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The gamma beta ratio distribution

Saralees Nadarajah
School of Mathematics, University of Manchester

Abstract. The important problem of the ratio of gamma and beta distributed
random variables is considered. Six motivating applications (from efficiency
modeling, income modeling, clinical trials, hydrology, reliability and mod-
eling of infectious diseases) are discussed. Exact expressions are derived
for the probability density function, cumulative distribution function, hazard
rate function, shape characteristics, moments, factorial moments, variance,
skewness, kurtosis, conditional moments, L moments, characteristic func-
tion, mean deviation about the mean, mean deviation about the median, Bon-
ferroni curve, Lorenz curve, percentiles, order statistics and the asymptotic
distribution of the extreme values. Estimation procedures by the methods
of moments and maximum likelihood are provided and their performances
compared by simulation. For maximum likelihood estimation, the Fisher in-
formation matrix is derived and the case of censoring is considered. Finally,
an application is discussed for efficiency of warning-time systems.

1 Introduction

For given random variables X and Y , the distribution of the ratio X/Y is of interest
in many areas of the sciences, engineering and medicine. In this paper, we study
the distribution of Z = X/Y when X and Y are independent random variables
with X having the gamma distribution given by the probability density function
(p.d.f.):

fX(x) = λβxβ−1 exp(−λx)

�(β)
(1.1)

(for x > 0, β > 0 and λ > 0) and Y having the beta distribution given by the p.d.f.:

fY (y) = ya−1(1 − y)b−1

B(a, b)
(1.2)

(for 0 < y < 1, a > 0 and b > 0), where �(·) and B(·, ·) are the gamma and beta
functions defined by

�(c) =
∫ ∞

0
tc−1 exp(−t) dt
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and

B(c, d) =
∫ 1

0
tc−1(1 − t)d−1 dt,

respectively. We shall refer to the distribution of Z = X/Y as the gamma beta ra-
tio distribution. The study of the gamma beta ratio distribution is of importance in
many applied areas. Six motivating examples are discussed in Section 2. A com-
prehensive treatment of the mathematical properties of the gamma beta ratio dis-
tribution including estimation issues is provided in Sections 3–10. An application
is discussed in Section 11. Some of the results in Section 3 have appeared before
in Nadarajah and Kotz (2005). They are reproduced here for completeness.

The calculations of this paper involve several more special functions, including
the complementary incomplete gamma function defined by

�(a, x) =
∫ ∞
x

exp(−t)ta−1 dt,

the 1F1 hypergeometric function (also known as the confluent hypergeometric
function) defined by

1F1(a;b;x) =
∞∑

k=0

(a)k

(b)k

xk

k! ,

the 2F1 hypergeometric function (also known as the Gauss hypergeometric func-
tion) defined by

2F1(a, b; c;x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k! ,

the 2F2 hypergeometric function defined by

2F2(a, b; c, d;x) =
∞∑

k=0

(a)k(b)k

(c)k(d)k

xk

k! ,

the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

)

= 1

2π i

∫
L

x−t�(b1 + t) · · ·�(bm + t)�(1 − a1 − t) · · ·�(1 − an − t)

�(an+1 + t) · · ·�(ap + t)�(1 − bm+1 − t) · · ·�(1 − bq − t)
dt

and, the generalized Kampé de Fériet function defined by

F
A:B(1);...;B(n)

C:D(1);...;D(n)

(
(a) :

(
b(1)); . . . ; (

b(n)); (c) :
(
d(1)); . . . ; (

d(n));x1, . . . , xn

)
=

∞∑
m1=0

· · ·
∞∑

mn=0

((a))m1+···+mn((b
(1)))m1 · · · ((b(n)))mn

((c))m1+···+mn((d
(1)))m1 · · · ((d(n)))mn

x
m1
1 · · ·xmn

n

m1! · · ·mn! ,
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where i = √−1, a = (a1, a2, . . . , aA), b(k) = (bj,1, bj,2, . . . , bj,B(k)) for j =
1,2, . . . , n, c = (c1, c2, . . . , cC), d(k) = (dj,1, dj,2, . . . , dj,D(k)) for j = 1,2, . . . , n

and ((f ))k = ((f1, f2, . . . , fp))k = (f1)k(f2)k · · · (fp)k denotes the product of
ascending factorials with each ascending factorial defined as (fj )k = fj (fj +
1) · · · (fj + k − 1) with the convention that (fj )0 = 1. For a description of the
integration path, L, in the the Meijer G-function, see Section 9.3 in Gradshteyn
and Ryzhik (2000). Detailed properties of these special functions can be found in
Exton (1978), Prudnikov et al. (1986) and Gradshteyn and Ryzhik (2000).

2 Motivating applications

Here, we discuss six motivating examples from efficiency modeling, income mod-
eling, clinical trials, hydrology, reliability and modeling of infectious diseases,
where ratios of the form X/Y arise with X and Y being gamma and beta random
variables. The assumption that X and Y are independent may not be realistic for
some of the examples. However, the independence assumption could at least yield
a first approximation for the distribution of the ratio. For large samples, it is known
that the distribution assuming independence is consistent with that not assuming
independence; see, for example, Cox and Hinkley (1974).

2.1 Over-reported income

In the economic literature, the over-reported income is commonly expressed by
the multiplicative relationship Z = X/Y , where Y is a multiplicative error and X

denotes the true income. It is well known that if Y has the power function distribu-
tion (a particular case of the beta distribution) then X is Pareto distributed if and
only if Z is also; see Krishnaji (1970). In practice, the gamma distribution is often
preferred as a model for income; see, for example, Grandmont (1987), Milevsky
(1997), Sarabia et al. (2002) and Silver et al. (2002). This raises the important
question: what is the distribution of the over-reported income Z = X/Y if X is
gamma distributed?

2.2 Hydrology

Let X and Y be independent random variables representing the areal precipitation
and the annual stream flow, respectively. In hydrology, the interest is in the propor-
tion of precipitation that ended up in stream flow, that is, 1/Z = Y/X. It is known
on physical grounds that Y is finite valued [see, e.g., Clarke (1979)]; therefore, it
will be most reasonable to assume that X and Y are distributed according to (1.1)
and (1.2), respectively, after suitable scaling.
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2.3 Adaptive randomization

The purpose of outcome-adaptive randomization is to treat patients more effec-
tively by weighting randomization probabilities in favor of better performing arms.
[Berry and Eick (1995) and Berry (2004) discuss of the ethics and efficiency
of adaptive randomization trials.] In most adaptively randomized clinical trials,
the probability that a patient will be assigned to a given arm is proportional to
exp(−μr)rλ where r is the probability that the arm is in some sense best and
μ > 0 and λ > 0 are some trial design parameters. The value of r will be subject
to some random error because it will depend on how many arms there are and
on their respective strengths. Since r is a probability, the most reasonable model
will be the beta distribution given by (1.2). The question is: what is the probability
that a patient gets assigned an arm with a specific design? This is proportional to∫ 1

0 exp(−μr)rλf (r) dr , which entails computing the distribution of the ratio X/Y

of gamma and beta random variables.

