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ABSTRACT

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectropho-
tometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the
stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia’s unique feature is the measurement of parallaxes and
proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown.
Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties
using the satellite’s data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space.
Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior
to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance,
we can attain internal accuracies (rms residuals) on F, G, K, M dwarfs and giants at G = 15 (V = 15–17) for a wide range of metallicites and
interstellar extinctions of around 100 K in effective temperature (Teff), 0.1 mag in extinction (A0), 0.2 dex in metallicity ([Fe/H]), and 0.25 dex in
surface gravity (log g). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over
this parameter range. After its launch in December 2013, Gaia will nominally observe for five years, during which the system we describe will
continue to evolve in light of experience with the real data.
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1. Introduction

The ESA Gaia satellite will provide the most extensive astromet-
ric survey of our Galaxy to date. Its primary mission is to mea-
sure the positions, parallaxes, and proper motions for essentially
all objects in the sky between visual (G-band) magnitudes 6 and
20, some 109 stars and several million galaxies and quasars. By
revealing the three-dimensional distribution and space motions
of a statistically significant sample of stars across the whole
Galaxy, Gaia will enable a fundamentally new type of explo-
ration of the structure, formation and evolution of our Galaxy.
Furthermore, this exquisite astrometry – parallax uncertainties
as low as 10 µas – will promote major advances in our knowl-
edge and understanding of stellar structure, open clusters, binary
stars and exoplanets, lead to discoveries of near-earth asteroids
and provide tests of general relativity (e.g. Perryman et al. 2001;
Turon et al. 2005; Lindegren et al. 2008; Casertano et al. 2008;
Bailer-Jones 2009; Mignard & Klioner 2010; Tanga & Mignard
2012).

To achieve these goals, astrophysical information on the
astrometrically measured sources is indispensable. For this rea-
son Gaia is equipped with two low resolution prism spec-
trophotometers, which together provide the spectral energy dis-
tribution of all targets from 330 to 1050 nm. Data from these

spectrophotometers (named BP and RP for “blue photometer”
and “red photometer”) will be used to classify sources and to
determine their astrophysical parameters (APs), such as stel-
lar metallicities, line-of-sight extinctions, and the redshifts of
quasars. The spectrophotometry is also required to correct the
astrometry for colour-dependent shifts of the image centroids.
Spectra from the higher resolution radial velocity spectrograph
(RVS, 847–871 nm) on board will provide further information
for estimating APs as well as some individual abundances for
the brighter stars.

Gaia scans the sky continuously, building up data on sources
over the course of its five year mission. Its scanning strategy,
plus the need for a sophisticated self-calibration of the astrome-
try, demands an elaborate data processing procedure. It involves
numerous interdependent operations on the data, including pho-
tometric processing, epoch cross-matching, spectral reconstruc-
tion, CCD calibration, attitude modelling, astrometric parameter
determination, flux calibration, astrophysical parameter estima-
tion, and variability analysis, to name just a few. These tasks
are the responsibility of a large academic consortium, the Data
Processing and Analysis Consortium (DPAC), comprising over
400 members in 20 countries. The DPAC comprises nine coor-
dination units (CUs), each dealing with a different aspect of the
data processing.
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One of these CUs, CU8 “Astrophysical Parameters”, is re-
sponsible for classifying and estimating the astrophysical pa-
rameters of the Gaia sources. In this article we describe the data
processing system developed to achieve this goal. This system,
called Apsis, comprises a number of modules, each of which will
be described here.

The Gaia data processing is organized into a series of con-
secutive cycles centered around a versioned main data base
(MDB). At the beginning of each operation cycle, the various
processes read the data they need from the MDB. At the end
of the cycle, the results are written to a new version of the
MDB which, together with new data from the satellite, forms
the MDB for the next processing cycle. In this way, all of the
Gaia data will be sequentially processed until, at some version
of the MDB several cycles after the end of observations, all data
have received all necessary treatment and the final catalogue
can be produced. Some suitably processed and calibrated data
will be siphoned off during the processing into intermediate data
releases, expected to start about two years after launch (Prusti
2012; DPAC 2012). For more details of the overall processing
methodology see DPAC (2007), O’Mullane et al. (2007), and
Mignard et al. (2008).

We continue our presentation of the Gaia astrophysical pro-
cessing system in Sect. 2 by looking more closely at the data
Gaia will provide. Section 3 gives an overview of Apsis: the
guiding concepts behind it, its component modules and how they
interact, and how it will be used during the mission. Section 4
describes the data we have used for model training and test-
ing. In Sect. 5 we describe each of the modules and give some
impression of the results which can be expected. More details
on several of these can be found in published or soon-to-be
published articles. In Sect. 6 we outline how we plan to vali-
date and calibrate the system once we get the Gaia data, and
how we might improve the algorithms during the mission. We
wrap up in Sect. 7. More information on the Gaia mission, the
data processing and planned data releases, as well as some of
the DPAC technical notes cited, can be obtained from http:
//www.rssd.esa.int/Gaia

2. Gaia observations and data

An overview of the Gaia instruments, their properties and ex-
pected performance can be found in de Bruijne (2012) and at
http://tinyurl.com/GaiaPerformance. Here we summa-
rize some essential features relevant to our description of Apsis.

2.1. Overview and observation strategy

Gaia observes continuously, its two telescopes – which share a
focal plane – scanning a great circle on the sky as the satellite
rotates, once every six hours. The satellite simultaneously pre-
cesses with a period of 63 days. The combined result of these
motions is that the entire sky is observed after 183 days. Each
source is therefore observed a number of times over the course
of the mission. These multiple observations, made at different
points on Gaia’s orbit around the Sun, are the basis for the as-
trometric analysis (Lindegren et al. 2012).

As the satellite rotates, a source sweeps across a large focal
plane mosaic of CCDs. These are read out synchronously with
the source motion (“time-delayed integration”, TDI). Over the
first 0.7◦ of the focal plane scan, the source is observed in un-
filtered light – the G-band – for the purpose of the astrometry.
Further along the light is dispersed by two prisms to produce

the BP/RP spectrophotometry. At the trailing edge the light is
dispersed by a spectrograph to deliver the RVS spectra.

Although Gaia observes the entire sky, not all CCD pixels
are transmitted to the ground. Gaia selects, in real-time, win-
dows around point sources brighter than G = 20. The profile of
the G-band, spanning 330–1050 nm, is defined by the mirror and
CCD response (Jordi et al. 2010)1. The source detection is near-
diffraction limited to about 0.1′′ (the primary mirrors have di-
mensions 1.45 m × 0.5 m). While most of the 109 sources we ex-
pect Gaia to observe will be stars, a few million will be quasars
and galaxies with point-like cores, and asteroids. Robin et al.
(2012) give predictions of the number, distribution and types of
sources which will be observed.

Each source will be observed between 40 and 250 times, de-
pending primarily on its ecliptic latitude. BP/RP spectrophotom-
etry is nominally obtained for all sources at every epoch. These
are combined during the processing and calibration into a single
BP/RP spectrum for each source. RVS spectra are obtained at
fewer epochs due to the focal plane architecture, and these are
also combined.

The accuracy of AP estimation depends strongly on the spec-
tral signal-to-noise ratio (S/N) which, for a given number of
epochs, is primarily a function of the source’s G magnitude. In
the rest of this article we will consider a single BP/RP spectrum
to be a combination of 70 observation epochs, which is the sky-
averaged number of epochs per source (accounting also for var-
ious sources of epoch loss). For RVS it is 40 epochs. We refer to
such combined spectra as “end-of-mission” spectra. All results
in this article were obtained using (simulated) end-of-mission
spectra.

2.2. Spectrophotometry (BP/RP) and spectroscopy (RVS)

BP and RP spectra are read out of the CCDs with 60 wavelength
samples (or “bands”; they can be thought of as narrow overlap-
ping filters). BP spans 330–680 nm with a resolution (=λ/∆λ)
varying from 85 to 13, and RP spans 640–1050 nm with a reso-
lution of 26 to 17 (de Bruijne 2012). (∆λ is defined as the 76%
energy width of the line spread function.) The resolution is con-
siderably lower than what one would like for AP estimation, but
limitations are set by numerous factors2. The upstream process-
ing can in principle deliver spectra of higher resolution by a fac-
tor of a few for all sources, because the multiple epoch spectra
are offset by fractions of a sample. Such “oversampled spectra”
are not used in the present work. Examples of star, galaxy and
quasar spectra are shown in Fig. 1. Low S/N bands at the edges
of both BP and RP have been omitted (approximately 8 bands
from each end of both). Apsis will use BP/RP to classify all Gaia
sources and to estimate APs down to the Gaia magnitude limit,
although some “weaker” APs, such as log g, will be poorly esti-
mated at G = 20.

The expected variation of S/N of BP/RP with magnitude is
shown in Fig. 2. This plot includes a calibration error corre-
sponding to 0.3% of the flux, an estimate based both on past
experience and our current understanding of the impact of sys-
tematic errors. This has not yet been included in the synthetic
spectra used to train and test most Apsis modules, because it

1 The G − V colours for B1V, G2V, and M6V stars are −0.01, −0.18
and −2.27 mag respectively, so the Gaia limiting magnitude of G = 20
corresponds to V = 20–22 depending on the spectral type.
2 The Gaia consortium optimized a multi-band photometric system for
Gaia, described by Jordi et al. (2006), but due to mission constraints this
was not adopted.
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Fig. 1. Example BP/RP spectrophotometry. The spectra have been normalized to have the same number of photon counts over the spectral bands
plotted. (This does not yield the same area under each spectrum as plotted – against wavelength – due to the nonlinear dispersion.) Except for the
emission line stars, all spectra are noise-free synthetic spectra. Several examples of each type of object are shown in each panel (the line colours
are arbitrary). The galaxies are for a range of types, all with zero redshift and zero Galactic extinction. The quasar spectra cover a range of emission
line strengths, continuum slopes and redshifts. In the ultra cool dwarf panel six spectra are shown with Teff ranging from 500–3000 K in steps of
500 K for log g= 5 dex. The top-right panel shows five emission line sources: Herbig Ae, PNe, T Tauri, WN4/WCE, dMe. The lack of red flux for
these sources is a result of the input spectra used not spanning the full BP/RP wavelength range. The bottom row shows normal stars, in which
just one parameter varies in each panel. From left to right these are: Teff ∈ {3000, 4000, 5000, 6000, 7000, 8500, 10 000, 12 000, 15 000, 20 000}K;
A0 ∈ {0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0}mag; [Fe/H] ∈ {−2.5,−1.5,−0.5,+0.5} dex; log g ∈ {0, 2.5, 4, 5.5} dex. The other parameters are held
constant as appropriate at Teff = 5000 K, A0 = 0 mag, [Fe/H]= 0 dex, log g= 4.0 dex. A common photon count scale is used in all the panels of the
bottom row. The cooler/redder stars are those with increasingly more flux in the red part of the spectrum in the two lower left panels.

Fig. 2. Variation of the S/N per band in end-of-mission BP/RP for a
set of 2000 stars covering the HR diagram. The inset is a zoom of the
fainter magnitudes. Discontinuities occur at several brighter magnitudes
(barely visible here) on account of the use of TDI gates to limit the
integration time for bright stars in order to avoid saturation of the CCDs.
The S/N for each spectrum is the mean over the bands plotted in Fig. 1.
In addition to the formal noise model errors, an additional error of 0.3%
in the flux has been added in quadrature to accommodate calibration
errors.

is difficult to estimate its magnitude in advance. Ignoring this
calibration error increases the S/N at G = 15 from about 175 to
around 225, and for G > 17 the difference in S/N is 10% or less,
so most of our results are unaffected by this. Without calibration
errors the S/N would extend to 1000–2000 for G < 12.

