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ABSTRACT

This paper describes the design of the Gamma database machine and the techniques employed in its imple-
mentation. Gamma is a relational database machine currently operating on an Intel iPSC/2 hypercube with 32 pro-
cessors and 32 disk drives. Gamma employs three key technical ideas which enable the architecture to be scaled to
100s of processors. First, all relations are horizontally partitioned across multiple disk drives enabling relations to
be scanned in parallel. Second, novel parallel agorithms based on hashing are used to implement the complex rela-
tional operators such as join and aggregate functions. Third, dataflow scheduling techniques are used to coordinate
multioperator queries. By using these techniquesit is possible to control the execution of very complex queries with
minimal coordination - a necessity for configurations involving a very large number of processors.

In addition to describing the design of the Gamma software, a thorough performance evaluation of the iPSC/2
hypercube version of Gamma is aso presented. In addition to measuring the effect of relation size and indices on
the response time for selection, join, aggregation, and update queries, we also analyze the performance of Gamma
relative to the number of processors employed when the sizes of the input relations are kept constant (speedup) and
when the sizes of the input relations are increased proportionally to the number of processors (scaleup). The
speedup results obtained for both selection and join queries are linear; thus, doubling the number of processors
halves the response time for a query. The scaleup results obtained are also quite encouraging. They reveal that a
nearly constant response time can be maintained for both selection and join queries as the workload is increased by
adding a proportional number of processors and disks.



1. Introduction

For the last 5 years, the Gamma database machine project has focused on issues associated with the design
and implementation of highly parallel database machines. In a number of ways, the design of Gamma is based on
what we learned from our earlier database machine DIRECT [DEWI79]. While DIRECT demonstrated that paral-
lelism could be successfully applied to processing database operations, it had a number of serious design
deficiencies that made scaling of the architecture to 100s of processors impossible; primarily the use of shared

memory and centralized control for the execution of its parallel algorithms[BITT83].

As a solution to the problems encountered with DIRECT, Gamma employs what appear today to be relatively
straightforward solutions. Architecturally, Gamma is based on a shared-nothing [STON86] architecture consisting
of a number of processors interconnected by a communications network such as a hypercube or a ring, with disks
directly connected to the individual processors. It is generally accepted that such architectures can be scaled to
incorporate 1000s of processors. In fact, Teradata database machines [TERAB85] incorporating a shared-nothing
architecture with over 200 processors are aready in use. The second key idea employed by Gamma is the use of
hash-based parallel agorithms. Unlike the algorithms employed by DIRECT, these algorithms require no central-
ized control and can thus, like the hardware architecture, be scaled aimost indefinitely. Finaly, to make the best of
the limited 1/0 bandwidth provided by the current generation of disk drives, Gamma employs the concept of hor-
izontal partitioning [RIES78] (also termed declustering [LIVN87]) to distribute the tuples of a relation among
multiple disk drives. This design enables large relations to be processed by multiple processors concurrently

without incurring any communications overhead.

After the design of the Gamma software was completed in the fall of 1984, work began on the first prototype
which was operational by the fall of 1985. This version of Gamma was implemented on top of an existing multi-
computer consisting of 20 VAX 11/750 processors [DEWI84b]. In the period of 1986-1988, the prototype was
enhanced through the addition of a number of new operators (e.g. aggregate and update operators), new parallel join
methods (Hybrid, Grace, and Sort-Merge [SCHN894]), and a complete concurrency control mechanism. In addi-
tion, we also conducted a number of performance studies of the system during this period [DEWI86, DEW!I88,
GHANBS89, GHAN9Q]. In the spring of 1989, Gamma was ported to a 32 processor Intel iPSC/2 hypercube and the
VAX-based prototype was retired.

Gamma is similar to a number of other active parallel database machine efforts. In addition to Teradata
[TERAS8S5], Bubba [COPES8] and Tandem [TANDSS] also utilize a shared-nothing architecture and employ the
concept of horizontal partitioning. While Teradata and Tandem also rely on hashing to decentralize the execution of

their parallel algorithms, both systems tend to rely on relatively conventional join agorithms such as sort-merge for



processing the fragments of the relation at each site. Gamma, XPRS [STON88], and Volcano [GRAEB9] each util-
ize parallel versions of the Hybrid join algorithm [DEWI1844].

The remainder of this paper is organized as follows. In Section 2 we describe the hardware used by each of
the Gamma prototypes and our experiences with each. Section 3 discusses the organization of the Gamma software
and describes how multioperator queries are controlled. The parallel agorithms employed by Gamma are described
in Section 4 and the techniques we employ for transaction and failure management are contained in Section 5. Sec-
tion 6 contains a performance study of the 32 processor Intel hypercube prototype. Our conclusions and future

research directions are described in Section 7.

