The Galois group of $X^{p}+a X^{s}+a$

by

B. Bensebaa, A. Movahhedi and A. Salinier (Limoges)

1. Introduction. Let p be an odd prime number and $s<p$ a positive integer. In this paper we study the absolute Galois group G of a trinomial $\varphi(X)=X^{p}+a X^{s}+a, a \in \mathbb{Z}$, supposed to be irreducible over the field \mathbb{Q} of rational numbers. This Galois group was previously studied in [8, 9, 11] when $s=1$ and the p-adic valuation $v_{p}(a)$ of the integer a is ≤ 1. When $s=v_{p}(a)=1$, the Galois group G is isomorphic either to the symmetric group S_{p} or to the affine group $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$. When $s=1$ and $v_{p}(a)=0$, then $G \simeq S_{p}$ if the discriminant D of $\varphi(X)$ is not a square; otherwise, G is isomorphic either to the alternating group A_{p} or to the projective special linear group $\mathrm{PSL}_{2}\left(2^{e}\right)$. The latter is, of course, only possible when $p-1$ is a power of 2 .

Here we deal with the Galois group of $\varphi(X)$ under very general circumstances. In fact, the only case we do not cover is where we simultaneously have

$$
p \mid a, \quad p \nmid v_{p}(a), \quad s v_{p}(a)<p, \quad \operatorname{gcd}\left(p-1, s v_{p}(a)\right)>1
$$

With a few minor exceptions, we prove that if the Galois group is not solvable then it is simply S_{p} or A_{p}.

Let N be the splitting field of $\varphi(X)$ over \mathbb{Q}. By using Newton polygons, we determine the inertia groups of ramified primes in N / \mathbb{Q}. For a prime $\ell \neq p$ which ramifies in N, the inertia group is cyclic of order p. For $p>3$, the prime p ramifies in N precisely when p divides a. To determine the inertia group of p, we argue according to whether p divides $v_{p}(a)$ or not. The ramification of p in N is wild if p does not divide $v_{p}(a)$ (Lemma 2.1) where the approach is similar to that of the cases already treated in the literature.

[^0]Assume now that $v_{p}(a)=k p$ with an integer $k \geq 1$. Then the ramification of p in N can be tame or wild. We manage to compute the corresponding inertia group in each case (Proposition 2.5) using the results of a previous paper on the factorization of a polynomial over a local field [4].

Once we know the different inertia groups in N / \mathbb{Q}, we determine G using the list of possible Galois groups over \mathbb{Q} of prime degree trinomials given by Feit [7].

Acknowledgements. It is a pleasure to thank Alain Kraus for correspondence concerning the elliptic curve occurring in Section 3.
2. Inertia groups. Let p be an odd prime number and $\varphi(X)=X^{p}+$ $a X^{s}+a$ be a trinomial with $0 \neq a \in \mathbb{Z}, 1 \leq s \leq p-1$, supposed to be irreducible over \mathbb{Q}. We denote by $\alpha:=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ the different roots of φ in an algebraic closure of \mathbb{Q}. Let $K:=\mathbb{Q}(\alpha)$ be the field obtained by adjoining the root α to the field \mathbb{Q}, and $N:=\mathbb{Q}\left(\alpha, \alpha_{2}, \ldots, \alpha_{p}\right)$ be the normal closure of K over \mathbb{Q}. We consider the Galois group G of N over \mathbb{Q} as a transitive group of permutations of the roots of φ. The discriminant D of φ is [15, Theorem 2]

$$
D=(-1)^{(p-1) / 2} a^{p-1}\left[p^{p}+(p-s)^{p-s} s^{s} a^{s}\right]
$$

We set $\delta:=\min \left(p, s v_{p}(a)\right)$ and $b:=a / p^{v_{p}(a)}$, so that

$$
\begin{equation*}
D=(-1)^{(p-1) / 2} b^{p-1} p^{(p-1) v_{p}(a)+\delta} D_{0} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{0}=p^{p-\delta}+(p-s)^{p-s} s^{s} b^{s} p^{s v_{p}(a)-\delta} \tag{2}
\end{equation*}
$$

2.1. Inertia above p. Here we will determine the inertia group of a p-adic place \wp of N. From the expression of D, we deduce that if p does not divide a, then the place \wp is unramified over p. For the rest of this section, we suppose that p divides a and we argue according to whether p divides $v_{p}(a)$ or not.