2.4 Expected efficiency

Suppose that a job can be performed in n possible ways with the resulting
costs c1, c2, . . . , cn. Suppose too that the n ways are chosen with probabilities
p1,p2, . . . , pn, where p1 + p2 + · · · + pn = 1. The expected efficiency of the job
performed can be defined as p1/c1 +p2/c2 +· · ·+pn/cn, where pi/ci denotes the
expected efficiency of choosing the ith possible way. In reality, both ci and pi will
be subject to some random errors and so will the expected efficiency. Thus, in gen-
eral, one can write the expected efficiency as Y/X, where X and Y are independent
random variables representing the values of ci and pi , respectively. The most nat-
ural model for X will be the gamma distribution (it being the most popular model
for skewed data) given by (1.1). The most natural model for Y will be the beta
distribution (the only standard model for data on the unit interval) given by (1.2).
Thus, inferences about the expected efficiency can be made by deriving the exact
distribution of Z = X/Y when X and Y are independent random variables with
the p.d.f.s given by (1.1) and (1.2), respectively.

2.5 Modeling of infectious diseases

Importance of the Wells Riley equation to modeling of infectious diseases can-
not be overlooked; see, for example, Fennelly et al. (2004), Fennelly and Nardell
(1998), Liao et al. (2005), Nicas (1996, 2000) and Rudnick and Milton (2003). The
original form of the Wells Riley equation [Nardell et al. (1991)] is given by

P = 1 − exp
(
− ipqt

Q

)
, (2.1)

where P = proportion of new disease cases among the susceptible persons; D =
number of new disease cases; s = number of susceptible persons; i = number of
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infectors; p = breathing rate; q = the rate at which an infector disseminates infec-
tious particles; t = time that infectors and susceptibles share a confined space or
ventilation system; and Q = rate of supply of outdoor air.

Probabilistic modeling based on (2.1) has gained much interest not just with re-
spect to infectious diseases but also in other areas. Two popular models used with
respect to (2.1) have been the gamma and beta distributions. For instance, Nicas
(1996) stated the following: “. . . It was previously shown that the beta distribution
on the interval [0,1] is a good descriptor of respirator penetration values experi-
enced by an individual worker from wearing to wearing, and of average respirator
penetration values experienced by different workers. Based on the premise that
the gamma distribution can reasonably describe the time-varying M. tb aerosol ex-
posure levels experienced by health care workers. . . .” The calculation with (2.1)
clearly involves ratios of random variables.

2.6 Reliability

Let X and Y be independent random variables representing, respectively, the fail-
ure time of a component and the warning-time variable showing that the compo-
nent will fail. In reliability engineering, 1/Z = Y/X will represent the efficiency
of the warning-time system. Gamma distributions are popular models for failure
time data and one would like the warning made within a fixed period of the time
of operation; therefore, it will be most reasonable to assume that X and Y are
distributed according to (1.1) and (1.2), respectively, after suitable scaling.

3 P.d.f. and c.d.f.

Theorem 1 expresses the p.d.f. and the c.d.f. of the gamma beta ratio distribution
in terms of the confluent hypergeometric function and the 2F2 hypergeometric
function, respectively.

Theorem 1. Suppose X and Y are distributed according to (1.1) and (1.2), re-
spectively. The c.d.f. of Z = X/Y can be expressed as

FZ(z) = B(b, a + β)(λz)β

�(β + 1)B(a, b)
2F2(β, a + β;β + 1, a + b + β;−λz) (3.1)

for z > 0. The corresponding p.d.f. of Z = X/Y is

fZ(z) = λβB(β + a, b)

�(β)B(a, b)
zβ−1

1F1(β + a;β + a + b;−λz) (3.2)

for z > 0.
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Proof. The c.d.f. corresponding to (1.1) is 1 − �(β,λx)/�(β). Thus, one can
write the c.d.f. of X/Y as

Pr(X/Y ≤ z) =
∫ 1

0
FX(zy)fY (y) dy

= 1 − 1

�(β)B(a, b)

∫ 1

0
�(β,λyz)ya−1(1 − y)b−1 dy (3.3)

= 1 − 1

�(β)B(a, b)
I.

Application of equation (2.10.2.2) in Prudnikov et al. (1986, Volume 2) shows that
the integral I can be calculated as

I = �(β)B(a, b)
(3.4)

− (λz)β

β
B(b, a + β)2F2(β, a + β;β + 1, a + b + β;−λz).

The result in (3.1) follows by substituting (3.4) into (3.3). The p.d.f. in (3.2) follows
by differentiation and using properties of the hypergeometric function. �

Using special properties of the hypergeometric functions, one can derive sev-
eral simpler forms for (3.1) and (3.2) when a, b and β take integer values. The
following are worth noting:

• If β = n ≥ 1 is an integer then

FZ(z) = 1 − 1

B(a, b)

n−1∑
k=0

(λz)k

k! B(a + k, b)1F1(a + k;a + b + k;−λz)

for z > 0.
• If β = n ≥ 1 is an integer then

fZ(z) = λ−az−a−1

�(β)B(a,n)

n∑
k=0

(−λz)−k

(
n − 1

k

)
{�(a +β + k)−�(a +β + k,λz)}

for z > 0.
• If a + b + β = m ≥ 1 and a + β = n ≥ 1 are integers then

fZ(z) = (−1)m−1(1 − m)n(a)m−nz
−1(λz)β−m+1

(m − 1)�(β)

×
{

m−n−1∑
k=0

(n − m + 1)k(−λz)k

k!(2 − m)k
− exp(−λz)

n−1∑
k=0

(1 − n)k(λz)k

k!(2 − m)k

}

for z > 0.
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• If a + β = n ≥ 1 is an integer then

fZ(z) = (−1)bz−1(λz)β−b exp(−λz)

�(β)B(a, b)

×
n∑

k=0

(λz)k
(

n − 1
k

)
{�(b + k) − �(b + k,−λz)}

for z > 0.

The formulas for fZ(z) and FZ(z) above can be used to save computational time
since the computation of the hypergeometric functions in (3.1) and (3.2) can be
more demanding. We note that the 2F2 hypergeometric function in (3.1) has been
reduced to the simpler confluent hypergeometric function. We also note that the
confluent hypergeometric function in (3.2) has been reduced to the simpler com-
plementary incomplete gamma function.

4 Hazard rate function

It follows from (3.1) and (3.2) that the hazard rate function (h.r.f.) of the gamma
beta ratio distribution is

λZ(z) = A(z)

B(z)
(4.1)

for z > 0,

A(z) = βλβB(a + β,b)zβ−1
1F1(β + a;β + a + b;−λz)

and

B(z) = �(β +1)B(a, b)−B(b, a +β)(λz)β2F2(β, a +β;β +1, a +b+β;−λz).

5 Shape

Here, we derive shape characteristics of (3.2) and (4.1). Using the fact

∂1F1(a;b;x)

∂x
= a

b
1F1(a + 1;b + 1;x) (5.1)

(see http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/
20/01/04/) one can see that the p.d.f., (3.2), is unimodal and the mode is the root
of the equation

1F1(1 + β + a;1 + β + a + b;−λz)

1F1(β + a;β + a + b;−λz)
= (β − 1)(β + a + b)

λ(β + a)z
.

