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ABSTRACT

We present new constraints on the relationship between galaxies and their host dark matter

haloes, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR),

up to the most massive galaxy clusters at redshift z ∼ 0.8 and over a volume of nearly

0.1 Gpc3. We use a unique combination of deep observations in the CFHTLenS/VIPERS field

from the near-UV to the near-IR, supplemented by ∼60 000 secure spectroscopic redshifts,

analysing galaxy clustering, galaxy–galaxy lensing and the stellar mass function. We interpret

our measurements within the halo occupation distribution (HOD) framework, separating the

contributions from central and satellite galaxies. We find that the SHMR for the central galaxies

peaks at Mh,peak = 1.9+0.2
−0.1 × 1012 M⊙ with an amplitude of 0.025, which decreases to ∼0.001

for massive haloes (Mh > 1014 M⊙). Compared to central galaxies only, the total SHMR

(including satellites) is boosted by a factor of 10 in the high-mass regime (cluster-size haloes),

a result consistent with cluster analyses from the literature based on fully independent methods.

After properly accounting for differences in modelling, we have compared our results with

a large number of results from the literature up to z = 1: we find good general agreement,

independently of the method used, within the typical stellar-mass systematic errors at low to

intermediate mass (M⋆ < 1011 M⊙) and the statistical errors above. We have also compared

our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared

to our measurements in such a way that they over- (under-) predict star formation efficiency

in central (satellite) galaxies.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology:

observations – dark matter.

1 IN T RO D U C T I O N

The last few years have seen an increasing interest in statistical

methods linking observed galaxy properties to their dark matter

haloes, owing to the availability of numerous large scale multi-

wavelength surveys. Those techniques are based on the assumption

that the spatial distribution of dark matter is predictable and one is

able to match its statistical properties with those of the galaxies. The

⋆E-mail: jean.coupon@unige.ch

halo model (see Cooray & Sheth 2002) is a quantitative representa-

tion of the distribution of dark matter, characterized by three main

ingredients: the halo mass function describing the number density

of haloes per mass, the halo bias tracing the clustering amplitude

and the halo density profile.

Galaxies are born and evolve in individual haloes where the

baryonic gas condensates, cools and forms stars. Galaxies are grav-

itationally bound to dark matter and share a common fate with

their host, e.g. during mergers. Although we understand qualita-

tively individual physical processes likely to be involved in galaxy

evolution, a number of key answers are missing.
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Observations show that a fraction of galaxies experienced star

formation quenching and have become passive, shaping the galaxy

population into a bimodal blue/red distribution (Faber et al. 2007;

Ilbert et al. 2013). The number of these passive galaxies is higher

today than in the past and increases with increasing halo mass. Might

feedback processes in massive haloes be responsible for this, or is

there a universal critical stellar mass above which star formation

ceases, independently of the halo mass? Studying the connection

between galaxies and their host haloes is crucial to answer these

questions.

Another enigmatic question is the low stellar mass fraction in

low-mass haloes, seen in early studies connecting galaxies to their

host haloes (Yang, Mo & van den Bosch 2003; Vale & Ostriker

2006; Zheng, Coil & Zehavi 2007). In fact, when measuring the

stellar-to-halo mass ratio (SHMR) as a function of time, we observe

that stellar mass is building up asymmetrically, first in massive

haloes, later on in low-mass haloes (Conroy, Wechsler & Kravtsov

2006; Behroozi et al. 2013b). This asymmetry in the SHMR is one

corollary of the so-called galaxy downsizing effect (Cowie et al.

1996). In low-mass haloes, stellar winds and supernovae may slow

down star formation until the potential well grows deep enough to

retain the gas and increase the star formation rate (SFR). Again,

it becomes necessary to relate galaxy properties to their host halo

mass.

A number of studies have related galaxy properties to dark matter

haloes using the abundance matching technique (Marinoni & Hud-

son 2002; Conroy et al. 2006; Behroozi, Conroy & Wechsler 2010;

Guo et al. 2010; Moster et al. 2010), which employs the stellar

mass (or luminosity) function and the halo mass function to match

halo–galaxy properties based on their cumulative abundances. The

conditional luminosity function technique proposed by Yang et al.

(2003) includes a parametrized M⋆−Mh relationship whose param-

eters are fitted to the luminosity function. Both this formalism and

recent abundance matching studies feature a scatter in M⋆ at fixed

Mh, which is an important ingredient to account for, given the steep

relation between the two quantities at high mass.

More recently, models adopting a similar approach to abundance

matching consist of directly populating dark matter haloes from N-

body simulations, to reproduce the observed stellar mass functions

as a function of redshift, using a parametrized SFR model to account

for redshift evolution (Moster, Naab & White 2012; Behroozi et al.

2013b).

Except in some rare cases where central or satellite galaxies can

be individually identified (e.g. George et al. 2011; More et al. 2011),

in studies based on luminosity or stellar mass distributions, the

satellite galaxies’ properties cannot be disentangled from those of

the central galaxies. To remedy the problem, abundance matching

techniques either assume an ad hoc fraction of satellites or use

a subhalo mass function estimated from numerical simulations.

Unfortunately, as subhaloes may be stripped and disappear after

being accreted on to larger haloes, the subhalo mass function at

the time considered might not correspond to the distribution of

satellites, and one must consider the mass of subhaloes at the time

of accretion, further extrapolated to the time considered. Obviously

these complications limit the amount of information one can extract

about galaxy satellites.

Galaxy clustering, on the other hand, allows separation of the

contributions from central and satellite galaxies due to the different

typical clustering scales. To model the clustering signal of a given

galaxy population, the halo occupation distribution (HOD) formal-

ism assumes that the galaxy number per halo is solely a function of

halo mass and that the galaxy satellite distribution is correlated to

that of the dark matter (Berlind & Weinberg 2002; Kravtsov et al.

2004).

One achievement of HOD modelling was to demonstrate from

simulations (Berlind et al. 2003; Moster et al. 2010) that only a

handful of parameters was necessary to fully describe galaxy–halo

occupation. This parametric HOD was fitted to a number of ob-

servations over a large range of redshifts and galaxy properties.

Among the more remarkable results are the local Universe galaxy

clustering and abundance matching studies performed on the Sloan

Digital Sky Survey (SDSS; see e.g. Zehavi et al. 2011) and at higher

redshifts (Foucaud et al. 2010; Wake et al. 2011; Coupon et al. 2012;

de la Torre et al. 2013; Martinez-Manso et al. 2015).

However, some underlying assumptions on the distribution of

dark matter haloes implied in the HOD formalism are observation-

ally challenging to confirm and one has to rely on N-body sim-

ulations. Fortunately, additional techniques may be used to relate

galaxy properties to halo masses, among which gravitational lens-

ing is one of the most powerful probes: by evaluating the distortion

and magnification of background sources, one is able to perform a

direct estimation of the dark matter halo profile (for a review, see

Bartelmann & Schneider 2001). The low signal-to-noise ratio asso-

ciated with individual galaxies, however, forces us to ‘stack’ them

(e.g. binned together within narrow stellar mass ranges), using a

technique known as galaxy–galaxy lensing (Brainerd, Blandford &

Smail 1996; Hudson et al. 1998; Hoekstra, Yee & Gladders 2004;

Mandelbaum et al. 2005a; Yoo et al. 2006; van Uitert et al. 2011;

Cacciato, van Uitert & Hoekstra 2014; Velander et al. 2014; Hudson

et al. 2015).

Clearly, each of the above methods brings a different piece of

information and combining all observables together is particularly

interesting, although doing so properly is challenging. In a recent

study using COSMOS data, Leauthaud et al. (2012) have success-

fully combined galaxy clustering, galaxy–galaxy lensing and the

stellar mass function (see also Cacciato et al. 2009; Mandelbaum

et al. 2013; Miyatake et al. 2013; More et al. 2014), fitted jointly

and interpreted within the HOD framework: the authors have used

a global central galaxy M⋆−Mh relationship (as opposed to mea-

suring the mean Mh per bin of stellar mass) and extended it in a

consistent way to satellite galaxies.

In this paper, we apply this advanced formalism using a new

data set covering a uniquely large area of ∼25 deg2 with accurate

photometric redshifts in the redshift range 0.5 < z < 1 and stel-

lar masses > 1010 M⊙. Our galaxy properties’ measurements are

calibrated and tested with 70 000 spectroscopic redshifts from the

VIPERS survey and a number of publicly available data sets. Our

data span a wide wavelength range of ultraviolet (UV) deep data

from GALEX, optical data from the Canada–France–Hawaii Tele-

scope (CFHT) Legacy Survey and Ks-band observations with the

CFHT WIRCam instrument. This large statistical sample allows us

to measure with high precision the stellar mass function, the galaxy

clustering, and we use the CFHTLenS shear catalogue to measure

galaxy–galaxy lensing signals. The galaxy clustering is measured

on the projected sky for the photometric sample and in real space

for the spectroscopic sample.

This paper is organized as follows: in Section 2, we describe

the observations, the photometric redshift and stellar mass esti-

mates. In Section 3, we present the measurements of the stellar

mass function, the galaxy clustering (both from the photometric

and spectroscopic samples) and galaxy–galaxy lensing signals. In

Section 4, we describe the HOD model, and the Markov chain

Monte Carlo (MCMC) model fitting results are given in Section 5.

In Section 6, we discuss our results and conclude. Throughout the
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paper, we adopt the following cosmology: H0 = 72 km s−1 Mpc−1

and �m = 0.258, �� = 0.742 (Hinshaw et al. 2009) unless

otherwise stated. To compute stellar masses, we adopt the ini-

tial mass function (IMF) of Chabrier (2003) truncated at 0.1 and

100 M⊙, and the stellar population synthesis (SPS) models of

Bruzual & Charlot (2003). All magnitudes are given in the AB

system. The dark matter halo masses are denoted as Mh and defined

within the virial radius enclosing a mean overdensity �vir compared

to the mean density background, taking the formula from Weinberg

& Kamionkowski (2002). At z = 0.8, �vir = 215. All masses are

expressed in unit of M⊙. Measured quantities are denoted as X̃ and

theoretical quantities as X. We call cosmic variance the statistical

uncertainties caused by the density fluctuations of dark matter and

we define the sample variance as the sum of the cosmic variance

and Poisson noise variance.

2 DATA

In this work, we combine several data sets to build a volume-limited

sample of galaxies more massive than M⋆ = 1010 M⊙ in the red-

shift range 0.5 < z < 1. Our galaxy selection is based on NIR

(Ks < 22) observations, collected in the two fields of the VIMOS

Public Extragalactic Redshift Survey (‘VIPERS-W1’ and ‘VIPERS-

W4’), overlapping the (Canada–France–Hawaii Telescope Legacy

Survey) CFHTLS-Wide imaging survey, and covering a total un-

masked area of 23.1 deg2. We refer to Arnouts et al. (in preparation)

for a complete description of the multiwavelength UV and NIR

observations, reduction and photometry.

Our background galaxy selection used for the measurement of

the lensing signal is based on the CFHTLS-Wide i-band selection

in the area that overlaps with the NIR observations.

2.1 The CFHTLS-Wide survey

The CFHTLS1 is a photometric survey performed with MegaCam

(Boulade et al. 2003) on the CFHT telescope in five optical bands u⋆,

g, r, i, z (i < 24.5–25, 5σ detection in 2 arcsec apertures) and cover-

ing four independent patches in the sky over a total area of 154 deg2.

In this analysis, we use the photometric and shear catalogues

produced by the CFHTLenS2 team (Heymans et al. 2012). The

CFHTLenS photometry is performed with SEXTRACTOR (Bertin &

Arnouts 1996) on the PSF-homogenized images (Hildebrandt et al.

2012; Erben et al. 2013). Magnitudes are based on the MAG_ISO

estimator where the isophotal apertures are derived from the i-band

detection image. This approach optimizes the colour measurements

and leads to an improvement in the photometric redshift accuracy

(Hildebrandt et al. 2012). To estimate the total magnitude of each

source, a global shift is applied to the MAG_ISO magnitude in all

the bands based on the difference between MAG_ISO and MAG_AUTO

magnitudes, as measured in the i-band detection image (Hildebrandt

et al. 2012).

As the magnitude errors are measured with SEXTRACTOR directly

from the local background in the PSF-homogenized image, we need

to correct for the noise correlation introduced by the convolution

process. To do so, we multiply the CFHTLenS magnitude errors

in all bands by the ratio of the i-band detection image errors to

the i-band PSF-homogenized image errors. The correction factor

ranges from 3 to 5, where the strongest correction occurs when the

seeing difference between the i band and the worse-seeing image

1 http://www.cfht.hawaii.edu/Science/CFHTLS/
2 http://cfhtlens.org/

is the largest. As the i-band image is usually the best-seeing image,

this procedure may slightly overestimate the correction in the other

bands, however we neglect it here.

In addition, magnitude errors must be rescaled to account for

image resampling. Two independent tests have been performed to

accurately estimate the correction factor: we measured the disper-

sion of magnitudes between the i-band detection (un-convolved)

magnitudes and the CFHTLS-Deep magnitudes, and between du-

plicated observations of the same object in the overlapping regions

of adjacent tiles. We find that the errors must be rescaled by a factor

of 2.5.

The footprints of the CFHTLS MegaCam tiles overlapping the

VIPERS survey are shown as grey squares in Fig. 1.

2.2 The Near-IR observations

We have conducted a Ks-band follow-up of the VIPERS fields with

the WIRCam instrument at CFHT (Puget et al. 2004) for a to-

tal allocation time of ∼120 h. The integration time per pixel was

1050 s and the average seeing of all the individual exposures was 0.6

±0.09 arcsec. The data have been reduced by the Terapix team:3

the images were stacked and resampled on the pixel grid of the

CFHTLS-T0007 release (Hudelot et al. 2012). The images reach

a depth of Ks = 22 at ∼3σ (Arnouts et al., in preparation). The

photometry was performed with SEXTRACTOR in dual image mode

with a gri − χ2 image (Szalay, Connolly & Szokoly 1999) as the

detection image. To correct for the noise correlation introduced by

image resampling, we multiply the errors by a factor 1.5, obtained

from the dispersion between the WIRCam Ks-band magnitudes

and the magnitudes measured in the deeper (K < 24.5) UKIDSS

Ultra Deep Survey (UDS; Lawrence et al. 2007). We also used

the UDS survey to confirm that our sample completeness based

on gri − χ2 detections reaches 80 per cent at Ks = 22. Using the

WIRCAM/CFHTLS-Deep data with an i-band cut simulating the

CFHTLS-Wide data depth, we have checked that this incomplete-

ness is caused by red galaxies above z = 1 and does not affect our

sample selected in the range 0.5 < z < 1. The Ks MAG_AUTO esti-

mates are then simply matched to their optical counterparts based

on position.