First suppose that p does not divide $v_{p}(a)$:
Lemma 2.1. If $p \mid a$ and p does not divide $v_{p}(a)$, then the prime number p is totally ramified in $K=\mathbb{Q}(\alpha)$.

Proof. The $\left(\mathbb{Q}_{p}, X\right)$-polygon [4] of $\varphi(X)$ has a unique side S joining the point $(0,0)$ to $\left(p, v_{p}(a)\right)$. As $v_{p}(a)$ and p are coprime, we see by $[4$, Theorem 1.5] that the ramification index of the local extension $\mathbb{Q}_{p}(\alpha) / \mathbb{Q}_{p}$ is equal to p.

Proposition 2.2. Assume $p \mid a$ and p does not divide $v_{p}(a)$. Further assume that $\operatorname{gcd}\left(p-1, s v_{p}(a)\right)=1$ if $s v_{p}(a)<p$. Then the inertia group of p (in fact of a prime of N above p) in N / \mathbb{Q} is isomorphic to the affine group $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$.

Proof. Consider the polynomial

$$
\psi(X)=\frac{\varphi(\alpha(X+1))}{\alpha^{p} X}=X^{p-1}+\sum_{i=1}^{p-1} a_{i} X^{p-1-i}
$$

in $\mathbb{Q}(\alpha)[X]$ where the coefficient a_{i} is given by

$$
a_{i}= \begin{cases}\binom{p}{i} & \text { if } 1 \leq i \leq p-s-1 \\ \binom{p}{i}+\binom{s}{i+s-p} \frac{a}{\alpha^{p-s}} & \text { if } p-s \leq i \leq p-1\end{cases}
$$

Introduce a prime element π of $\mathbb{Q}_{p}(\alpha)$. The π-adic valuations $v_{\pi}\left(a_{i}\right)$ of the coefficients a_{i} are given by

$$
v_{\pi}\left(a_{i}\right)= \begin{cases}p & \text { if } 1 \leq i \leq p-s-1 \\ \min \left(p, s v_{p}(a)\right) & \text { if } p-s \leq i \leq p-1\end{cases}
$$

since $v_{\pi}(\alpha)=v_{p}(a)$ and $v_{\pi}(x)=p v_{p}(x)$ for any rational x by Lemma 2.1.
So the $\left(\mathbb{Q}_{p}(\alpha), X\right)$-polygon [4] of $\psi(X)$ has a unique side S joining $(0,0)$ to $\left(p-1, \min \left(p, s v_{p}(a)\right)\right)$. By hypothesis, the integers $p-1$ and $\min \left(p, s v_{p}(a)\right)$ are coprime. Hence by [4, Theorem 1.5] the ramification index of the local extension $\mathbb{Q}_{p}\left(\alpha, \alpha_{2}\right) / \mathbb{Q}_{p}(\alpha)$ is equal to $p-1$. So the inertia group of p in N / \mathbb{Q}_{p} is a transitive solvable permutation group of prime degree p with order at least $p(p-1)$. The proposition follows by [6, Section 3.5].

Assume now that p divides $v_{p}(a)>0$: let $v_{p}(a)=k p$ for an integer $k \geq 1$ and $b:=a / p^{k p}$. Consider in $\mathbb{Q}[X]$ the polynomial

$$
\psi(X):=\frac{\varphi\left(p^{k} X\right)}{p^{k p}}=X^{p}+b p^{k s} X^{s}+b
$$

By the Taylor formula, we can write

$$
\begin{equation*}
\psi(X)=(X+b)^{p}+\sum_{i=1}^{p-1} a_{i}(X+b)^{p-i}+a_{p} \tag{3}
\end{equation*}
$$

where the coefficient a_{i} is given by

$$
a_{i}= \begin{cases}\binom{p}{i}(-b)^{i} & \text { if } 1 \leq i \leq p-s-1 \\ \binom{p}{i}(-b)^{i}-\binom{s}{i+s-p} p^{k s}(-b)^{i+s-p+1} & \text { if } p-s \leq i \leq p-1 \\ -b^{p}+(-1)^{s} p^{k s} b^{s+1}+b & \text { if } i=p\end{cases}
$$

We discuss several cases according to the p-adic valuation of $b^{p-1}-$ $(-1)^{s} p^{k s} b^{s}-1$.