The radial velocity spectrograph (Katz et al. 2004; Cropper
& Katz 2011) records spectra from 847 to 871 nm (the Ca 
triplet region) at a resolution of 11 200; the figures given here
reflect the manufactured instruments (T. Prusti September 2012,
priv. comm.). For S/N reasons, RVS does not extend to the
G = 20 limit of the other instruments, but will be limited to about
GRVS = 17, so is expected to deliver useable spectra for of or-
der 200 million stars3. Spectra fainter than GRVS = 10 are binned
on-chip by a factor of three in the dispersion direction in order
to improve the S/N, at the cost of a lower spectral resolution.
The main purpose of RVS is to measure radial velocities – the
sixth component of the phase space. The radial velocity preci-
sion for most stars ranges from 1–15 km s−1, depending strongly
on both colour and magnitude (Katz et al. 2011; de Bruijne
2012). Apsis uses RVS data both for general stellar parame-
ter estimation down to about GRVS = 14.5 (of order 35 million
stars), and for characterizing specific types, such as emission line
objects.

3 GRVS is the photometric band formed by integrating the RVS spec-
trum, and in terms of magnitudes GRVS ≃ IC.
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Fig. 3. Example RVS spectra. Each spectrum is noise free and at
GRVS = 12 (i.e. with RVS in low resolution mode). The line colours are
arbitrary. Three of the panels show the variation of one of the APs with
the other two held constant, the constant values being Teff = 5500 K,
[Fe/H]= 0 dex, log g= 4.0 dex. [α/Fe]= 0 dex in all cases. In these
cases the spectra in each panel have been offset vertically for clar-
ity. The AP ranges (increasing from bottom to top in each panel)
are: [Fe/H]=−2.5 to 0.0 in steps of 0.5 dex; log g= 0 to 5 in steps
of 1 dex; Teff ∈ {4500, 5500, 6500, 8250, 14 000, 40 000}K. The bottom
right panel shows examples of five emission line stars (here the offset is
zero). They are, from bottom to top around the feature at 859 nm: nova;
WC star; O6f star; Be star; B[e] star.

Examples of the RVS spectra are shown in Fig. 3. The typi-
cal variation of the S/N with GRVS is shown in Fig. 4. This plot
includes a 0.3% error assumed to arise from imperfect calibra-
tion and normalization. This was not included in the synthetic
libraries used to train and test Apsis modules, although it de-
creases the S/N by no more than 15% for GRVS> 10. It must be
appreciated, however, that obtaining useable RVS spectra at the
faint end depends critically on how well charge transfer ineffi-
ciency (CTI) effects in the CCDs can be modelled (Prod’homme
et al. 2012).

The extraction, combination and calibration of both BP/RP
and RVS spectra are complicated tasks which will not be dis-
cussed here. They are the responsibility of the coordination units
CU5 (for BP/RP) and CU6 (for RVS) in DPAC, and are dis-
cussed in various technical notes (e.g. Jordi 2011; Katz et al.
2011; De Angeli et al. 2012). Apsis works with “internally cal-
ibrated” BP/RP and RVS spectra, by which we mean they are
all on a common flux scale (and various CCD phenomena have
been removed), but the instrumental profile and dispersion func-
tion have not been removed. The library spectra which form the
basis of training our classification modules are projected into this
data space using an instrument simulator (see Sect. 4).

2.3. Photometry and astrometry

The sources’ G-band magnitudes are measured to a precision of
1–3 mmag, limited by calibration errors even at G = 20. The data
processing will also produce integrated photometry for BP, RP
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Fig. 4. Variation of the S/N per spectral element in end-of-mission
RVS spectra with GRVS. The inset is a zoom of the fainter magnitudes.
The discontinuity at GRVS = 10 is due to the on-chip binning of the spec-
trum in the dispersion direction for fainter stars, and that at GRVS = 7
is due to on-chip binning perpendicular to the dispersion direction for
fainter stars. In addition to the formal noise model errors, an additional
error of 0.3% in the flux has been added in quadrature to accommodate
calibration and normalization errors.

and RVS, with magnitudes referred to as GBP, GRP, and GRVS re-
spectively. For more details of these passbands including trans-
formations between them and to non-Gaia passbands, see Jordi
et al. (2010). These bands are used in Apsis primarily to assess
(together with the number of observation epochs) the S/N of the
spectra.

The astrometry is used in Apsis to help distinguish between
Galactic and extragalactic objects, and parallaxes are also used
in a few modules to aid stellar AP estimation. The astrometric
accuracy is a function mostly of S/N and thus G magnitude. At
G = 15, 18.5, and 20 the sky-averaged parallax accuracy is 25–
26 µas, 137–145 µas, and 328–347 µas respectively, the ranges
reflecting the colour dependence across early B to late M stel-
lar spectral types (slightly better for earlier type stars)4. For
6 < G < 14 the accuracy is 7–17µas, although the performance
at the bright limit will depend on the actual TDI gate scheme
used to avoid saturating the bright stars5. The proper motion ac-
curacies in µas/yr are about 0.5 times the size of the quoted par-
allax accuracies.

How the parallax accuracy converts to distance accuracy de-
pends on the parallax itself. For example, an unreddened K1 gi-
ant at 5 kpc would have an apparent magnitude of G = 14.0 and
a distance accuracy of 9%. A G3 dwarf at 2 kpc has G = 16.5
and a distance accuracy of 8%. When combining these accura-
cies with a model for the Galaxy, we expect the number of stars
with distance determinations better than 0.1%, 1% and 10% to
be of order 105, 107, and 108 (respectively).

4 On account of the large width of the G-band, the accuracies at con-
stant V-band magnitude are quite different, e.g. ranging from 26 µas for
early B types to 9 µas for late M types at V = 15.
5 The 5000 or so stars brighter than G = 6 will saturate in the focal
plane, but may yield useful measurements if we can calibrate their
diffraction spikes.
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Table 1. Apsis modules.

Acronym Name

DSC Discrete Source Classifier
ESP Extended Stellar Parametrizer:

-CS ESP – Cool Stars
-ELS ESP – Emission Line Stars
-HS ESP – Hot Stars
-UCD ESP – Ultra Cool Dwarfs

FLAME Final Luminosity Age and Mass Estimator
GSP-Phot Generalized Stellar Parametrizer – Photometry
GSP-Spec Generalized Stellar Parametrizer – Spectroscopy
MSC Multiple Star Classifier
OA Outlier Analysis
OCA Object Clustering Algorithm
QSOC Quasar Classifier
TGE Total Galactic Extinction
UGC Unresolved Galaxy Classifier

3. The astrophysical parameters inference system

(Apsis)

3.1. Principles

The goal of Apsis is to classify and to estimate astrophysical pa-
rameters for the Gaia sources using the Gaia data. These APs
will be part of the publicly released Gaia catalogue. They will
also be used internally in the data processing, for example to help
the template-based extraction of the RVS spectra and the identi-
fication of quasars used to fix the astrometric reference frame.

Our guiding principle for Apsis is to provide reasonably ac-
curate estimates for a broad class of objects covering a large frac-
tion of the catalogue, rather than to treat some specific types of
objects exhaustively. To achieve this, Apsis consists of a number
of modules with different functions.

The paradigm which underlies most of the Apsis modules is
supervised learning. This means that the classes or parameters of
objects are determined according to the similarity of the data to
a set of templates for which the parameters are already known,
so-called “labelled” data. How this comparison is done – in par-
ticular, how we interpolate between the templates and how we
use the data – is an important attribute distinguishing between
the various machine learning (or pattern recognition) algorithms
available. Our choices are based on their accuracy, utility and
speed. The term “training” is used to describe the process by
which the algorithm is fit to (learns from) the template data. For
the most part we have, to date, used libraries of synthetic spec-
tra as the basis for our training data, although we also use some
semi-empirical libraries. These libraries and the construction of
the training and testing data using a Gaia instrument simulator
are described in Sect. 4. Later, actual Gaia observations will be
used to calibrate the synthetic spectral grids (see Sect. 6).

3.2. Architecture

Each of the modules in Apsis is described separately in Sect. 5.
Here we give an overview and describe their connectivity, which
is summarized in Fig. 5. The acronyms are defined in Table 1.

DSC performs a probabilistic classification into classes such
as “(single) star”, “binary star”, “quasar”. This is used by many
of the other modules to select sources for processing. GSP-Phot
and GSP-Spec estimate stellar parameters using the BP/RP spec-
tra (and parallaxes) and the RVS spectra respectively, whereby
GSP-Phot also estimates the line-of-sight extinction to each star

Fig. 5. Component modules in Apsis and their interdependency. The
module names are defined in Table 1. The arrows indicate a dependency
on the output of the preceding module. The coloured bars underneath
each module indicate which data it uses. Most of the modules addition-
ally use the photometry and some also the Galactic coordinates.

individually. Supporting these are a number of “extended stel-
lar parametrization” modules, which operate on specific types of
stars, their preliminary identification being taken from GSP-Phot
and (if the stars are bright enough) GSP-Spec. These are ESP-
ELS, ESP-HS, ESP-CS, and ESP-UCD. Although GSP-Phot is
trained on a broad set of stars which includes all of these, these
modules attempt to achieve more appropriate parameters esti-
mates by making a more physically-motivated use of the data,
and/or by using other stellar models. Using the outputs of GSP-
Phot, FLAME uses isochrones to estimate stellar luminosities,
masses and ages for certain types of stars. MSC attempts to
estimate parameters of both components of systems suspected
(by DSC) to be unresolved stellar binaries. QSOC and UGC
estimate astrophysical parameters of quasars and (unresolved)
galaxies, respectively. TGE will use the line-of-sight extinction
estimates from GSP-Phot of the most distant stars to build a two-
dimensional map of the total Galactic extinction over the whole
sky. This may also be used as an input to QSOC and UGC.

The two remaining Apsis modules use the concept of unsu-
pervised learning. OCA works independently of all other mod-
ules by using clustering techniques to detect “natural” patterns
in the data, primarily for novelty detection. OA does something
similar on the objects classified as “outliers” by DSC. Its purpose
is to identify whether some of these outliers are known objects
which were not, or were not correctly, modelled in the training
data. Results from this can be used to improve the models in the
next processing cycle.

3.3. Source selection

Which sources are processed by which modules depends on (1)
the availability of the necessary data; (2) the S/N of the data;
(3) the outputs from other modules.
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DSC operates on all sources which have BP/RP data, which
is nominally all Gaia sources. For each source, DSC assigns
probabilities to a set of classes. This is the main output from
DSC for the end-user. In addition, a single “best” class will be
identified for each source. In principle this is just the class which
receives the highest probability, but in practice this probability
will also have to exceed some class-dependent threshold. Some
sources may not attain this, in which case they will be classified
as “unknown”.

GSP-Phot operates on all sources too. As more than 99% of
sources are expected to be stars, there is little loss of efficiency
if GSP-Phot is simply applied to everything, regardless of the
DSC class. The GSP-Phot APs for what are later chosen to be
non-stars based on the DSC class probabilities can then simply
be ignored.

GSP-Spec will operate on all stars identified by DSC which
have RVS spectra with sufficiently high S/N (GRVS . 15).
FLAME operates on a subset of sources which have APs of suf-
ficient precision from GSP-Phot and/or GSP-Spec. TGE selects
a small fraction of distant stars assigned precise extinction esti-
mates by GSP-Phot. The remaining modules, specifically ESP-
HS, ESP-CS, ESP-ELS, ESP-UCD, MSC, QSOC, and UGC,
will only be applied to objects of “their” class, as determined
by the DSC class probabilities.