In addition to this data set, we also use the CFHTLS-D1 WIRDS

data (Bielby et al. 2012), a deep patch of 0.49 deg2 observed with

WIRCam J, H and Ks bands and centred on 02h26m59s, −04◦30′00′′.

All three bands reach 50 per cent completeness at AB magnitude

24.5.

The WIRCam observations are shown in Fig. 1 as the red regions.

After rejecting areas with poor WIRCam photometry and those with

CFHTLenS mask flag larger than 2, the corresponding effective area

used in this work spans over 23.1 deg2, divided into 15 and 8.1 deg2

in the VIPERS-W1 and VIPERS-W4 fields, respectively.

2.3 The UV-GALEX observations

When available, we make use of the UV deep imaging photometry

from the GALEX satellite (Martin et al. 2005; Morrissey et al. 2005).

We only consider the observations from the Deep Imaging Survey

(DIS), which are shown in Fig. 1 as blue circles (Ø∼1.◦1). All

the GALEX pointings were observed with the NUV channel with

exposure times of Texp ≥ 30 ksec. FUV observations are available

for 10 pointings in the central part of W1.

3 http://terapix.iap.fr/
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Figure 1. Footprints of the different data sets used in this work. Our selection is based on WIRCam data shown in red and covering approximately 25 deg2

(23.1 deg2 after masking). The CFHTLS MegaCam pointings are shown in grey, the GALEX DIS observations as large blue circles (in purple if overlapped

with WIRCam), the spectroscopic surveys VIPERS/VVDS in light green and PRIMUS in dark green. The SDSS/BOSS coverage is almost complete. The data

outside the WIRCam footprint are not used, and shown here only for reference.

Due to the large PSF (FWHM ∼ 5 arcsec), source confusion be-

comes a major issue in the deep survey. To extract the UV photom-

etry we use a dedicated photometric code, EMPHOT (Conseil et al.

2011) which will be described in a separate paper (Vibert et al.,

in preparation). In brief, EMPHOT uses U band (here the CFHTLS u

band) detected objects as a prior on position and flux. The uncertain-

ties on the flux account for the residual in the [simulated−observed]

image. The images reach a depth of mNUV ∼ 24.5 at ∼5σ . As for

the WIRCAM data, the GALEX sources are matched to the optical

counterparts based on position.

The NUV observations cover only part of the WIRCam area with

∼10.8 and 1.9 deg2 in VIPERS-W1 and VIPERS-W4, respectively.

The UV photometry slightly improves the precision of photometric

redshifts and the stellar mass estimates in the GALEX area. However,

by comparing our measurements inside and outside the GALEX

area, we have checked that the addition of UV photometry does not

make a significant change for the galaxies of interest in this study.

Therefore, in the final sample, we mix galaxies inside the GALEX

area with those outside.

2.4 Spectroscopic data

To optimize the calibration and the validation of our photometric

redshifts, we make use of all the spectroscopic redshifts available

in the WIRCam area.

The largest sample is based on the VIPERS spectroscopic survey

(Garilli et al. 2014; Guzzo et al. 2014) and its first public data

release PDR1.4 VIPERS aims to measure redshift space distortions

and explore massive galaxy properties in the range 0.5 < z < 1.2.

The survey is located in the W1 and W4 fields of the CFHTLS-

Wide survey and will cover a total area of 24 deg2 when completed,

with a sampling rate of ∼40 per cent down to i < 22.5. In Fig. 1,

we show the layout of the VIMOS pointings as the light-green

squares. The PDR1 release includes redshifts for ∼54 204 objects.

After keeping galaxy spectra within the WIRCam area (44 474) and

with the highest confidence flags between 2.0 and 9.5 (95 per cent

confidence, see Guzzo et al. 2014), we are left with 35 211 galaxies,

which corresponds to a spectroscopic success rate of 80 per cent.

In addition to VIPERS, we also consider the following spectro-

scopic surveys:

(i) the VIMOS-VLT Deep Survey (VVDS) F02 and Ultra-Deep

Survey (Le Fèvre et al. 2005, 2014) which consist of 11 353 galaxies

down to i < 24 (Deep) and 1125 galaxies down to i < 24.5 (Ultra-

Deep) over a total area of 0.75 deg2 in the VIPERS-W1 field. We

also use part of the VIMOS-VLT F22 Wide Survey with 12 995

galaxies over 4 deg2 down to i < 22.5 (Garilli et al. 2008, shown as

the large green square in the southern part of the VIPERS-W4 field

4 http://vipers.inaf.it/rel-pdr1.html
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Table 1. Magnitude zero-point offsets measured per

CFHTLS MegaCam pointing in VIPERS-W1 and

VIPERS-W4 (mean and standard deviation). J- and

H-band zero-points were computed for the pointings

overlapping WIRDS data.

Filter VIPERS-W1 VIPERS-W4

FUV 0.18 ± 0.11 0.02 ± 0.16

NUV 0.11 ± 0.09 0.15 ± 0.10

u 0.10 ± 0.03 0.13 ± 0.03

g − 0.02 ± 0.01 − 0.01 ± 0.01

r 0.02 ± 0.01 0.01 ± 0.01

i − 0.01 ± 0.01 − 0.00 ± 0.01

z − 0.02 ± 0.01 − 0.01 ± 0.01

J 0.08 ± 0.05 –

H 0.02 ± 0.05 –

K 0.02 ± 0.03 0.01 ± 0.05

in Fig. 1). In total, we use 5122 galaxies with secure flags 3 or 4

from the VVDS surveys within the WIRCam area;

(ii) the PRIMUS survey (Coil et al. 2011) which consists of low

resolution spectra (λ/�λ ∼ 40) for galaxies down to i ∼ 23 and

overlapping our VIPERS-W1 field. PRIMUS pointings are shown

as the dark green circles in Fig. 1. We keep 21 365 galaxies with

secure flags 3 or 4;

(iii) the SDSS-BOSS spectroscopic survey based on data re-

lease DR10 (Ahn et al. 2014) down to i < 19.9, overlapping both

VIPERS-W1 and VIPERS-W4 fields, totalling 4675 galaxies with

zWarning=0 (99 per cent confidence redshift) within our WIRCam

area.

In total, the spectroscopic sample built for this study comprises

62 220 unique galaxy spectroscopic redshifts with the highest con-

fidence flag. We use the spectroscopic redshift value, when avail-

able, instead of the photometric redshift value. The galaxies with a

spectroscopic redshift represent 6.5 per cent of the full sample, and

12 per cent after selection in the range 0.5 < z < 1, where most of

the galaxies are from the VIPERS sample.

2.5 Photometric redshifts

To compute the photometric redshifts, we use the template fitting

code LEPHARE
5 (Arnouts et al. 1999; Ilbert et al. 2006). We adopt

similar extinction laws and parameters as Ilbert et al. (2009) used

in the COSMOS field (Scoville et al. 2007), and identical priors as

in Coupon et al. (2009) based on the VVDS redshift distribution

and maximum allowed g-band absolute magnitude. We note that

the use of priors is essential for the z > 1, low signal-to-noise ratio

(or no NIR flux), galaxies used as lensed (background) sources (see

Section 3). A probability distribution function (PDF) in steps of

0.04 in redshift is computed for every galaxy.

We use the full spectroscopic sample to adjust the magnitude

relative zero-points in all the passbands on a MegaCam pointing-to-

pointing basis. For the pointings with no spectroscopic information,

we apply a mean correction obtained from all the pointings with

spectra. The mean zero-point offsets and standard deviations in all

passbands are given in Table 1 for the two fields separately. We

further add the zero-point scatter in quadrature to the magnitude

errors in each band. We recall that these zero-point corrections may

5 http://www.cfht.hawaii.edu/arnouts/lephare.html

not represent absolute calibration offsets but rather relative (i.e.

depending on colours) ones and tied to the adopted spectral energy

distribution (SED) template set. We come back to the impact of this

issue on stellar mass measurements in Section 3.5.

Our SED templates are based on the library used in Ilbert et al.

(2009), however the fewer bands used in this study compared to

COSMOS necessitate adapting the templates to reduce redshift-

dependent biases. The initial templates are based on the SEDs

from Polletta et al. (2007), complemented by a number of starburst

SEDs from the Bruzual & Charlot (2003) SPS library. Using 35 211

spectroscopic redshifts from VIPERS, we adapt the templates with

LEPHARE using the following procedure. First, a best-fitting tem-

plate from the original set is found for each galaxy and normalized

to unity, and the photometry is then corrected into the rest frame

given the spectroscopic redshift value. The rest-frame photometry

for all galaxies with identical best-fitting templates is combined

and the adapted template is constructed from the sliding-window

median values as a function of wavelength. The process is repeated

iteratively. Given the high number of galaxies with spectroscopic

redshifts, we found that only two iterations were necessary to reach

convergence. Interestingly, although the improvement in the pho-

tometric redshift bias is significant, the new templates appear very

similar ‘by eye’ compared to the original ones, which implies that

small features in the SED templates may lead to large photometric

errors, as also noted by Ilbert et al. (2006).

In Fig. 2, we show the accuracy of the photometric red-

shifts by comparing with the spectroscopic redshift sample from

VIPERS (i < 22.5, left-hand panel) and VVDS Deep/Ultra-Deep

(22.5 < i < 24.5, right-hand panel). We observe a dispersion6 of

σ/(1 + z) ∼ 0.03–0.04 and a fraction of catastrophic redshifts

(|�z| ≥ 0.15(1 + z)) of η ∼ 1–4 per cent. The dispersion in both

magnitude ranges is significantly better than previous results in the

CFHTLS-Wide (Coupon et al. 2009), due to the choice of isophotal

magnitudes and PSF homogenization (Hildebrandt et al. 2012) at

faint magnitude, and the contribution of NIR data above z ∼ 1.

We note that the faint sample is compared to the VVDS redshifts

where deep NIR data from WIRDS are available over a small part

(<1 deg2) of the field, and with a magnitude distribution biased to-

wards bright galaxies compared to the photometric sample. There-

fore, we foresee degraded photometric redshift performance else-

where, mainly relevant for z > 1 galaxies. However, as shown in

Appendix C, no systematic bias affecting our lensing measurements

is introduced by the use of sources beyond z = 1.

2.6 Stellar mass estimates

To compute stellar masses, we adopt the same procedure as Arnouts

et al. (2013) and described in detail in their Appendix . In brief, we

use the photometric or spectroscopic (when available) redshift and

perform a χ2 minimization on a SED library based on the SPS

code from Bruzual & Charlot (2003). The star formation history is

either constant or described with an exponentially declining func-

tion, with e-folding time 0.01 ≤ τ ≤ 15. We use two metallicities

(Z⊙, 0.2 Z⊙) and adopt the Chabrier (2003) IMF. As discussed in

Arnouts et al. (2013), the use of various dust extinction laws is criti-

cal to derive robust SFR and stellar mass; and in this work, we adopt

their choices for differing attenuation curves: a starburst (Calzetti

6 Defined as the normalized median absolute deviation (Hoaglin, Mosteller

& Tukey 1983): 1.48×Median(|zs − zp|/(1 + zs)), and robust to outliers.
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Figure 2. Photometric redshifts measured with ugrizK (left) or ugrizJHK (right) photometry versus VIPERS and VVDS spectroscopic redshifts. Left:

17.5 < i < 22.5, where the sample is dominated by galaxies between 0.5 < z < 1.2 due to the VIPERS selection. Right: 22.5 < i < 24.5, from the VVDS

Deep and Ultra-Deep surveys. The limits for the outliers are shown as red dotted lines.

Table 2. Sample mass definitions in log(M⋆/ M⊙) and number of galaxies in each sample. The

parent sample comprises a total of 352 585 galaxies.

Clustering–w(θ ) Clustering–wp(rp) Lensing

Sample Mass cut Number Mass cut Number Mass cut Number

1 10.00–10.40a 23 886 10.60–10.90a 2154 10.00–10.40a 23 886

2 10.40–10.60 36 560 10.90–11.20b 1964 10.40–10.65 45 032

3 10.60–10.80 31 900 11.20–12.00 816 10.65–10.80 23 427

4 10.80–11.00 24 451 – – 10.80–10.95 19 293

5 11.00–11.20 13 538 – – 10.95–11.15 16 317

6 11.20–12.00 6326 – – 11.15–12.00 8654

Notes. a0.5 < z < 0.7.
b0.5 < z < 0.8.

et al. 2000), an SMC-like (Prevot et al. 1984) and an intermediate

slope (λ−0.9) law. We consider reddening excess in the range 0 ≤ E(B

− V) ≤ 0.5. When fixing the redshift, the typical 68 per cent stellar

mass statistical uncertainty, as derived by marginalising the likeli-

hood distribution, ranges from σ (M⋆) ∼ 0.05 to 0.15 for galaxies

with Ks ≤ 22 and z < 1. This stellar mass uncertainty is an under-

estimate, since we neglect photometric redshift uncertainties.7

In addition to statistical errors, in Section 3.5, we investigate the

different sources of systematic effects in the stellar mass estimates,

arising from our lack of knowledge of galaxy formation and evo-

lution. The choice of differing dust treatments (and resulting dust

attenuation laws) is one of them: Ilbert et al. (2010) have measured

a shift of 0.14 dex, with a large scatter, between stellar masses

estimated with the Charlot & Fall (2000) dust prescription and the

Calzetti et al. (2000) attenuation law. The dust parametrization leads

to systematics larger than the statistical errors in the stellar mass

function. Even more critical is the choice of the SPS model and

the IMF (see more detailed systematic errors analysis in Behroozi

et al. 2010; Marchesini et al. 2009; Fritz et al. 2014), leading to

systematic differences in stellar mass estimates up to 0.2 dex. One

must keep these limitations in mind when comparing results from

7 We will see in Section 4.2 that our model accounts for such an extra source

of uncertainty in stellar mass through a stellar-mass-dependent parametriza-

tion of the stellar-to-halo mass scatter.

various authors using different methods, and we come back to these

issues when presenting our results.