Lemma 2.3. Assume that $v_{p}\left(b^{p-1}-(-1)^{s} p^{k s} b^{s}-1\right)=1$. Then p is totally ramified in $K=\mathbb{Q}(\alpha)$.

Proof. As $v_{p}\left(\binom{p}{i}(-b)^{i}\right)=1$ for all $i=1, \ldots, p-1$, the $\left(\mathbb{Q}_{p}, X+b\right)$ polygon [4] of $\psi(X)$ has a unique side S joining $(0,0)$ to $(p, 1)$. By [4, Theorem 1.5] the ramification index of the local extension $\mathbb{Q}_{p}(\alpha) / \mathbb{Q}_{p}$ is equal to p.

LEMmA 2.4. Assume that $v_{p}\left(b^{p-1}-(-1)^{s} p^{k s} b^{s}-1\right)>1$. Then the prime decomposition of p in $K=\mathbb{Q}(\alpha)$ is $p=\mathfrak{p}_{1}^{p-1} \mathfrak{p}_{2}$ in each of the following two cases:
(i) $k=s=1$ and $b \not \equiv-1(\bmod p)$;
(ii) $k s>1$.

If neither of the above two conditions holds, then $p=\mathfrak{p}_{1}^{p-2} \mathfrak{a}$ in K, where \mathfrak{p}_{1} is a prime ideal of K.

Proof. The coefficient a_{p-1} of the Taylor expansion (3) is $a_{p-1}=$ $p\left(b^{p-1}-(-1)^{s} s b^{s} p^{k s-1}\right)$. So $v_{p}\left(a_{p-1}\right)=1$ precisely when (i) or (ii) holds.

Now, in both cases (i) and (ii), the $\left(\mathbb{Q}_{p}, X+b\right)$-polygon [4] of $\psi(X)$ has two sides: S_{1} joining $(0,0)$ to $(p-1,1)$ and S_{2} joining $(p-1,1)$ to $\left(p, v_{p}\left(b^{p-1}-(-1)^{s} s p^{k s} b^{s-1}\right)\right)$. The corresponding associated polynomials, being linear, are irreducible. We conclude by [4, Theorem 1.8].

If neither (i) nor (ii) holds, then $k=s=1$ and $v_{p}\left(a_{p-1}\right)>1$. As $s=1$, we necessarily have $v_{p}\left(a_{p-2}\right)=1$, so that the $\left(\mathbb{Q}_{p}, X+b\right)$-polygon [4] of $\psi(X)$ has two or three sides, the first of which, S_{1}, joins $(0,0)$ to $(p-2,1)$. The associated polynomial of S_{1} being linear, once again we conclude by [4, Theorem 1.8].

As the following example shows, when $k=s=1$, the $\left(\mathbb{Q}_{p}, X+b\right)$-polygon of $\psi(X)$ may have one, two or three sides according to the choice of b :

- if $b=-1+2 p$, then $v_{p}\left(b^{p-1}+p b-1\right)=1$, hence a unique side;
- if $b=1+p$, then $v_{p}\left(b^{p-1}+p b-1\right) \geq 2$ and $b \not \equiv-1(\bmod p)$, hence two sides;
- if $b=-1+p-p^{2}+\frac{5(p+1)}{2} p^{3}$ for $p>3$, then $v_{p}\left(b^{p-1}+p b-1\right) \geq 4$ and $v_{p}\left(b^{p-2}+1\right)=1$, hence three sides.
We are now going to look at the inertia at p in the extension N / K.
Proposition 2.5. Assume $p \mid v_{p}(a) \geq 1$. Let $v_{p}(a)=k p$ for an integer $k \geq 1$ and $b:=a / p^{k p}$.
(1) If $v_{p}\left(b^{p-1}-(-1)^{s} p^{k s} b^{s}-1\right)=1$, then the inertia group of p (in fact of a prime of N above p) in N / \mathbb{Q} is isomorphic to $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ except when $k=s=1$ and $b \equiv-1(\bmod p)$, in which case it is isomorphic to the subgroup of index 2 of $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$.
(2) If instead $v_{p}\left(b^{p-1}-(-1)^{s} p^{k s} b^{s}-1\right)>1$, then the inertia group of p in N / \mathbb{Q} is cyclic; it is generated by a $(p-1)$-cycle except when $k=s=1$ and $b \equiv-1(\bmod p)$, in which case it is generated either by a $(p-2)-$ cycle or by a product of a transposition and a disjoint ($p-2$)-cycle.