3.4. Multiple parameter assignments

A consequence of our system design is that any given source
may be assigned multiple sets of APs. For example, a particular
star could be assigned APs by GSP-Phot, ESP-CS, and GSP-
Spec. This is an inevitable consequence of a diverse approach
to inference: the conclusions we draw depend not only on the
data we measure, but also on the stellar models we adopt (as
embodied in the training data) and other assumptions made. We
can never know the true APs with 100% confidence. All of these
sets of APs will be reported in the MDB and the data releases,
thus giving the end-user the freedom to choose among our mod-
els and assumptions. For those users who would rather forgo
this choice, we will also provide the “best” set of APs for each
source. We will establish the criteria for making this decision
during the operations, based on experience with the data. GSP-
Phot estimates APs for all stars, so there will always be a homo-
geneous set of stellar APs available.

The situation is actually more complex than this, because a
few of the modules themselves comprise multiple algorithms,
each providing separate estimates of the APs. One of the rea-
sons for this is cross-checking: if two or more algorithms give
similar results for the same source (and training data), our con-
fidence in the results may be increased. A second reason is that
different methods may make use of different data. For example,
the Aeneas algorithm in GSP-Phot (Sect. 5.2) can operate with
or without the parallax. The former is potentially more accurate,
yet makes more assumptions, so we may be interested in both re-
sults. A third reason for using multiple algorithms is that the best
performing algorithm may be computationally too expensive to
run on all sources.

3.5. Scope

One of the principles we adopt in DPAC is that the Gaia cata-
logue will be based only on Gaia data for the individual sources.
(Non-Gaia observations are used for validation and calibration;
see Sect. 6) “Better” AP estimates could be obtained for some

sources by including external data in the analysis, such as higher
resolution spectra or infrared photometry. The DPAC objective,
however, is to produce a homogeneous Gaia catalogue by pro-
cessing all sources in a consistent manner. We hope that the com-
munity at large will extend our work by using the published data
to make composite analyses where appropriate.

While Apsis tries to cover most types of objects, it does
not include everything. Asteroids are excluded, for example.
They will be detected by Gaia primarily via their very large
proper motions, so they will be classified by the CU charged
with their detection (CU4). Apsis presently ignores morpholog-
ical information. Although Gaia only tracks point sources, two-
dimensional images could be reconstructed using the multiple
scans at different orientations over a source. This is planned by
other CUs in DPAC, and could be useful for further galaxy char-
acterization, for example. This may be introduced later into the
data processing.

Apsis also does not take into account stellar variability. An
entire CU in DPAC, CU7, is dedicated to classifying variable
stars from, primarily, their G-band light curves. As Apsis works
with combined epoch spectra, some types of variable source will
receive spurious APs. During the course of the data processing
we will investigate how and whether variability information can
be introduced into our work.

3.6. Software, hardware and operations

The Apsis modules have been developed by various CU8 groups
over the past years following a cyclic development process.
They are written in the Java programming language according
to DPAC-wide software engineering standards. The modules are
integrated into a control system which deals with job allocation
and data input/output.

As outlined in Sect. 1, the Gaia data processing proceeds in
cycles, centered around the MDB. When Apsis first runs (sev-
eral months into the mission), essentially all Gaia sources will
have been observed at least once. In succeeding cycles, Apsis
will run again on the same set of sources, but the data are the
combination of more observation epochs, so will have higher
S/N and improved calibrations. The first significant, calibrated
results from Apsis should appear about 2.5 years into the mis-
sion, and will be made available in the subsequent intermediate
data release.

Apsis will run on multicore computers at CU8’s data pro-
cessing centre hosted by CNES in Toulouse. The time Apsis
needs for processing is likely to vary considerably during the
ongoing development, but as of late 2012, the supervised mod-
ules (i.e. excluding OA and OCA) together required of order 15
GFLOP (1 GFLOP = 109 floating point operations) for a sin-
gle source. This is dominated by the Markov Chain Monte Carlo
(MCMC) sampling performed by the Aeneas algorithm in GSP-
Phot. A common CPU will today provide around 100 GFLOP
per second, so processing all 109 Gaia sources in this way would
take 1740 days. The Apsis processing is trivial to parallelize, so
running it on 100 CPU cores reduces this to 17 days. However,
the 15 GFLOPS figure neglects data input/output, which is likely
to be a considerable fraction of the processing time. OCA and
OA are also likely to add to this figure significantly. On the other
hand, CU8 will have more like 400 CPU cores available full time
for its processing. Given that we need to process all Gaia sources
in one operation cycle (duration of 6–12 months), these figures
are acceptable even if we assume some intra-cycle reprocessing.
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Table 2. Stellar libraries used to simulate BP/RP and RVS spectra.

Name N Teff /K log g / dex [Fe/H] / dex Ref. Notes

OB stars 1296 15 000−55 000 1.75−4.75 0.0−0.6 1 TLUSTY code; NLTE, mass loss, vmicro

Ap/Bp stars 36 7000−16000 4.0 0.0 2 LLmodels code, chemical peculiarities
A stars 1450 6000−16 000 2.5−4.5 0.0 3 LLmodels code, [α/Fe]= 0.0, +0.4
MARCS 1792 2800−8000 −0.5−5.5 −5.0−1.0 4 Galactic enrichment law for [α/Fe]
Phoenix 4575 3000−10 000 −0.5−5.5 −2.5−0.5 5 ∆Teff = 100 K
UCD 2560 400−4000 −0.5−5.5 −2.5−0.5 6 various dust models
C stars MARCS 428 4000−8000 0.0−5.0 −5.0−0.0 7 [C/Fe] depends on [Fe/H]
Be 174 15 000−25 000 4.0 0.0 8 range of envelope to stellar radius ratios
WR 43 25 000−51 000 2.8−4.0 0.0 9 range of mass loss rates
WD 187 6000−90 000 7.0−9.0 0.0 10 WDA & WDB
MARCS NLTE 33 4000−6000 4.5−5.5 0.0 11 NLTE line profiles
MARCS RVS 146 394 2800−8000 −0.5−5.5 −5.0−1.0 12 variations in individual elements abundances
3D models 13 4500−6500 2.0−5.0 −2.0−0.0 13 StaggerCode models and Optim3D code
SDSS stars 50 000 3750−10 000 0.0−5.5 −2.5−0.5 14 semi-empirical library
Emission line stars 1620 − − − 15 semi-empirical library (see Sect. 5.4)

Notes. N is the number of spectra in the library. Ap/Bp are peculiar stars; UCD are ultracool dwarfs; WR are Wolf Rayet stars; WD are white
dwarfs.
References. 1) Bouret et al. (2008); 2) Kochukhov & Shulyak (2008); 3) Shulyak et al. (2004); 4) Gustafsson et al. (2008); 5) Brott & Hauschildt
(2005); 6) Allard et al. (2001); 7) Masseron, priv. comm.; 8), 9) Martayan et al. (2008); 10) Castanheira et al. (2006); 11) Korn et al., priv. comm.;
12) Recio-Blanco et al., priv. comm.; 13) Chiavassa et al. (2011); 14) Tsalmantza & Bailer-Jones (2010b); 15) Lobel et al. (2010).

4. Model training and testing

Supervised classification methods are based on the comparison
of observed data with a set of templates. These are used to train
the models in some way. For this purpose we may use either
observed or synthetic templates, both of which have their advan-
tages and disadvantages. Observed templates better represent the
spectra one will actually encounter in the real data, but rarely
cover the necessary parameter range with the required density,
in particular not for a survey mission like Gaia. Synthetic tem-
plates allow us to characterize a wide parameter space, and also
to model sources which are very rare or even which have not
(yet) been observed. Intrinsically free of observational noise and
interstellar extinction, they allow us to freely add these effects
in a controlled manner. They are, however, simplifications of the
complex physics and chemistry in real astrophysical sources, so
they do not reproduce real spectra perfectly. This may be prob-
lematic for pattern recognition, so synthetic spectra will need
calibration using the actual Gaia observations of known sources
(see Sect. 6)6.

The training data for the Apsis modules are based on a mix-
ture of observed (actually “semi-empirical”) and synthetic li-
braries for the main sources we expect to encounter. These are
described below. Once the library spectra have been constructed,
BP/RP and RVS spectra are artificially reddened, then simu-
lated at the required G magnitude and with a S/N corresponding
to end-of-mission spectra (see Sect. 2) using the Gaia Object
Generator (GOG, Luri et al. 2005).

4.1. Stellar spectral libraries

The Gaia community has calculated large libraries of synthetic
spectra with improved physics for many types of stars. We are
able to cover a broad AP space with some redundancy between
libraries. Each library uses codes optimized for a given Teff
range, or for a specific object type, and includes as appropriate
the following phenomena: departures from local thermodynamic

6 Of course, to estimate physical parameters we must, at some point,
use physical models, so dependence on synthetic spectra cannot be
eliminated entirely.

equilibrium (LTE); dust; mass loss; circumstellar envelopes;
magnetic fields; variations of single element abundances; chem-
ical peculiarities. The libraries are listed in Table 2 with a sum-
mary of their properties and AP space. Not all of these libraries
are used in the results reported in Sect. 5. The synthetic stellar
libraries are described in more detail in Sordo et al. (2010, 2011)
together with details on their use in the Gaia context. The large
synthetic grids for A, F, G, K, and M stars have been computed
in LTE for both BP/RP and RVS. For OB stars, non-LTE (NLTE)
line formation has been taken into account.

Synthetic spectra are of course not perfect. We cannot
yet satisfactorily simulate some processes, such as emission
line formation. To mitigate these drawbacks, observed spec-
tra are included in the training dataset in the form of semi-
empirical libraries. These are observed spectra to which APs
have been assigned using synthetic spectra, and for which the
wavelength coverage has been extended (as necessary) using
the best fitting synthetic spectrum. Semi-empirical libraries have
been constructed for “normal” stars using SDSS (Tsalmantza &
Bailer-Jones 2010b), and from other sources for emission line
stars (Lobel et al. 2010; see Sect. 5.4).

Starting from the available synthetic and semi-empirical li-
braries, two types of data set are produced. The first one mirrors
the AP space of the spectral libraries, and is regularly spaced
in some APs. The second one involves interpolation on some
of the APs (Teff , log g, [Fe/H]) but with no extrapolation (and
we do not combine different libraries). See Sordo et al. (2011)
for details on how the interpolation is done. Both datasets are
intended for training the AP estimation modules, while the in-
terpolated one serves also for testing. In both cases extinction is
applied using Cardelli’s law (Cardelli et al. 1989), with a given
set of extinction parameters. Extinction is represented using an
extinction parameter, A0, rather than the extinction in a partic-
ular band, as defined in Sect. 2.2 of Bailer-Jones (2011). The
parameter A0 corresponds to AV in Cardelli’s formulation of the
extinction law, but this new formulation is chosen to clarify that
it is an extinction parameter, and not necessarily the extinction
in the V band, because the extinction (for broad bands) depends
also on the spectral energy distribution of the source.
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Mass, radius, age, and absolute magnitudes of the stars are
derived using the Padova evolutionary models (Bertelli et al.
2008), resulting in a full description of stellar sources. These
models cover a wide range of masses up to 100 M⊙ and metal-
licities for all evolutionary phases. Although this is not needed
for most Apsis modules, it is required by the GSP-Phot module
Aeneas when it is using parallax, in order to ensure consistency
between parallax, apparent and absolute magnitude, and the stel-
lar parameters in the training data set (see Sect. 3.3 of Liu et al.
2012 for a discussion).