3 MEASUREMENTS

We aim to compute high signal-to-noise measurements of four dis-

tinct observables: the stellar mass function φ(M⋆), the projected

galaxy clustering w(θ ), the real-space galaxy clustering wp(rp) and

the galaxy–galaxy lensing �(r).

To do so, we select volume-limited samples in the redshift range

0.5 < z < 1, where the high sampling rate of VIPERS and our NIR

data guarantee both robust photometric redshift and stellar mass

estimates. As for the stellar mass function, we adopt a lower mass

limit of M⋆ = 1010 M⊙ and employ the Vmax estimator to correct

for galaxy incompleteness near z = 1. The total volume probed in

this study is 0.06 Gpc3.

The stellar mass bins for the clustering and lensing measurements

are defined to keep approximately a constant signal-to-noise ratio

across the full mass range (which may lead to differing mass cuts

depending on the observable), and guarantee complete galaxy sam-

ples (see Appendix A). We summarize our samples’ properties in

Table 2.

To measure each of the observables described below, we use

the parallelized code SWOT, a fast tree-code for computing two-

point correlations, histograms and galaxy–galaxy lensing signals

from large data sets (Coupon et al. 2012). The stellar mass func-

tion is expressed in comoving units, whereas the clustering and
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galaxy–galaxy lensing signal are measured in physical units. We

estimate statistical covariance matrices from a jackknife resampling

of 64 subregions with equal area (0.35 deg2 each), by omitting a sub-

sample at a time and computing the properly normalized standard

deviation (see more details in Coupon et al. 2012). This number was

chosen to meet both requirements of using large enough subregions

to capture the statistical variations at large scale, while keeping a

sufficient number of subsamples to compute a robust covariance

matrix. Nevertheless, we expect the projected galaxy clustering er-

rors to be slightly underestimated on scales larger than the size of

our subregions, ∼0.5 deg, and the noise in the covariance matrix to

potentially bias the best-fitting χ2 value.

A random sample with 1 million objects is constructed using

our WIRCam observations layout and the union of the WIRCam

and CFHTLenS photometric masks. For real-space clustering, mea-

sured from VIPERS spectroscopic redshifts, the random sample

is constructed using the layout of the VIPERS PDR1 geometry

(and photometric masks) plus a random redshift drawn in the range

0.5 < z < 1 from a distribution following dV/dz, to match our

volume-limited samples. The subregions for the measurements of

statistical errors are constructed by SWOT based on the random cat-

alogue: the field is divided into 64 areas with an equal number of

random objects.

3.1 The stellar mass function

The stellar mass function φ̃(M⋆) = dn/d log M⋆ is measured per

unit of comoving volume in 10 equally spaced logarithmic mass bins

of width 0.2 dex, centred on the mass mean weighted by the num-

ber of galaxies. To correct for the incompleteness in the low-mass

galaxy sample (1010 < M⋆/ M⊙ < 1010.4) occurring near z = 1

(see Appendix A), we up-weight low-redshift galaxies by a factor

1/Vmax defined as

Vmax = �

∫ zmax

0.5

dV

dz
dz , (1)

where � is the solid angle of the survey, 23.1 deg2, V the comoving

volume per unit area and zmax the maximum redshift for a galaxy

to be observed given a Ks < 22 magnitude cut, calculated with

LEPHARE.

We have performed a number of tests to check our internal error

estimates. In the top panel of Fig. 3, we show our stellar mass func-

tion error estimates (square root of the covariance matrix diagonal)

as a function of stellar mass compared to the GETCV code estimate

of Moster et al. (2011) at z = 0.8. The latter code computes the

theoretical expectations of cosmic variance8 assuming a prediction

for dark matter clustering and galaxy biasing (Bardeen et al. 1986).

We add to the GETCV cosmic variance the theoretical Poisson error

and show the resulting (total) sample variance as the thick line in

the bottom panel. Our jackknife estimate is represented as the black

points, for which we find that the cosmic variance part (after sub-

tracting Poisson noise) needs to be multiplied by a factor of 2 to

agree with theoretical expectations (we then multiply the covariance

matrix by a factor of 4). We have not found a definitive explanation

for the underestimation of the errors from the jackknife resampling,

however it is likely caused by the strong correlation between bins

8 We note that the highest mass bin galaxy bias was estimated a posteriori

from our HOD results, since it was not provided by the authors of GETCV,

although the contribution of cosmic variance is negligible compared to the

Poisson error in this bin, populated by rare massive galaxies.

Figure 3. Stellar mass function statistical errors as function of stellar mass

(top) and area (bottom). In the top panel, we show the jackknife estimator

based on 64 subregions and multiplied by a factor of 2, compared to the

theoretical cosmic variance plus Poisson error derived from the Moster

et al. (2011) GETCV code (the Poisson error only is shown as the dotted

line). The bottom panel shows an alternative internal estimate based on the

standard deviation of subregions as a function of their size, in two mass bins

(log M⋆/ M⊙ = 10.10 and 11.89), extrapolated to the size of the full survey

(dashed lines in both panels). As in the top panel, the black dots are the

jackknife estimates, for which the cosmic variance part has been multiplied

by 2.

(a combined effect of stellar mass scatter and large-scale structure

correlations).

In the bottom panel of Fig. 3, we show an alternative inter-

nal estimator as function of area, based on the standard devia-

tion of subsamples with sizes varying from 0.1 to 2.9 deg2 (the

black dots represent our Jackknife estimates in the two mass bins

〈log M⋆/ M⊙〉 = 10.10 and 11.89). We use a power-law fit (the

amplitudes of the error bars are arbitrarily scaled to the square root

of the number of subsamples, ranging from
√

256 to
√

8) to ex-

trapolate to the full size of the survey. The extrapolated values are

shown as the dashed line in the top panel of Fig. 3. The bin corre-

lations between small subsamples may tilt the slope of the fit and

lead to an overestimate of the extrapolated error estimate, as ob-

served in the low-mass bin. In the high-mass bins, characterized by

an uncorrelated sampling variance dominated by Poisson noise, the

extrapolated estimate is consistent with both the jackknife estimate

and the theoretical Poisson noise.

3.2 Projected galaxy clustering

We measure the two-point correlation function w̃(θ ) in 10 logarith-

mically spaced bins centred on the pair-number weighted averaged

separation over the range 0.◦002 < θ < 2◦. The modelled w(θ ) is

compared to the measured w̃(θ ) by projecting the theoretical spatial
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clustering ξ (r) on to the sample redshift distribution computed as

the sum of photometric redshift PDFs (see Section 2.5).

We use the Landy & Szalay (1993) estimator following a similar

procedure to that described in Section 3.3 of Coupon et al. (2012).

Owing to the limited size of the survey, our measurements are af-

fected by the integral constraint, an effect that biases the clustering

signal low. Here, we adopt a refined way to correct for it: the correc-

tion is calculated directly for every parameter set from the modelled

w(θ ) (instead of a pre-determined power law) and integrated over

the survey area using random pairs as in Roche et al. (2002), leading

to better agreement between the data and the model at large scales.

Here, the typical values of the integral constraint range from 10−3

to 3 × 10−3.

We have checked, using the galaxy mocks prepared for the

VIPERS sample (de la Torre et al. 2013), that our jackknife er-

ror estimates could reproduce within 20 per cent the correct sample

variance amplitude of w̃(θ ) (this result is in agreement with a num-

ber of tests from the literature, e.g. Zehavi et al. 2005; Norberg et al.

2009), and we do not apply any correction.

3.3 Real-space galaxy clustering

We measure the real-space galaxy clustering for the VIPERS spec-

troscopic sample by integrating the weighted redshift-space cor-

relation function along the line of sight to alleviate redshift-space

distortion effects:

w̃p(rp,phys) = 2

∫ πmax

0

ξ̃ (rp,phys, πphys)dπphys, (2)

where rp,phys and πphys are the coordinates perpendicular and par-

allel to the line of sight, respectively. rp, phys is expressed in phys-

ical coordinates and divided into 10 logarithmically spaced bins

centred on the pair-weighted averaged separation over the range

0.2 < rp,phys/Mpc < 10, and πphys is divided into linear bins up

to πmax = 40 Mpc. The value of πmax is consistently used in the

derivation of the modelled wp. As for w̃(θ ), ξ̃ (rp,phys, πphys) is com-

puted using the Landy & Szalay estimator and the covariance matrix

estimated from the jackknife resampling of 64 subregions.

Each galaxy is weighted to account for the undersampling of the

spectroscopic sample: we use the global colour sampling rate (CSR),

target sampling rate (TSR) and success sampling rate (SSR), as de-

scribed in Davidzon et al. (2013), to account for the VIPERS colour

selection, the sparse target selection and measurement success as

function of signal-to-noise ratio, respectively. In addition, we also

use number-count normalized (to prevent global CSR, TSR and SSR

double weighting) spatial weights computed for each VIPERS panel

by de la Torre et al. (2013) to correct for the position-dependent sam-

pling. Here, the SSR is the most affected quantity, as a function of

position in the sky, due to the differing observing conditions at the

times of observation.

Small pair incompleteness due to ‘slit collision’ is corrected by

a factor 1 + w̃A, such that:

1 + w̃p,corr =
1 + w̃p

1 + w̃A

, (3)

where

1 + w̃A = 1 −
0.03

rp,phys

(4)

is derived from the projected correlation as function of angular scale

by de la Torre et al. (2013) and translated into physical scales at

z = 0.8. We note that given our conservative small-scale cut of

rp,phys > 0.2, the correction remains below 15 per cent.

3.4 Galaxy–galaxy lensing

The gravitational lensing signal produced by the foreground matter

overdensity is quantified by the tangential distortion of background

sources behind a sample of stacked ‘lens’ galaxies, also known as

the weighted galaxy–galaxy lensing estimator (e.g. Mandelbaum

et al. 2006; Yoo et al. 2006). The excess surface density of the

projected dark matter halo relates to the measured tangential shear

through:

�̃(rp,phys) = crit × γ̃t (rp,phys) , (5)

(see also Appendix B). We measure the signal in 10 logarithmically

spaced bins centred on the number-weighted averaged separation,

in the range 0.02 < rp, phys/Mpc < 1. rp, phys is expressed in physical

coordinates.9

The critical surface density crit is given by

crit =
c2

4πGN

DOS

DOL DLS

, (6)

with DOS the observer-source angular diameter distance, DOL the

observer-lens (foreground galaxy) distance and DLS the lens-source

distance. GN is the gravitational constant and c the speed of light.

All distances are computed in physical coordinates using the pho-

tometric (spectroscopic when available) redshift. For photometric

redshift values, a cut zsource − zlens > 0.1 × (1 + zlens) is adopted.

The background source galaxy sample includes all galaxies detected

in the i band with a non-zero lensing weight (Miller et al. 2013).

Here, we do not restrict our redshift sample to zp < 1.2, but consider

galaxies at all redshifts, taking advantage of the improved photo-

metric redshift estimates in our sample, increasing the background

source sample by 30 per cent compared to other CFHTLenS lensing

studies, without introducing any systematic bias (see Appendix C).

The galaxy shape measurement was performed on individual

exposures using the LENSFIT analysis pipeline (Miller et al. 2007;

Kitching et al. 2008; Miller et al. 2013) and systematics checks

were conducted by Heymans et al. (2012) for cosmic shear (the

projected large-scale structure lensing power spectrum). The lens-

ing (inverse-variance) weights account for shape measurement un-

certainties (Miller et al. 2013). Following Velander et al. (2014),

who performed extensive systematics checks of the CFHTLenS

shear catalogue specifically for galaxy–galaxy lensing (see their

Appendix C), we do not reject those CFHTLS-Wide pointings that

did not pass the requirements for cosmic shear, and we applied

appropriate shape measurement corrections as described in their

Section 3.1.

We compute the boost factor (to account for dilution due to

sources physically associated with the lens, see Sheldon et al. 2004;

Mandelbaum et al. 2006) by randomizing the source positions, and

correct the final signal for it. On small scales (<0.1 Mpc), the boost

factor reaches up to 20 per cent for the most massive galaxies.

Here, the relatively low source density implies that our errors are

dominated by the source galaxy shape noise, originating from el-

lipticity measurement uncertainties and intrinsic shape dispersion,

rather than sample variance. Indeed, when compared to the sum of

inverse-variance lensing weights, we have checked that our jack-

knife estimate was similar at all scales (with small off-diagonal

9 Note that the galaxy–galaxy lensing signal is measured in physical units,

whereas a number of authors assume comoving units, which would require

multiplying the excess surface density by a factor of (1 + z)−2 compared to

our definition.
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correlation), confirming the negligible impact of cosmic variance

(see Appendix C).

Nevertheless, a correlation exists between the mass bins due to

the re-use of background source galaxies. We neglect this contri-

bution in the computation of the combined χ2, but we note that

this correlation is likely to lead to underestimation of our parameter

confidence limits.

3.5 Systematic errors in stellar mass measurements

In this section, we are concerned with systematic errors affecting

the stellar mass measurements caused by the uncertainties in the

assumed cosmology (i.e. volume and distance estimates), the dust

modelling, and potential biases in the photometry.