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/20/01/04/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/20/01/04/
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Using the fact

1F1(a;b;x) = �(b)

�(b − a)
(−x)−a[1 + O(1/x)] + �(b)

�(a)
exp(x)xa−b[1 + O(1/x)]

as x → ∞ (see http://functions.wolfram.com/HypergeometricFunctions/
Hypergeometric1F1/06/02/), one can see that

fZ(z) ∼ �(β + a)

λa�(β)B(a, b)
z−1−a (5.2)

as z → ∞. Using the fact 1F1(a;b;x) = 1 + O(x) as x → 0 (see http://
functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/01/02/
01/01/), one can see that

fZ(z) ∼ λβB(β + a, b)

�(β)B(a, b)
zβ−1 (5.3)

as z → 0. Using the facts (5.1) and

∂2F2(a, b; c, d;x)

∂x
= ab

cd
2F2(a + 1, b + 1; c + 1, d + 1;x)

(see http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F2/
20/01/06/), one can see that the hazard rate function, (4.1), is unimodal and the
mode is the root of the equation

βλβB(a + β,b)zβ−2B(z)C(z) = −βλβB(b, a + β)zβ−1A(z)D(z),

where

C(z) = (β − 1)1F1(β + a;β + a + b;−λz)

− (a + β)λz

a + b + β
1F1(β + a + 1;β + a + b + 1;−λz)

and

D(z) = 2F2(β, a + β;β + 1, a + b + β;−λz)

− (a + β)λz

(β + 1)(a + b + β)

× 2F2(β + 1, a + β + 1;β + 2, a + b + β + 1;−λz).

Using the fact

2F2(a, b; c, d;x) = �(c)�(d)�(b − a)

�(b)�(c − a)�(d − a)
(−x)−a[1 + O(1/x)]

+ �(c)�(d)�(a − b)

�(a)�(c − b)�(d − b)
(−x)−b[1 + O(1/x)]

+ �(c)�(d)

�(a)�(b)
xa+b−c−d exp(x)[1 + O(1/x)]

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/01/02/01/01/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F2/20/01/06/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/01/02/01/01/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/06/01/02/01/01/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F2/20/01/06/
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as x → ∞ (see http://functions.wolfram.com/HypergeometricFunctions/
Hypergeometric2F2/06/02/02/), one can see that

1 − FZ(z) ∼ �(β + a)

aλa�(β)B(a, b)
z−a

as z → ∞ and so

λZ(z) ∼ a�(b)

�(β)
z−1

as z → ∞. It follows from (5.3) that

λZ(z) ∼ λβB(β + a, b)

�(β)B(a, b)
zβ−1

as z → 0. Clearly the tails of the p.d.f. and the hazard rate function are polynomial.
It is also clear that the parameters a and β control, respectively, the upper and lower
tails.

Figures 1 and 2 illustrate possible shapes of the p.d.f., (3.2), and the haz-
ard rate function, (4.1), for selected values of a, b and β . The hypergeo-
metric functions (3.2) and (4.1) were calculated using hypergeom([·],[·], ·) and
hypergeom([·],[·], [·],[·], ·) functions in MAPLE.

Figure 1 Plots of the p.d.f., (3.2), for a = b = 0.5, λ = 1 and β = 0.8,1,2,5.

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F2/06/02/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F2/06/02/02/
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Figure 2 Plots of the hazard rate function, (4.1), for a = b = 0.5, λ = 1 and β = 0.8,1,2,5.

6 Moment properties

The moments of the gamma beta ratio distribution can be derived by knowing the
same for X and Y . It is well known [see, e.g., Johnson et al. (1994)] that

E(Xn) = �(β + n)

λn�(β)

and

E(Yn) = B(a + n,b)

B(a, b)

for all real n such that β +n �= 0,−1,−2, . . . , a +n �= 0,−1,−2, . . . and a + b +
n �= 0,−1,−2, . . . . So, the nth moment of the gamma beta ratio distribution is

E(Zn) = �(β + n)B(a − n,b)

λn�(β)B(a, b)

for all real n such that β +n �= 0,−1,−2, . . . , a −n �= 0,−1,−2, . . . and a + b −
n �= 0,−1,−2, . . . . The factorial moments, variance, skewness and the kurtosis
can be calculated from the expression for E(Zn).
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As mentioned in Section 2, the distribution of Z is useful as lifetime models.
For such models, it is of interest to know what E(Zk | Z > z) is. Using Lemma 1
in the Appendix, it is easily seen that

E(Zk | Z > z) = λβB(a + β,b)

{1 − FZ(z)}�(β)B(a, b)
J (k, z, a, b,α,λ)

for all real k. The mean residual lifetime function is E(Z | Z > z) − z.
Some other important measures useful for lifetime models are the L moments

due to Hoskings (1990). It can be shown using Lemma 2 in the Appendix that the
kth L moment is

λk =
k−1∑
j=0

(−1)k−1−j

(
k − 1

j

)(
k − 1 + j

j

)
βj ,

where

βn = �(nβ + β + 1)Bn+1(a + β,b)

λ�(β)�n(β + 1)Bn+1(a, b)
I (k, n).

The L moments have several advantages over ordinary moments: for example,
they apply for any distribution having finite mean; no higher-order moments need
be finite.

Using the fact that the characteristic function (c.h.f.) of X is

E[exp(itX)] =
(

λ

λ − it

)β

,

the c.h.f. of the gamma beta ratio distribution can be expressed as

φ(t) = E
(
exp(itX/Y )

)
=

∫ 1

0

(
λ

λ − it/y

)β

fY (y) dy = λβ

B(a, b)

∫ 1

0

ya−1(1 − y)b−1

(λ − it/y)β
dy (6.1)

= 1

B(a, b)

∫ 1

0

ya+β−1(1 − y)b−1

(y − it/λ)β
dy = 1

B(a, b)
I.

Application of equation (2.2.6.15) in Prudnikov et al. (1986, Volume 1) shows that
the integral I can be calculated as

I =
(
− it

λ

)−β

B(a + β,b)2F1

(
a + β,β;a + b + β; λ

it

)
. (6.2)

Substituting (6.2) into (6.1), one obtains

φ(t) = λβB(a + β,b)

(−it)βB(a, b)
2F1

(
a + β,β;a + b + β; λ

it

)
. (6.3)
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Using well-known transformation formulas for the Gauss hypergeometric func-
tion, one can obtain the following alternative forms of (6.3):

φ(t) =
(
−λ

it

)λ(
1− λ

it

)−(a+β) B(a + β,b)

B(a, b)
2F1

(
a +β,a +b;a +b+β; λ

λ − it

)
,

φ(t) =
(
−λ

it

)λ(
1 − λ

it

)−β B(a + β,b)

B(a, b)
2F1

(
β,b;a + b + β; λ

λ − it

)
and

φ(t) =
(
−λ

it

)λ(
1 − λ

it

)b−β B(a + β,b)

B(a, b)
2F1

(
b, a + b;a + b + β; λ

it

)
.

If a, b and β take integer values then, using special properties of the Gauss hyper-
geometric function, one can obtain the following elementary form of (6.3):

φ(t) = ta

λaB(a, b)

b−1∑
k=0

β∑
l=0

(
b − 1

k

)(
β

l

)
(−1)k(−i)β−l(t/λ)kP (a+β+k+ l−1),

where P(m) satisfies the recurrence relation

P(m) = 1

1 + m − 2β

(λ/t)m−1

(1 + λ/t)β−1 + m − 1

2β − m − 1
P(m − 2)

with the initial values

P(1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
log

(
1 + λ2

t2

)
, if β = 1,

1

2(1 − β)

{(
1 + λ2

t2

)1−β

− 1
}
, if β > 1,

and

P(0) = λ

(2β − 1)t

β−1∑
k=1

(2β − 1)(2β − 3) · · · (2β − 2k + 1)

2k(β − 1)(β − 2) · · · (β − k)

(
1 + λ2

t2

)k−β

+ (2β − 3)!!
2β−1(β − 1)! arctan

(
λ

t

)
.

