows Python programs to
join the Gaggle; we use the resulting Jython geese for pro-
totyping and debugging. Jython geese and the R goose are

excellent tools for exploratory data analyses that require
scripting.

Perl and C++ are not yet available directly within the Gag-
gle. In order to use code written in these languages, a few
possibilities exist: either JNI 'glue' code must be written;
the code must be made available as through SOAP as a
web service; or the code must appear on the web behind a
CGI interface.

Software design and engineering

The Gaggle's design is based upon the classic software
engineering strategies of separation of concerns [22], and
parsimony, from which we derived these specific prescrip-
tions: (1) use the fewest possible software elements, (2)
keep each maximally ignorant of all others, (3) avoid bio-
logical semantics, (4) use mainstream programming lan-
guages, and only one such language if possible, (5) avoid
operating systems dependencies, (6) make sure that exist-
ing popular software and data formats are supported, (7)
place a priority on ease of installation and update. These
principles led us to choose the general purpose program-
ming language Java, which has additional noteworthy fea-
tures, including portability across operating systems, a
simple and robust inter-process communication (RMI,
remote method invocation), and the means (JNI) to call
programs written in other languages.

Every program which runs in the Gaggle is a separate,
stand-alone program. A Gaggle Boss (also typically, but not
necessarily, a stand-alone program) is always started first.
It provides a graphical interface to monitor and control
the geese, and using RMI, the communications infrastruc-
ture. Every goose, at startup, registers itself with the cur-
rent boss.

We use the traditional Java interface mechanism to specify
both the extent to which each goose is aware of the boss
and also the capabilities necessary for a program to
become a full member of the goose. A Java interface
defines a type, without specifying how that type is imple-
mented. This common programming strategy allows for
the separation of what an object must do, from how it does
it. In the Gaggle, for example, every gaggled program must
provide a handleNameList method (which is called when a
bunch of gene names are broadcast to it), but the actual
implementation of this method will differ with every
Goose. These are presented below, followed by detailed
explanations of some typical implementations of key
methods in these interfaces. A full, compilable, and anno-
tated listing of a minimal, functioning Goose will be
found in the supplement.

Java RMI is the linchpin of the Gaggle. This standard Java
component is a very sophisticated and robust technology

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 5 of 13

(page number not for citation purposes)

for inter-process communication; fortunately, it is also
very simple to use. It works like this: after an initial lookup
to obtain a reference to the remote object (a remote pro-
gram) one program can subsequently call methods on
that remote program just as if it were a local object. In the
Gaggle, we use RMI to broadcast data, and for housekeep-
ing chores (i.e., to hide, show, or terminate specific geese,
to get and set their names). The four Gaggle data types (see
above) are all serializable, which means that Java RMI can
send 'across the wire' to the remote program, marshalling
and demarshalling the data at each end. The four data
types are defined as Java classes, but all of them may be
written to and read from disk in various formats, of which
plain text and xml currently dominate. Within a running
gaggle, however, all of the data exists strictly as Java
objects.

The Gaggle defines two simple class interfaces (Boss and
Goose), as well as the four data types. A Goose is an exist-
ing Java program adapted to run in the Gaggle; the adap-
ation may be a plugin, a derived class, or an object added
to the existing Java program. Only the methods listed
below need to be implemented by every goose. Since
these methods – especially in the prototyping stage – can
be stubs (empty functions), the simplest adaptation of a
program to the Gaggle can be very simple indeed, as illus-
trated below:

Goose.java

public interface Goose extends Remote

void connectToGaggle ();

void handleNameList (String species, String [] names);

void handleMatrix (DataMatrix matrix) throws Remote-
Exception;

void handleMap (String species, String dataTitle, Hash-
Map hashMap);

void handleCluster (String species, String clusterName,
String [] rowNames, String [] columnNames);

void handleNetwork (String species, Network network);

String getName ();

void setName (String newName);

void doHide ();

void doShow ();

void doExit () ;

...

}

Let's examine three representative Goose methods (again,
see the supplement for a fully documented simple goose).

ConnectToGaggle

This method looks up the address of the boss, registers
itself with the boss, and receives a unique name in
response. (The goose has a preferred name, but if that
name is already in use, the boss will make sure the
returned name is unique.) Henceforth the goose and the
boss each have a reference to each other, and can commu-
nicate any of the messages specified in the other's inter-
face. The crucial lines of code in this method are

boss = (Boss) Naming.lookup ("rmi://localhost/gaggle");

myGaggleName = boss.register ((Goose) this);

handleNameList

Perhaps the most used Goose method. When one goose
broadcasts a list of names to another, this is the method
which executes in the receiving goose. The full signature of
the method is

handleNameList (String species, String [] names)

where the 'names' denote entities (often genes) in the
organism named in the 'species' variable. In a typical
implementation, i.e., in a network viewing program, this
method would highlight all of the nodes whose names
appear in the variable names.