Proof. (1) We fix a p-adic prime \wp of N. Let $\mathfrak{p}=\wp \cap K$. We denote by N_{\wp} the completion of N at \wp and by $K_{\mathfrak{p}}$ the closure of K in N_{\wp}. By Lemma 2.3, we know that $p=\mathfrak{p}^{p}$.

We let $\mathcal{D}(M / N)$ be the different of a local extension M / N. By the transitivity of the different, we have

$$
\mathcal{D}\left(N_{\wp} / \mathbb{Q}_{p}\right)=\mathcal{D}\left(N_{\wp} / K_{\mathfrak{p}}\right) \cdot \mathcal{D}\left(K_{\mathfrak{p}} / \mathbb{Q}_{p}\right) .
$$

The discriminant of the polynomial $\psi(X)$ is given by

$$
D(\psi)=(-1)^{(p-1) / 2} b^{s-1}\left[p^{p} b^{p-s}+s^{s}(p-s)^{p-s} b^{p} p^{k s p}\right],
$$

so the p-adic valuation of $D(\psi)$ is equal to p except when $k=s=1$ and $b \equiv-1(\bmod p)$.

We first treat the case where $v_{p}(D(\psi))=p$. Since p is wildly ramified in K by Lemma 2.3, so is the p-adic valuation of the discriminant of K : $v_{p}\left(D_{K}\right)=p$. Thus we also have $v_{\mathfrak{p}}\left(\mathcal{D}\left(K_{\mathfrak{p}} / \mathbb{Q}_{p}\right)\right)=p$ and

$$
\mathcal{D}\left(K_{\mathfrak{p}} / \mathbb{Q}_{p}\right)=\left(\wp^{e / p}\right)^{p}=\wp^{e}
$$

where the integer e is the ramification index of the extension N_{\wp} / \mathbb{Q}_{p}. On the other hand, since $N_{\wp} / K_{\mathfrak{p}}$ is tamely ramified,

$$
\mathcal{D}\left(N_{\wp} / K_{\mathfrak{p}}\right)=\wp^{e / p-1} .
$$

Now let $\left(G_{i}\right)_{i \geq 0}$ denote the ramification groups of the Galois extension N_{\wp} / \mathbb{Q}_{p}. We then have [14, chapitre IV, $\S 2$]

$$
\mathcal{D}\left(N_{\wp} / \mathbb{Q}_{p}\right)=\wp^{\sum_{i \geq 0}\left(\operatorname{Card}\left(G_{i}\right)-1\right)}=\wp^{e-1+\lambda(p-1)}
$$

where G_{λ} is the last non-trivial ramification group.
Taking all these equalities into account, we obtain $e=\lambda p(p-1)$. As any maximal solvable transitive permutation group of degree p is isomorphic to $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$, we necessarily have $\lambda=1$ and $e=p(p-1)$.

Suppose now that $k=s=1$ and $b \equiv-1(\bmod p)$. Then

$$
\psi(X)=\frac{\varphi(p X)}{p^{p}}=X^{p}+b p X+b
$$

Let $\beta=\alpha / p$ be a root of $\psi(X)$. As noticed in the proof of Lemma 2.3, the polynomial $\psi(X-b)$ is Eisenstein with respect to the prime p : in particular its root $\beta+b$ is a prime element of the local field $K_{\mathfrak{p}}=\mathbb{Q}_{p}(\alpha)$. Since p divides $b+1$, the same holds for $\beta-1=(\beta+b)-(b+1)$. Now if we rewrite
the equality $\psi(\beta)=0$ as

$$
\beta^{p-1}+b=\frac{b}{\beta}[(\beta-1)-p \beta]
$$

we see that (β being a unit of $K_{\mathfrak{p}}$ since its norm b is a unit of \mathbb{Q}_{p})