4.2. Galaxy spectral libraries

For the classification of unresolved galaxies we have generated
synthetic spectra of normal galaxies (Tsalmantza et al. 2007,
2009; Karampelas et al. 2012) using the galaxy evolution model
PÉGASE.2 (Fioc & Rocca-Volmerange 1997, 1999). The objec-
tive was not just to obtain a set of typical synthetic spectra, but to
have a broad enough sample which can predict the full variety of
galaxies we expect to observe with Gaia. Four galaxy spectral
types have been adopted: early, spiral, irregular, quenched star
formation. For each type, a restframe spectrum is characterized
by four APs: the timescale of in-falling gas and three parameters
which define the appropriate star formation law. The current li-
brary comprises 28 885 synthetic galaxy spectra at zero redshift.
These are then simulated at a range of redshifts from 0 to 0.2,
and a range of values of A0 from 0 to 10 mag in order to simu-
late extinction due to the interstellar medium of our Galaxy.

In addition, a semi-empirical library of 33 670 galaxy spectra
has been produced fitting SDSS spectra to the synthetic galaxy
library (Tsalmantza et al. 2012).

4.3. Quasar spectral libraries

Two different libraries of synthetic spectra of quasars have been
generated, one with regular AP space coverage (17 325 spectra)
and one with random AP space coverage (20 000 spectra). Three
quasar APs are sampled: redshift (from 0 to 5.5), slope of the
continuum (α from –4 to +3), and equivalent width of the emis-
sion lines (EW from 101 to 105 nm). The libraries also sample a
broad range of Galactic interstellar extinction, A0 = 0–10 mag.

A semi-empirical library of 70 556 DR7 SDSS spectra of
quasars has also been generated. The majority of quasars in this
library have redshift below 4, α from –1 to +1 and EW from
0 to 400 nm (the distributions are very non-uniform). These are
not artificially reddened, but some will have experienced a small
amount of real extinction.

5. The Apsis modules

We now describe each of the modules in Apsis listed in Table 1
and summarized in Fig. 5.

5.1. Discrete Source Classifier (DSC)

DSC performs the top-level classification of every Gaia source,
assigning a probability to each of a number of classes. These are
currently: star, white dwarf, binary star, galaxy, quasar. For this
it uses three groups of input data: the BP/RP spectrophotometry;
the proper motion and parallax; the position and the photometry
in the G-band. Each group of input data is directed to a sepa-
rate subclassifier (described below), each of which produces a
vector of probabilities for the classes. The results from all the

subclassifiers are combined into a single probability vector, and
based on this a class label may be generated if the highest prob-
ability exceeds a certain threshold. An additional module using
the G-band light curve (time series) – or rather metrics extracted
from it – is under development. An earlier phase of the DSC de-
velopment was presented in some detail by Bailer-Jones et al.
(2008), who examine in particular the issue of trying to identify
rare objects.

The photometric subclassifier works with the BP/RP spec-
tra. The classification algorithm is the Support Vector Machine
(SVM; Vapnik 1995; Cortes & Vapnik 1995; Burges 1998),
which is widely used for analysing high-dimensional astrophys-
ical data (e.g. Smith et al. 2010). We use the implementation
libSVM (Chang & Lin 2011). (We have also tested other ma-
chine learning algorithms, such as random forests, and find sim-
ilar overall performance.) A set of SVM models is trained, each
at a different G magnitude range, and the observed BP/RP spec-
trum passed to the one appropriate to its measured magnitude.
(This is done because SVMs work best when the training and test
data have similar noise levels.) Each model contains two layers,
the first trained on an astrophysically meaningful distribution
of common objects, the second trained on a broad distribution
of AP space and intended in particular to classify rare objects.
For each layer, a front-end outlier detector identifies sources that
do not resemble the training data sufficiently closely. Only ob-
jects rejected by the first layer are passed to the second layer for
classification. Flags are set to indicate outliers detected by each
layer. These will be studied by the OA module (see Sect. 5.13).

The astrometric subclassifier uses the parallaxes and proper
motions to help distinguish between Galactic and extragalactic
objects. This uses a three-dimensional Gaussian mixture model
trained on noise-free, simulated astrometry for Galactic and ex-
tragalactic objects. This model is convolved with the estimated
uncertainties in the proper motion and parallax for each source,
and a probability of the source being Galactic or extragalactic is
calculated.

The position-magnitude subclassifier gives a probability of
the source being Galactic or extragalactic based on the source’s
position and brightness. This reflects our broad knowledge of the
overall relative frequency of Galactic and extragalactic objects
and how they vary as a function of magnitude and Galactic coor-
dinates. For example, if we knew only that a source had G = 14
and were at low Galactic latitude, we would think it more likely
to be Galactic than extragalactic. In the absence of more data,
we should fall back on this prior information. This subclassifier
quantifies this using a simple lookup table based on a simple
universe model. For very informative spectra, this subclassifier
would have little influence on the final probabilities.

DSC is trained on numerous data sets built from almost all
of the spectral libraries described in Sect. 4, including blended
spectra of different types of objects (e.g. optical stellar bina-
ries). A selection of the results on independent test sets con-
structed from these libraries is shown in Table 3. Phoenix–R0
is the Phoenix library but now also showing a large variation
in the second extinction parameter R0. (More detailed results
from an earlier version of the software can be found in Smith
2011.) These results combine the outputs from all three sub-
classifiers, and is for Galactic objects with magnitudes ranging
from G = 6.8–20 and quasars and galaxies from G = 14–20 (uni-
form distributions) in both the training and test sets. The syn-
thetic spectra include the 0.3% calibration error mentioned in
Sect. 2.2. The SDSS stars, quasars and galaxies are the semi-
empirical libraries. The performance for stars and galaxies is
generally quite good. Some confusion between single stars and
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Table 3. Example of the DSC classification performance shown as a
confusion matrix for sources with magnitudes in the range G = 6.8–20.

Output class
Library Star WD Binary Quasar Galaxy

Phoenix 91.9 − 7.1 − 1.0
Phoenix–R0 89.9 3.0 7.1 − −

A stars 79.9 − 20.0 − 0.1
OB stars 95.3 0.6 4.1 − −

WD 17.4 79.1 3.5 − −

UCDs 97.3 − 1.0 1.7 −

Binary stars 18.3 − 81.7 − −

SDSS stars 94.1 − 5.9 − −

SDSS quasars 5.9 3.0 0.1 78.3 12.7
SDSS galaxies 2.0 − 0.5 − 97.5

Notes. The rows indicate the true classes (the spectral libraries), the
columns the DSC assigned class. Each cell gives the percentage of ob-
jects classified from each true class to each DSC class. The dashes in-
dicate exactly zero.

physical binaries is expected because the binary sample includes
systems with very large brightness ratios (see Sect. 5.8). The
relatively poor performance on quasars arises mostly due to a
confusion with galaxies. If only the photometric subclassifier is
used then a similar performance is obtained, but the confusion
is then mostly with white dwarfs. Note that these results already
assume quasars to be rare (1 for every 100 stars). Note that for
faint, distant stars the true parallax and proper motions can be
comparable to the magnitude of the uncertainty in the Gaia mea-
surements, in which case the astrometry does not allow a good
discrimination between Galactic and extragalactic objects.

These results should not be over-interpreted, however, as the
performance depends strongly on the number of classes included
in the training, to the extent that excluding certain classes can
lead to much better results. Performance also depends on the rel-
ative numbers of sources in each class as well as their parameter
distributions in the training and test data sets. Optimizing these
is an important part of the on-going work.

5.2. Stellar parameters from BP/RP (GSP-Phot)

The objective of GSP-Phot is to estimate Teff , [Fe/H], log g and
the line-of-sight extinction, A0, for all single stars observed by
Gaia. The extinction is effectively treated as a stellar parameter.
(The total-to-selective extinction parameter, R0, may be added at
a later stage.) GSP-Phot uses the BP/RP spectrum and, in one
algorithm, the parallax. In addition to being part of the Gaia cat-
alogue, the AP estimates are used by several downstream algo-
rithms in Apsis (Fig. 5) and elsewhere in the Gaia data process-
ing. The algorithms and their performance are described in more
detail in Liu et al. (2012) and the references given below.

GSP-Phot is applied to all sources irrespective of class.
While we could exclude those sources which DSC assigns a low
star probability, the majority of Gaia sources are stars, so ex-
cluding them saves little computing time. A threshold on this
probability can be applied by any user of the catalogue accord-
ing to how pure or complete they wish their sample to be.

GSP-Phot contains four different algorithms. Each provides
AP estimates for each target:

1. Priam (Kim 2013): early in the mission, no calibrated BP/RP
spectra are available. Priam uses only the integrated pho-
tometry (G, GBP, GRP, GRVS) to estimate Teff and A0 (see

below). This algorithm uses SVM models trained on syn-
thetic spectra.

2. SVM: an SVM is trained to estimate each of the four stel-
lar APs using the BP/RP spectra. SVMs are computation-
ally fast and relatively robust, but we find them not to be the
most accurate method for GSP-Phot. Furthermore, a stan-
dard SVM does not provide natural uncertainty estimates (al-
though techniques do exist for extracting these from SVMs).
The SVM AP estimates will also be used to initialize the next
two algorithms.

3.  (Bailer-Jones 2010b): this uses a forward model, fit us-
ing labelled data, to predict APs given the observed BP/RP
spectrum. An iterative Newton–Raphson minimization al-
gorithm is used to find the best fitting forward-modelled
spectrum, and thus the APs and their covariances. A two-
component forward model is used to retain sensitivity to the
“weak” APs log g and [Fe/H] which only have a weak im-
pact on the stellar spectrum compared to Teff and A0.

4. Aeneas (Bailer-Jones 2011): this is a Bayesian method em-
ploying a forward model and a Monte Carlo algorithm to
sample the posterior probability density function over the
APs, from which parameter estimates and associated uncer-
tainties are extracted. Aeneas may be applied to the BP/RP
spectrum alone, or together with the parallax. When using
the parallax, the algorithm demands (in a probabilistic sense)
that the inferred parameters be consistent not just with the
spectrum, but also with the parallax and apparent magni-
tude. Consistency with the Hertzsprung-Russell diagram can
also be imposed, thereby introducing constraints from stellar
structure and evolution.

As single stars are the main Gaia target, we decided that multiple
algorithms and multiple sets of AP estimates were desirable for
the sake of consistency checking. Tests to date show that SVM,
, and Aeneas are each competitive in some part of AP space
or S/N regime. Our plan is that individual results as well as a
single set of “best” APs for each source will be published in the
data releases (see Sect. 3.4). Nonetheless, we may find during the
data processing that some or all algorithms are unable to provide
useful estimates of “weak” APs on fainter stars.

The APs provided by GSP-Phot are of course tied to the stel-
lar libraries on which it was trained, and different libraries may
produce different results. As no single library models the full AP
space better than all others, we work with multiple libraries. We
could attempt to merge all libraries into one, but this would hide
the resulting inhomogeneities (or even introduce errors). We de-
cided instead to train a GSP-Phot model on each library inde-
pendently, and use each to estimate APs for a target source. The
most appropriate set of results (i.e. library) can be decided post
hoc based either on a model comparison approach, the estimated
uncertainties, or perhaps a simple colour cut. This is still under
investigation.

Since the publication of GSP-Phot results by Liu et al.
(2012), SVM and in particular Aeneas have been improved.
Figure 6 and Table 4 summarize the current internal accuracy
of Aeneas, using parallaxes as well as BP/RP.