DoHide

This is an example of a Gaggle housekeeping method. The
boss calls this method on the goose, without additional
arguments. The goose that receives the message typically
responds by calling mainframe.setVisible (false) on its out-
ermost JFrame.

Boss.java

public interface Boss extends Remote {

void String register (Goose goose);

void broadcast (String sourceGoose, String species, String
[] names);

void broadcast (String sourceGoose, DataMatrix matrix);

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 6 of 13

(page number not for citation purposes)

void broadcast (String sourceGoose, String species, Hash-
Map hashMap);

void broadcast (String sourceGoose, String species, String
clusterName, String [] rowNames, String [] column-
Names;

void broadcast (String sourceGoose, String species, Net-
work network)

...

}

In addition to the "boss.register" call shown above, a
goose will make calls to one or more of the Boss broadcast
methods. The prototypical example here is that broadcast
method which is overloaded for sending a list of names.
The full signature is

broadcast (String sourceGooseName, String species,
String [] names);

Here, sourceGooseName identifies the goose which initi-
ated the broadcast, names are typically of genes or pro-
teins of interest, and species identifies the organism from
which the gene or protein names come. One benefit for
requiring the name of the goose initiating the broadcast
(sourceGooseName) is that this allows the boss to avoid
broadcasting back to the goose from which the broadcast
originated.

When the boss receives this message, the boss will
rebroadcast the message to the other geese in the gaggle,
calling handleNameList (species, names) on all listening
geese (see Goose.java, above). And thus we come full cir-
cle, broadcasting a list of names from the source goose, to
the boss, and then to one or more destination geese. This
sequence of events, of course, is usually initiated by the
biologist clicking a 'broadcast' button in a gaggled bioin-
formatics program in which some number of genes or
proteins have been selected.

Please not that, in the current implementation, the Boss is
a standalone program, but it could easily be re-imple-
mented as a part of some other program. This might be
attractive to a biologist with a favorite bioinformatics pro-
gram to which they wish to add Gaggle capabilities. (A
Cytoscape plugin, for example, could implement the Boss
interface, and recreate the Boss user interface as a dedi-
cated Cytoscape panel, thereby creating a Cytoscape-cen-
tric Gaggle.)

Scalability of the Gaggle

(i) Adding new programs and web resources

Many programs and web sites can be added to the Gaggle
quite easily. In every case, the ratio of software develop-
ment time to bioinformatics benefit must be assessed; the
benefits will often be worth the effort. Furthermore,
although gaggling a program usually (not always)
requires access to the source code, a lot of molecular biol-
ogy software is open source, and a lot of it is written in
Java. The R Goose and TIGR MeV are prime examples:
these are popular and powerful software packages devel-
oped entirely independent of the Gaggle; each required
only about a week of programmer time to adapt to the
Gaggle.

Specifically, adding a Java program to the Gaggle is
straightforward:

a. If the source code is available

b. If the data structures to be broadcast or received in the
prospective goose are roughly compatible with the four
data types used in the Gaggle (name lists, networks, matri-
ces, associative arrays).

As for any program, adding a website to the gaggle also
runs the gamut, from easy to complicated to onerous. The
difficulty goes up when Javascript is used, if logins are
required, if results are available only after substantial
delay, and (especially) if the website undergoes frequent
revision.

A third kind of prospective goose is a non-Java program.
This will

a. require an experienced Java programmer familiar with
Java JNI, and

b. separate development and compilation on each target
operating system.

Please note, however, that it is not unusual to find a Java
JNI bridge already created for other programming lan-
guages and environments: R, Python, Prolog, and Matlab,
to mention a few.

(ii) Performance

With regard to run-time scalability: since the Gaggle's pur-
pose is first and foremost to facilitate interactive explora-
tion of multiple data types, and since human-computer
interaction with desktop software is not computationally
intensive, even inexpensive computers can easily keep up
with the typing and mouse operations of any user, and
with the performance requirements of most individual
software programs. In typical use, the Gaggle user moves

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 7 of 13

(page number not for citation purposes)

at a pace measured in seconds between the various gag-
gled programs, with only one program in the foreground
at a time; all other gaggled programs are relatively inactive
in the background, perhaps even swapped out into virtual
memory. Thus, the normal use of the Gaggle scales very
nicely: there is no practical limit to the number of rela-
tively inactive programs which can reside in the back-
ground.