To assess the impact of systematics on the measurements of the

observables, we propagate the errors affecting the stellar masses by

changing one parameter configuration at a time, then re-computing

all stellar masses and the observables, and finally measuring the

difference with the reference measurements. We repeat the process

for the three different kinds of systematics listed below:

(i) assumed cosmology. We explore three � cold dark mater

(�CDM) parameter sets: in addition to the Wilkinson Mi-

crowave Anisotropy Probe (WMAP) cosmology used in this

study with H0 = 72 km s−1 Mpc−1, �m = 0.258, �� = 0.742

(Hinshaw et al. 2009), a ‘concordance’ cosmology model with

H0 = 70 km s−1 Mpc−1, �m = 0.3, �� = 0.7 and the Planck

cosmology with H0 = 67 km s−1 Mpc−1, �m = 0.320, �� = 0.680

(Planck Collaboration XVI 2014) are tested. In each case, the stellar

masses and the observables are consistently re-computed with the

same cosmology. We note that the term ‘systematics’ here refers to

the choice for one or another set of parameters that produces a sys-

tematic shift in stellar mass and not to systematic errors associated

with the measurement of cosmological parameters;

(ii) lens galaxy dust extinction modelling. We compute five dif-

ferent stellar masses for each galaxy by varying one aspect at a time:

two different extinction law configurations (among our choice of

three laws, see Section 2.6) and three different E(B − V) maximum

allowed values (ranging from 0.2 to 0.7);

(iii) photometric calibration. As zero-point offsets do not correct

for absolute calibration uncertainties (but do for colours), nor cor-

rect for photometric measurement biases (e.g. missing flux of bright

objects), a change in the photometric calibration may cause a shift

in the best-fitting template and further bias the stellar mass mea-

surements. We re-compute stellar masses applying ad hoc global

shifts (in all bands) of −0.05 and +0.05 magnitude, which corre-

spond to typical offsets caused by various calibration strategies or

photometry measurements (Moutard et al., in preparation).

Results are shown in Fig. 4. For each observable (top left: stellar

mass function, top right: projected clustering, bottom left: real-space

clustering and bottom right: galaxy–galaxy lensing), we display the

re-computed measurements divided by the reference quantities, in

each of the ‘Cosmology’, ‘Extinction’ and ‘Calibration’ panels as

well as the sum in quadrature of all these effects (‘Total’). The grey

area corresponds to the maximum value among the differing re-

computations, not the standard deviation, as each of the solutions is

equally likely to be opted for. Except for the stellar mass function,

we only display the results in the most massive bins (where we

observe the most significant changes), although the calculations

were repeated in all mass bins.

To allow comparison with the statistical errors, we overplot the

error bars from our jackknife error estimates. For the stellar mass

function (whose jackknife error estimate is multiplied by a factor of

2, see Section 3.1), the systematic errors compared to the statistical

errors are striking, with the former being larger by one order of

magnitude compared to the latter. The increase of the systematic

errors towards the high-mass regime is a direct consequence of the

shift in stellar mass and the steep slope of the SMF at the massive

end.

It is interesting to note that the different cosmologies lead also

to large systematic errors compared to statistical errors. Although

many authors in galaxy evolution studies claim to account for cos-

mological parameter uncertainties by presenting h-free results, we

recall that, in a flat Universe, both �m and H0 enter in the compu-

tation of the comoving volume and luminosity distances and, in the

precision era of WMAP and Planck, happen to contribute equally

to the distance uncertainties. Comparing our results to the recent

literature is therefore not as simple as scaling the different quanti-

ties with respect to h, and we must properly account for the more

complex dependence of distances on �m and H0.

In comparison, the projected and real-space galaxy clustering as

well as galaxy–galaxy lensing are relatively less prone to systematic

errors. For the effect of cosmology, the measurement of projected

clustering has no dependence on galaxy distances, and the only dif-

ference originates from the modified galaxy selection caused by the

stellar mass shift. Interestingly, although the real-space clustering

and the galaxy–galaxy lensing do depend on galaxy distance mea-

surements, the change in cosmology also has little impact at the

level of our statistical errors. We can draw similar conclusions on

the effects of dust extinction modelling and photometric calibration.

Obviously, the stellar mass function is the measured quantity

suffering from the largest systematic error contribution, compared

to the statistical errors. In particular, we will see in Section 5 that

most of the constraints on the central galaxy M⋆−Mh relationship

emanate from the stellar mass function and taking into account

these systematic uncertainties when comparing our results with the

literature is necessary.

Ideally, one would like to estimate a best-fitting model for each

of the re-computed quantities. Unfortunately, this would be compu-

tationally very expensive. Instead, we create two sets of measure-

ments: a ‘statistical error’ set based on our jackknife error estimate

and a ‘total error’ set for which we add in quadrature the systematic

errors (assuming they are Gaussian distributed) and the statistical

errors. We present in Section 5 separate results for both.

3.6 Impact of photometric redshift uncertainties

The dispersion of photometric redshifts may also cause systematic

effects of several kinds, first on the stellar mass function, as a

contribution to the stellar mass scatter, which shifts towards higher

masses the high-mass end where the slope is steep, an effect known

as Eddington bias. Secondly, the projected clustering amplitude is

biased low due to the scattering of galaxies falling outside the mass

bins.

We will see in Section 4 that our model properly accounts for

these systematic effects caused by photometric redshift dispersion,

through the parametrization of the stellar mass scatter. However,

catastrophic failures and photometric redshift biases may be more

problematic. We have demonstrated in Section 2.5 that our catas-

trophic error rate was not higher than 4 per cent, and based on results

from Section 3.2 of Coupon et al. (2012), such a low contamination

rate should have no impact on clustering results at our statistical
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Figure 4. Systematic errors affecting the galaxy stellar mass function (top left), the projected correlation function (top right), the real-space correlation function

(bottom left) and the galaxy–galaxy lensing signal (bottom right). In each panel, the grey area symbolizes the envelope (maximum value) of the re-computed

measurement compared to the reference. The error bars are statistical errors from the internal jackknife estimator. The ‘Total’ panel represents the symmetric

sum in quadrature of all three contributions. Here, we only show the most massive bins for the clustering and lensing measurements, however we repeated the

tests in all mass bins.

error level. To check this statement on the calibration sample

(which means the conclusions are limited to the photometric sam-

ple with similar properties to the spectroscopic sample), we use the

VIPERS galaxies with spectroscopic redshift and re-compute all

stellar masses, as well as each observable, using the corresponding

photometric redshift. We show the measurements in Fig. 5 (solid

lines) divided by the reference measurement made with spectro-

scopic redshifts and where the error bars are from the statistical

jackknife estimator. From left to right, we display the results for

the stellar mass function, the projected clustering and the galaxy–

galaxy lensing signal, all in the mass range 1010 < M⋆/ M⊙ < 1012

and redshift range 0.5 < z < 1.

We conclude that for galaxies with similar properties to VIPERS

galaxies, none of the observables measured with photometric red-

shifts display a large bias with respect to the spectroscopic redshift

ones. This represents a reassuring sanity check for the calibration

procedure. Only the projected clustering presents a slightly low

systematic value, expected from the dispersion of redshifts and ac-

counted for in the model, through the projection of the modelled

3D clustering on the redshift distribution constructed from the sum

of photometric redshift PDFs (assuming that estimated PDFs are

representative of the true PDFs).

4 M O D E L A N D F I T T I N G P RO C E D U R E

We use the HOD formalism to connect galaxy properties to dark

matter halo masses. Here, we assume that the number of galaxies

per halo is solely a function of halo mass, split into central and

satellite contributions. The fitting procedure then consists of finding

a set of parameters to describe the HOD that best reproduces the

observables.
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Figure 5. Measurements made with photometric redshifts divided by those made with spectroscopic redshifts. From left to right: the stellar mass function,

the projected clustering and the galaxy–galaxy lensing signal, all made with VIPERS galaxies in the mass range 1010 < M⋆/ M⊙ < 1012 and redshift range

0.5 < z < 1. Error bars represent the statistical error estimates from jackknife resampling.

A key ingredient of the HOD model is the statistical description

of the spatial distribution of dark matter. We assume that the matter

power spectrum, the halo mass function and the dark matter halo

profile are all known quantities over the scales and redshift range

(0.5 < z < 1) explored in this study. All the technical details about

the halo model are given in appendix A.1 of Coupon et al. (2012),

with the exception of the large-scale halo bias, for which we use in

this study the fitting formula proposed by Tinker et al. (2010).

The exact way to parametrize the HOD is often at the origin of the

differences between HOD studies in the literature. In this paper, we

follow Leauthaud et al. (2011) who adopted two advanced features:

(i) the HOD is a conditional function of the stellar mass given

the halo mass (this formalism is an extension of the conditional lu-

minosity function technique developed by Yang et al. 2003). In this

formalism, the central galaxy M⋆−Mh relationship is a parametrized

function representing the mean stellar mass given its host halo mass,

〈M⋆|Mh〉;
(ii) all observables, namely the stellar mass function, the pro-

jected clustering, the real-space clustering and the galaxy–galaxy

lensing signal are fitted jointly.

4.1 The stellar-to-halo mass relationship

To describe the central galaxy M⋆−Mh relationship, we adopt the

parametrized function fSM-HM proposed by Behroozi et al. (2010),

and defined via its inverse:

log10

(
f −1

SM−HM

)
= log10(Mh(M⋆))

= log10(M1) + β log10

(
M⋆

M⋆,0

)
+

(
M⋆

M⋆,0

)δ

1 +
(

M⋆

M⋆,0

)−γ −
1

2
. (7)

M1 controls the scaling of the relation along the halo mass coor-

dinate, whereas M⋆,0 controls the stellar mass scaling. β, δ and

γ control the low-mass, high-mass and curvature of the relation,

respectively.

4.2 The central occupation function

For central galaxies contained in a threshold sample (M⋆ > M t
⋆), the

HOD is defined as a monotonic function increasing from 0 to 1, with

a smooth transition centred on the halo mass value corresponding

to M t
⋆ :

〈Ncen(Mh|M t
⋆)〉

=
1

2

[
1 − erf

(
log10(M t

⋆)) − log10(fSM−HM(Mh))
√

2σlog M⋆
(M t

⋆)

)]
. (8)

The parameter σlog M⋆
, expresses the scatter in stellar mass at fixed

halo mass, which we parametrize as:

σlog M⋆
(M t

⋆) = σlog M⋆,0

(
M t

⋆

1010 M⊙

)−λ

, (9)

to account for the change in intrinsic stellar mass dispersion as a

function of stellar mass.

4.3 The satellite occupation function

We describe the satellite HOD for a threshold sample M t
⋆ with a

simple power law as a function of halo mass Mh:

〈Nsat(Mh|M t
⋆)〉 =

(
Mh − Mcut

Msat

)α

, (10)

for which we fix the cut-off mass scale Mcut such that

Mcut = f −1
SM−HM(M t

⋆)−0.5 . (11)

This assumption is based upon the values reported by Coupon et al.

(2012) for their equivalent parameter ‘M0’. We have checked that the

exact parametrization of Mcut had very little importance compared

to the other parameters and did not change any of our conclusions,

in agreement with the loose constraints observed by Coupon et al.

(2012).

As in Leauthaud et al. (2011), the normalization Msat of the

satellite HOD follows the halo mass scaling driven by the central

M⋆−Mh relationship, with some degree of freedom controlled by a

power law:

Msat

1012 M⊙
= Bsat

(
f −1

SM−HM(M t
⋆)

1012 M⊙

)βsat

. (12)

4.4 Total occupation functions and observables

Finally, the total HOD is

〈Ntot(Mh|M t
⋆)〉

= 〈Ncen(Mh|M t
⋆)〉 + 〈Nsat(Mh|M t

⋆)〉, (13)
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and since our measurements are made in bins of stellar mass, we

transform the threshold HOD functions into binned functions by

writing:

〈Ntot(Mh|M t1
⋆ , M t2

⋆ )〉

= 〈Ntot(Mh|M t1
⋆ )〉 − 〈Ntot(Mh|M t2

⋆ 〉. (14)

Equivalent relations hold for central and satellite binned HODs.

The stellar mass function, the projected two-point correlation

function, the real-space correlation function and the galaxy–galaxy

lensing signals are computed from the halo model and the HOD as

detailed in Appendix B.

4.5 Systematic errors in the model

As detailed in the previous sections, the HOD formalism relies on

an accurate description of the dark matter spatial distribution. Here,

we evaluate the impact of our model uncertainties and assumptions

on the best-fitting HOD parameters. Ideally, one would like to repeat

the fitting procedure to test each of the different assumptions of the

model, but to avoid such a time-consuming exercise, we take the

simple approach of modifying one feature at a time, and tuning

the HOD parameters by hand to reproduce the modelled quantities

derived from the best-fitting parameters reported in Section 5. We

explore two stellar mass bins (M⋆ = 1010, 1011.5 M⊙) and we focus

on the two parameters M1 and Bsat, controlling the halo-mass scaling

of the M⋆−Mh relationship, and the normalization of the satellite

HOD, respectively. The results are shown in Table 3, and we detail

below our calculations for each assumption listed.

The power spectrum normalization parameter, σ 8, is currently

known to a precision of a few per cent. This parameter has a strong

impact on the large-scale galaxy clustering, and a larger value would

lead to an increased number of massive structures, hence shifting

the massive end of the halo mass function towards more massive

haloes. Choosing Planck over WMAP7 cosmology (as for the tests

in Section 3.5), would result in a 5 per cent increase in σ 8, leading

to relatively small changes in best-fitting HOD parameters, of the

order of a few per cent.

Halo bias uncertainties originate from the measurement of the

bias-to-halo mass relation b(Mh) using N-body simulations, af-

fected by low-mass resolution, small volume, or the limitations

of halo identification techniques. In the low-clustering regime, the

typical errors on the bias are as small as a few per cent (Tinker et al.

2010), however the rather shallow slope of bias versus halo mass

(see e.g. fig. 18 of Coupon et al. 2012) translates into a larger un-

certainty in the deduced halo mass. In the high-mass regime, errors

are mainly dominated by the sample variance of simulations, up

to ∼10 per cent, but have fewer impact on the deduced halo mass

owing to the steeper slope in this regime.

The assembly bias (Zentner et al. 2014, and references therein)

refers to the correlation between clustering amplitude and time

of halo formation, whereas in our model the bias is assumed to

vary only with halo mass. The effect is stronger when selecting a

population of galaxies based on a parameter correlated with halo

formation history, such as the SFR, but moderate when considering

the full galaxy population selected by stellar mass only. In this

case, and in the mass regime explored in this study, Zentner et al.

(2014) found that the systematics caused by assembly bias on HOD

parameters do not exceed 10–15 per cent.