As noted above, the purpose of Priam is to characterize the
stars in the early data releases only, before BP/RP is calibrated.
As the G−GBP and G−GRP colours are almost perfectly corre-
lated, these three bands yield essentially just one colour, making
it impossible to estimate two APs (Teff and A0) without using
prior information. Assuming A0 < 2 mag (but with Teff = 3000–
10 000 K), we can estimate Teff and A0 to an rms accuracy of
1000 K and 0.4 mag respectively using three bands (the latter
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Fig. 6. Accuracy of AP estimation with the GSP-Phot algorithm Aeneas
using BP/RP spectra of stars at G = 15 covering the full AP space
shown. There are a total of 2000 stars in this test sample. The vertical
structure of points visible in the bottom panels is due to our procedure
to generate test spectra from a limited supply of synthetic spectra. This
causes spectra of identical AP values to appear multiple times in the test
set, though these spectra differ in their noise realizations.

Table 4. Accuracy of AP estimation (internal rms errors) with the GSP-
Phot algorithm Aeneas using BP/RP spectra and parallaxes, for stars
covering the full AP space shown in Fig. 6.

G Teff A0 log g [Fe/H]
mag K mag dex dex

A
st

ar
s 9 340 0.08 0.43 0.86

15 260 0.06 0.38 0.93
19 400 0.15 0.51 0.74

F
st

ar
s 9 150 0.06 0.36 0.36

15 170 0.07 0.38 0.33
19 630 0.35 0.37 0.60

G
st

ar
s 9 140 0.07 0.31 0.14

15 140 0.07 0.22 0.16
19 450 0.33 0.45 0.65

K
st

ar
s 9 100 0.09 0.26 0.19

15 90 0.08 0.26 0.21
19 230 0.23 0.36 0.48

M
st

ar
s 9 60 0.13 0.15 0.21

15 70 0.14 0.29 0.25
19 90 0.13 0.17 0.29

decreases to 0.3 mag if we introduce GRVS). If we can assume
A0 < 0.1 mag, then Teff can be estimated to an accuracy of 550 K
using either three or four bands.

Aeneas has also been tested on real data. It was used by
Bailer-Jones (2011) to estimate Teff and A0 for 50 000 Hipparcos
FGK stars cross-matched with 2MASS, using the parallax and
five band photometry (two from Hipparcos, three from 2MASS).
The forward model was fit to a subset of the observed photom-
etry, with temperatures obtained from echelle spectroscopy, and
extinction modelled by applying an extinction law to the pho-
tometry. Teff and A0 could be estimated to precisions of 200 K
and 0.2 mag respectively, from which a new HRD and 3D ex-
tinction map of the local neighbourhood could be constructed.

Table 5. Accuracy of AP estimation (internal rms errors) with GSP-
Spec for RVS spectra for selected AP ranges.

GRVS Teff log g [M/H]
mag K dex dex

T
hi

n
di

sk
dw

ar
fs 10 60 0.08 0.09

13 70 0.12 0.09
15 270 0.39 0.30

T
hi

ck
di

sk
dw

ar
fs 10 70 0.11 0.09

13 110 0.17 0.12
15 350 0.43 0.29

H
al

o
gi

an
ts 10 70 0.17 0.15

13 90 0.28 0.17
15 340 0.86 0.38

Notes. Thin disk dwarfs are defined as log g> 3.9 dex and
−0.5< [M/H]<−0.25 dex, thick disk dwarfs as log g> 3.9 and
−1.5< [M/H]<−0.5 dex, and halo giants as 4000<Teff < 6000 K,
log g< 3.5 dex and −2.5< [M/H]<−1.25 dex.

5.3. Stellar parameters from RVS (GSP-Spec)

GSP-Spec estimates Teff , log g, global metallicity [M/H], alpha
element abundance [α/Fe], and some individual chemical abun-
dances for single stars using continuum-normalized RVS spectra
(i.e. each spectrum is divided by an estimate of its continuum).
Source selection is based on the DSC single star probability, and
GSP-Spec can optionally use the measured rotational velocities
(v sin i) from CU6, as well as the stellar parameters from GSP-
Phot.

Presently, three algorithms are integrated in the GSP-
Spec module: MATISSE (Recio-Blanco et al. 2006), DEGAS
(Kordopatis et al. 2011a; Bijaoui et al. 2012), and GAUGUIN
(Bijaoui et al. 2012). MATISSE is a local multi-linear regres-
sion method. The stellar parameters are determined through the
projection of the input spectrum on a set of vectors, calculated
during a training phase. The DEGAS method is based on an
oblique k-d decision tree. GAUGUIN is a local optimization
method implementing a Gauss–Newton algorithm, initialized
by parameters determined by GSP-Phot or DEGAS. The algo-
rithms perform differently in different parts of the AP and S/N
space. Which results will be provided by which algorithm will
be decided once we have experience with the real Gaia data.
As the estimation of the atmospheric parameters and individ-
ual abundances from RVS is sensitive to the pseudo-continuum
normalization, GSP-spec renormalizes the RVS spectra through
an iterative procedure coupled with the stellar parameters as
determined by the three algorithms (Kordopatis et al. 2011a).

Performance estimates for GSP-Spec are shown in Table 57.
The individual abundances of several elements (Fe, Ca, Ti, Si)
will be measured for brighter stars. Based on experience with the
Gaia-ESO survey (Gilmore et al. 2012), we expect to achieve an
internal precision of 0.1 dex for GRVS < 13.

The parameterization algorithms in GSP-Spec have been ap-
plied to real data. MATISSE and DEGAS were used in a study
of the thick disk outside the solar neighbourhood (700 stars)
(Kordopatis et al. 2011b) and were used in the upcoming final
data release (DR4) of the RAVE Galactic Survey (228 060 spec-
tra). These two applications share almost the same wavelength

7 These results are based on a slightly broader RVS pass band extend-
ing to 874 nm. A recent change in the RVS filter has cut this down to
871 nm. This excludes the Mg lines, which may affect these results and
others using RVS quoted in this article.
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Table 6. Example of ESP-ELS classification performance in terms of a
confusion matrix.

True Output class
class PNe DMe AeBe Be WC WN Uncl. Star

PNe 63 − − − − − 28 9
DMe − 60 − − − − − 40
AeBe − − 48 9 − − − 43
Be − − 5 41 − − − 54
WC − − − − 74 1 21 4
WN − − − − 1 73 18 8

Notes. The rows indicate the true classes, the columns the ESP-ELS
assigned class. Each cell gives the percentage of objects classified from
each true class to each ESP-ELS class. The dashes indicate exactly zero.
Uncl. = Unclassified; Star = Star without emission.

range and resolution as RVS. MATISSE is used in the AMBRE
project (de Laverny et al. 2012) to determine the parameters Teff ,
log g, [M/H], and [α/Fe] of high resolution stellar spectra in the
ESO archive (see Worley et al. 2012 and other forthcoming pub-
lications). MATISSE has also been used to characterize fields
observed by CoRoT (Gazzano et al. 2010, 2013) and is one of
the algorithms being used to characterize FGK stars in the Gaia-
ESO survey.

5.4. Special treatment for emission line stars (ESP-ELS)

The ELS module classifies emission-line stars, presently into
seven discrete classes: PNe (planetary nebulae), WC (Wolf-
Rayet carbon), WN (Wolf-Rayet nitrogen), dMe, Herbig AeBe,
Be, and unclassified. Since some types of emission line star may
deserve further treatment in the ESP-HS or ESP-CS modules,
ESP-ELS is the first of the ESP modules to be applied to the data.
ESP-ELS is triggered by receiving a classification label of “star”
or “quasar” from DSC (the latter included in order to accommo-
date misclassification in DSC). The algorithm works on several
characteristic features in the BP/RP and/or RVS spectra. These
are centered on (wavelengths in nm): Hα, Hβ, P14, He  λ468.6,
C  λ866, C  λ580.8 and 886, N  λ710, O  λ500.7, and the
Ca  triplet in RVS. For each of these features a spectroscopic
index is defined which minimizes sensitivity to interstellar red-
dening and instrumental response. We use the index definition
described in Cenarro et al. (2001). If significant emission is de-
tected in one or more of the indices, the source is classified us-
ing one or more methods, including a neural network, k-nearest
neighbours, and an interactive graphical analysis of the distri-
bution of various combinations of indices in two-dimensional
diagrams. In this last case, a comparison with the distribution of
the indices for template objects is then used to manually define
optimal classification boundaries.

The set of template indices was constructed both from syn-
thetic spectra, mainly of non-emission stars and quasars, and
from observed spectra of various types of emission lines stars
collected from public telescope archives and online catalogues,
and supplemented with dedicated ground-based observations.
The resulting spectral library comprises 1620 spectra of stars
belonging to 12 different ELS classes (Be, WN, WC, dMe, RS
CVn, Symbiotic, T Tauri, Herbig AeBe, Pre-MS, Carbon Mira,
Novae, PNe) and observed between 320 and 920 nm (Lobel et al.
2010). The spectra were processed with GOG from which the in-
dices described above were derived.

Typical results of our classification with this template set
are shown in Table 6. The initial selection thresholds on these

Table 7. Maximum fractional AP residuals, i.e. |measured-true|/true, for
the ESP-HS algorithm as a function of the G magnitude.

G ∆Teff ∆log g ∆A0 N

0–10 0.10 0.15 0.08 504
10–15 0.17 0.31 0.12 1154
15–18 0.25 0.40 0.55 1102

Notes. N is the number of cases for each magnitude range.

indices were set to avoid processing non-emission line stars or
quasars, with the risk that certain weak emission line stars will be
excluded. This conservative approach, combined with the lim-
ited resolution and sensitivity drop in the blue wing of the RP
Hα line, leads to not detecting about half of the Be and Herbig
AeBe stars. Most of the other misclassifications and false detec-
tions are due to overlapping spectroscopic index values. Using
Gaia observations of a predefined list of known emission line
stars, we hope to be able to improve this performance and to ex-
pand the number of emission line star classes during the mission.

5.5. Special treatment for hot stars (ESP-HS)

Emission lines in hot (OB) stars will confuse AP estimation
methods which assume the entire spectrum has a temperature-
based origin in the photosphere. As emission lines are difficult
to model reliably, the ESP-HS package attempts to improve the
classification of hot stars by omitting those regions of the BP/RP
and RVS spectra dominated by emission lines. The comparison
with the template spectra over the selected regions is achieved
with a minimum distance method using simplex minimization,
while error bars are derived in a second iteration by computing
the local covariance matrix. This approach is similar to the one
used by Frémat et al. (2006). The spectral regions to omit are
selected based on the results of ESP-ELS. If that module detects
emission, then those regions most affected by emission (for that
ELS class) are omitted, otherwise the full spectrum is used.

ESP-HS is applied to all stars previously classified by GSP-
Phot or GSP-Spec as early-B and O-type stars (specifically
Teff > 14 000 K). RVS spectra are used for sources which have
GRVS < 12, otherwise only BP/RP spectra are used. This may be
extended to fainter magnitudes during the mission depending on
the quality of the RVS spectra. ESP-HS always estimates Teff ,
log g, and A0. Assuming the BP spectrum is available [Fe/H] is
also estimated. If an RVS spectrum is available and v sin i has not
been estimated already by CU6, ESP-HS will derive this too.

We applied the algorithm on spectra randomly spread over
the parameter space (Teff > 14 000 K). The maximum fractional
residuals we found are given in Table 7. The current version of
the algorithm is unable to correctly derive the APs from BP/RP
for stars fainter than G = 18. During the mission, the results will
be validated by comparing our derived APs to those obtained for
a sample of reference O, B and A-type stars (Lobel et al. 2013).
Spectra for these are being collected and analysed as part of both
the HERMES/MERCATOR project (Raskin et al. 2011) and the
Gaia–ESO Survey.