$$
v_{\mathfrak{p}}\left(\beta^{p-1}+b\right)=1
$$

So the $\left(K_{\mathfrak{p}}, X-\beta\right)$-polygon [4] of
$\frac{\psi(X)}{X-\beta}=(X-\beta)^{p-1}+p \beta(X-\beta)^{p-2}+\cdots+\frac{p(p-1)}{2} \beta^{p-2}(X-\beta)+p\left(\beta^{p-1}+b\right)$
has a unique side S joining $(0,0)$ to $(p-1, p+1)$. As the associated polynomial of S is a binomial of degree $2=\operatorname{gcd}(p-1, p+1)$, it is separable modulo p. Accordingly, by [4, Theorem 1.5], the ramification index of $\mathbb{Q}_{p}\left(\alpha, \alpha_{2}\right) / \mathbb{Q}_{p}(\alpha)$ is $(p-1) / 2$. Since φ remains irreducible over \mathbb{Q}_{p}, the decomposition group of p in N / \mathbb{Q} is a subgroup of $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$. As a non-trivial element of $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ does not fix two points $[1, \S 15]$, we have $N_{\wp}=\mathbb{Q}_{p}\left(\alpha, \alpha_{2}\right)$. Hence the inertia group of p in N / \mathbb{Q} is of order $p(p-1) / 2$. It is therefore isomorphic to the unique subgroup of $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ of index 2.
(2) By Lemma 2.4, the ramification of p in K / \mathbb{Q} is tame, more precisely, $p=\mathfrak{p}^{p-1} \mathfrak{p}^{\prime}$ or $p=\mathfrak{p}^{p-2} \mathfrak{a}$. Thus the ramification of p in N / \mathbb{Q} is tame, so that the inertia group is cyclic. This decomposition of p corresponds to a factorization of the polynomial $\varphi(X)$ over \mathbb{Q}_{p} :

$$
\varphi(X)=g(X) h(X)
$$

with $g(X)$ being irreducible over \mathbb{Q}_{p} of degree $\operatorname{deg} g=p-1$ in the first case and $\operatorname{deg} g=p-2$ in the second. The first case occurs precisely when (i) or (ii) of Lemma 2.4 holds. The local field $K_{\mathfrak{p}}$ is obtained by adjoining a root of $g(X)$ to \mathbb{Q}_{p}; it is a totally ramified extension of \mathbb{Q}_{p}. Write I_{\wp} for the inertia group of $\wp \mid \mathfrak{p}$ in N / \mathbb{Q}. Introduce the inertia field M in N_{\wp} / \mathbb{Q}_{p}. The totally ramified extension $K_{\mathfrak{p}} / \mathbb{Q}_{p}$ is linearly disjoint from the unramified extension M / \mathbb{Q}_{p}, so $g(X)$ remains irreducible over M. Hence $I_{\wp}=G\left(N_{\wp} / M\right)$ acts transitively on the roots of $g(X)$. As I_{\wp} is cyclic, it contains a cycle of order $p-1$ or $p-2$ according to the degree of $g(X)$.

Now if $\operatorname{deg} g=p-1$, and α^{\prime} is another root of $\varphi(X)$, the ramification index of $\mathbb{Q}_{p}\left(\alpha^{\prime}\right) / \mathbb{Q}_{p}$ is $p-1$ or 1 , according to whether α^{\prime} is a root of $g(X)$ or $h(X)$. By Abhyankar's lemma [13, p. 236], the extension $N_{\wp} / K_{\mathfrak{p}}$ is unramified, so in this case I_{\wp} is cyclic generated by a $(p-1)$-cycle.

If instead $\operatorname{deg} g=p-2$, consider a root α^{\prime} of $h(X)$. If $\mathbb{Q}_{p}\left(\alpha^{\prime}\right) / \mathbb{Q}_{p}$ is unramified, arguing as in the preceding case we see that I_{\wp} is cyclic generated by a $(p-2)$-cycle. If $\mathbb{Q}_{p}\left(\alpha^{\prime}\right) / \mathbb{Q}_{p}$ is ramified, then its ramification index is $2=\operatorname{deg} h(X)$, in particular the quadratic polynomial $h(X)$ is irreducible over \mathbb{Q}_{p} (hence also over the inertia field M). In this last case, again by

Abhyankar's lemma, the ramification index of N_{\wp} / \mathbb{Q}_{p} is $2(p-2)$. As I_{\wp} also acts transitively on the roots of $h(X)$, we conclude that it is generated by a product of a transposition and a disjoint $(p-2)$-cycle.
2.2. Inertia at non-p-adic primes. Let $\ell \neq p$ be a prime divisor of a.