In our model, the dark matter halo profile is assumed to follow

a Navarro, Frenk & White (1997, NFW) profile. While lensing

observations tend to favour NFW profiles (Umetsu et al. 2011;

Coupon, Broadhurst & Umetsu 2013; Okabe et al. 2013), the

mass–concentration relation – driving the slope of the profile –

remains uncertain. We have used a simple mass–concentration rela-

tion based on theoretical predictions (updated from Takada & Jain

2003) and empirical redshift evolution (Bullock et al. 2001), but

more recent relations such as the work from Muñoz-Cuartas et al.

(2010) have been measured. Compared to our concentration values,

the difference with Muñoz-Cuartas et al. rises from 11 per cent at

Mh ∼ 1012 M⊙ to 30 per cent at ∼1015 M⊙ (with a minimum of

2 per cent at ∼1013 M⊙). These systematics affect the slope of the

small-scale clustering and galaxy–galaxy lensing. We estimate that

if all of our constraints came from lensing, this may result in a

28 per cent systematic error in M1.

We assume that the satellite distribution in the halo follows the

dark matter density profile. However, this assumption may not be

always true and Budzynski et al. (2012) tested this hypothesis from

a stacked analysis of massive clusters from the SDSS. They found

a typical factor of 2 (with ∼50 per cent scatter) lower concentra-

tion of the satellite distribution compared to dark matter, whereas

Muzzin et al. (2007) measured a value closer to dark matter around

z ∼ 0.3, and van der Burg et al. (2014) a relatively high concen-

tration at z = 1. These trends may show a redshift evolution of the

concentration or can simply be inherent to the difficulty of obser-

vationally measuring the satellite distribution. In Table 3, we report

the impact on Bsat after setting the satellite concentration a factor of

2 higher than that of dark matter. The effect on Bsat does not exceed

11 per cent.

Finally, in our model we neglect the lensing contribution of the

subhaloes hosting the satellite galaxies. This effect, first introduced

by Mandelbaum et al. (2005b) under the term ‘stripped satellite

central profile’, assumes that a fraction of the satellite haloes survive

inside the host halo and further contribute to the lensing signal at

Table 3. Estimated systematic errors from the model on the central halo mass, log10M1, and the satellite normalization, Bsat. The

total is the sum in quadrature of the errors.

Error on log10M1( ∼ 12.7) Error on Bsat(∼10)

Assumption M⋆( M⊙) = 1010 1011.5 M⋆( M⊙) = 1010 1011.5 Affected quantities

σ 8 0.05 0.05 1 0.5 SMF, clustering (small and large scales)

b(Mh) relation 0.08 0.1 – – Clustering (large scale)

Assembly biasa <0.04 <0.04 ∼1.5 ∼1.5 SMF, clustering (small and large scales)

c(Mh) relation 0.11 0.03 0.1 0.4 Clustering (small scale), lensing

Satellite concentration – – 1.1 0.9 Clustering (small scale), lensing

Stripped subhaloes 0.09 0.07 – – Lensing

Total 0.17 0.14 2.1 1.9 All

Note. aFrom Zentner, Hearin & van den Bosch (2014).
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small scales. As a result, the lensing contribution of those subhaloes

adds up to the central-galaxy halo term in such a way that the

best-fitting host halo mass gets reduced compared to a model in

which the contribution of subhaloes is neglected. Hudson et al.

(2015) quantify the systematic change in best-fitting halo mass as

a systematic decrease by a factor of ∼(1 + fsat), where fsat is the

fraction of satellites in the sample. Assuming a satellite fraction

between 20 and 30 per cent, this leads to a systematic error of up to

0.09 in log10M1. This number must be read as if all the constraints

would come from lensing only. In our study where the stellar mass

function and the clustering signal-to-noise ratio is higher than that

of the lensing, this effect plays relatively little role, and our results

would not significantly change if we accounted for it.

The sum in quadrature of these model systematics is shown as

‘Total’ in Table 3. Intermediate stellar mass bins (∼1010 M⊙) seem

to be most affected, with an error of 0.17 for log10M1 (∼50 per cent

in M1) and 2.1 (∼20 per cent) for Bsat. We will see below that these

values dominate over the typical statistical and systematic errors

from the measurements in this mass regime. However, as each of

these systematic errors affects the observables in a different way

and we fit all of them jointly, one must see these numbers as

pessimistic estimates. The high-stellar mass bin (∼1011.5 M⊙) is

equally affected but in a regime where statistical errors are large,

hence leading to a smaller impact.

4.6 MCMC sampling

We write the combined log-likelihood as the sum of each observable

χ2:

− 2 lnL = χ2
φ +

∑

spl

χ2
w(θ ) +

∑

spl

χ2
wp(rp) +

∑

spl

χ2
� , (15)

where individual χ2’s are computed as

χ2 =
∑

i,j

[X̃i − Xi](C
−1)ij [X̃j − Xj ] , (16)

using the covariance matrices evaluated for each measurement as

described in Section 3 (X̃ and X represent the measured and mod-

elled observables, respectively). Each observable χ2 is summed

over the samples (‘spl’) as described in Table 2. The ‘i’ and ‘j’ sub-

scripts refer to the stellar mass (stellar mass function) or transverse

separation (clustering and lensing) binning of each measurement.

We find the best-fitting parameters and posterior distribution (as-

suming flat priors for all parameters) employing the MCMC sam-

pling technique with the Metropolis–Hastings sampler from the

software suite COSMOPMC (Wraith et al. 2009). We check for individ-

ual chain convergence and chain-to-chain mixing using the Gelman

& Rubin (1992) rule from the R-language CODA package.10 We find

a typical chain-to-chain mixing coefficient (potential scale reduc-

tion factor) to be equal to 1.01, and the acceptance rate around

30 per cent.

In practice, we first evaluate a diagonal Fisher matrix at the max-

imum likelihood point found using the Amoeba algorithm (Press

et al. 2002) and run 10 chains in parallel with the inverse Fisher ma-

trix as the MCMC sampler covariance matrix. The acceptance rate

is usually very low due to the noisy diagonal Fisher matrix affected

by some strong correlations between parameters. Once the chains

have converged (after typically 5000–10 000 steps) we compute the

final likelihood covariance matrix after rejecting the burn-in phase

10 http://cran.r-project.org/web/packages/coda/citation.html

Table 4. HOD best-fitting parameters and 68 per cent confidence

limits (CL) for the statistical errors (top) and total errors (bottom).

Parameter Mean Upper CL Lower CL

Jackknife resampling errors

log10M1 12.84 0.020 − 0.026

log10 M⋆,0 10.98 0.015 − 0.019

β 0.48 0.017 − 0.021

δ 0.63 0.094 − 0.073

γ 1.60 0.166 − 0.202

σlog M⋆,0 0.337 0.045 − 0.035

λ 0.21 0.047 − 0.044

Bsat 10.87 0.443 − 0.416

βsat 0.83 0.038 − 0.035

α 1.17 0.020 − 0.021

Total errors

log10M1 12.67 0.124 − 0.083

log10 M⋆,0 10.90 0.082 − 0.067

β 0.36 0.077 − 0.051

δ 0.75 0.193 − 0.151

γ 0.81 0.477 − 0.386

σlog M⋆,0 0.394 0.100 − 0.074

λ 0.25 0.082 − 0.083

Bsat 9.96 0.938 − 0.845

βsat 0.87 0.078 − 0.065

α 1.14 0.040 − 0.038

of the chains (a few thousand steps). This covariance matrix is used

as the input sampler covariance matrix of a second and final MCMC

run, in which 10 chains of 30 000 steps each are computed in paral-

lel and combined together assuming a burn-in phase of 2000 steps

and checking for proper mixing.

We run the full MCMC procedure twice. The first run is per-

formed using the statistical covariance matrices from the jackknife

estimator and the second MCMC run uses the total error covariance

matrices, which are constructed from the statistical covariance ma-

trices plus the systematic error estimates added in quadrature to the

diagonal, as described in Section 3.5.

5 R ESULTS

Best-fitting parameters with 68 per cent confidence intervals are

given in the top panel of Table 4 for the statistical- and total-error

MCMC runs. The 1D and 2D likelihood distributions are shown in

Fig. D1. The reduced χ2
ν for the statistical-error fit is χ2/(Npoints −

Nparameters) = 260/(160 − 10) = 1.7, which is an overestimate given

the correlations neglected in the computation of the log-likelihood.

Firstly, we recall that the lensing and clustering measurements

are affected by a sample-to-sample correlation due to the scatter

in stellar mass. The re-use of background galaxies in the lensing

measurements causes an additional sample-to-sample correlation.

Secondly, the projected and real-space clustering are correlated, as

both observables bring similar information. This mostly affects the

satellite distribution parameter errors, which could be slightly un-

derestimated. Finally, the few number of subsamples (64) used in

the computation of a noisy covariance matrix may have biased the

inverse estimate and contributed to an increase in χ2
ν .

5.1 Measurements and best-fitting models

The measured stellar mass function and best-fitting model are dis-

played in Fig. 6. Statistical error bars and corresponding best-fitting

model are shown as thick black lines, whereas total (statistical plus
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Figure 6. Measured stellar mass function and best-fitting model in the range

0.5 < z < 1. The statistical errors from the jackknife estimate are shown as

black thick lines, whereas the total (statistical plus systematic) error bars as

dotted lines. The COSMOS (Ilbert et al. 2013) and VIPERS (Davidzon et al.

2013) mass functions are displayed with their respective statistical errors as

shaded areas.

systematic) errors and corresponding best-fitting model are rep-

resented in dotted lines. We compare our measurements with the

COSMOS mass function evaluated in the ranges 0.5 < z < 0.8 and

0.8 < z < 1.1 by Ilbert et al. (2013), and the VIPERS stellar mass

function (Davidzon et al. 2013), measured in the range 0.5 < z < 1

(Davidzon, private communication).

The clustering measurements and best-fitting models are shown

in Fig. 7. The projected two-point correlation functions w(θ ) are

displayed in the top panels. The mass ranges are given in each

top-right corner in units of log(M⋆/M⊙). Similarly, the real-space

two-point correlation functions w(rp) are displayed in the bottom

panels.

The galaxy–galaxy lensing measurements and best-fitting models

are shown in Fig. 8. The most massive lensing bin features a few

data points lower than the model around the transition between the

central and the satellites term.

For all observables, we report good agreement between the data

and the model. The constraints on the shape of the central M⋆−Mh

relationship (parametrized by log10M1, log10Mstar0, β, γ and δ), are

mostly driven by the high signal-to-noise stellar mass function mea-

surements. Satellite HOD parameters (Bsat, βsat and α) are mainly

constrained by the clustering and lensing measurements. The am-

plitude of clustering at small scale is directly proportional to the

relative number of satellites, hence giving strong leverage on the

satellite galaxy HOD. Additional information is given on scales

r ∼ 0.1 Mpc from lensing, through the satellite lensing signal.

The dispersion in M⋆ at fixed Mh, parametrized in amplitude by

σlog M⋆,0 and in power-law slope by λ, is mainly constrained by the

high-mass end of the stellar mass function and the amplitude of the

galaxy–galaxy lensing signal in the most massive bins, resulting in a

high-mass (M⋆ ∼ 1011 M⊙) scatter of approximately σlog M⋆
≃ 0.2

in both the jackknife and total error cases, and a medium mass

(M⋆ ∼ 1010 M⊙) scatter of σlog M⋆
≃ 0.35.

Because the stellar mass function is most affected by the inclu-

sion of systematics in the error budget, we note a significant increase

in uncertainties associated with the parameters driving the central

M⋆−Mh relationship. From Table 4, we report an increase from a

factor ∼3 in the error in γ , up to a factor ∼6 in the error in log10M1.

HOD parameters describing the satellite occupation function such

as Bsat, β or α show substantially less sensitivity to the addition

of systematic errors in the error budget (a maximum of factor ∼2

increase is found). This is explained by the relatively smaller contri-

bution of systematic versus statistical errors affecting the clustering

and lensing measurements, compared to the stellar mass function.

The occasional large differences between best-fitting parameters

from statistical alone and total errors, seen in Table 4, do not lead

to significantly different derived quantities, owing to the strong

correlations between parameters. This is confirmed by the almost

indistinguishable dotted lines and thick lines in Figs 6–8, and is

most probably a consequence of having symmetrically added the

systematic errors to the statistical errors.

5.2 Central M⋆−Mh relationship and the SHMR

In Fig. 9, we show the best-fitting central galaxy M⋆−Mh rela-

tionship (left-hand panel) as parametrized by equation (7), and the

SHMR (right-hand panel). The SHMR is shown as function of host

halo mass and is derived for the central galaxy in dark grey (from the

M⋆−Mh relationship), the satellites in light grey (integrated over the

galaxies above a mass threshold of M⋆ > 1010 M⊙), and the total

in black.

The shaded areas represent the 68 per cent confidence limits, and

in the bottom-left panel, we have shown the results obtained with

statistical errors in light blue and with total errors in black. As for the

stellar mass function, the statistical uncertainties grow by a factor

of ∼2–4 in the lower mass regime, when incorporating systematics.

The central SHMR peak position is indicated by a black arrow

located at Mh,peak = 1.92+0.17
−0.14 × 1012 M⊙. The SHMR peak value

is SHMRpeak = 2.2+0.2
−0.2 × 10−2. When accounting for satellites, the

peak position and value do not significantly differ from the esti-

mates for centrals only. However, a remarkable result highlighted

in this figure is the increasing contribution of stellar mass enclosed

in satellites as function of halo mass. When reaching cluster-size

haloes, this contribution reaches over 90 per cent (and presumably

higher when accounting for satellite galaxies with masses lower

than 1010 M⊙). However, we stress that we do not take into ac-

count the intracluster light, which is challenging to quantify using

ground-based photometric data.

5.3 Comparison with the literature

In Figs 10 and 11, we compare our best-fitting M⋆−Mh relationship

for central galaxies with a number of results from the literature. As

described in Section 4, our relation describes the mean stellar mass

at fixed halo mass which is, due to the scatter in stellar mass, not

equivalent to the mean halo mass at fixed stellar mass. This issue

becomes particularly important when the slope of the stellar or halo

mass distribution is steep (i.e. at high mass). Therefore, we have re-

computed our results using the latter definition and we consistently

compare our results with the literature in each case.