5.6. Special treatment for cool stars (ESP-CS)

ESP-CS applies procedures for analysing peculiarities arising
from magnetic activity and the presence of circumstellar mate-
rial in stars with Teff in the range 2500–7500 K.
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Fig. 7. The three parts of the Ca  triplet of the active star HD82443 (solid line) observed at high resolution by TNG/SARG and processed by GOG
to simulate an RVS spectrum at the noise level of a G = 8 source. The dashed curve shows an NLTE synthetic spectrum for a pure photospheric
contribution for comparison. Dashed vertical lines delimit the wings and the core regions.

Chromospheric activity can be detected via a fill-in of the
Ca  infrared triplet lines in the RVS spectrum relative to the
spectrum of an inactive star (Fig. 7). Strong emission in the core
of these lines for young stars generally indicates mass accretion.
The degree of activity can be quantified by subtracting the spec-
trum of an inactive star from that of an active star with the same
parameters, then measuring the difference in the central depth
of a line, RIRT, or in its integrated absorption, ∆W (Busà et al.
2007). (These are the outputs from ESP-CS.) This is challeng-
ing because it requires knowledge of the star’s radial velocity,
rotational velocity (v sin i), Teff , log g, and [Fe/H]. NLTE effects
must also be modelled (Andretta et al. 2005).

ESP-CS nominally adopts APs from GSP-Phot (and possibly
GSP-Spec). However, these could be adversely affected by the
star’s UV- or IR-excess from magnetic activity and/or circum-
stellar material (and the GSP-Spec estimates could be distorted
by high v sin i in young active stars). For these reasons ESP-CS
also estimates stellar APs itself, using χ2 minimization against
a set of templates of the Ca  wings. This takes into account ro-
tational broadening and is unaffected by photometric excesses,
so should provide a higher degree of internal consistency for the
activity estimation. This approach is motivated by various stud-
ies in the literature showing that the wings of these lines are
sensitive to all three stellar APs in some parts of the parameter
space (Chmielewski 2000; Andretta et al. 2005). For metal rich
dwarfs, the estimated activity level is actually not very sensitive
to these stellar APs. Giants, in contrast, demand a higher accu-
racy of the APs, to better than 10% to get even a coarse estimate
of chromospheric activity.

Based on existing R′HK catalogues (e.g. Henry et al. 1996;
Wright et al. 2004), the Besancon galaxy model (Robin et al.
2003), and the RIRT and ∆W correlations with R′HK from Busà
et al. (2007), we predict that Gaia will measure chromospheric
activity to an accuracy of 10% in about 5000 main sequence field
stars using ∆W, and in about 10 000 stars using RIRT, which is
some five times as many as existing activity measurements. We
also expect to be able to measure activity in giants below the
Linsky-Haish dividing line (Linsky & Haisch 1979), with the
survey’s homogeneity being an added value for statistical stud-
ies. Finally, we expect to be able to identify very young low-
mass stars in the field and in clusters down to GRVS = 14 via their
accretion or chromospheric activity signatures in the Calcium
triplet.

5.7. Special treatment for ultra-cool stars (ESP-UCD)

The ESP-UCD module provides physical parameters for the
coolest stars observed by Gaia, Teff < 2500 K, hereafter referred
to as ultra-cool dwarfs (UCDs) for brevity. The design of the
module and its results are described in detail in Sarro et al.
(2013), so we limit our description to the main features.

Based on empirical estimates of the local density of ultra-
cool field dwarfs (Caballero et al. 2008), the BT-Settl family of
synthetic models (Allard et al. 2012), and the Gaia instrument
capabilities outlined in Sect. 2, the expected number of Gaia de-
tections per spectral type bin ranges from a few million at M5,
down to a few thousand at L0, and several tens at L5. According
to the Gaia pre-launch specifications, it should be possible to de-
tect UCDs between L5 and late-T spectral types, although only
10–20 such sources are expected.

The ESP-UCD module comprises two stages: the select
and process submodules. The select submodule identifies good
UCD candidates for subsequent analysis by the process sub-
module. This selection is done according to pre-defined and
non-conservative cuts in the proper motion, parallax, G magni-
tude, and GBP−GRP colour. The exact definition of the selection
thresholds is based on the BT-Settl grid of synthetic models and
is likely to change as a result of the internal validation of the
module during the mission. In order to be complete at the hot
boundary (2500 K) of the UCD domain, the module also selects
stars which are hotter than this limit but fainter than the bright-
est UCD (since according to the models, a 2500 K low gravity
star can be significantly brighter than hotter stars with higher
gravities). Therefore, the ESP-UCD selection aims to be com-
plete for sources brighter than G = 20 and up to 2500 K, but will
also contain sources between 2500 and approximately 2900 K.
The module is actually trained on objects with Teff up to 4000 K.
During the data processing we may refine the selection and what
we define as the hot boundary for the UCD definition.

The process submodule estimates Teff and log g from the
RP spectrophotometry using three methods for each source:
k-nearest neighbours (Cover & Hart 1967), Gaussian Processes
(Rasmussen & Williams 2006), and Bayesian inference (Sivia
& Skilling 2006). In all three cases the regression models are
based on the relationship between physical parameters and ob-
servables defined by the BT-Settl library of models. ESP-UCD
will provide all three estimates. The root-mean-square (rms)
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Fig. 8. Performance of MSC at estimating Teff for both components of
an unresolved dwarf binary systems at G = 15. The upper panel shows
the predicted vs. true Teff , the lower the residual (predicted minus true)
vs. true Teff , for the primary component (red) and secondary (blue).

Teff error, estimated using spectra of real UCDs obtained with
ground-based telescopes and simulated to look like RP spectra
at G = 20, is 210 K. The lack of estimates of log g for this set
of ground-based spectra of UCDs prevents us from estimating
the rms error for this parameter, but the internal cross-validation
experiments show an rms error of 0.5 dex in log g, which is prob-
ably an underestimate of the real uncertainty.

5.8. Multiple Star Classifier (MSC)

MSC uses the BP/RP spectrum to estimate the APs of sources
identified as unresolved physical binaries by DSC. Currently
it estimates A0, [Fe/H], and the brightness ratio BR =

log10(L1/L2), of the system as a whole (L1 and L2 are the com-
ponent luminosities), as well as the effective temperature and
surface gravities of the two components individually. The APs
are estimated using SVMs, using the same SVM implementation
used for GSP-Phot (Sect. 5.2). For more details see Tsalmantza
& Bailer-Jones (2010a, 2012).

The training and testing data for MSC are constructed by
combining spectra for single stars into physically plausible bina-
ries (Lanzafame, priv. comm.), and simulating them with GOG
(Sordo & Vallenari 2013). A system age and metallicity is se-
lected at random and masses are drawn from a Kroupa IMF
and paired randomly. The corresponding atmospheric parame-
ters are identified using Padova isochrone models. We then use
the MARCS spectra (Sect. 4) to represent the individual stars
with the closest corresponding parameters.

The performance of MSC depends not only on the magni-
tude of the system, but also the brightness ratio of the two com-
ponents. MSC has been trained on a data set of dwarf-dwarf bi-
naries at G = 15 with an exponentially decreasing distribution
in BR from 0 to 5, such that the majority have BR < 2. Yet even
at BR= 2 the secondary is a hundred times fainter than the pri-
mary, so we should not expect good average performance on the
secondary component.

Here we report results on a test data set limited to BR < 1.5.
Figure 8 shows the Teff residuals for both components as a func-
tion of Teff . We see that we can predict Teff for the primary star

Table 8. Summary of MSC performance in terms of the rms, median
absolute residuals (MAR), and median residual (MR, as a measure of
systematic errors).

AP rms MAR MR

Teff,1 130 90 70
Teff,2 260 160 110
log g1 0.05 0.04 0.03
log g2 0.10 0.06 0.03
[Fe/H] 0.14 0.10 0.07
A0 0.11 0.09 0.07
BR 0.36 0.26 0.19

Notes. The subscripts 1 and 2 denote the primary and the secondary
components respectively. The apparently good performance for the sec-
ondary component is mostly an artefact of the narrow distribution of the
APs in our data set.
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Fig. 9. As Fig. 8, but for the surface gravity.

quite accurately, but not for the secondary star, despite the appar-
ently good summary statistics given in Table 8. Figure 8 shows
that for the secondary star, the estimated Teff correlates poorly
with the true Teff . This is because the SVM is hardly able to
learn the generally weak signature of Teff,2 from the data, so as-
signs essentially random values from the training data distribu-
tion. The rms is then relatively small simply because the spread
in the Teff,2 in the training data is also small8. This narrow Teff,2
distribution is a consequence of the way the binary systems were
constructed.

We see a similar problem with the determination of the sur-
face gravity of the secondary in Fig. 9. This is not at all sur-
prising, because this is anyway a weak parameter. In contrast,
log g for the primary can be determined quite accurately (no sig-
nificant systematics) despite the interfering spectrum of the sec-
ondary. This is partly a consequence of a correlation between
Teff and log g in our data set. On the other hand, when such cor-
relations are real, they should be exploited.

If we extend the test data set to include systems with
larger BR, then the accuracy of both components degrades.
Conversely, limiting it to smaller BRs produces better average

8 This serves as a reminder that performance as measured by rms resid-
uals should be judged in comparison to the standard deviation in the
data.
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Table 9. Example of UGC AP estimation performance in terms of the
rms residual for sources at three different magnitudes.

rms at G =
AP 15 18.5 20

A0 /mag 0.04 0.15 0.35
Redshift 0.002 0.011 0.028

Notes. The results from the final step of a two-step approach are given.

performance. Although the performance on the secondary com-
ponents is relatively poor, MSC is nonetheless a useful algorithm
because it gives a better performance on the primary components
than does GSP-Phot (Tsalmantza & Bailer-Jones 2010a). That is,
neglecting the existence of the secondary degrades the accuracy
with which we can estimate the APs of the primary.

MSC will report statistical uncertainties on the predicted APs
obtained from the residuals on a test data set: given the predic-
tions of the APs of an unknown object, we use a look-up table to
find the typical errors obtained on a test set around those mea-
sured APs.

5.9. Stellar mass and age estimation (FLAME)

Using the atmospheric AP estimates from GSP-Phot, it is pos-
sible to infer, to a greater or lesser accuracy, the fundamental
stellar parameters of age and mass. This is the task of FLAME.
First, the luminosity of each single star will be computed from
the Gaia parallaxes and magnitudes, and suitable bolometric cor-
rections calculated from the Teff . The luminosity, Teff and [Fe/H]
estimates place the object in the Hertzsprung-Russell diagram.
Comparison of this position with stellar evolutionary tracks for
a range of masses and abundances then allows us to estimate
the mass, age and metallicity fraction, Z, of the star through an
inversion method. The initial helium abundance in mass frac-
tion Y is assumed to follow the helium to metal enrichment law
∆Y
∆Z
= 1.45, based on the solar model calibration and a primor-

dial helium abundance of Y = 0.245. Two different algorithms
are used for the inversion (results will be provided from both): a
classical χ2 minimization algorithm (Ng & Bertelli 1998), and a
forward modelling Bayesian method (Pont & Eyer 2004) using
prior information on the initial mass function (only for age de-
termination), stellar formation rate and metallicity distribution
function. From the results the stellar radius can be calculated.
This is important for correcting the zero point radial velocity of
stars for the gravitational redshift.

When available, AP estimates (and additional abundance in-
formation) from GSP-Spec or ESP could be used by FLAME
also.

For stars of A type and later, a 1% error in Teff translates to
a similar error in the mass determination. Age is more sensitive
due in part to the degeneracy of evolutionary tracks in the HRD,
so will have errors of at least 10%, or even 100% in the worst
case. This all assumes fixed chemical composition, so the uncer-
tainties will increase when the [Fe/H] uncertainty is taken into
account.