In the worst case scenario, if a sophisticated Gaggle user
should broadcast large matrices or networks to several dif-
ferent analytical programs at once, and if all of these are
running on the desktop computer, a scaling problem

might result. But please note that this is not a problem
with the Gaggle: this is the familiar problem of running
too many simultaneous, computationally intensive tasks
on a small computer. This could be considered a limita-
tion of the Gaggle only if it promotes a style of work that
might lead the biologist to attempt these multiple tasks at
once when they otherwise would not have done so. If such
situations were to arise and computationally intensive
tasks start to swamp the desktop computer these tasks
could be reconfigured to run on a server. In the Gaggle's
case, this familiar solution can be implemented easily
through a lightweight goose, from which the biologist can

Workflow used in Gaggle for exploration of H. pylori pathogenesis (see text for details)Figure 2
Workflow used in Gaggle for exploration of H. pylori pathogenesis (see text for details). The exploration begins
with the Gaggle Boss (GB). All steps (mouse clicks) are indicated by arrows alongside numbers (both in black and red font) that
correspond to sequence of actions. Black numbers indicate actions within a goose; red arrows and numbers (enclosed in red
circles) indicate "Broadcast" actions with corresponding red numbers (not enclosed in circles) indicating transmission of data
from one goose to another (implicitly through the GB). The three watermark arrows in (A) green, (B) red and (C) grey pro-
vide sequence and paths of exploratory routes.

1212

4

26 genes

selected

4 5 6

26 selected

genes

33

26 selected genes
33

26 genes with

matrix (m1)

7

10

DataMatrixViewer (DMV)

9

TMeV
(TIGR Microarray expression Viewer)

9
(K-means clustering)

Ctrl + N

(selected nodes and

edges to new window)

B
ic
lu
s
te
rV
ie
w

(B
ic
lu
s
te
rs
)

263 genes selected

Ctrl + N

ClusterInfo
(expression profile,

motifs, etc.)

Cytoscape
(Prolinks Network)

KEGG
(Metabolic pathways)

12
263 selected

genes

Function Annotation Database
(within the GaggleBoss (GB))

26 genes

selected

1

2
33

7

Although some cag genes are correlated over

all conditions, most are correlated only over a

subset emphasizing a need for biclustering

(go back to Step 3 and follow link to

InferelaterView)

d

matrix

JGR
(Java GUI for R Statistical Environment)

> broadcast (nm)

8

> nm <- normalize (m1)

DATA INTEGRATION

IN GAGGLE

10101111

(

e

bicluster node name

E
x
p
e
ri
m
e
n
t

T
re
e

Plot

expression

profiles

26 selected

genes

33

BioCyc
(Pathway/Genome Database)

STRING
(Search Tool for the Retrieval of Interacting Genes/Proteins)

1212
263 selected

genes

1111

selected

bicluster

genes and

environmental

conditions

A

B

C

Literature
mining

START

HERE

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 8 of 13

(page number not for citation purposes)

monitor and control the remote computationally-inten-
sive task.

Results and discussion
Using the Gaggle we have integrated diverse databases
(for example, KEGG, BioCyc, String) and software (for
example, Cytoscape, DataMatrixViewer, R statistical envi-
ronment, and TIGR Microarray Expression Viewer). This
loose coupling of diverse software and databases enables
simultaneous exploration of experimental data (mRNA
and protein abundance, protein-protein and protein-
DNA interactions), functional associations (operon, chro-
mosomal proximity, phylogenetic pattern), metabolic
pathways (KEGG) and Pubmed abstracts (STRING web
resource). More importantly, the researcher can craft que-
ries to explore these rich resources without any software
constraints. This is best demonstrated through the case
study provided below.

A case study: Exploring pathogenesis in Helicobacter

pylori

We turn now to a demonstration of the Gaggle, where we
explore diverse sets of publicly available data for Helico-
bacter pylori using a variety of bioinformatics software
tools. The choice of an organism outside of our general
expertise (which is the systems biology of archaeal organ-
isms) is intentional; it demonstrates how data integration
via software interoperability in the Gaggle can reveal, even
to the relatively inexpert researcher, insights previously
hidden from view. We conclude the example by making
several discoveries including identification of a protein
functionally associated with flagellar biosynthesis pro-
teins with a predicted three-dimensional structure match
to ebulin, a ricin-like toxin.

The steps listed below reflect a possible thought process of
a biologist and indicate logic behind his/her actions.
Moreover, this exercise exemplifies typical systems biol-
ogy data exploration and analysis in the Gaggle. Specifi-
cally, as in any real-world systems biology data
exploration, this workflow contains frequent dead ends,
reiteration of the same or similar analyses with different
parameters, and exploration of additional data to support
new findings. The H. pylori demo is available on the Gag-
gle website.

In this example we make use of diverse types of data
archived in different locations around the world: Chro-
mosome maps at BioCyc [15]; a local copy of publicly
available mRNA data from Stanford microarray database
[23]; functional associations from Prolinks [24];protein-
protein interactions [25]; a local copy of a gene/protein
annotation file from TIGR; metabolic pathways at KEGG
[7] in Japan; and all Pubmed abstracts, and protein and
DNA sequences through STRING [14] in Germany. The

example also demonstrates the power of the Gaggle plat-
form in enabling software interoperability, by including
the DataMatrix Viewer (DMV) for exploring microarray
data; JGR goose for statistical analysis using the 'R' pack-
age; and TMeV for clustering analysis of microarray data.
More importantly, it showcases how broadcasting no
more than 4 messages types through the Gaggle boss can
catalyze seamless integration of all of these data and soft-
ware (screenshots shown in Fig 2).