When required, we convert halo masses to our virial definition

using the recipe given by Hu & Kravtsov (2003) in their Appendix C

and, following Ilbert et al. (2010), we divide stellar masses by a

factor of 1.74 and 1.23 to convert from Salpeter (1955) and ‘Diet’
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Figure 7. Galaxy clustering measurements (data points with error bars) and best-fitting models (thick lines). The top panels show the projected w(θ ) from

the photometric sample (the measurements are corrected for the integral constraint), and the bottom panels show the spectroscopic real-space wp(rp). The

thick error bars associated with thick lines represent the statistical errors and subsequent best-fitting models, whereas dotted lines are for total errors. The mass

ranges in the top-right corner of each panel are given in log(M⋆/M⊙).

Salpeter IMFs, respectively, to our Chabrier IMF stellar masses. We

apply no correction to Kroupa (2001) IMF stellar masses.

The mean redshift, measured from the sum of the photometric

redshift PDFs, is found to be 〈z〉 = 0.82 for our measurements in

the range 0.5 < z < 1.0 (M⋆ > 1010.40 M⊙) and 〈z〉 = 0.65 in the

range 0.5 < z < 0.7 (1010 < M⋆/ M⊙ < 1010.40). We point out that

the lensing signal is more sensitive to lower redshift lens galaxies

characterized by a higher signal-to-noise ratio (due to the more nu-

merous background sources), and is likely to be more representative

of a lower redshift population, but this effect is assumed to be small

compared to the lensing statistical errors.

5.3.1 〈M⋆|Mh〉 results

We first compare the results for 〈M⋆|Mh〉 in Fig. 10. The black

shaded area shows our results for the central galaxy relationship

with 68 per cent confidence limits from the total errors. The total

errors consist of the statistical uncertainties from jackknife resam-

pling in addition to three sources of systematic effects from the

measurements: the cosmology chosen among widely-used �CDM

models, the fine-tuning of our dust extinction law modelling, and

potential biases in the photometry/calibration. We recall that this

list of systematic uncertainties is not exhaustive and, for example,

ignores the choice of SPS models, which may be responsible for

even larger systematic effects. An estimate of the systematic errors

from the model, as detailed in Section 4.5, is also shown in the

bottom-right corner.

Behroozi et al. (2013b), shown as the light-blue shaded area, put

constraints on the M⋆−Mh relationship by populating dark mat-

ter haloes in simulations and comparing abundances using ob-

served stellar mass functions from a number of surveys. They
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Figure 8. Galaxy–galaxy lensing signal measurements (data points with error bars) and best-fitting models (thick lines). As in Fig. 7, thick and dotted lines

are for statistical and total error results, respectively. The mass ranges in the top-right corner of each panel are given in log(M⋆/M⊙).

Figure 9. Best-fitting M⋆−Mh relationship (left) and SHMR (right). The black shaded areas represent the confidence limits from the total errors. The

bottom-left panel shows the confidence limits interval as a function of halo mass in the case of statistical errors (from jackknife resampling in light blue) and

total errors (in black). The SHMR is derived as function of host halo mass for the central galaxy (dark grey), the satellites (light grey) and the sum of both

(black). The peak value of the central SHMR is indicated by the black arrow.

characterized the uncertainties affecting stellar mass estimates by

accounting for a number of systematic errors. In particular, unlike

in our systematic errors, the authors had to include uncertainties

arising from the choice of the IMF and the SPS galaxy templates,

necessary when combining the stellar mass functions from several

works using different stellar mass measurement methods. Here, we

consider their results at z ∼ 1. A significant difference with our

model resides in the assumption that satellite galaxies in larger

haloes are seen as central galaxies in subhaloes. To circumvent the

difficulty of accurately predicting a subhalo mass function (e.g.

complications from tidal stripping), the galaxies in subhaloes at

the time of interest are matched to their progenitors at the time of

merging on to the central galaxy halo, under the assumption that

the M⋆−Mh evolution at a given stellar mass is identical whether

the host halo is isolated or inside a larger halo. In comparison,

our model is a ‘snapshot’ of the galaxy halo occupation at a given

time, where the satellite distribution is mainly constrained by galaxy

clustering.
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Figure 10. The best-fitting M⋆−Mh relationship for central galaxies, shown in the black shaded area (total-error based 68 per cent confidence limits), compared

with a number of results from the literature at similar redshifts. The results shown here represent the mean stellar mass at fixed halo mass or halo-mass proxy

(X-ray temperature or satellite kinematics), 〈M⋆|Mh〉, but plotted Mh as function of M⋆ to ease the comparison with the literature. We perform appropriate halo

mass conversions and IMF stellar mass corrections when required. The length of the grey arrow in the bottom-right corner shows the shift (∼0.2 dex) measured

from the direct comparison between stellar masses used in Leauthaud et al. (2012) and George et al. (2011), compared to those in Ilbert et al. (2010) which

were estimated in a similar way to this study. The error bar on the bottom-right corner indicates the typical systematic uncertainty arising from the model.

The results from Leauthaud et al. (2012) in COSMOS are shown

in brown and green at redshifts z ∼ 0.6 and ∼0.9, respectively.

We observe a small discrepancy which, compared to our results, is

unlikely to be explained by differences in the modelling of the HOD

(since the model is essentially identical), nor the sample variance

as confidence limits do not overlap. A difference in stellar mass

estimates on the other hand is more likely to be at the origin of the

discrepancy. To check this hypothesis, we have compared the stellar

mass estimates from Ilbert et al. (2010), which were measured in a

similar way to this study, with those used in Leauthaud et al. (2012)

with the method described in Bundy et al. (2006). We measured an

offset of ∼0.2 dex, illustrated in Fig. 10 as the grey arrow. Part of

the difference seems to be explained by the separate choice for the

dust extinction law made in each study (which may typically cause

a ∼0.14 dex offset, see Section 2.6). However, we note that in both

cases the same IMF and set of SPS models were used, which leaves

us without a complete understanding of the difference.

The results by Wang & Jing (2010) are shown as the blue short-

dashed line. Their model is based on a HOD modelling of the

stellar mass function and real-space galaxy clustering where, as in

Behroozi et al. (2013b), the treatment for satellites is not based on

the distribution of subhaloes in the host halo but on the M⋆−Mh

relationship at the time of infall.

Moster, Naab & White (2013), shown as the red dot–dashed line,

also used abundance matching and provided a redshift-dependent

parametrization of the central M⋆−Mh relationship that we have

calculated at z = 0.8. As above, the satellites are matched to their

haloes at the epoch of merging. Their relation is in good agree-

ment with ours at intermediate mass, however, it shows a steeper

dependence on stellar masses at higher mass.

The green dots with error bars are from the HOD modelling re-

sults of Zheng et al. (2007), based on real-space clustering and num-

ber density measurements. Here, we show their results for DEEP2, a

deep spectroscopic survey with high density z = 1 galaxies. Without

deep NIR data, the authors have computed mean approximate stel-

lar masses for galaxy samples selected in bins of luminosity. This

source of uncertainty is not shown on the plot, however, one may

expect a large scatter and potential biases due to this conversion.

The orange bow-ties with error bars represent the results11 by

Wake et al. (2011) in the NEWFIRM Medium Band Survey at

redshift z ∼ 1.1, from the combination of NIR-selected galaxy

clustering and number density measurements. Their results are in

good agreement with ours.

The five next results were produced using galaxy cluster samples

associated with their brightest cluster galaxies (BCG). George et al.

(2011) built up a catalogue of central versus satellite galaxies in

COSMOS, matched to an X-ray detected group/cluster sample with

robust halo masses from weak lensing (Leauthaud et al. 2009).

From their catalogue, we have computed the mean of stellar mass

and halo mass values for clusters in the range 0.5 < z < 1, shown

as the single red triangle (the error bars show the standard deviation

11 Here, we use updated results compared to the original publication, esti-

mated with Bruzual & Charlot (2003) templates and with rectified h-scaling

(Wake, private communication)
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Figure 11. The best-fitting M⋆−Mh relationship for central galaxies, shown in the black shaded area (total-error based 68 per cent confidence limits), compared

with a number of results from the literature at similar redshifts. Unlike in Fig. 10, the results shown here represent the mean halo mass at fixed stellar mass

〈Mh|M⋆〉. We perform appropriate halo mass conversions and IMF stellar mass corrections when required. The relatively low halo masses found by Hudson

et al. (2015) is linked to a different treatment of the satellite subhalo contribution to the lensing signal at small scale (see text for details).

in halo and stellar masses). As they used identical stellar masses to

Leauthaud et al. (2012), we also expect a systematic difference in

stellar masses compared with our estimates.

From Sunyaev–Zel’dovich detected clusters using the Atacama

Cosmology Telescope, Hilton et al. (2013) presented the measure-

ments of the galaxy properties between 0.27 < z < 1.07. Member

galaxies were identified from high-density spectroscopic observa-

tions, and stellar masses were measured from Spitzer IRAC1-2

mid-infrared (MIR) fluxes. Halo masses were estimated from satel-

lite kinematics. Here, we show the mean halo mass versus mean

BCG stellar mass, represented by the single blue dot with errors

bars (standard deviations of both masses). Their results appear to

be in good agreement with our M⋆−Mh relationship, although our

constraints on such high-mass clusters are extrapolated from the

few clusters more massive than 4−5 × 1014 M⊙ expected in our

sample.

We show as a single light blue diamond the mean halo mass

versus mean BCG stellar mass from van der Burg et al. (2014) in the

GCLASS/SpARCS cluster sample at z ∼ 1. Galaxy cluster members

were identified from intensive spectroscopic observations, and halo

masses were estimated from satellite kinematics. We note that stellar

masses were measured from a similar combination of data, redshift

range and volume size as ours, however, the methodology used to

link halo mass to galaxy stellar masses was rather different. Thus,

the agreement with our high-mass M⋆−Mh relationship within the

sample variance is quite remarkable.

Results from Balogh et al. (2014) are shown as the downward

purple triangles. Halo mass measurements were made using satel-

lite kinematics for a sample of 11 groups/clusters in the COSMOS

field. We show the mean and standard deviation of their mea-

surements split into two halo mass bins (the 11 groups are split

into 5 and 6 groups below and above Mh = 9 × 1013 M⊙, respec-

tively). Although their results suffer from large sample variance,

they are in broad agreement with our results and with the rest of the

literature.

Finally, the single red square with error bars shows the mean

of halo mass measurements from a weak lensing analysis of

X-ray selected clusters in the CFHTLenS by Kettula et al. (2014),

versus the mean stellar mass of associated BCGs (Mirkazemi et al.

submitted). We have re-measured stellar masses of those BCGs in

a consistent way to this study (with the exception of missing NIR

data for most of the BCGs, which may increase the scatter in stellar

mass). Despite the lower redshift range, the identical photometry

and lensing catalogue makes the comparison relevant to our results,

where the expected difference should arise solely from redshift evo-

lution, although the large statistical uncertainties prevent us from

drawing strong conclusions.

5.3.2 〈Mh|M⋆〉 results

We compare the results for 〈Mh|M⋆〉 in Fig. 11. To express the mean

halo mass at fixed stellar mass 〈Mh|M⋆〉 from our results, we derive

it from the mean stellar mass at fixed halo mass 〈M⋆|Mh〉 using the

Bayes theorem relating conditional probability distributions:

P (Mh|M⋆) ∝ P (M⋆|Mh) × P (Mh) . (17)
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We can then compute 〈Mh|M⋆〉 as the expectation value of

P (Mh|M⋆):

〈Mh|M⋆〉 =
∫

P (M⋆|Mh) P (Mh)MhdMh∫
P (M⋆|Mh) P (Mh)dMh

(18)

with

P (M⋆|Mh) =
d〈Ncen(Mh|M⋆)〉

dM⋆

, (19)

the distribution of central galaxies given a halo mass, and

P (Mh) =
dn

dMh

, (20)

the halo mass function.

We show the results of Foucaud et al. (2010) at z ∼ 1 from

clustering measurements in the UKIDSS-UDS field as the blue

squares with error bars. The UKIDSS-UDS field is a small patch

of ∼1 deg2 with deep NIR and optical data. They have converted

their clustering amplitude measured in bins of stellar mass into

halo masses, using the analytical galaxy-bias halo-mass relationship

from Mo & White (1996). As they do not use any constraints from

galaxy number density, their error bars are dominated by sample

variance and uncertainties on the projected galaxy clustering.

Green upward triangles represent the results by Conroy et al.

(2007). Halo masses were derived from satellite kinematics using

spectroscopic measurements from the DEEP2 survey. Since the au-

thors have selected their samples based on bins of stellar masses, we

can compare their results with our 〈Mh|M⋆〉 M⋆−Mh relationship.

The agreement is found to be good.

Results from clustering measurements in the CFHTLS-

DEEP/WIRDS fields by Bielby et al. (2014) are displayed by the

brown bow-ties with error bars. We select all mass bin results in

the range 0.5 < z < 1. Although the total field of view is small

(∼2.4 deg2), the combination of four independent fields allowed

them to reduce the cosmic variance. As in Foucaud et al., they

used an analytical prescription based on the large-scale clustering

amplitude to estimate halo masses per bin of stellar mass, so that

their results should be compared to our 〈Mh|M⋆〉 results. The two

points well above the other results correspond to the measurements

at z ∼ 0.7 and seem to disagree with our constraints and the rest of

the literature. The authors claim to have observed an unusually high

clustering signal at those redshifts, potentially explained by cosmic

variance effects.

Results by Heymans et al. (2006) in the COMBO-17/GEMS field

are shown as the downward light-blue triangle with error bars. Here,

we have picked their unique measurement at z > 0.5. Halo masses

were measured using weak lensing with galaxy shapes from the

Hubble Space Telescope observations.

We show as red diamonds the results for z ∼ 0.5 red galaxies

by van Uitert et al. (2011) in the Red Sequence Cluster Survey

2, a medium-deep CFHT-MegaCam survey in three bands (gri)

which overlaps 300 deg2 of the SDSS. The authors have measured

the galaxy–galaxy lensing signal for SDSS lens galaxies with a

spectroscopic redshift using background source galaxies from the

RCS2 survey. Here, the large area permits a high signal-to-noise

measurement for very massive galaxies from lensing only. Their

results are consistent with ours as this mass bin (>3 × 1011 M⊙) is

dominated by red galaxies.