Lemma 2.6 .

1. If p does not divide $v_{\ell}(a)$, then the prime number ℓ is totally ramified in $K=\mathbb{Q}(\alpha)$.
2. If p divides $v_{\ell}(a)$, then ℓ is unramified in $K=\mathbb{Q}(\alpha)$.

Proof. The $\left(\mathbb{Q}_{\ell}, X\right)$-polygon [4] of $\varphi(X)$ has a unique side S joining $(0,0)$ to $\left(p, v_{\ell}(a)\right)$. The associated polynomial of S is a binomial of the form

$$
F(Y)=Y^{m}+\frac{a}{\ell^{v_{\ell}(a)}}
$$

where $m=p$ or 1 , according to whether p divides $v_{\ell}(a)$ or not. Furthermore, $F(Y)$ is separable modulo ℓ. Thus, by [4, Theorem 1.5], the ramification index of $\mathbb{Q}_{\ell}(\alpha) / \mathbb{Q}_{\ell}$ is equal to p / m.

This lemma together with Abhyankar's lemma immediately yields:
Proposition 2.7. Let $\ell \neq p$ be a prime divisor of a. The inertia group (defined up to conjugation) of ℓ in N / \mathbb{Q} is trivial or cyclic of order p according to whether p divides $v_{\ell}(a)$ or not.

Let $\ell \neq p$ be a prime divisor of the number D_{0} given by (2).
Proposition 2.8. The prime $\ell \mid D_{0}(\ell \neq p)$ is ramified in K precisely when $v_{\ell}\left(D_{0}\right)$ is odd, in which case the corresponding inertia group is generated by a transposition.

Proof. Since ℓ does not divide a, by [10, Theorem 2] the ℓ-adic valuation of the absolute discriminant of $K=\mathbb{Q}(\alpha)$ is either 0 or 1 according to the parity of the ℓ-adic valuation of D_{0}. The rest of the proof is similar to that of Lemma 5 of [12].
3. Galois group. It is known that every transitive solvable permutation group of prime degree p is isomorphic to a subgroup of the affine group $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$. Suppose that the Galois group G of the irreducible trinomial $\varphi(X)=X^{p}+a X^{s}+a$ is solvable. Then, in view of Propositions 2.2 and 2.5, G is either $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ or its unique subgroup of index 2 , except possibly when we simultaneously have $\left(p-1, s v_{p}(a)\right)>1$ and $s v_{p}(a)<p$.

Using the classification of finite simple groups, W. Feit [7, Section 4] drew up the list of possible non-solvable Galois groups of prime degree trinomials over \mathbb{Q} :

1. the projective linear group $\mathrm{PSL}_{3}(2)$ of degree 7 ;
2. the groups $\mathrm{PSL}_{2}(11)$ or M_{11} (Mathieu group) of degree 11;
3. the projective linear groups G between $\mathrm{PSL}_{2}\left(2^{e}\right)$ and $\mathrm{P}_{2}\left(2^{e}\right)$ of degree $p=1+2^{e}>5$;
4. the symmetric group S_{p} or the alternating group A_{p}.

When $p=7$, by (1) and (2), the discriminant D of $\varphi(X)$ is

$$
D=-a^{6}\left[7^{7}+(7-s)^{7-s} s^{s} a^{s}\right] .
$$

For $s \in\{1,3,4,6\}, D / a^{6} \equiv-1(\bmod 3)$, while for $s=2$ or $s=5, D / a^{6} \equiv 2$ $(\bmod 5)$, so that D is never a square. Hence the first case above does not hold.