Step-by-step demonstration of Gaggle exploration of H. pylori

systems biology data (see accompanying Fig 2 for details)

The goal of this analysis was to identify genes function-
ally associated with cytotoxin-associated genes of H.
pylori

Step 1. We searched for the term "cag" (short for 'cyto-
toxin-associated gene') in the "Annotation Search" tab of
the Gaggle Boss, identifying 26 genes encoded in the H.
pylori genome (The annotations were obtained from the
Comprehensive Microbial Resource at TIGR http://
cmr.tigr.org.

Step 2. All records (Total 26 genes) retrieved in Step 1 were
selected within the annotation tab.

Step 3. The selected genes were broadcast to BioCyc [26],
DMV (Johnson et al, submitted) and BiclusterView (see
below, Reiss et al, submitted) (by selecting appropriate
check boxes in the Gaggle Boss main panel). Taking Route
A, records matching the 26 genes were retrieved through a
web query against the BioCyc database for Helicobacter
pylori. Upon following links for individual records we
learned more about genome organization of these genes
(for example cag19 seems to be in an operon along with
cag21, cag20 and cag18) and that all cag genes are encoded
contiguously within an approximately 40 Kbp patho-
genicity island.

Step 4. After reviewing basic information for genomic
organization of cag genes we took Route B to investigate
relationships among them by exploring expression pro-
files in microarray data downloaded from the Stanford
Microarray Database [27]. Route B begins with analysis of
mRNA profiles for the 26 cag genes in the DMV; these
genes were selected through a broadcast described in Step
3. By clicking the "Plot Profiles" button we visualized the
expression profiles for all cag genes within the DMV. This
indicated that the relationship among their expression
profiles is complex and requires clustering analysis for
proper evaluation.

Step 5. Using the "Create New Matrix" feature of DMV a
sub-matrix of the 26 cag genes were created within the
DMV.

http://cmr.tigr.org
http://cmr.tigr.org

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 9 of 13

(page number not for citation purposes)

Step 6. Subsequently all genes within this new sub-matrix
were selected using the "Select All" feature.

Step 7. To ensure uniformity in the expression data across
conditions we decided to normalize the data (variance = 1
and mean = 0). The selected sub-matrix was broadcast to
JGR. This matrix was received as R-object m1 in JGR. The

Annotated prolinks network view of 263 genes identified to beputatively functionally associated with one or more of the 26 cytotoxin-associated cag genes in H. pyloriFigure 3
Annotated prolinks network view of 263 genes identified to beputatively functionally associated with one or
more of the 26 cytotoxin-associated cag genes in H. pylori. This filtered network was obtained through selection of
genes in biclusters of putatively co-regulated containing one or more cag gene(s). The cag genes are indicated with pink node
borders. See inset keys for description of node and edge coloring.

hydc

HP0506

HP0656

chea

hype

lig

sms

hyda

rpl17

rfae

HP0861

lgt

dxs

HP0272

hemc

pbp2

invA

czca

HP0553
copa

HP1054

lepa

HP0248

cag9

ylxh

metl

virB11

acca

HP1459

murc

ymxg

cag12

HP1430

gatb

cag5

hypb
ftsh

flaA

trmd

HP1230

tyra

flhf

dead

tsf

HP0659

HP1043

HP1029

HP0258

HP1450

pura

HP0650

cag26

HP0956

biob

omp30

HP0249

HP0944

HP1122

ftsk

aspb

dapd

msra

pfr

HP0655

cag8

HP0860

HP0654

nccb

HP0920

cag7

dnae

gata

HP0933

lyss

holb

HP0554

glmu

hydb

prfa

HP0739

rps2

atpg

sodb

tage

tage

HP0734

mure

tena

ispa

gcpe

HP0334

HP0591

yaee

kpsf

HP0715

secy

mreb

rpoa

HP0971

cyss

HP1028

tdhf

HP1056HP0552

rlpa

HP0271

omp29

cag23

dpra

folc

map

flia

icd

HP0660

pros

fliy

HP0028

flha

pssa

omp5

rps1

HP1350

HP0707

ccda

HP1044

uvrc

aroc

lon

murg

HP1055

ribe

folp

HP1546

clpb

abc

omp9

flim

murf

thrs

lysc

omp2

dnaa

dada

pbp-1a

accd

HP0374 muty HP1443

mod

HP1184

napa

HP0964

HP0938

HP0267
HP0268

dnak

HP1588

atpf

atpf'