7 Mean deviations and Bonferroni and Lorenz curves

The amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. These are known as the mean
deviation about the mean and the mean deviation about the median—defined by

δ1(Z) =
∫ ∞

0
|z − μ|fZ(z) dz
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and

δ2(Z) =
∫ ∞

0
|z − M|fZ(z) dz,

respectively, where μ = E(Z) and M = Median(Z) denotes the median. The mea-
sures δ1(Z) and δ2(Z) can be calculated using the relationships

δ1(Z) =
∫ μ

0
(μ − z)fZ(z) dz +

∫ ∞
μ

(z − μ)fZ(z) dz

= μFZ(μ) −
∫ μ

0
zfZ(z) dz − μ{1 − FZ(μ)} +

∫ ∞
μ

zfZ(z) dz

= 2μFZ(μ) − 2μ + 2
∫ ∞
μ

zfZ(z) dz

and

δ2(Z) =
∫ M

0
(M − z)fZ(z) dz +

∫ ∞
M

(z − M)fZ(z) dz

= MFZ(M) −
∫ M

0
zfZ(z) dz − M{1 − FZ(M)} +

∫ ∞
M

zfZ(z) dz

= 2
∫ ∞
M

zfZ(z) dz − μ.

By Lemma 1 in the Appendix,∫ ∞
μ

zfZ(z) dz = λβB(a + β,b)

�(β)B(a, b)
J (1,μ, a, b,α,λ) (7.1)

and ∫ ∞
M

zfZ(z) dz = λβB(a + β,b)

�(β)B(a, b)
J (1,M,a, b,α,λ), (7.2)

so it follows that

δ1(Z) = 2μFZ(μ) − 2μ + 2λβB(a + β,b)

�(β)B(a, b)
J (1,μ, a, b,α,λ)

and

δ2(Z) = 2λβB(a + β,b)

�(β)B(a, b)
J (1,M,a, b,α,λ) − μ.

Bonferroni and Lorenz curves [Bonferroni (1930)] have applications not only
in economics to study income and poverty, but also in other fields like reliability,
demography, insurance and medicine. They are defined by

B(p) = 1

pμ

∫ q

0
tfZ(t) dt (7.3)
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and

L(p) = 1

μ

∫ q

0
tfZ(t) dt, (7.4)

respectively, where μ = E(Z) and q = F−1
Z (p). Using (7.1) and (7.2), one can

reduce (7.3) and (7.4) to

B(p) = 1

p
− λβB(a + β,b)

pμ�(β)B(a, b)
J (1, q, a, b,α,λ)

and

L(p) = 1 − λβB(a + β,b)

μ�(β)B(a, b)
J (1, q, a, b,α,λ),

respectively.

8 Percentiles

In this section, we provide a program for computing the percentage points zp as-
sociated with the c.d.f. of the gamma beta ratio distribution. These values are ob-
tained numerically by solving the equation

B(b, a + β)(λzp)β

�(β + 1)B(a, b)
2F2(β, a + β;β + 1, a + b + β;−λzp) = p. (8.1)

Evidently, this involves computation of the 2F2 hypergeometric function and rou-
tines for this are widely available. We used the function hypergeom([·, ·],[·, ·], ·) in
MAPLE. The following three-line program in MAPLE solves (8.1) for given p, λ,
β , a and b:

cc:=Beta(b,a+beta)*(lambda*z)**beta/(GAMMA(beta+1)*Beta(a,b)):
ff:=cc*hypergeom([beta,a+beta],[beta+1,a+b+beta],-lambda*z):
fsolve(ff=p,z=0..10000):

We expect that this program could be useful for applications of the type described
in Section 2. For instance, z1−p will be the over reported income that will be ex-
ceeded with probability p; see Example 1 of Section 2. Similarly, in Example 2 of
Section 2, the percentile points can be used to quantify the proportion of precipi-
tation ended up in stream.

9 Order statistics

Suppose Z1,Z2, . . . ,Zn is a random sample from (3.2). Let Z1:n < Z2:n < · · · <

Zn:n denote the corresponding order statistics. It is well known that the p.d.f. and
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the c.d.f. of the kth order statistic, say Y = Zk:n, are given by

fY (y) = n!
(k − 1)!(n − k)!F

k−1
Z (y){1 − FZ(y)}n−kfZ(y)

= n!
(k − 1)!(n − k)!

n−k∑
m=0

(
n − k

m

)
(−1)mFm+k−1

Z (y)fZ(y)

and

FY (y) =
n∑

j=k

(
n

j

)
F

j
Z(y){1 − FZ(y)}n−j

=
n∑

j=k

n−j∑
m=0

(
n

j

)(
n − j

m

)
(−1)mF

j+m
Z (y),

respectively, for k = 1,2, . . . , n. Using Lemma 2 in the Appendix, the qth moment
of Y can be expressed as

E(Y q) = n!
(k − 1)!(n − k)!λq�(β)

×
n−k∑
m=0

(
n − k

m

)
(−1)m

�((m + k)β + q)Bm+k(a + β,b)

�m+k−1(β + 1)Bm+k(a, b)

× I (q,m + k − 1)

for all real q such that (m + k)β + q �= 0,−1,−2, . . . for all m.
Sometimes one would be interested in the asymptotics of the extreme order

statistics Mn = max(Z1, . . . ,Zn) and mn = min(Z1, . . . ,Zn). Take the c.d.f. and
the p.d.f. of the gamma beta ratio distribution as specified by (3.1) and (3.2), re-
spectively. It can be seen from (5.2), (5.3) and an application of L’Hospital’s rule
that

lim
t→∞

1 − FZ(tz)

1 − FZ(t)
= lim

t→∞
zfZ(tz)

fZ(t)
= z−a

and

lim
t→∞

FZ(tz)

FZ(t)
= lim

t→∞
zfZ(tz)

fZ(t)
= zβ.

So, it follows from Theorem 1.6.2 in Leadbetter et al. (1987) that there must be
norming constants an > 0, bn, cn > 0 and dn such that

Pr{an(Mn − bn) ≤ t} → exp(−t−a)

and

Pr{cn(mn − dn) ≤ t} → 1 − exp(−tβ)



The gamma beta ratio distribution 193

as n → ∞. The form of the norming constants can also be determined. For in-
stance, using Corollary 1.6.3 in Leadbetter et al. (1987), one can see that 1/an =
F−1

Z (1 − 1/n) and bn = 0, where F−1
Z (·) denotes the inverse function of FZ(·).

10 Estimation issues

Here, we consider method of moments estimation and maximum likelihood esti-
mation of the parameters in the gamma beta ratio distribution. We also provide the
associated Fisher information matrices.

Suppose we have two independent random samples X1,X2, . . . ,Xn and
Y1, Y2, . . . , Yn from (1.1) and (1.2), respectively. Let X̄, Ȳ , S2

X and S2
Y denote

the sample means and sample variances. By equating the theoretical and empirical
moments

E(X) = X̄, E(Y ) = Ȳ , Var(X) = S2
X, Var(Y ) = S2

Y ,

we obtain the method of moments estimators (MMEs) as

β̂ = X̄2

S2
X

, λ̂ = X̄

S2
X

, â = Ȳ

[
Ȳ (1 − Ȳ )

S2
Y

− 1
]
,

b̂ = (1 − Ȳ )

[
Ȳ (1 − Ȳ )

S2
Y

− 1
]
.

The maximum likelihood estimator (MLE) of λ is the root of the equation

ψ(X̄λ) − logλ = 1

n

n∑
i=1

logXi,

where ψ(x) = d log�(x)/dx is the digamma function. The MLE β̂ = X̄λ̂. The
corresponding Fisher information matrix is given by

E

(
−∂2 logL

∂λ2

)
= nβ

λ2 , E

(
−∂2 logL

∂β2

)
= nψ ′(β),

E

(
−∂2 logL

∂λ∂β

)
= −n

λ
.