Similarly when $p=11$, we are going to check that

$$
D=-a^{10}\left[11^{11}+(11-s)^{11-s} s^{s} a^{s}\right]
$$

is not a square. First observe that D / a^{10} is not a square modulo 8 , except when $s=2$ or $s=9$. When $s=2$, the discriminant is not a square since it is negative. When $s=9$, assume that D is a square: there exists an integer y such that $y^{2}=-11^{11}-4 \cdot 9^{9} a^{9}$. Setting $x:=(-9 a)^{3}$, this would imply that the elliptic curve (E) of equation

$$
y^{2}=4 x^{3}-11^{11}
$$

has a rational non-trivial point. By the change of coordinates defined by $y=2 \cdot 11^{3} Y+11^{3}$ and $x=11^{2} X$, one sees that (E) is isomorphic to the elliptic curve (E^{\prime}) defined by the equation

$$
Y^{2}+Y=X^{3}-40263
$$

which is the curve 1089 b 1 in Cremona's tables of elliptic curves [5]. In particular, it is of conductor 1089. By Table One of [5], (E^{\prime}) has rational rank 0 and trivial torsion. So there is no non-trivial rational point in $\left(E^{\prime}\right)$, hence none in (E). This completes the proof.

Therefore when the Galois group G is not solvable, either it contains A_{p} or we have $\mathrm{PSL}_{2}\left(2^{e}\right) \leq G \leq \operatorname{P} \Gamma \mathrm{L}_{2}\left(2^{e}\right)$. Of course the latter happens in the very special case where p is a Fermat prime $p=1+2^{e}$ with $e>2$. Further, since the projective semilinear group $\mathrm{P}_{2}\left(2^{e}\right)$ consists of even permutations [3, Lemma 3.1] the last case does not occur when D is not a square.

The above discussion immediately yields the following result.
Proposition 3.1. If the Galois group G of $\varphi(X)=X^{p}+a X^{s}+a$ is not solvable, then it is the full symmetric group S_{p} as soon as one of the following conditions holds:
(i) $s v_{p}(a)>p$;
(ii) $s v_{p}(a)<p$ and $s v_{p}(a)$ is odd.

Proof. In both cases, $v_{p}(D)$ is odd.
Theorem 3.2. Let a be an integer, and p a prime number not dividing a. Let $\varphi(X)=X^{p}+a X^{s}+a$ be irreducible over \mathbb{Q} and G its Galois group over \mathbb{Q}. Then
(i) $G \simeq S_{p}$ if the discriminant of $\varphi(X)$ is not a square;
(ii) $G \simeq A_{p}$ or $\mathrm{PSL}_{2}\left(2^{e}\right)$ if the discriminant of $\varphi(X)$ is a square. The latter is only possible when p is a Fermat prime.

Proof. We can assume that $p>3$. Suppose that G is not isomorphic to S_{p}. By Proposition 2.8, the number $D_{0}=p^{p}+(p-s)^{p-s} s^{s} a^{s}$ given by (2) is a square and only the prime divisors of a may ramify in $K=\mathbb{Q}(\alpha)$. The inertia group of such a ramified prime $\ell \mid a$ in N / \mathbb{Q} is cyclic of order p (Proposition 2.7). Hence G is generated by elements of order p. On the other hand, the extension K / \mathbb{Q} is not normal since the trinomial $\varphi(X)$ has at most three real roots. Therefore G is not solvable. As all the elements of order p of $\mathrm{P}_{2}\left(2^{e}\right)$ lie in $\mathrm{PSL}_{2}\left(2^{e}\right)$, the proof is complete.

We keep the notations already introduced. Combining the above Proposition 3.1 with Proposition 2.2, we obtain:

Theorem 3.3. Let a be an integer such that $p \mid a$ and p does not divide $v_{p}(a)$. Further assume that $\operatorname{gcd}\left(p-1, s v_{p}(a)\right)=1$ if $s v_{p}(a)<p$. Then the Galois group G of $\varphi(X)$ is either S_{p} or $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$.

There remains the case where $v_{p}(a)=k p$ with an integer $k \geq 1$. Let $p=1+2^{e}>17$ be a Fermat prime. We first notice that $\mathrm{P}_{2}\left(2^{e}\right)$ does not contain any subgroup isomorphic to the subgroup of index 2 of $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$. In fact, the latter contains an element of order $(p-1) / 2$, and this is not even the case of the semilinear group $\Gamma \mathrm{L}_{2}\left(2^{e}\right)$. Let, indeed, u be a semilinear transformation of the vector space $\mathbb{F}_{2^{e}}^{2}$ relative to an automorphism σ of $\mathbb{F}_{2^{e}}$ and suppose that u is of order $(p-1) / 2=2^{e-1}$. Since σ^{e} is the identity of $\mathbb{F}_{2^{e}}$, we see that u^{e} is a linear map. On the other hand, the general linear group $\mathrm{GL}_{2}\left(2^{e}\right)$ being of order