HP0518

HP0274

HP0487 HP1486 wbpb HP1143

exbb

exbd

pgm

HP1345

HP0983

HP1033

HP1513

HP0840

ompp1

cag16

prma

aroq

HP0150

HP1037

hypa

pgi

HP0105

metb

HP1490

nth

HP0586

HP0419

args

HP0508

glcd

algc

ibpb

rfac

nqo13

nqo14

xsea mod HP1553 HP0369

bacterioferriti

HP1100

ilvc

eda

HP0668 lexa htpg HP0492 HP1288 cag25

HP1455

lpp20

HP0466

HP0759

HP0757

HP0758

pepa fic HP0469 acoe HP1392

llm

fla

fixo HP0310

HP1462

cag21 rbfa HP1109 HP0112 HP1049 kefb cad HP0568 HP0863 HP0746 HP1111 HP1165 tils fumc HP1568 HP0190 HP0322 prtc dhs1 HP1322 HP0114 ribdtsaa

Flagella/chemotaxis

Outer membrane proteins

hydrogenase (and related functions)

superoxide
dismutase

Invasion protein

collagenase

Predicted Ricin-like
protein

FlgM

FliA

Key regulators
of flagellar
biogenesis

uracil-DNA
glycosylase

Gene Cluster

Gene Neighbor

Gene Fusion

Phylogenetic Profile

Protein-protein Interactions

Peptidoglycan biosynthesis

Folate biosynthesis

LPS biosynthesis

Lysine biosynthesis

Oxidative phosphorylation

Ion efflux/Metal and drug resistance

DNA replication and repair/protease

Aminoacyl tRNA synthase

Type IV secretion

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 10 of 13

(page number not for citation purposes)

data were then normalized to matrix nm using an R func-
tion (normalize).

Step 8. The normalized sub-matrix (nm) was broadcast
(using command "broadcast (nm)" within JGR) to TMeV
[12] for further analysis.

Step 9. Expression profiles were clustered using the k-
means algorithm (k = 5, Euclidean correlation metric)
within TMeV. Upon viewing the 5 k-means clusters it was
evident that whereas some cag genes, such as cag1, cag20,
cag21 and cag26, had correlated profiles over almost all
conditions, others (for example, cag2, cag11, cag12, cag15,
cag24 and cag25) were correlated only under a subset of
conditions. This elevated the importance of using a more
sophisticated clustering procedure such as cMonkey (Reiss
et al, submitted), which identifies putative groups of
genes co-regulated over a subset of conditions (biclusters)
by simultaneously analyzing expression data, functional
and/or physical associations, and de novo detected cis-reg-
ulatory motifs (Reiss et al, submitted). We have developed
a simple Cytoscape plug-in goose for filtering and explor-
ing these biclusters (called BiclusterView), along with a
PDF file viewer goose (called ClusterInfo) for viewing spe-
cific cluster information such as detected cis-regulatory
motifs.

Step 10. Taking Route C, 19 biclusters containing patho-
genicity genes (selected within the BiclusterView through
a broadcast action described in Step 3) were sent to a new
BiclusterView window (Ctrl + N). 12 of these biclusters
shared metabolic processes and/or contained genes
encoding physically interacting proteins, suggesting that
these biclusters are functionally related. Properties of all
biclusters (expression correlation, conserved motifs etc.)
were further explored by broadcasting them using the
"broadcast node names" feature to the ClusterInfo appli-
cation. All biclusters were found to be of high quality and
some contained a motif implicated in pH regulation
(Reiss etal, submitted).

Step 11. To further explore functional associations among
the pathogenicity genes, all genes contained within the 19
biclusters were broadcast to the Cytoscape view of the H.
pylori Prolinks [24] Network using the "Broadcast genes
and conditions" feature within the BiclusterView Control
panel. All selected nodes (263 genes) within the selected
Prolinks subnetwork were sent to a new window (Ctrl +
N) along with associated edges. Altogether 203 genes
within this network were interconnected through the fol-
lowing relationships: 85 gene cluster edges, 13 gene
fusion edges, 99 gene neighbor edges, 83 phylogenetic
profile edges and 53 protein-protein interaction edges
[24,28]. Viewing functions for these 263 genes in the GB
annotation tab revealed that many complex functions are

associated with the cag gene blicusters (Additional file 1)
elevating the need for further analysis with KEGG and
STRING (below).

Step 12. Finally, we broadcast all genes in the Prolinks
sub-network to KEGG [7] and STRING [14] to explore
metabolic pathways represented in these biclusters as well
as literature containing co-occurrence of two or more
genes in these 19 biclusters. Altogether ~25 pathways with
three or more enzyme matches were retrieved from KEGG
(Additional file 2) and ~927 publications were retrieved
through STRING. Within the abstract of these publica-
tions were co-occurrences of two or more genes from the
19 biclusters (or their orthologs in other organisms).
Given the large number of papers that were retrieved, we
subsequently conducted repeated searches in STRING by
broadcasting fewer numbers of genes at a time. In the sec-
tion below we provide a synthesis of our findings.