The MLEs of a and b are the simultaneous solutions of the equations

ψ(a) − ψ(a + b) = 1

n

n∑
i=1

logYi

and

ψ(b) − ψ(a + b) = 1

n

n∑
i=1

log(1 − Yi).
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Some rearrangement shows that a is root of the equation

ψ(a) − ψ

(
a + ψ−1

(
ψ(a) − 1

n

n∑
i=1

logYi + 1

n

n∑
i=1

log(1 − Yi)

))
= 1

n

n∑
i=1

logYi.

Similarly, b is root of the equation

ψ(b) − ψ

(
b + ψ−1

(
ψ(b) + 1

n

n∑
i=1

logYi − 1

n

n∑
i=1

log(1 − Yi)

))

= 1

n

n∑
i=1

log(1 − Yi).

The Fisher information matrix for the estimators of (a, b) is given by

E

(
−∂2 logL

∂a2

)
= nψ ′(a) − nψ ′(a + b),

E

(
−∂2 logL

∂b2

)
= nψ ′(b) − nψ ′(a + b)

and

E

(
−∂2 logL

∂a ∂b

)
= −nψ ′(a + b).

Sometimes the observations are on Z = X/Y , and not on the original variables,
X and Y . Suppose Z1,Z2, . . . ,Zn is a random sample on Z. The MMEs of the
four parameters can be obtained as the simultaneous solutions of the equations

E(Zk) = 1

n

n∑
i=1

Zk
i (10.1)

for k = 1,2,3,4, where the theoretical moments are given in Section 6. The MLEs
are the simultaneous solutions of the equations

nψ(β) + nψ(β + a + b) − nψ(β + a) − n logλ
(10.2)

=
n∑

i=1

logZi +
n∑

i=1

∂1F1(β + a;β + a + b;−λZi)/∂β

1F1(β + a;β + a + b;−λZi)
,

nβ

λ
= β + a

β + a + b

n∑
i=1

Zi
1F1(β + a + 1;β + a + b + 1;−λZi)

1F1(β + a;β + a + b;−λZi)
, (10.3)

nψ(a) + nψ(β + a + b) − nψ(β + a) − nψ(a + b)
(10.4)

=
n∑

i=1

∂1F1(β + a;β + a + b;−λZi)/∂a

1F1(β + a;β + a + b;−λZi)



The gamma beta ratio distribution 195

and

nψ(β +a +b)−nψ(a +b) =
n∑

i=1

∂1F1(β + a;β + a + b;−λZi)/∂b

1F1(β + a;β + a + b;−λZi)
. (10.5)

The Fisher information matrix for the estimators of (β,λ, a, b) is given by

E

(
−∂2 logL

∂β2

)
= nψ ′(β) + nψ ′(β + a + b) − nψ ′(β + a)

− nE

[
∂2

1F1(β + a;β + a + b;−λZ)/∂β2

1F1(β + a;β + a + b;−λZ)

]

+ nE

[{
∂1F1(β + a;β + a + b;−λZ)/∂β

1F1(β + a;β + a + b;−λZ)

}2]
,

E

(
−∂2 logL

∂β ∂λ

)

= −n

λ
+ n(β + a)

β + a + b
E

[
Z

∂1F1(β + a + 1;β + a + b + 1;−λZ)/∂β

1F1(β + a;β + a + b;−λZ)

]

+ nb

(β + a + b)2 E

[
Z

1F1(β + a + 1;β + a + b + 1;−λZ)

1F1(β + a;β + a + b;−λZ)

]

− n(β + a)

β + a + b

× E

[
Z

∂1F1(β + a;β + a + b;−λZ)

∂β1

× F1(β + a + 1;β + a + b + 1;−λZ)/{1F1(β + a;β + a + b;−λZ)}2
]
,

E

(
−∂2 logL

∂β ∂a

)
= nψ ′(β + a + b) − nψ ′(β + a)

− nE

[
∂2

1F1(β + a;β + a + b;−λZ)/∂β ∂a

1F1(β + a;β + a + b;−λZ)

]

+ nE

[
∂1F1(β + a;β + a + b;−λZ)

∂β

∂1F1(β + a;β + a + b;−λZ)

∂a/{1F1(β + a;β + a + b;−λZ)}2
]
,
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E

(
−∂2 logL

∂β ∂b

)
= nψ ′(β + a + b)

− nE

[
∂2

1F1(β + a;β + a + b;−λZ)/∂β ∂b

1F1(β + a;β + a + b;−λZ)

]

+ nE

[
∂1F1(β + a;β + a + b;−λZ)

∂β

∂1F1(β + a;β + a + b;−λZ)

∂b/{1F1(β + a;β + a + b;−λZ)}2
]
,

E

(
−∂2 logL

∂λ2

)
= nβ

λ2 − n(β + a)(β + a + 1)

(β + a + b)(β + a + b + 1)

× E

[
Z2 1F1(β + a + 2;β + a + b + 2;−λZ)

1F1(β + a;β + a + b;−λZ)

]

+ n(β + a)2

(β + a + b)2 E

[{
Z

1F1(β + a + 1;β + a + b + 1;−λZ)

1F1(β + a;β + a + b;−λZ)

}2]
,

E

(
−∂2 logL

∂λ∂a

)
= nb

(β + a + b)2 E

[
Z

1F1(β + a + 1;β + a + b + 1;−λZ)

1F1(β + a;β + a + b;−λZ)

]

+ n(β + a)

β + a + b
E

[
Z

∂1F1(β + a + 1;β + a + b + 1;−λZ)/∂a

1F1(β + a;β + a + b;−λZ)

]

− n(β + a)

β + a + b
E

[
Z1F1(β + a + 1;β + a + b + 1;−λZ)

× ∂1F1(β + a;β + a + b;−λZ)

∂a/{1F1(β + a;β + a + b;−λZ)}2
]
,

E

(
−∂2 logL

∂λ∂b

)
= − n(β + a)

(β + a + b)2 E

[
Z

1F1(β + a + 1;β + a + b + 1;−λZ)

1F1(β + a;β + a + b;−λZ)

]
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+ n(β + a)

β + a + b
E

[
Z

∂1F1(β + a + 1;β + a + b + 1;−λZ)/∂b

1F1(β + a;β + a + b;−λZ)

]

− n(β + a)

β + a + b
E

[
Z1F1(β + a + 1;β + a + b + 1;−λZ)

× ∂1F1(β + a;β + a + b;−λZ)

∂b/{1F1(β + a;β + a + b;−λZ)}2
]
,

E

(
−∂2 logL

∂a2

)
= nψ ′(a) + nψ ′(β + a + b) − nψ ′(β + a) − nψ ′(a + b)

− nE

[
∂2

1F1(β + a;β + a + b;−λZ)/∂a2

1F1(β + a;β + a + b;−λZ)

]

+ nE

[{
∂1F1(β + a;β + a + b;−λZ)/∂a

1F1(β + a;β + a + b;−λZ)

}2]
,

E

(
−∂2 logL

∂a ∂b

)
= nψ ′(β + a + b) − nψ ′(a + b)

− nE

[
∂2

1F1(β + a;β + a + b;−λZ)/∂a ∂b

1F1(β + a;β + a + b;−λZ)

]

+ nE

[
∂1F1(β + a;β + a + b;−λZ)

∂a

∂1F1(β + a;β + a + b;−λZ)

∂b/{1F1(β + a;β + a + b;−λZ)}2
]

and

E

(
−∂2 logL

∂b2

)
= nψ ′(β + a + b) − nψ ′(a + b)

− nE

[
∂2

1F1(β + a;β + a + b;−λZ)/∂b2

1F1(β + a;β + a + b;−λZ)

]

+ nE

[{
∂1F1(β + a;β + a + b;−λZ)/∂b

1F1(β + a;β + a + b;−λZ)

}2]
.
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The partial derivatives of the confluent hypergeometric function can be calculated
by using the facts that

∂1F1(a;b; z)
∂a

=
∞∑
i=0

(a)iψ(a + i)zi

(b)ii! − ψ(a)1F1(a;b; z)

and

∂1F1(a;b; z)
∂b

= ψ(b)1F1(a;b; z) −
∞∑
i=0

(a)iψ(b + i)zi

(b)ii! ;

see http://functions.wolfram.com/07.20.20.0001.01 and http://functions.wolfram.
com/07.20.20.0003.01.