$$
\left(2^{2 e}-1\right)\left(2^{2 e}-2^{e}\right),
$$

its 2 -Sylow subgroups are of order 2^{e}. Considering the subgroup

$$
\left\{\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right): \lambda \in \mathbb{F}_{2^{e}}\right\}
$$

we see that these 2-Sylow subgroups are elementary abelian. Consequently, $u^{2 e}=\operatorname{Id}_{\mathbb{F}_{2 e}^{2}}$, and 2^{e-1} divides $2 e$. This contradicts the inequality $2^{e}>16$. Now the above discussion together with Proposition 2.5 yields:

TheOrem 3.4. Let $p \neq 17$ be a prime number and a be an integer such that $v_{p}(a)=k p$ for an integer $k \geq 1$. Assume that the trinomial $\varphi(X)=$ $X^{p}+a X^{s}+a$ is irreducible over \mathbb{Q} and denote by G its Galois group over \mathbb{Q}. Then
(i) G is $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ or S_{p} if the discriminant of $\varphi(X)$ is not a square;
(ii) $G \simeq A_{p}$ or the subgroup of index 2 of $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ if the discriminant of $\varphi(X)$ is a square.

Notice that the discriminant of $\varphi(X)$ in the above theorem can be a square only when we simultaneously have $k s=1$ and $b:=a / p^{k p} \equiv-1$ $(\bmod p)$. Further, by Proposition 2.5 the hypothesis $p \neq 17$ can be removed when either $k s>1$ or $b \not \equiv-1(\bmod 17)$. Finally, observe that once we fix the prime p, then for only finitely many integers a can the above Galois group G be contained in $\operatorname{Aff}\left(\mathbb{F}_{p}\right)$ [2].

References

[1] S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Bull. Amer. Math. Soc. 27 (1992), 68-133.
[2] J. Angeli, Trinômes irréductibles résolubles sur un corps de nombres, Acta Arith. 127 (2007), 169-178.
[3] S. D. Cohen, A. Movahhedi and A. Salinier, Galois groups of trinomials, J. Algebra 222 (1999), 561-573.
[4] —, 一, 一, Factorization over local fields and the irreducibility of generalized difference polynomials, Mathematika 47 (2000), 173-196.
[5] J. E. Cremona, Elliptic Curve Data, http://www.maths.nott.ac.uk/personal/jec/ ftp/data/, Univ. of Nottingham, updated 2006-09-24 (with minor corrections on 2006-12-15, 2007-01-05).
[6] J. D. Dixon and B. Mortimer, Permutation Groups, Grad. Texts in Math. 163, Springer, 1996.
[7] W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181.
[8] K. Komatsu, On the Galois group of $x^{p}+a x+a=0$, Tokyo J. Math. 14 (1991), 227-229.
[9] -, On the Galois group of $x^{p}+p^{t} b(x+1)=0$, ibid. 15 (1992), 351-356.
[10] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373.
[11] A. Movahhedi, Galois group of $X^{p}+a X+a$, J. Algebra 180 (1996), 966-975.
[12] A. Movahhedi and A. Salinier, The primitivity of the Galois group of a trinomial, J. London Math. Soc. (2) 53 (1996), 433-440.
[13] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer, Berlin, and PWN-Polish Sci. Publ., Warszawa 1990.
[14] J.-P. Serre, Corps locaux, Act. Sci. Indust. 1296, Hermann, Paris, 1962.
[15] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106.

XLIM UMR 6172 CNRS
Mathématiques et Informatique
Université de Limoges
123 Avenue Albert Thomas
87060 Limoges Cedex, France
E-mail: bensebaboua@yahoo.fr
abbas.movahhedi@unilim.fr
alain.salinier@unilim.fr

Received on 7.9.2007
and in revised form on 16.11.2007

[^0]: 2000 Mathematics Subject Classification: Primary 11R32, 12F10; Secondary 11S15, 12E10.

 Key words and phrases: trinomials, inertia groups, Newton polygons, classification of finite simple groups, Galois group.