We compare our results with those from Velander et al. (2014)

at z ∼ 0.3, shown as filled symbols (red dots and blue triangles for

red and blue galaxies, respectively), and those from Hudson et al.

(2015) at z ∼ 0.7, shown as empty symbols (red dots and blue

triangles for red and blue galaxies, respectively). In both studies,

halo mass measurements were obtained from galaxy–galaxy lensing

measured using the CFHTLenS lensing catalogue and stellar masses

computed in a similar way to this study, with the exception that, in

both cases, no NIR data were available at the time. This mostly

affects the stellar mass estimates of Hudson et al. at z ∼ 0.7 which,

unlike Velander et al. at z ∼ 0.3, do not benefit from the leverage

of the CFHTLS z band. We expect the M⋆−Mh relationship of

the full galaxy population to lie between those of the red and blue

populations, however, the results from Hudson et al. lie below our

results for both galaxy populations. The bias caused by the scatter in

stellar mass partially explains this difference (by shifting their mean

stellar mass to higher values), but not entirely: Hudson et al. account

for the contribution of subhaloes around satellites occurring at small

scale in the lensing signal, whereas we do not (see Section 4.512).

As Velander et al. also accounted for subhaloes in their lensing

model, we cannot exclude that the apparent good agreement may

result from a redshift evolution going in the opposite direction, and

requires further investigation.

5.3.3 The total SHMR

In Fig. 12, we show the SHMR as function of halo mass com-

pared with observations from the literature. The black shaded area

represents the total SHMR as the sum of the central and satellite

contributions. The central SHMR (in dashed line on the figure) is

simply derived from the central M⋆−Mh relationship. The satellite

SHMR (in dot–dashed line on the figure) is computed from the

sum of satellite stellar masses over the halo occupation function at

each halo mass, with a lower integration limit of M⋆ = 1010 M⊙.

The total baryon fraction compared to dark matter in the Universe

is assumed to be 0.171 and represented on the figure by the grey

shaded area on the top (Dunkley et al. 2009, the width of the line

represents the uncertainty).

In green, we display the total SHMR from Leauthaud et al. (2012)

measured at z ∼ 0.9. The procedure to compute the total SHMR is

identical to ours, i.e. the integrated stellar masses from the satellite

HOD were added to the central stellar mass at each halo mass.

The authors adopted a mass threshold of 109.8 M⊙, which does not

change the integrated stellar mass from satellites by a large amount

compared with a cut of >1010 M⊙. As shown in Fig. 10, part of

the vertical shift is explained by the systematic difference in stellar

mass estimates.

We show in light blue the central SHMR from Behroozi et al.

(2013a). As seen in Fig. 10, the agreement with our central SHMR

is good, although their peak is located at a slightly lower halo mass

value.

The red triangle shows the results by George et al. (2011) in

COSMOS in the redshift range 0.5 < z < 1. The point represents

the mean total stellar mass divided by the halo mass versus the halo

mass, and the error bars the standard deviation in each direction.

Here, we computed the total stellar mass as the sum of the central

galaxy stellar mass plus the stellar masses of associated group mem-

bers with M⋆ > 1010. As they used the stellar masses of Leauthaud

et al. the agreement is consistently good with their results, however

shifted compared to ours.

The single blue dot with error bars marks the mean and standard

deviation of estimates by Hilton et al. (2013). Here, the total cluster

12 This point is also investigated in detail in Appendix D of Hudson et al.

(2015).
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Figure 12. SHMR as function of halo mass compared with observations from the literature. Our best-fitting result for total (central plus satellites) SHMR

is shown as the black shaded area. The black dashed line represents the best-fitting central relationship, whereas the dot–dashed line is for the integrated

stellar-mass satellite contribution. For Behroozi, Wechsler & Conroy (2013a), only the central SHMR was published and we display it here for comparison

with our central SHMR and as an illustration of typical stellar mass systematics. The length of the grey arrow represents the shift to apply to Leauthaud et al.

(2012) and George et al. (2011) to reconcile their results with ours, based on the stellar mass comparison with Ilbert et al. (2010).

stellar mass is measured from the background-subtracted sum of

galaxy IRAC fluxes within R500 from the BCG. Based on the stellar

mass completeness computed by Ilbert et al. (2010), an IRAC AB

magnitude cut of 24 gives a complete passive galaxy sample down

to M⋆ = 109 M⊙ at z ∼ 0.5. With an IRAC completeness AB

magnitude limit of 22.6, it is therefore safe to assume that Hilton

et al. are complete above 1010 M⊙ at z ∼ 0.5, which matches

our sample. We then conclude that their measurements are in good

agreement with our results.

Results from van der Burg et al. (2014) are shown as the single

light-blue diamond, representing the mean SHMR versus halo mass

with its standard deviation. Total stellar masses are computed as

the sum of the BCG stellar mass and the stellar mass from galaxy

members spectroscopically identified and corrected for TSR. The

authors have checked that for >1010 M⊙ galaxies, which contribute

the most to the total SHMR (see their Fig. 2), the spectroscopic suc-

cess rate reaches 90 per cent. We note that the median stellar mass

completeness ∼1010.16 M⊙ is slightly higher than ours (limited

by their Ks-band data), however the contribution of satellites com-

pared to a mass limit of 1010 M⊙ will not significantly change the

total SHMR and their measurements can be fairly compared to our

results, and we observe an excellent agreement. Interestingly, the

authors conclude that when comparing with the literature, no red-

shift evolution in the total SHMR at high mass is found below z ∼ 1

and the comparison with our results (z ∼ 0.8) and those from Hilton

et al. (z ∼ 0.5) confirm their findings.

The two purple downward triangles represent the results from

Balogh et al. (2014) in the GEEC2 survey in COSMOS. Here,

we show the mean and standard deviation of the SHMR versus halo

mass in two halo mass bins. Galaxy members are identified from the

spectroscopic redshift when available or using the PDF-weighted

photometric redshift computed from the 30-band COSMOS photo-

metric catalogue (Ilbert et al. 2009). The spectroscopic (photomet-

ric) sample is complete for group members with M⋆ > 1010.3 M⊙
(M⋆ > 109 M⊙). Again, since most of the contribution to the total

SHMR originates from M⋆ > 1010 M⊙ galaxies, the comparison

with our results is fair. We note a slightly lower value at high mass,

and good agreement within the error bars at the group-scale halo

mass.

The value of the central SHMR peak may also be compared to

that of Coupon et al. (2012) computed from a clustering and galaxy

number density analysis of the CFHTLS-Wide. In their study, the

authors have measured the evolution of the SHMR peak as func-

tion of redshift and have found a lower value compared to ours

(1.1 × 1012 M⊙ at redshift z ∼ 0.7). The difference may not be

fully explained by cosmic variance, first because our field signif-

icantly overlaps with the full CFHTLS and secondly because the

difference is larger than our error bars. In fact, due to their selection

in the optical (i < 22.5), the SHMR peak above z = 0.6 is much less

constrained than for our Ks < 22 sample, and their peak location

suffers from higher uncertainties than in this study, not properly

accounted for in their published error bars.

In Fig. 13, we compare our results with a number of semi-analytic

predictions from the Millennium simulation (Springel, Frenk &

White 2006). In brief, semi-analytic models are anchored to the

dark matter halo merger trees provided by N-body simulations, in

which empirical recipes of physical processes drive the evolution

of galaxies. The fine-tuning of those different processes aim at

reproducing the observed galaxy statistical properties. In each case,

to derive the total SHMR we compute the sum of the central galaxy

stellar mass and the integrated stellar masses of satellites with M⋆ >

1010 M⊙ to match our sample mass completeness limit. The central

SHMR is represented as a dashed line and the shaded area represents

the total SHMR with 15 and 85 per cent percentiles. All quantities

were computed at redshift z = 0.8. The model of Bower et al.

(2006) is shown in red (top left), the model of De Lucia & Blaizot

(2007) in orange (top right) and the model of Guo et al. (2011) –

a modified version of the latter – in green (bottom right). In both

De Lucia & Blaizot and Guo et al. models, the contribution from

satellites to the total SHMR is significantly below the observations.

Despite a different treatment of satellite galaxies and the efficiency

of stellar feedback in the latter model, compared to the former, those
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Figure 13. SHMR as function of halo mass compared with simulations from the literature. We compare our total, central and satellite SHMR results with

three studies based on semi-analytic models applied to the Millennium simulation (top-row and bottom-left panels) and one study (bottom-right panel) based

on the ‘gas-regulator’ analytical model. For each model, we also display the corresponding central (dashed line) and satellite (dot–dashed line) SHMR.

changes do not show up here. The discrepancy with our results could

not arise from a limitation caused by the simulation resolution, as

we imposed a cut of M⋆ > 1010 M⊙ to match our observations.

The model of Bower et al. better reproduces the observed satellite

SHMR, however it underestimates the central SHMR and features

a significant scatter in the M⋆−Mh relationship.

We also show the results from the analytical model proposed

by Birrer et al. (2014) in blue (bottom right). Their model is an

application of the gas-regulator model (Lilly et al. 2013), in which

the star formation efficiency is driven by the amount of available

gas in the reservoir. In its simplest form, the model describes the

inflows and outflows of the gas in the reservoir by two adjustable

parameters: a star formation efficiency ǫ, and a mass-loading factor

λ that represents the outflows, proportional to the SFR. We show

their SHMR at z = 1 from the model ‘C’.

6 D I S C U S S I O N A N D C O N C L U S I O N S

Using a unique combination of deep optical/NIR data and large area,

we have combined galaxy clustering, lensing and galaxy abundance,

to put constraints on the galaxy occupation function in the range

0.5 < z < 1 and to link galaxy properties to dark matter halo

masses. Our main result is an accurate measurement of the central

galaxy M⋆−Mh relationship at z ∼ 0.8 ranging from halo masses

at the peak of the SHMR up to the galaxy cluster mass regime. We

also provide separate measurements of the SHMR for central and

satellite galaxies.

We have shown that the statistical errors (computed using a

jackknife estimator) were smaller than systematic errors in the

stellar mass measurements caused by uncertainties in the assumed

cosmology, dust modelling and photometric calibration. Due to

the relatively small amount of statistical uncertainties, the low- to

intermediate-mass regime of the stellar mass function is most af-

fected by systematic errors: a factor of ∼8 was found between statis-

tical errors and total errors, increasing the error bars of parameters

controlling the shape of the M⋆−Mh relationship by approximately

the same amount (see Table 4). Conversely, clustering and lensing

measurements feature relatively higher statistical uncertainties and

only a factor of ∼2 increase in error of the HOD parameters de-

scribing the satellite population is observed compared to statistical

errors. By probing such a large volume, nearly 0.1 Gpc3, this study

brings unprecedented constraints on the M⋆−Mh relationship from

statistical methods in the cluster mass regime at those redshifts.

As shown in Fig. 10, our results make the link between statistical

methods based on HOD applied to deep, small-volume surveys, with

direct measurements of massive clusters from large-scale surveys.

For central galaxies, we have shown that when properly account-

ing for halo mass definition, choice of the IMF and the scatter

between M⋆ and Mh, there is general agreement among results

from the literature. We find that stellar mass estimates are the main

source of uncertainty, as reflected by the light-blue shaded area from

Behroozi et al. (2013b) in Fig. 10, or the stellar mass shift measured

between Leauthaud et al. (2012) and Ilbert et al. (2010). We stress,

however, that if stellar mass differences may induce a global shift

(for instance caused by a separate choice for the IMF), it may also

translate into a mass-dependent shift in the more general case (e.g.

between two sets of SPS models): hence applying a constant shift

may not necessarily reconcile two measurements.

In Fig. 11, stellar mass systematics do not seem to explain

all of the observed differences with some results from the liter-

ature for which the stellar mass was measured in a similar way

to this study. To measure the impact of some of the assumptions

made in our model, we have compiled a list of potential system-

atics propagated through the halo mass and satellite normalization
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best-fitting parameters. We quote an estimate of 50 per cent error in

M1 and 20 per cent error in Bsat, respectively.

For satellite galaxies, the combination of lensing and clustering

in this work represents a significant improvement over studies us-

ing only the stellar mass function. In Fig. 12, we have shown the

measured total SHMR as function of halo mass, compared with

a number of results from observations and simulations in the lit-

erature. Starting from group-size haloes up to the most massive

clusters, we find that the total SHMR is gradually dominated by the

contribution from satellites.

Clearly, most SAMs tend to underestimate the total amount of

stellar mass produced in medium- to high-mass satellites (1010 <

M⋆/ M⊙ < 1011) at z ∼ 1 compared to observations. This would

suggest that, in SAMs, the bulk of star formation occurs in low-

mass galaxies, but is quenched or suppressed at higher mass. Pos-

sible explanations for this include either a too strong quenching of

haloes in the mass regime 1010 < M⋆/ M⊙ < 1011 (e.g. the work by

Henriques et al. 2012, who argue that the gas could be later reincor-

porated into the haloes), or that low-mass subhaloes are too numer-

ous and would ‘catch’ the gas in detriment of high-mass subhaloes.

It is interesting to link this feature to the overabundance of low-mass

galaxies found in numerical simulations compared to observations

(see e.g. Guo et al. 2011; Weinmann et al. 2012; De Lucia, Muzzin

& Weinmann 2014). In this context, Schive, Chiueh & Broadhurst

(2014) recently proposed that cold dark matter could behave as a

coherent wave and have shown using N-body simulations that this

would suppress a large amount of small-mass haloes.