Often with lifetime data, one encounters censoring. There are different forms of
censoring: Type I censoring, Type II censoring, etc. Here, we consider the general
case of multicensored data: there are n subjects of which:

• n0 are known to have the values t1, . . . , tn0 .
• n1 are known to belong to the interval [si−1, si], i = 1, . . . , n1.
• n2 are known to have exceeded ri , i = 1, . . . , n2, but not observed any longer.

Note that n = n0 + n1 + n2. Note too that Type I censoring and Type II censoring
are contained as particular cases of multicensoring. In this case, the maximum
likelihood equations, (10.2) to (10.5), generalize to

n0ψ(β) + n0ψ(β + a + b) − n0ψ(β + a) − n0 logλ

=
n0∑
i=1

log ti +
n0∑
i=1

∂1F1(β + a;β + a + b;−λti)/∂β

1F1(β + a;β + a + b;−λti)

+
n1∑
i=1

D1(si) − D1(si−1)

FZ(si) − FZ(si−1)
−

n2∑
i=1

D1(ri)

1 − FZ(ri)
,

n0β

λ
= β + a

β + a + b

n0∑
i=1

Zi
1F1(β + a + 1;β + a + b + 1;−λZi)

1F1(β + a;β + a + b;−λZi)

+
n1∑
i=1

D2(si) − D2(si−1)

FZ(si) − FZ(si−1)
−

n2∑
i=1

D2(ri)

1 − FZ(ri)
,

n0ψ(a) + n0ψ(β + a + b) − n0ψ(β + a) − n0ψ(a + b)

=
n0∑
i=1

∂1F1(β + a;β + a + b;−λZi)/∂a

1F1(β + a;β + a + b;−λZi)

+
n1∑
i=1

D3(si) − D3(si−1)

FZ(si) − FZ(si−1)
−

n2∑
i=1

D3(ri)

1 − FZ(ri)

http://functions.wolfram.com/07.20.20.0001.01
http://functions.wolfram.com/07.20.20.0003.01
http://functions.wolfram.com/07.20.20.0003.01
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and

n0ψ(β + a + b) − n0ψ(a + b) =
n0∑
i=1

∂1F1(β + a;β + a + b;−λZi)/∂b

1F1(β + a;β + a + b;−λZi)

+
n1∑
i=1

D4(si) − D4(si−1)

FZ(si) − FZ(si−1)
−

n2∑
i=1

D4(ri)

1 − FZ(ri)
,

where FZ(·) is given by (3.1),

D1(z) = (λz)β�(a + b)

�(a)

×
{
�′(a + β) + log(λz)�(a + β)

�(a + b + β)�(β + 1)
2F2(β, a + β;β + 1, a + b + β;−λz)

− �(a + β)�′(a + b + β)

�2(a + b + β)�(β + 1)
2F2(β, a + β;β + 1, a + b + β;−λz)

− �(a + β)�′(β + 1)

�(a + b + β)�2(β + 1)
2F2(β, a + β;β + 1, a + b + β;−λz)

+ �(a + β)

�(a + b + β)�(β + 1)

∂2F2(β, a + β;β + 1, a + b + β;−λz)

∂β

}
,

D2(z) = �(a + β)�(a + b)(λz)β

�(a)�(a + b + β)�(β + 1)

×
{
β

λ
2F2(β, a + β;β + 1, a + b + β;−λz)

− β(a + β)z

(a + b + β)(β + 1)

× 2F2(β + 1, a + β + 1;β + 2, a + b + β + 1;−λz)

}
,

D3(z) = (λz)β

�(β + 1)

×
{
�′(a + β)�(a + b) + �(a + β)�′(a + b)

�(a + b + β)�(a)

× 2F2(β, a + β;β + 1, a + b + β;−λz)

− �′(a)�(a + β)�(a + b)

�(a + b + β)�2(a)
2F2(β, a + β;β + 1, a + b + β;−λz)

− �′(a + b + β)�(a + β)�(a + b)

�2(a + b + β)�(a)
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× 2F2(β, a + β;β + 1, a + b + β;−λz)

+ �(a + β)�(a + b)

�(a)�(a + b + β)�(β + 1)

× ∂2F2(β, a + β;β + 1, a + b + β;−λz)

∂a

}
and

D4(z) = (λz)β�(a + β)

�(a)�(β + 1)

×
{

�′(a + b)

�(a + b + β)
2F2(β, a + β;β + 1, a + b + β;−λz)

− �′(a + b + β)�(a + b)

�2(a + b + β)
2F2(β, a + β;β + 1, a + b + β;−λz)

+ �(a + b)

�(a + b + β)

∂2F2(β, a + β;β + 1, a + b + β;−λz)

∂b

}
.

The partial derivatives of the 2F2 hypergeometric function can be calculated by
using the facts that

∂2F2(a, b; c, d; z)
∂a

=
∞∑
i=0

(a)i(b)iψ(a + i)zi

(c)i(d)ii! − ψ(a)2F2(a, b; c, d; z),

∂2F2(a, b; c, d; z)
∂b

=
∞∑
i=0

(a)i(b)iψ(b + i)zi

(c)i(d)ii! − ψ(b)2F2(a, b; c, d; z),

∂2F2(a, b; c, d; z)
∂c

= ψ(c)2F2(a, b; c, d; z) −
∞∑
i=0

(a)i(b)iψ(c + i)zi

(c)i(d)ii!
and

∂2F2(a, b; c, d; z)
∂d

= ψ(d)2F2(a, b; c, d; z) −
∞∑
i=0

(a)i(b)iψ(d + i)zi

(c)i(d)ii! ;

see http://functions.wolfram.com/07.25.20.0001.01, http://functions.wolfram.
com/07.25.20.0004.01, http://functions.wolfram.com/07.25.20.0007.01 and http://
functions.wolfram.com/07.25.20.0010.01. The Fisher information matrix for the
estimators of (β,λ, a, b) for the case of censoring is too complicated to be pre-
sented here.

We now compare the performances of the two estimation methods. For this
purpose, we generated samples of size n = 20 from (3.2) for α = 1,2, . . . ,5,
a = 1,2, . . . ,5 and b = 1,2, . . . ,5, and λ fixed as λ = 1. For each sample, we

http://functions.wolfram.com/07.25.20.0001.01
http://functions.wolfram.com/07.25.20.0004.01
http://functions.wolfram.com/07.25.20.0007.01
http://functions.wolfram.com/07.25.20.0010.01
http://functions.wolfram.com/07.25.20.0004.01
http://functions.wolfram.com/07.25.20.0010.01
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computed the MMEs and the MLEs, by solving the equations (10.1) and (10.2)–
(10.5). We repeated this process 100 times and computed the average of the esti-
mates (AE) and the mean squared error (MSE). The computer package R was used
for the calculations. The results for selected α, a and b are reported in Table 1.