Summary of findings (Fig 3)

Using the Gaggle we were able to tease out from a compli-
cated landscape of 6399 putative associations and physi-
cal interactions among 1539 genes, 57 microarray
conditions, 246 gene biclusters, and nearly 79 KEGG
pathways a far more easily comprehensible picture from
which to gain biological insight. Specifically, in 12 steps
we identified several previously known and also unknown
relationships that could serve as tangible leads for future
experimental investigation of H. pylori pathogenesis.

Among the pathways containing the filtered set of 263
genes (Additional file 1) was an over-representation of
major processes that have been previously implicated in
aspects of pathogenesis such as peptidoglycan biosynthe-
sis [29], lipopolysaccharide biosynthesis [30], flagellar
biosynthesis [31], Type IV secretion [32] (Additional file
2, Fig 3). Also present was an overrepresentation of
enzymes for aa-tRNA synthesis, reductive carboxylate
cycle, pyruvate metabolism, lysine biosynthesis, oxidative
phosphoorylation and glycolysis/gluconeogenesis. Cate-
gorizing the 263 genes into these various pathways helped
explore putative roles for proteins of unknown function
(Additional file 1).

Altogether 71 proteins associated with the cag gene biclus-
ters were of unknown function. Among these unknown
function proteins are four conserved secreted proteins
including one protein (HP0028) linked through protein-
protein interactions to Cag26 (CagA) – a key pathogenesis
protein [33]. Another set of interesting unknown function
proteins were HP1028 and HP1029 connected via gene
cluster (operon) edges to FliY and FliM – key flagellar
switch proteins. Also present in this operon is an alternate
sigma factor (σ28) gene fliA which has been implicated in
mediating transcription of FlaA (also present in the flagel-

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 11 of 13

(page number not for citation purposes)

lar gene association network (Fig 3)), the major flagellar
subunit required for both motility [34] as well as gastric
colonization [35]. Note that co-expression analysis alone
was not sufficient to find these relationships. Moreover,
both functional associations and protein-protein interac-
tions are notoriously noisy; however, our use of a com-
bined analysis of all of these orthogonal data sources
increases the likelihood that these relationships are real.

To further explore putative functions of these key genes of
unknown function, we retrieved their protein sequences
(by broadcasting the genes to the STRING goose). The
protein sequences were manually submitted to Robetta, a
structure prediction server [36]. Among the various pro-
teins analyzed the most striking was the match of pre-
dicted three dimensional structure of HP1028 to B-chain
of ebulin (PDB: 1 hwm), a ricin-like toxin. Proteins with
the conserved ricin domain are ribosome inactivating pro-
teins widely distributed in plants, fungi, algae and bacte-
ria. This putative function for HP1028, coupled to its
putative functional association with flagellar proteins,
implicates it in a likelyrole in H. pylori pathogenesis. In a
similar manner, future functional exploration of addi-
tional unknown function genes in our candidate set
(Additional file 1) will provide basis for discovery of
potentially new candidate genes involved in pathogenesis
of H. pylori.

This case study illustrates the exploration of one set of het-
erogeneous data, using one particular combination of
web resources and gaggled programs. The flexibility of the
Gaggle enables any other kinds of exploration, combining
other kinds of data, employing other analytical programs
and web resources, and using different analytical styles
(emphasizing genomics, or statistics, or simulation). In
other words, a user can choose her/his style of data analy-
sis through extensive trial and error operations using the
Gaggle to layout a landscape of complex diverse data from
which to tease out biological insights.

Targeted users of the Gaggle

Through the example above we illustrate how the Gaggle
is designed to serve biologists at all points along the spec-
trum, from biologists who conduct most of their analyses
using spreadsheets and web browsers to statistically savvy
computational biologists who can write their own R code.
However, note that, with the exception of the R goose, all
current programs in the Gaggle are point-and-click appli-
cations, and fully useful to the non-programming biolo-
gist. Among these point-and click applications, are
applications such as TIGR MeV [12], which provide the
biologist quick access to a suite of statistical analysis tools.
More importantly, although TIGR MeV development will
continue independent of the Gaggle, users of the Gaggle
will benefit from advances in this third party tool. This

exemplifies the benefit of coupling existing popular open
source software. As and when more popular software are
developed we will make them part of the Gaggle.

With the addition of the R goose, a new class of biological
work is supported, through which even the most profi-
cient R programmer may benefit from a collection of
point-and-click geese, for instance, for the visual display
of STRING associations, KEGG pathways, and Cytoscape
networks, all with just a few mouse clicks.

In our experience, there is yet a third class of biologists,
who have no prior experience with R; but who use the
Gaggle to explore their data with the point-and-click
geese; and are also not opposed to using a few simple one-
line R commands as long as they have a cribsheet to work
from. We provide this cribsheet on the Gaggle website and
intend to populate it with useful commands that are
clearly described from a biologist's standpoint. Some of
the commands in the cribsheet tell the user how to filter
their data, normalize it, and find intersection and/or
union between two matrices or gene lists.