Finally, we can summarize our findings as follows:

(i) the HOD model accurately reproduces the four observables

within the statistical error bars in all mass bins over three orders of

magnitudes in halo mass and two orders of magnitudes in stellar

mass;

(ii) our M⋆−Mh relationship shows generally good agreement

with the literature measurements at z ∼ 0.8 and we have shown

that, when modelling differences are properly accounted for, we are

able to make a fair comparison of a number of results derived using

independent techniques;

(iii) the systematic errors affecting our measurements were prop-

agated through the whole fitting process. For the parameters de-

scribing the M⋆−Mh relationship, we find that including systematic

errors leads to a factor of 8 increase in error bars, and for the pa-

rameters describing the satellite HOD a factor of 2 increase in error

bars, compared to statistical error bars;

(iv) the sum of systematic errors from the halo model and our

model assumptions may be as high (but likely overestimated) as

50 per cent in halo mass and 20 per cent in the satellite number

normalization;

(v) the central galaxy SHMR peaks at Mh = 1.9 × 1012 M⊙,

a value slightly larger than the clustering results from the full

CFHTLS from Coupon et al. (2012),

(vi) the total (central plus satellites) SHMR is dominated by

the satellite contribution in the most massive haloes, in apparent

contradiction with SAMs in the Millennium simulation.

We have demonstrated the power of associating a large and deep

area with a combination of independent observables to constrain the

galaxy–halo relationship with unprecedented accuracy up to z = 1.

The potential of these data will undoubtedly allow us to extend this

analysis to galaxies split by type in future work.

Additionally, studying the evolution in redshift of the SHMR

above z = 1 is one of the greatest challenge in the near future. If

abundance matching already probes the central galaxy–halo rela-

tionship up to high redshift, clustering and lensing are necessary

to put constraints on the satellite HOD and break some of the de-

generacies. Large-scale clustering measurements require wide-field

imaging, whereas high-redshift lensing techniques are yet to be im-

proved, but on-going projects such as Hyper Suprime Cam (HSC),

Dark Energy Survey (DES) or COSMOS/SPLASH (Spitzer Large

Area Survey with Hyper-Suprime-Cam), which will increase by or-

ders of magnitude the currently available data, represent the ideal

data sets to address those issues.
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APPENDIX A : C OMPLETENESS O F THE

SAMPLES

In this section, we use the CFHTLS-Deep/WIRDS combined data to

test our samples’ mass completeness. The CFHTLS-Deep/WIRDS

Figure A1. Galaxy distribution as function of stellar mass and redshift in

WIRDS. Stellar mass 90 per cent completeness limits of Ks < 22 (top) and

i < 22.5 (bottom) selected samples are represented as the dashed black line

and the sample selection as the thick red line.

data are over 2 mag deeper in all bands compared to our CFHTLS-

Wide/WIRCam data and with accurate photometric redshift and

stellar mass estimates computed in a similar fashion to this study.

Fig. A1 shows the galaxy distribution in WIRDS as function of

stellar mass and redshift corresponding to our selection Ks < 22

for the photometric sample (top) and i < 22.5 for the spectroscopic

sample (bottom).

The density fluctuations seen as function of redshift are due to

cosmic variance (the field of view is smaller than 1 deg2), but we do

not expect any significant impact on our completeness assessments.

In both panels, we represent the 90 per cent completeness limits as

dashed lines, and our samples’ selection as red boxes. In the case of

the photometric sample, a conservative z < 0.7 cut is adopted in the

lower mass sample to prevent missing red galaxies caused by the

optical incompleteness at the CFHTLS-Wide depth. Overall, these

verifications show that all of our samples are complete in mass.

A P P E N D I X B : D E TA I L S O N T H E D E R I VAT I O N

O F T H E O B S E RVA B L E S

Here, we provide detailed calculations of the four observables

used in this study and derived from the HOD model described in

Section 4. For the dark matter halo profile and the distribution of

satellites, we assume a (Navarro et al. 1997, NFW) profile with

the theoretical mass–concentration relation from equation (16) of
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Takada & Jain (2003) with c0 = 11 and β = 0.13, featuring the

redshift dependence (1 + z)−1 (Bullock et al. 2001). All dark mat-

ter quantities are derived at the mean redshift of the galaxy sample,

computed from the expectation value of the sum of redshift PDFs.

All quantities are computed in comoving units (‘co’). The cluster-

ing and galaxy–galaxy lensing are then converted into physical units

(‘phys’) to match the measurements.

B1 Stellar mass function

The stellar mass function is the integrated HOD over the halo mass

function:

φSMF

(
M t1

⋆ , M t2
⋆

)

=
∫ ∞

0

〈
Ntot

(
Mh|M⋆

t1 , M⋆
t2
)〉 dn

dMh

dMh. (B1)

B2 Galaxy clustering

We describe galaxy clustering using the two-point correlation func-

tion, as the sum of the one-halo and two-halo terms:

ξgg(rco) = 1 + ξgg,1(rco) + ξgg,2(rco) . (B2)

The one-halo term, ξ gg,1(rco), expresses the relative contribution of

galaxy pairs within the halo 〈Ntot(Mh)(Ntot(Mh) − 1)〉/2 and can be

decomposed, assuming Poisson statistics for the satellites, into two

terms:

〈NcenNsat〉(Mh) = 〈Ncen(Mh)〉〈Nsat(Mh)〉;

〈Nsat(Nsat − 1)〉(Mh)/2 = 〈Nsat(Mh)〉2/2 . (B3)

The correlation function for central-satellite pairs is given by

1 + ξcs(rco, z)

=
∫ ∞

Mvir(r)

dMh n(Mh, z)
〈Ncen〉〈Nsat〉

n2
gal/2

ρh(rco|Mh), (B4)

where we assume that the distribution of central-satellite pairs sim-

ply follows that of the dark matter halo profile. The lower integration

limit Mvir(rco) accounts for the fact that no halo with a virial mass

corresponding to rco would contribute to the correlation function.

For the satellite contribution ξ ss, the distribution of satellite pairs

is the convolution of the dark matter halo profile with itself, com-

puted here in Fourier space. The satellite power spectrum is

Pss(k) =
∫ Mhigh

Mlow

dMh n(Mh)
〈Nsat(Mh)〉2

n2
gal

|uh(k|Mh)|2 , (B5)

where uh(k|Mh) is the Fourier transform of the dark-matter halo

profile ρh(rco|Mh). The correlation function ξ ss is then obtained via

a Fourier transform.

The one-halo correlation function is the sum of the two contribu-

tions,

ξgg,1(rco) = 1 + ξcs(rco) + ξss(rco) . (B6)

The two-halo term is computed from the galaxy power spectrum:

P2(k, rco) = Pm(k)

×

[∫ Mlim(rco)

Mlow

dMhn(Mh)
〈Ntot〉

n′
gal(rco)

bh(Mh, rco)|uh(k|Mh)|

]2

, (B7)

where

n′
gal(rco) =

∫ Mlim(rco)

Mlow

n(Mh)〈Ntot〉 dMh . (B8)

The upper integration limit Mlim(rco) accounts for halo exclusion as

detailed in Coupon et al. (2012), and references therein.

Finally, the two-halo term ξ gg,2 of the galaxy autocorrelation

function is the Fourier transform of equation (B7) renormalized to

the total number of galaxy pairs:

1 + ξgg,2(rco) =
[

n′
gal(rco)

ngal

]
[1 + ξgg,2(rco)] . (B9)

The projected clustering w(θ ) is derived from the projection of

ξ gg on to the estimated redshift distribution from the sum of PDFs,

assuming the Limber approximation (see details in Coupon et al.

2012).

The real-space clustering wp(rp, co) is derived from the projection

of the 3D correlation function along the line of sight:

wp(rp,co) = 2

∫ ∞

rp,co

rco drcoξgg(rco) (r2
co − r2

p,co)−1/2 , (B10)

converted into physical units as

wp,phys = wp,co/(1 + z) . (B11)

B3 Galaxy–galaxy lensing

The galaxy–galaxy lensing estimator measures the excess surface

density of the projected dark matter halo profile:

�co(rp,co) = co(< rp,co) − co(rp,co) , (B12)

where co(< rp,co) is the projected mean surface density within the

comoving radius rp, co and co(rp,co) the mean surface density at the

radius rp,co.

To compute the analytical projected dark matter density , we

write

co(rp,co) =
∫

ρ
(√

r2
p,co + π2

co

)
dπco

= ρ

∫ [
1 + ξgm

(√
r2

p,co + π2
co

)]
dπco, (B13)

where rp,co is the transverse comoving distance, π co the line-of-sight

comoving distance, ρ the mean density of the Universe, so that

�co(rp, co) is related to the galaxy-dark matter cross-correlation

function ξ gm through

�co(rp,co) = co(< rp,co) − co(rp,co)

= ρ

[
4

r2
p,co

∫ rp,co

0

∫ πmax

0

r ′
p,coξgm

(√
r ′2

p,co + π2
co

)
dπcodr ′

p,co

−2

∫ πmax

0

ξgm

(√
r2

p,co + π2
co

)
dπco

]
. (B14)

The integration along the line of sight is performed up to the scale

πmax = 80 Mpc.

The excess surface density in physical units writes

�phys = �co × (1 + zL)2 , (B15)

where zL is the redshift of the lens galaxy.

As for ξ gg, ξ gm can be written as the sum of the one- and two-halo

terms:

ξgm(r) = 1 + ξgm,1(r) + ξgm,2(r) . (B16)

ξ gm,1(r) is itself decomposed into a contribution from the cross-

correlation of the central galaxy-dark matter and from that of the
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Figure C1. Galaxy–galaxy lensing measurements and systematics checks

for the sample 10.40 < log(M⋆/ M⊙) < 10.65. In the top panel, we show

the data (dots with error bars) and the model (thick line) split into the stellar

term in dotted line, the central term in dashed line, the satellite term in dot–

dashed line and the two-halo term in black solid line at bottom-right corner.

The lower panels show the systematic tests (rotated-shape signal and random

lens positions), calibration factor (multiplicative bias correction and boost

factor) and the lower-left corner the correlation coefficients of the correlation

matrix from the jackknife estimate.

Figure C2. Galaxy–galaxy lensing measurements separating the back-

ground sample into 0.8 < zp < 1.2 sources (purple dots) and zp > 1.2

sources (green triangles), keeping the same lens galaxy foreground sample

(low-redshift galaxies with spectroscopic redshifts).

Figure C3. w(θ ) measurements and the corresponding HOD function for

the sample 10.60 < log(M⋆/ M⊙) < 10.80. In the top panel, we show the

data points with error bars and the best-fitting model: the dotted line rep-

resents the central-satellite cross-correlation, the dashed line the satellite–

satellite autocorrelation, and the dot–dashed line the central–central auto-

correlation (or 2-halo term). The middle panel displays the corresponding

HOD, the dashed line shows the central galaxy HOD and the dot–dashed line

the satellites’ HOD. The lower-right panel shows the corresponding redshift

distribution constructed from the sum of individual PDFs. The lower-left

panel shows the correlation coefficients of the covariance matrix from the

jackknife estimate.

satellite-dark matter, both assuming an NFW profile. We write the

former as

1 + ξgm,cen(r, z)

=
∫ Mhigh

Mvir(r)

dMh n(Mh, z)
〈Ncen〉
ngal

ρh(r|Mh)
Mh

ρ
(B17)

and the latter ξ gm,sat from the Fourier transform of its power

spectrum

Pgm,ss(k)

=
∫ Mhigh

Mlow

dMh n(Mh)
〈Nsat(Mh)〉

ngal

Mh

ρ
|uh(k|Mh)|2. (B18)

Finally, we compute the two-halo term ξ gm, 2(r) from the

Fourier transform of the galaxy–dark matter cross-correlation power

spectrum:

Pgm,2(k, r) = Pm(k)

×
∫ Mlim(r)

Mlow

dMhn(Mh)
〈Ntot(Mh)〉

n′
gal(r)

bh(Mh, r)|uh(k|Mh)|, (B19)
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with a similar treatment of halo exclusion to that of the galaxy power

spectrum.

A P P E N D I X C : SY S T E M AT I C S C H E C K S O N

L E N S I N G A N D C L U S T E R I N G

We have performed systematics checks for the lensing and cluster-

ing measurements. In Fig. C1, we detail the galaxy–galaxy lensing

measurement for the sample 10.40 < log(M⋆/ M⊙) < 10.65 as an

example. The top panel shows the data (dots with error bars) and

best-fitting model (thick line) with the different components of the

model the central galaxy term, the satellite term and the two-halo

term. The lower panels show a number of systematics checks. The

‘e×’ panel shows the signal measured after rotating the elliptici-

ties by 45◦ and the ‘ran. lenses’ panel shows the signal measured

by randomizing the lenses positions, both consistent with zero.

The ‘1+m’ panel shows the multiplicative bias correction applied

to the galaxy–galaxy lensing measurement, estimated after replac-

ing the ellipticities by the multiplicative calibration factor 1 + m.

The ‘boost factor’ was estimated from randomizing the background

source positions and measuring the ratio of the number of real

sources over random objects as a function of distance from the

lenses, and applied to the galaxy–galaxy lensing measurement.

The covariance matrix from the jackknife estimate is shown in the

Figure D1. 1D (diagonal) and 2D likelihood distributions of best-fitting HOD parameters in the case of total errors. The 2D contours represent the 68.3, 95.5

and 99.7 per cent confidence limits. We used flat priors within the ranges shown on the figure for all parameters.
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left-bottom corner of the figure. The relatively small off-diagonal

values show the low correlation between data points. We repeated

identical tests for all mass bins. In all cases, systematics are found

to be consistent with zero.

In Fig. C2, we test the impact of including high-redshift sources

beyond z > 1.2. To do so, we select an arbitrary sample of

low-redshift lens galaxies with a spectroscopic redshift and we

measured the galaxy–galaxy lensing signal using all sources with

0.8 <zp < 1.2 (purple dots in the figure) and all sources with zp > 1.2

(green triangles in the figure). We see no significant difference be-

tween the two signals, meaning that the photometric redshifts and

shape measurements in our catalogue are robust enough beyond

zp > 1.2.

In Fig. C3, we show the projected clustering in the mass bin

10.60 < log(M⋆/ M⊙) < 10.80. The top panel shows the data

points with error bars and the best-fitting model, with the different

components of the model: the one-halo term split into the central-

satellite and satellite–satellite terms and the two-halo term. In the

middle panel, we show the corresponding HOD, as a dashed line for

the central contribution and as a dot–dashed line for the satellites’

contribution.

A P P E N D I X D : 2 D C O N TO U R S

We show in Fig. D1, the likelihood distributions of the best-fitting

HOD parameters. Here, the results are shown for the MCMC run

done with total (statistical plus systematic) errors.
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