Note that for many cases MME does not exist because a ≤ 4. For other cases, it
is clear that the MLE performs consistently better than the MME for all values of
α, a and b and with respect to the AE and MSE. This is expected of course.

11 Application

The results in Sections 3–10 can be applied to the practical problems discussed in
Section 2 in several different ways. For example, consider the problem discussed
in Section 2.6. Suppose we have two different warning-time systems, say A and B,
and that we wish to compare their performances. According to Section 2.6, the ef-
ficiencies of the two systems can be represented by the random variables 1/Z1 and
1/Z2, where Z1 and Z2 are distributed according to (3.1)–(3.2). So, the probability
that system A is more efficient than system B can be expressed as

R = Pr(1/Z1 > 1/Z2) = Pr(Z2 > Z1) = 1 − Pr(Z2 < Z1)
(11.1)

= 1 −
∫ ∞

0
FZ2(z)fZ1(z) dz.

If Zi , i = 1,2, has the parameters (βi, λi, ai, bi), i = 1,2, then we can ex-
press (11.1) as

R = 1 − λ
β1
1 λ

β2
2 B(β1 + a1, b1)B(b2, a2 + β2)

�(β1)�(β2 + 1)B(a1, b1)B(a2, b2)
L,

where

L =
∫ ∞

0
zβ1+β2−1

1F1(β1 + a1;β1 + a1 + b1;−λ1z)

× 2F2(β2, a2 + β2;β2 + 1, a2 + b2 + β2;−λ2z) dz.

Using equation (2.21.1.1) in Prudnikov et al. (1986, Volume 3), the integral, L,
can be calculated to give

R = 1 − λ
2β1+β2
1 λ

β2
2 �(b1)�(b2)

�2(β1)B(a1, b1)B(a2, b2)
L∗, (11.2)

where

L∗ = G
2,3
4,4

(
λ2

λ1

∣∣∣∣ 1 − β1 − β2,1 − β2,1 − a2 − β2, a1 + b1 − β2

0, a1 − β2,−β2,1 − a2 − b2 − β2

)
.

If estimates on the parameters are available (either from prior knowledge or by
applying the procedures in Section 10 to some data) then (11.2) can provide a
useful measure of the relative performance of the two systems.



202 S. Nadarajah

Table 1 Comparison of MLE versus MME

MLE MME

α a b AE(α̂) AE(â) AE(b̂) MSE(α̂) MSE(â) MSE(b̂) AE(α̂) AE(â) AE(b̂) MSE(α̂) MSE(â) MSE(b̂)

1 2 3 1.032 2.255 3.458 0.027 0.414 0.894 NA NA NA NA NA NA
1 2 4 1.035 2.390 4.832 0.033 0.623 2.389 NA NA NA NA NA NA
1 2 5 1.032 2.366 6.042 0.031 0.531 3.802 NA NA NA NA NA NA
1 3 2 1.008 3.478 2.358 0.022 3.145 1.364 NA NA NA NA NA NA
1 3 4 1.027 3.739 4.895 0.032 1.712 3.754 NA NA NA NA NA NA
1 3 5 1.024 3.440 5.759 0.031 1.217 3.424 NA NA NA NA NA NA
1 4 2 1.001 4.751 2.344 0.030 3.316 0.635 NA NA NA NA NA NA
1 4 3 1.086 4.407 3.227 0.030 2.235 0.862 NA NA NA NA NA NA
1 4 5 1.015 4.471 5.800 0.037 1.902 3.797 NA NA NA NA NA NA
1 5 2 1.039 5.709 2.188 0.035 4.065 0.407 1.120 6.582 2.600 0.039 4.177 0.413
1 5 3 1.008 6.004 3.583 0.031 4.869 1.546 1.045 7.251 3.964 0.032 5.524 1.763
1 5 4 1.010 5.644 4.545 0.034 3.206 2.406 1.132 5.818 4.807 0.040 3.274 2.503
2 1 3 2.064 1.142 3.545 0.066 0.120 1.893 NA NA NA NA NA NA
2 1 4 2.028 1.144 4.588 0.071 0.253 3.156 NA NA NA NA NA NA
2 1 5 2.023 1.179 6.249 0.086 0.185 9.054 NA NA NA NA NA NA
2 3 1 2.014 3.273 1.080 0.081 1.334 0.112 NA NA NA NA NA NA
2 3 4 2.038 3.403 4.517 0.069 1.593 2.398 NA NA NA NA NA NA
2 3 5 2.024 3.456 5.663 0.070 1.183 3.204 NA NA NA NA NA NA
2 4 1 2.038 4.703 1.115 0.076 3.729 0.195 NA NA NA NA NA NA
2 4 3 2.058 4.926 3.636 0.103 3.172 1.597 NA NA NA NA NA NA
2 4 5 2.008 4.803 5.905 0.071 2.784 4.890 NA NA NA NA NA NA
2 5 1 1.995 5.913 1.126 0.059 3.815 0.114 2.455 6.489 1.128 0.065 4.067 0.137
2 5 3 2.059 5.718 3.420 0.081 2.805 1.241 2.233 6.607 3.550 0.088 3.410 1.390
2 5 4 2.062 5.844 4.672 0.073 6.047 3.883 2.072 6.877 5.558 0.074 6.161 4.452
3 1 2 3.029 1.109 2.162 0.105 0.094 0.474 NA NA NA NA NA NA
3 1 4 3.020 1.185 4.828 0.118 0.155 3.748 NA NA NA NA NA NA
3 1 5 3.034 1.183 6.118 0.142 0.160 4.994 NA NA NA NA NA NA
3 2 1 2.974 2.374 1.183 0.123 0.845 0.160 NA NA NA NA NA NA
3 2 4 3.027 2.320 4.671 0.118 0.586 2.800 NA NA NA NA NA NA
3 2 5 3.034 2.328 6.012 0.119 0.647 5.885 NA NA NA NA NA NA
3 4 1 3.037 4.664 1.077 0.150 3.039 0.091 NA NA NA NA NA NA
3 4 2 2.971 4.682 2.268 0.115 3.348 0.617 NA NA NA NA NA NA
3 4 5 3.018 4.637 5.823 0.111 2.904 3.952 NA NA NA NA NA NA
3 5 1 3.078 5.864 1.135 0.144 5.461 0.135 3.228 5.899 1.353 0.153 5.931 0.161
3 5 2 3.044 5.656 2.190 0.107 4.121 0.471 3.623 5.864 2.559 0.125 4.188 0.495
3 5 4 3.004 6.006 4.935 0.099 6.135 4.563 3.120 6.966 5.595 0.102 6.623 4.940
4 1 2 4.012 1.255 2.455 0.140 0.235 0.989 NA NA NA NA NA NA
4 1 3 4.084 1.139 3.555 0.194 0.153 2.441 NA NA NA NA NA NA
4 1 5 4.025 1.162 5.761 0.203 0.119 4.656 NA NA NA NA NA NA
4 2 1 4.078 2.267 1.108 0.198 0.894 0.146 NA NA NA NA NA NA
4 2 3 4.028 2.373 3.541 0.152 0.760 1.543 NA NA NA NA NA NA
4 2 5 4.017 2.335 5.944 0.201 0.501 4.283 NA NA NA NA NA NA
4 3 1 4.036 3.582 1.192 0.183 2.454 0.208 NA NA NA NA NA NA
4 3 2 4.007 3.731 2.501 0.165 2.305 1.019 NA NA NA NA NA NA
4 3 5 4.089 3.738 6.147 0.176 2.211 6.682 NA NA NA NA NA NA
4 5 1 4.041 5.809 1.135 0.195 5.407 0.129 4.309 6.462 1.337 0.230 5.631 0.156
4 5 2 4.039 6.039 2.426 0.189 7.561 1.113 4.485 6.599 2.600 0.191 8.781 1.206
4 5 3 4.044 6.073 3.679 0.145 7.698 3.103 4.050 6.144 4.036 0.146 8.815 3.331
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We can also obtain measures of the gain in efficiency, say, by how much system
A is more efficient than system B. For example,