5.10. Galaxy classification (UGC)

We expect to observe a few million unresolved galaxies with
Gaia. UGC will use the BP/RP spectra to classify them into dis-
crete classes and to estimate the redshift, the Galactic extinc-
tion, and parameters which determine the star formation law in

Table 10. Example of UGC classification performance in terms the true
positive classification percentage.

Galaxy True positive percentage at G =
type 15 13–16.5 18.5 16.5–19 19–20 20

Early 93 91 78 79 50 44
Spiral 98 95 90 92 73 64
Irregular 89 86 51 54 26 28
Quenched 99 98 94 94 83 83

Notes. Results for sources of fixed magnitude as well as for a range of
magnitudes are shown.

the source galaxy. We use SVMs for both classification and pa-
rameter estimation, the former giving probabilities for each of
the galaxy classes. The SVMs are trained on simulated BP/RP
spectra generated from the Galaxy spectral libraries described in
Sect. 4.2, which also defines the four galaxy types.

UGC comprises two separate modules (Bellas-Velidis et al.
2012). The first, UGC-Learn, provides SVM tuning, training and
testing functions for offline preparation of the models. A num-
ber of SVM models have been trained, arranged in a two-layer
hierarchy. For each of three G magnitude ranges (13–16.5, 16.5–
19, 19–20), an SVM in the first layer is trained to cover the total
range of the extinction and redshift parameters. In the second
layer, there is a set of SVM models, each dedicated to a nar-
rower range of these two parameters (again for each magnitude
range).

The second module, UGC-Apply, applies the fitted SVM
models in a hierarchical manner, in two steps. It operates on
sources identified by DSC as having a galaxy probability above a
predefined threshold (Sect. 5.1). In the first step, the “total range”
SVM for the appropriate source magnitude is applied to provide
an initial estimate of the redshift and extinction. In the second
step, “specific range” SVM models corresponding to these ini-
tial parameter estimates are used to classify the spectrum and to
estimate the parameters. The star formation parameters for all
the galaxy types are estimated, independently of the best class
predicted.

UGC shows good performance in predicting the extinction
(range 0–6 mag) and redshift (range 0.0–0.2), as can be seen
in Table 9. The residuals show no trend with the parameters.
The classification performance is measured as the percentage
of true-positive classifications, and is shown in Table 10. At all
magnitudes the best performance is obtained on the spirals and
quenched star formation galaxies. At G = 20 the true-positive
rate for the early and irregular classes is below 50%, and we
are not able to estimate the star formation parameters. For the
two brighter magnitude ranges the best performance is achieved
for the early type parameters. For irregular and quenched star
formation galaxy types the gas infall rate cannot be accurately
predicted, even at G = 15. Applying the hierarchical approach
to these parameters may help. Performance could be further in-
creased by improving the libraries, representing more realisti-
cally the observed spectral types, eliminating overlaps among
galaxy types, and providing larger numbers of spectra for the
different training and testing data sets. We also plan to inves-
tigate using the total Galactic extinction estimates from TGE
(Sect. 5.12).
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5.11. Quasar classification (QSOC)

QSOC processes the 500 000 or so quasars which we expect
Gaia to observe. It has two goals. First, it classifies each quasar
into the three classes type I, type II and BAL (broad absorption
line) quasars. This is achieved using a standard SVM classifier.
Second, QSOC estimates the redshift, total emission line equiv-
alent width, and the slope of the power law continuum. These
three APs are estimated using an ensemble of trees based on
the Extremely Randomized Tree (ERT) algorithm (Geurts et al.
2006). The redshift is also estimated using an SVM in classifi-
cation mode, in which each redshift bin of width 0.1 in redshift
from z = 0 to 5.6 is represented as a separate class and assigned
a probability. (It is done this way to search for possible multi-
modality in redshift estimation.) The SVM and ERT redshift es-
timates are then combined to give a single redshift estimate. The
models are trained using the quasar spectral libraries described
in Sect. 4.

The module has been evaluated using K-fold cross valida-
tion. The results reported here are for training and testing with
the semi-empirical library. The SVM classifier achieves an ac-
curacy of 97.4%, 95.8%, and 91% for G = 15, 18.5, and 20
(respectively), for those quasars where the SVM redshift clas-
sifier gives a probability above some threshold in a single bin
(i.e. high confidence). The AP predictions from each regression
tree in the ERT ensemble could be combined in several different
ways. While the mean minimizes the rms, the median minimizes
the mean absolute deviation and reduces the bias. We instead cal-
culate a discretized mode: we form a histogram of the estimates
(with an adapted bin width), and report the central value of the
highest bin as our AP estimate. We find that this gives a higher
accuracy than either the mean or the median. The redshift accu-
racy obtained in this way is 0.02, 0.03, and 0.04 for G = 15, 18.5,
and 20 respectively. We observe some systematically wrong red-
shift estimates due to degeneracies in the identification of the rest
wavelengths of pairs of strong emission lines, as well as some
minor biases at small redshifts caused by the zero limit of the
redshifts.

So far we do not try to deal with misclassifications from
DSC, e.g. contamination from Be or WR stars (although by us-
ing parallaxes and proper motions, DSC attempts to minimize
such misclassifications). We also do not take into account inter-
stellar extinction (the training data, from SDSS DR9, are at high
Galactic latitude and assumed to be extinction free), so QSOC
may not produce reliable results at low latitudes. Part of the on-
going development will be to use extinction estimates from TGE
to overcome this limitation.

5.12. Total Galactic Extinction (TGE)

When estimating the APs of objects from their broad band spec-
tra, it is important to take into account the impact of interstel-
lar extinction. Some algorithms, such as GSP-Phot, estimate this
for each star independently, effectively treating the extinction
as an additional stellar parameter. But this approach works less
well for some types of object, in particular quasars. The role of
TGE is to estimate the total Galactic extinction (the extinction
integrated to the edge of the Galaxy) towards an extragalactic
source. It does this by combining the individual extinction esti-
mates from GSP-Phot for distant stars (small parallaxes) in the
source’s direction.

As part of the DPAC processing, Gaia sources will be
indexed according to their position on the sky using the
Hierarchical Equal Area isoLatitude Pixelisation (HEALPix)

Fig. 10. Example of TGE extinction estimate in a simulated Galactic
field at (l, b)= 60◦, 10◦. The black points show the true extinction, A0,
for all stars in the field, while the diamonds show the estimated extinc-
tion from GSP-Phot for the selected tracers, coloured according to the
magnitude of the uncertainty of the A0 estimates: red for |∆A0| > 0.1,
green for |∆A0| < 0.1, and blue for |∆A0| < 0.05 mag. The solid hor-
izontal line shows the estimated ATGE value and the dashed lines the
±1σ rms.

scheme (Górski et al. 2005). This hierarchically partitions the
celestial sphere into ever smaller levels, or HEALpixels. Apsis
processes sources in blocks of data corresponding to level 6
HEALpixels, each of which covers 0.839 square degrees. Given
all the data in one such HEALPix, TGE first selects stars to
use as extinction tracers. It then uses the estimated extinctions
and parallaxes of these tracers to derive the total Galactic extinc-
tion for that HEALPix. This is repeated for all HEALpixels over
the whole sky. In regions where there are more tracers, a higher
HEALPix level can be used in order to achieve a higher angular
resolution map.

Candidate tracers are selected to be single stars (using the
DSC probability) and non-variable (using indices from the pho-
tometric processing in CU5). Those with the most precise A0 es-
timates are selected based on the expected performance of GSP-
Phot in different parts of the AP space and on the individual A0
uncertainty estimates provided by GSP-Phot. Finally, a parallax
selection criterion is applied to the candidate tracers in order to
select just those which are sufficiently far from the main gas and
dust layer in the Galactic plane.

For the estimate of the total Galactic extinction for that
HEALpixel, ATGE, we report the mean A0 value of the selected
tracers. The uncertainty in this we represent with the rms of the
A0 values. We are exploring the use of other estimators which en-
able more robust estimates of ATGE, in particular at low Galactic
latitudes. On account of the very high extinction in some fields
at low latitudes, there will be insufficient distant tracers for TGE
to make a reliable estimate of ATGE (although we also then ex-
pect to detect fewer extragalactic objects on account of this same
extinction).

As an example of how TGE works, Fig. 10 shows the esti-
mated A0 for stars and selected tracers in a particular HEALpixel
(from Aeneas in GSP-Phot), using simulated Galactic data, and
the value of ATGE estimated from these. In addition to TGE
providing extinction estimates for use in QSOC (and possibly
UGC), it will also provide a two-dimensional map of the total
extinction for most of the Galaxy, unique in that it will be derived
from the individual extinction estimates of stars with measured
parallax.
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5.13. Outlier Analysis (OA)

Like any supervised classification algorithm, DSC can only reli-
ably classify objects which are modelled accurately in its train-
ing set. By design, objects which do not match its training set
achieve low probabilities for all classes and will therefore be la-
belled as unknowns, or outliers. These could be types of objects
omitted from the DSC training data entirely, objects with poor
spectral models, or instrumental artefacts not well modelled by
GOG. They could also be previously unseen types of object. We
estimate that 5% or more of the Gaia sources will be marked
as outliers by DSC – more than 50 million objects – so some
kind of automated analysis of these is mandatory. This is the
task of OA. Its main purpose is to help improve the source and
instrument modelling and thereby improve the training data sets
during the mission.

OA uses a Self-Organizing Map (SOM, Kohonen et al.
2001). This projects the original data (BP/RP and astrometry)
into a 2D grid of nodes in a way that attempts to preserve local
topology, thereby clustering together similar objects which may
be systematically rejected by DSC (Fustes et al. 2013b). Then
follows an identification stage, where we try to discover whether
any other known types of source are associated with any of these
clusters. This stage could make use of data from other surveys
and catalogues.

In order to study the behaviour of our algorithm with a
realistic dataset, we compiled a semi-empirical BP/RP library
from spectra that were classified as “unknown” by the SDSS
spectroscopic classification pipeline. This dataset comprises
10 125 objects, which are mostly faint objects, incomplete spec-
tra, or the result of a poor fibre alignment. We fit a SOM with
30× 30 nodes to these. As a first method of identification, we ap-
plied a k-nearest neighbours classifier on labelled objects from
the simulated Gaia data (described in Sect. 4). Observing where
these tend to land in the SOM, we used this to label the SOM
nodes. The results of this are shown in the upper panel of
Fig. 11. (Note that there is no physical meaning to the axes,
size or shape of the SOM.) In a second method, we identi-
fied from the Simbad database the nearest object on the sky to
each SDSS object and retrieved its Simbad class, if available
(which is the case for about 3000 of the SDSS objects). If a
large enough fraction of objects in a single SOM node share
the same class, we label that node with that class, as shown
in the lower panel of Fig. 11. Otherwise the node is labelled
“unknown”. Comparing the two maps, we see that quasars and
white dwarfs are identified in similar regions in both cases, giv-
ing some confidence that these classifications are appropriate.
Using this approach, we were able to identify 400 white dwarf
candidates, 1000 quasar candidates, and 16 brown dwarf can-
didates from among the SDSS outliers. For further details, see
Fustes et al. (2013a).

5.14. Unsupervised clustering (OCA)

The supervised learning modules used in Apsis can only as-
sign meaningful parameters to the types of objects they have
been trained on. Inevitably, not all types of objects which Gaia
will encounter are covered by the Apsis training sets. The aim
of the Object Clustering Algorithm (OCA) is to identify some
natural groups among the Gaia sources, independently of la-
belled training data sets. This can be used to help improve the
training sets in a similar manner to OA, but may also identify

Fig. 11. Identifications of SDSS outliers using the SOM in the OA mod-
ule, obtained from Gaia simulations (top) and Simbad (bottom).

potentially new types of object which can then be studied
further9.