Thus, the Gaggle provides a setting in which point-and-
click exploration may be gently expanded to include the
sort of statistical data exploration, which is becoming
indispensable in analyzing complex systems biology data.
In other words the Gaggle can be (and is currently) used
both by novices to computational biology and also by
high end statisticians familiar with R. thereby improving
communication among collaborators of diverse expertise.

Future Work
In addition to the straightforward task of adding new
geese to the Gaggle (for example, a goose for Gene Ontol-
ogy annotation and for Robetta structure prediction), we
also wish to add new capabilities to existing geese. For
example, we plan to add simple scripting capabilities to
the Boss, probably using Jython, to support 'goose pipe-
lines', in which the result from one goose may be auto-
matically sent to another. Another ambitious goal
currently planned is to add a unified 'save state' capability
to the Gaggle, requiring (primarily) some extensions to
each participating goose.

Conclusion
The Gaggle is a minimal, effective and open-ended system
for integrating software and data sources used in systems
biology analyses. The Gaggle's effectiveness comes from
the recognition that four simple data messages each free of
biological semantics, and a judicious use of the Java pro-
gramming language, are all that is needed to integrate
diverse types of data and software. More importantly, the
Gaggle is easily extensible and new software and data-
bases can be easily converted into geese of the Gaggle with

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 12 of 13

(page number not for citation purposes)

little effort. This has advantage over other approaches
which require tight coupling of software and databases
and therefore extensive effort to integrate new resources
into the framework. This we emphasize is an important
consideration because many valuable databases and soft-
ware already exist and new resources are constantly
emerging -if we are to take full advantage of all these exist-
ing and forthcoming resources without reformatting data
or extensively reconfiguring those resources, we predict
that a strategy such as the Gaggle will prove to be invalu-
able.

Source code and Gaggle availability
All of the Gaggle source code, and all of the geese men-
tioned in this manuscript, are available, with full docu-
mentation along with a growing number of ready-to-use
"Gaggles" of model organisms on the Gaggle website.

Authors' contributions
PS Conceived and initiated the project. Developed and
implemented the method and the resultant computer pro-
gram. Wrote the manuscript.

DJR Obtained and parsed out the relevant biological con-
ditions in the H. pylori microarray data. Allowed access to
pre-publication results of the cMonkey algorithm.

RB Obtained and parsed out the relevant biological con-
ditions in the H. pylori microarray data. Allowed access to
pre-publication results of the cMonkey algorithm.

NSB Conceived and initiated the project. Provided direc-
tion, feedback on the quality of results, software design
and crafted the case study. Wrote the manuscript.

Acknowledgements
We thank Nat Goodman and Burak Kutlu for critical reading of the manu-

script and helpful suggestions. The work was funded through grants from

NSF (EF-0313754) and DoE (DAAD13-03-O-0057) to NSB.

References
1. Facciotti MT, Bonneau R, Hood L, Baliga NS: Systems Biology

Experimental Design - Considerations for Building Predic-
tive Gene Regulatory Network Models for Prokaryotic Sys-
tems. Current Genomics 2004, 5(7):527-544.

2. Eckart JD, Sobral BW: A life scientist's gateway to distributed
data management and computing: the PathPort/ToolBus
framework. Omics 2003, 7(1):79-88.

3. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver
T, Glover K, Pocock MR, Wipat A, Li P: Taverna: a tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004, 20(17):3045-3054.

4. Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H,
Gustafson S, Buetow KH: caCORE: a common infrastructure
for cancer informatics. Bioinformatics 2003, 19(18):2404-2412.

5. Gaggle: [http://gaggle.systemsbiology.org/]. .
6. Taylor JR: Cognitive Grammar. Oxford , Oxford University Press;

2002:634.
7. Kanehisa M: The KEGG database. Novartis Found Symp 2002,

247:91-101; discussion 101-3, 119-28, 244-52.

8. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin
N, Schwikowski B, Ideker T: Cytoscape: a software environment
for integrated models of biomolecular interaction networks.
Genome Res 2003, 13(11):2498-2504.

9. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin
AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S,
Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC,
Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer
U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness
ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Sha-
piro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M,
Wagner J, Wang J: The systems biology markup language
(SBML): a medium for representation and exchange of bio-
chemical network models. Bioinformatics 2003, 19(4):524-531.

10. Wilkinson MD, Links M: BioMOBY: an open source biological
web services proposal. Brief Bioinform 2002, 3(4):331-341.

11. BioPAX: [http://www.biopax.org]. .
12. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J,

Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A,
Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A,
Trush V, Quackenbush J: TM4: a free, open-source system for
microarray data management and analysis. Biotechniques 2003,
34(2):374-378.

13. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S,
Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W,
Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G,
Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open
software development for computational biology and bioin-
formatics. Genome Biol 2004, 5(10):R80.

14. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M,
Jouffre N, Huynen MA, Bork P: STRING: known and predicted
protein-protein associations, integrated and transferred
across organisms. Nucleic Acids Res 2005, 33(Database
issue):D433-7.