β1(a1 + b1 − 1)

λ1(a1 − 1)
− β2(a2 + b2 − 1)

λ2(a2 − 1)

gives a measure of gain in terms of the mean,

β2(β2 + 1)(a2 + b2 − 1)(a2 + b2 − 2)

λ2
2(a2 − 1)(a2 − 2)

− β1(β1 + 1)(a1 + b1 − 1)(a1 + b1 − 2)

λ2
1(a1 − 1)(a1 − 2)

− β2
2 (a2 + b2 − 1)2

λ2
2(a2 − 1)2

+ β2
1 (a1 + b1 − 1)2

λ2
1(a1 − 1)2

gives a measure of gain in terms of the variance,

2μ2FZ2(μ2) − 2μ1FZ1(μ1) − 2μ2 + 2μ1

+ 2λ
β2
2 B(a2 + β2, b2)

�(β2)B(a2, b2)
J (1,μ2, a2, b2, α2, λ2)

− 2λ
β1
1 B(a1 + β1, b1)

�(β1)B(a1, b1)
J (1,μ1, a1, b1, α1, λ1)

give a measure of gain in terms of the mean deviation about the mean [where
μ1 = E(Z1) and μ2 = E(Z2)], and so on.

12 Conclusions

Motivated by practical problems ranging from efficiency modeling to modeling of
infectious diseases, we have studied mathematical properties of the ratio of gamma
and beta random variables assumed to be independent. We have derived exact and
explicit expressions for many characteristics of the ratio, including its p.d.f., c.d.f.,
h.r.f., moments, mean deviation about the mean, mean deviation about the median,
percentiles, order statistics and the asymptotic distribution of the extreme values.
We have also derived estimation procedures by the methods of moments and maxi-
mum likelihood. Finally, an illustration of applicability of the mathematical results
is given in the context of efficiency of warning-time systems.

Appendix

We need the following lemmas.

Lemma 1. Let Z be a random variable with its p.d.f. specified by (3.2). We have∫ ∞
x

zkfZ(z) dz = λβB(a + β,b)

�(β)B(a, b)
J (k, x, a, b,α,λ)
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for all real k, where

J (k, x, a, b,α,λ) = − xk+β

k + β
2F2(β + a, k + β;β + a + b, k + β + 1;−λx).

Proof. Using (3.2), we can write∫ ∞
x

zkfZ(z) dz = λβB(a + β,b)

�(β)B(a, b)
J (k, x, a, b,α,λ),

where

J (k, x, a, b,α,λ) =
∫ ∞
x

zk+β−1
1F1(β + a;β + a + b;−λz)dz.

The result follows by applying http://functions.wolfram.com/
HypergeometricFunctions/Hypergeometric1F1/21/01/02/01/0001/ to calculate this
integral. �

Lemma 2. Let Z be a random variable with its c.d.f. and p.d.f. specified by (3.1)
and (3.2), respectively. We have∫ ∞

0
zkF n

Z(z)fZ(z) dz = �(nβ + β + k)Bn+1(a + β,b)

λk�(β)�n(β + 1)Bn+1(a, b)
I (k, n)

for all real k such that nβ + β + k �= 0,−1,−2, . . . , where

I (k, n) = F
1:2;...;2;1
0:2;...;2;1

(
(nβ + β + k) : (β, a + β); . . . ; (β, a + β); (b);
− : (β + 1, a + b + β); . . . ; (β + 1, a + b + β); (a + b + β);
− 1, . . . ,−1,1

)
.

Proof. Using (3.1) and (3.2), we can write∫ ∞
0

zkF n
Z(z)fZ(z) dz = λ(n+1)βBn+1(a + β,b)

�(β)�n(β + 1)Bn+1(a, b)
J (k, n),

where

J (k,n) =
∫ ∞

0
zk+nβ+β−1{2F2(β, a + β;β + 1, a + b + β;−λz)}n

× 1F1(β + a;β + a + b;−λz)dz.

Using the fact 1F1(a;b;x) = exp(x)1F1(b − a;b;−x) (see http://functions.
wolfram.com/HypergeometricFunctions/Hypergeometric1F1/17/02/02/) and the
series expansions for hypergeometric functions, we can calculate J (k,n) as

J (k,n) =
∫ ∞

0
zk+nβ+β−1{2F2(β, a + β;β + 1, a + b + β;−λz)}n

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/21/01/02/01/0001/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/17/02/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/21/01/02/01/0001/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/17/02/02/


The gamma beta ratio distribution 205

× 1F1(b;β + a + b;λz) exp(−λz)dz

=
∫ ∞

0

∞∑
i1=0

· · ·
∞∑

in=0

∞∑
i=0

(β)i1(a + β)i1 · · · (β)in(a + β)in(b)i

/
(
(β + 1)i1(a + b + β)i1 · · · (β + 1)in(a + b + β)in

× (a + b + β)i
)

× (−1)i1+···+inλi1+···+in+i

i1! · · · in!i! zi1+···+in+i+k+nβ+β−1

× exp(−λz)dz

=
∞∑

i1=0

· · ·
∞∑

in=0

∞∑
i=0

(β)i1(a + β)i1 · · · (β)in(a + β)in(b)i

/
(
(β + 1)i1(a + b + β)i1 · · · (β + 1)in(a + b + β)in

× (a + b + β)i
)

× (−1)i1+···+inλi1+···+in+i

i1! · · · in!i!
(A.1)

×
∫ ∞

0
zi1+···+in+i+k+nβ+β−1 exp(−λz)dz

= 1

λk+nβ+β

∞∑
i1=0

· · ·
∞∑

in=0

∞∑
i=0

(β)i1(a + β)i1 · · · (β)in(a + β)in(b)i

/
(
(β + 1)i1(a + b + β)i1 · · · (β + 1)in

× (a + b + β)in(a + b + β)i
)

× (−1)i1+···+inλi1+···+in+i

i1! · · · in!i!
× �(i1 + · · · + in + i + k + nβ + β)

= �(nβ + β + k)

λk+nβ+β

∞∑
i1=0

· · ·
∞∑

in=0

∞∑
i=0

(β)i1(a + β)i1 · · · (β)in(a + β)in

/(
(β + 1)i1(a + b + β)i1 · · · (β + 1)in

× (a + b + β)in
)

× (b)i(nβ + β + k)i1+···+in+i

(a + b + β)i

× (−1)i1+···+in1i

i1! · · · in!i! .
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The result of the lemma follows by using the definition of the generalized Kampé
de Fériet function to calculate the multiple sum in (A.1). �
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