OCA implements a variant of the Hierarchical Mode
Association Clustering algorithm (HMAC, Li et al. 2007), which
analyses the density of sources in the multidimensional space
formed by the data (here BP/RP, astrometry and, when avail-
able, RVS). In this framework, each individual source is associ-
ated to the closest mode (maximum) of the probability density
landscape. Rather than explicitly computing the probability den-
sity, the Modal Expectation-Maximisation (MEM) algorithm is
used to assign sources to modes. This works by climbing to a
local maximum in an iterative fashion. It is almost equivalent
to assigning the source to the closest mode in a kernel density
estimation (Wand & Jones 1995). The algorithm uses Gaussian
kernels to find the modes, and it becomes hierarchical when we
increase the size of the covariance matrix of these kernels, such
that modes (and their associated sources) are merged into new
modes/clusters at higher levels of the hierarchy.

The computational complexity of HMAC is quadratic in the
number of sources, which is up to 109 in the case of Gaia. In or-
der to fit within computational time and memory limitations, we
use a divide-and-conquer strategy. The full sample of sources to
be clustered is partitioned into disjoint subsamples correspond-
ing to different HEALpixels on the celestial sphere. HMAC is
applied to each of these subsamples in order to identify modes
(cluster representatives). These modes are assigned a weight pro-
portional to the number of sources that converged to it (the clus-
ter size). An iterative process is then used to merge the modes
across subsamples.

OCA has been tested on the semi-empirical SDSS star,
galaxy and quasar libraries described in Sect. 4 for sources with
a range of magnitudes. The BP/RP spectra were normalized to
unit area, and only the first 15 principal components (PCs) in

9 We use the standard term “natural groups” here, but in fact there is
no such thing. The clustering found by any algorithm is determined by
the similarity measure – or distance metric – we choose to adopt.
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Fig. 12. Simplified example of the clustering performed by OCA to
identify modes of density, shown in the space formed by the first two
principal components. The black lines are the contours of the data den-
sity. The blue circles and red crosses correspond to the modes of the
large (0.025) and small (0.015) kernel sizes respectively. At the lower
resolution (blue circles), the three cluster modes obtained correspond to
clusters dominated by stars, quasars and galaxies, although with signif-
icant contamination from other types.

each of RP and BP were used, accounting for 99% of the vari-
ance. We also included the first four moments of the BP and RP
flux distributions, scaled to the range of values of the first PC.
Figure 12 illustrates a simplified case of clustering for two ker-
nel sizes and a reduced dataset.

6. Validation, calibration, and in-mission

development

The data processing phase of the mission comprises three vital
tasks beyond applying Apsis to the Gaia data. These are vali-
dation, calibration, and in-mission software development. (The
subsequent task of catalogue production is not covered in this
article.) These we now discuss in turn.

Apsis will produce an enormous set of AP estimates on many
different types of objects. A critical assessment of these results
is an important part of the data processing. We refer to this as
validation, and it will take place in two ways. First, an internal
validation examines (for example) the distributions of estimated
parameters, their uncertainties, and correlations between them,
and whether these agree with our expectations. For example, do
we get an inordinately large number of low metallicity stars, or
do we find unexpected correlations, such as Teff increasing with
A0?10 Such analyses may allow us to identify problems and thus
improve the training data and algorithms. The internal validation
will also compare the AP estimates for common objects between
the different modules in Apsis. Second, an external validation
compares our AP estimates with external AP estimates, either for
individual objects or for populations of objects. An example of
the latter is to construct the HRD of known clusters, or compare
metallicity or redshift distributions with published estimates.
While we would not automatically take non-Gaia estimates as

10 There is a known, strong degeneracy in the spectra between Teff and
A0 for individual stars (e.g. Bailer-Jones 2010b; Liu et al. 2012) which
we attempt to account for, but it is not of physical origin.

being true, systematic differences between our and non-Gaia es-
timates may be indicative of problems.

The Apsis algorithms have been developed over the past
years using simulated Gaia data. The real Gaia data will of
course differ from these. In particular, the response function and
noise properties of the detectors may differ from expectations,
and these will anyway evolve in unpredictable ways during the
mission due to the progressive radiation damage of the CCDs.
Upstream data processing tasks may also need to change the way
they process the data, producing data with different properties.
The result is that the shape and noise properties of the spectra
are likely to deviate from our current simulations. Furthermore,
the Apsis algorithms make extensive use of synthetic spectra for
training. These differ from real spectra because of the approx-
imations involved in modelling astrophysical sources11. These
two issues – spectral simulation and instrument simulation – re-
sult in imperfectly modelled Gaia spectra, something we refer to
as the “spectral mismatch problem”. As supervised algorithms
depend on a match between their training data and the observed
data, it is important that we accommodate these changes. It is
the goal of the calibration of the Apsis algorithms to correct for
this.

A calibration can be achieved by applying corrections either
to the training data before it is used, or to the APs produced by
the estimation algorithm. In the first approach, we use Gaia ob-
servations of labelled reference objects (i.e. with known APs) to
modify the fluxes of the synthetic spectra, thereby producing a
hybrid synthetic-real grid which is used for algorithm training.
One specific idea is to use the denser synthetic spectral grids
to model the small scale variations of fluxes with APs, and the
sparser observed spectral grids to model the larger scale varia-
tions (Bailer-Jones 2010a). This follows the assumption that syn-
thetic spectra reproduce flux changes better than absolute fluxes.
The feasibility of this approach is under investigation12. In the
second approach, we instead model the AP deviations as a func-
tion of the main parameters. Although simpler, it is probably
less accurate due to the loss of information from working with
“faulty” spectra in the first place, so this is not being pursued.
Both approaches require that we obtain accurate APs by inde-
pendent methods for a set of reference objects which Gaia will
observe. This is being done explicitly for Gaia using ground-
based higher resolution spectra, as discussed in Sect. 6.1.

Another aspect of the calibration work is to improve the rep-
resentation of the synthetic stellar spectra in the first place. Two
routes are currently being followed to improve the spectra of
FGK stars. The first is to move from classical 1D stellar atmo-
spheres to 3D radiation-hydrodynamics simulations in order to
better represent the effects of convection (Chiavassa et al. 2011;
Allende Prieto et al. 2013; Magic et al. 2013). Second, devi-
ations from LTE will be taken into account by implementing
the results of detailed statistical equilibrium calculations into the
spectrum synthesis codes. This will be particularly important for
modelling the calcium triplet lines dominating the RVS spectra
(Mashonkina et al. 2007; Merle et al. 2011).

11 An example mismatch affecting RVS is incorrect broadening param-
eters and assumptions, which affects in particular the Paschen lines
of stars with Teff around 10 000 K (Fremat et al. 1996). In BP/RP, the
largest effect is expected to arise for the cooler stars due to incom-
plete and poor molecular data, as shown for example by Plez (2011)
and Lebzelter et al. (2012).
12 Ideally we would just use Gaia observations of labelled objects as
the complete training data sets and dispense entirely with modifying
synthetic grids, but a sufficient set of labelled objects does not exist for
this purpose.
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In addition to calibration and validation, we expect to have
to adapt, during the data processing, how we use the Apsis al-
gorithms. For example, we will inevitably have to modify our
nominal strategy of which APs we attempt to estimate for which
types of object at which magnitudes. We may even find that
we need to modify or change algorithms, or introduce new al-
gorithms to deal with additional classes of object. Indeed, we
fully expect to have to modify and extend our spectral libraries
to accommodate missing classes of objects or poorly modelled
classes. We will also update the model of the Gaia instruments
to match their in-flight properties as closely as possible, in or-
der to produce more accurate training data sets. All of this will
demand a continued software development and data simulation
during the mission.

6.1. High resolution spectral observations for Apsis stellar
calibration

To perform the calibrations described above, we need indepen-
dent AP estimates of several thousand Gaia targets.

A two-level procedure for those algorithms which estimate
Teff , log g, and [Fe/H] is foreseen. At the first level, we define
a set of benchmark stars made up of a small number of care-
fully selected, well-studied bright stars (around 40 FGKM and
20 OBA stars). Their Hipparcos parallaxes, angular diameters
and bolometric fluxes are known, and their masses have been
determined in a homogeneous way, so their effective tempera-
tures and surface gravities can be derived independently of spec-
troscopy. Reference metallicities for benchmark stars are deter-
mined from ground-based high-resolution spectra (see below)
using several different methods. Details on the parameters and
data for cool benchmark stars will be published in a series of
forthcoming papers (and already in Lebzelter et al. 2012). At
the second level, we define a much larger set of several hun-
dred reference stars covering the AP space more densely than
the benchmark stars. Homogeneous APs for these stars are being
determined from high-resolution spectroscopy and calibrated to
the benchmark stars.

The necessary high-resolution spectra are being obtained in
various observing programs. OBA stars have been observed with
the HERMES spectrograph on the Mercator Telescope in Spain.
These will be supplemented with medium-resolution OBA (clus-
ter) star spectra observed with VLT-Giraffe as part of the Gaia-
ESO public spectroscopic survey. The FGKM stars have been
observed with the NARVAL spectropolarimeter on the 2 m
Bernard Lyot Telescope at Pic du Midi in spectroscopic mode.
High-resolution spectra of M dwarfs have been obtained in the
infrared J-band with the CRIRES spectrograph (Önehag et al.
2012). High quality spectra are also retrieved from the vari-
ous public archives. So far the library comprises 79 spectra of
35 cool benchmark stars from NARVAL, UVES and HARPS ob-
servations, with resolutions greater than 70 000 and S/Ns greater
than 200. The benchmark star spectra will be published online in
the SW database13 and the reference star spectra in the
HHR database, currently under development.

7. Outlook

We have described the status of the Gaia classification system
at the time of launch, prior to seeing any real data. During the
course of the five year mission and the subsequent two or three
years of processing before the final data release, this system will

13 http://spectra.freeshell.org/spectroweb.html

continue to evolve in light of the experience we gain with the
data. Indeed, we anticipate substantial developments, which we
will report in future publications.

Our classification approach involves a combination of super-
vised and unsupervised algorithms. The former are critically de-
pendent on an accurate representation of the target sources, and
our training data sets will need considerable optimization during
the data processing phase. This will involve improvements to the
simulations as well as the use of ground-based data to calibrate
our training data.

The system developed so far makes some idealized assump-
tions about the data and the upstream spectral processing by the
other CUs. For example, the exact impact of radiation damage
on the CCDs and therefore on the combined BP/RP and RVS
spectra is hard to model. Being a slitless spectrograph, some
BP/RP spectra will overlap (and likewise for RVS). Although
this is accommodated in the spectral extraction, imperfect re-
moval of overlap will leave systematic residuals. Analysing the
real data will be an important learning experience.

It should be appreciated that the main objective of Apsis is
to provide reasonably accurate parameter estimates for a broad
class of objects covering a large fraction of the catalogue. We do
not aim to do everything possible. For example, while we try to
identify white dwarfs, we do not (yet) attempt to estimate their
parameters. We are likewise aware that almost any narrow class
of objects could be given more targeted treatment, which may re-
sult in more accurate AP estimates through, for example, a more
focused use of the data or by adopting different source models.
A combination of Gaia data with non-Gaia data will be particu-
larly beneficial for some classes of object, but this is beyond the
remit of CU8. Some such work is planned by the DPAC within
CU9 (responsible for the data releases), and the resulting hybrid
catalogues would be published in the data releases. We note fi-
nally that we hope to publish not only the results from Apsis,
but also the software, to enable the scientific community to ob-
tain their own AP estimates with their own training data sets, for
instance. There is no natural divide between “data processing”
and “scientific analysis”, and we hope that in the course of ex-
ploiting the Gaia data the community will take up the challenge
to extend and to improve our work.
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