15. Krummenacker M, Paley S, Mueller L, Yan T, Karp PD: Querying
and computing with BioCyc databases. Bioinformatics 2005,
21(16):3454-3455.

16. JavaWebstart: [http://java.sun.com/products/javawebstart/]. .
17. R_Statistical_package: [http://www.r-project.org]. .
18. RoSuDA: [http://www.rosuda.org/JGR]. .
19. JNI: [http://java.sun.com/j2se/1.5.0/docs/guide/jni/]. .
20. Jython: [http://www.jython.org/]. .
21. SOAP: [http://www.w3.org/TR/soap/]. .
22. Parnas DL: On the Criteria To Be Used in Decomposing Sys-

tems into Modules. Communications of the ACM 1972,
15(12):1053-1058.

23. Stanford_microarray_database: [http://genome-www5.stan-
ford.edu/]. .

24. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisen-
berg D: Prolinks: a database of protein functional linkages
derived from coevolution. Genome Biol 2004, 5(5):R35.

25. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen
G, Petel F, Wojcik J, Schachter V, Chemama Y, Labigne A, Legrain P:
The protein-protein interaction map of Helicobacter pylori.
Nature 2001, 409(6817):211-215.

26. Karp PD, Paley S: Integrated access to metabolic and genomic
data. J Comput Biol 1996, 3(1):191-212.

27. Ball CA, Awad IA, Demeter J, Gollub J, Hebert JM, Hernandez-Bous-
sard T, Jin H, Matese JC, Nitzberg M, Wymore F, Zachariah ZK,
Brown PO, Sherlock G: The Stanford Microarray Database
accommodates additional microarray platforms and data
formats. Nucleic Acids Res 2005, 33(Database issue):D580-2.

28. Costa K, Bacher G, Allmaier G, Dominguez-Bello MG, Engstrand L,
Falk P, de Pedro MA, Garcia-del Portillo F: The Morphological
Transition of Helicobacter pylori Cells from Spiral to Coc-
coid Is Preceded by a Substantial Modification of the Cell
Wall. J Bacteriol 1999, 181(12):3710-3715.

29. Moran AP: The role of lipopolysaccharide in Helicobacter
pylori pathogenesis. Aliment Pharmacol Ther 1996, 10 Suppl
1:39-50.

30. Kostrzynska M, Betts JD, Austin JW, Trust TJ: Identification, char-
acterization, and spatial localization of two flagellin species
in Helicobacter pylori flagella. J Bacteriol 1991, 173(3):937-946.

31. Suerbaum S, Michetti P: Helicobacter pylori infection. N Engl J
Med 2002, 347(15):1175-1186.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12831562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12831562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12831562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12539951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12611808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12613259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11196647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11196647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8697237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8697237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10368145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8730258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8730258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1704004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1704004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1704004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12374879

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2006, 7:176 http://www.biomedcentral.com/1471-2105/7/176

Page 13 of 13

(page number not for citation purposes)

32. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS: Altered states:
involvement of phosphorylated CagA in the induction of
host cellular growth changes by Helicobacter pylori. Proc Natl
Acad Sci U S A 1999, 96(25):14559-14564.

33. Josenhans C, Labigne A, Suerbaum S: Comparative ultrastruc-
tural and functional studies of Helicobacter pylori and Heli-
cobacter mustelae flagellin mutants: both flagellin subunits,
FlaA and FlaB, are necessary for full motility in Helicobacter
species. J Bacteriol 1995, 177(11):3010-3020.

34. Eaton KA, Suerbaum S, Josenhans C, Krakowka S: Colonization of
gnotobiotic piglets by Helicobacter pylori deficient in two
flagellin genes. Infect Immun 1996, 64(7):2445-2448.

35. Chivian D, Kim DE, Malmstrom L, Bradley P, Robertson T, Murphy P,
Strauss CE, Bonneau R, Rohl CA, Baker D: Automated prediction
of CASP-5 structures using the Robetta server. Proteins 2003,
53 Suppl 6:524-533.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10588744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10588744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10588744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8698465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8698465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8698465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579342
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	The Gaggle: an overview
	The Gaggle in action: A simple introductory example
	Gaggle data types
	The Gaggle boss
	Current Geese
	Starting the Gaggle
	Supporting other programming languages in the Gaggle
	Software design and engineering
	ConnectToGaggle
	handleNameList
	DoHide
	Scalability of the Gaggle
	(i) Adding new programs and web resources
	(ii) Performance

	Results and discussion
	A case study: Exploring pathogenesis in Helicobacter pylori
	Step-by-step demonstration of Gaggle exploration of H. pylori systems biology data (see accompanying Fig
	Summary of findings (Fig
	Targeted users of the Gaggle

	Future Work
	Conclusion
	Source code and Gaggle availability
	Authors' contributions
	Acknowledgements
	References