2. Hardware Architecture of Gamma

2.1. Overview

Gamma is based on the concept of a shared-nothing architecture [STON86] in which processors do not share
disk drives or random access memory and can only communicate with one another by sending messages through an
interconnection network. Mass storage in such an architecture is generally distributed among the processors by con-
necting one or more disk drives to each processor as shown in Figure 1. There are a number of reasons why the
shared-nothing approach has become the architecture of choice. First, there is nothing to prevent the architecture
from scaling to 1000s of processors unlike shared-memory machines for which scaling beyond 30-40 processors

may be impossible. Second, as demonstrated in [DEWI188, COPE88, TANDS88], by associating a small number of
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Figure 1



disks with each processor and distributing the tuples of each relation across the disk drives, it is possible to achieve
very high aggregate 1/0 bandwidths without using custom disk controllers [KIM86, PATT88]. Furthermore, by
employing off-the-shelf mass storage technology one can employ the latest technology in small 3 1/2" disk drives
with embedded disk controllers. Ancther advantage of the shared nothing approach is that there is no longer any
need to "roll your own" hardware. Recently, both Intel and Ncube have added mass storage to their hypercube-

based multiprocessor products.

2.2. GammaVersion 1.0

The initial version of Gamma consisted of 17 VAX 11/750 processors, each with two megabytes of memory.
An 80 megabit/second token ring [PROT85] was used to connect the processors to each other and to another VAX
running Unix. This processor acted as the host machine for Gamma. Attached to eight of the processors were 333
megabyte Fujitsu disk drives that were used for storing the database. The diskless processors were used along with
the processors with disks to execute join and aggregate function operators in order to explore whether diskless pro-

cessors could be exploited effectively.

We encountered a number of problems with this prototype. First, the token ring had a maximum network
packet size of 2K bytes. In the first version of the prototype the size of a disk page was set to 2K bytesin order to
be able to transfer an "intact" disk page from one processor to another without a copy. This required, for example,
that each disk page also contain space for the protocol header used by the interprocessor communication software.
While thisinitially appeared to be a good idea, we quickly realized that the benefits of alarger disk page size more

than offset the cost of having to copy tuples from a disk page into a network packet.

The second problem we encountered was that the network interface and the Unibus on the 11/750 were both
bottlenecks [GERB87, DEWI88]. While the bandwidth of the token ring itself was 80 megabits/second, the Unibus
on the 11/750 (to which the network interface was attached) has a bandwidth of only 4 megabits/second. When pro-
cessing a join query without a selection predicate on either of the input relations, the Unibus became a bottleneck
because the transfer rate of pages from the disk was higher than the speed of the Unibus [DEWI88]. The network
interface was a bottleneck because it could only buffer two incoming packets at a time. Until one packet was
transferred into the VAX's memory, other incoming packets were rejected and had to be retransmitted by the com-
munications protocol. While we eventually constructed an interface to the token ring that plugged directly into the
backplane of the VAX, by the time the board was operational the VAX’s were obsolete and we elected not to spend

additional funds to upgrade the entire system.

The other serious problem we encountered with this prototype was having only 2 megabytes of memory on

each processor. This was especialy a problem since the operating system used by Gamma does not provide virtual



memory. The problem was exacerbated by the fact that space for join hash tables, stack space for processes, and the
buffer pool were managed separately in order to avoid flushing hot pages from the buffer pool. While there are
advantages to having these spaces managed separately by the software, in a configuration where memory is aready

tight, balancing the sizes of these three pools of memory proved difficult.

2.3. GammaVersion 2.0

In the fall of 1988, we replaced the VAX-based prototype with a 32 processor iPSC/2 hypercube from Intel.
Each processor is configured with a 386 CPU, 8 megabytes of memory, and a 330-megabyte MAXTOR 4380 (5
1/4") disk drive. Each disk drive has an embedded SCSI controller which provides a 45 Kbyte RAM buffer that acts

as adisk cache on read operations.

The nodes in the hypercube are interconnected to form a hypercube using custom VLS| routing modules.

Each module supports eight® full-duplex, serial, reliable communication channels operating a 2.8
megabytes/second. Small messages (<= 100 bytes) are sent as datagrams. For large messages, the hardware builds
a communications circuit between the two nodes over which the entire message is transmitted without any software
overhead or copying. After the message has been completely transmitted, the circuit is released. The length of a
message is limited only by the size of the physical memory on each processor. Table 1 summarizes the transmission

times from one Gamma process to another (on two different hypercube nodes) for a variety of message sizes.

Packet Size (in bytes) Transmission Time
50 0.74 ms.
500 1.46 ms.
1000 157 ms.
4000 2.69 ms.
8000 4.64 ms.
Tablel

The conversion of the Gamma software to the hypercube began in early December 1988. Because most users
of the Intel hypercube tend to run a single process at a time while crunching numerical data, the operating system
provided by Intel supports only a limited number of heavy weight processes. Thus, we began the conversion pro-
cess by porting Gamma’'s operating system, NOSE (see Section 3.5). In order to simplify the conversion, we
elected to run NOSE as a thread package inside a single NX/2 process in order to avoid having to port NOSE to run

on the bare hardware directly.

1 On configurations with amix of compute and 1/0 nodes, one of the 8 channelsis dedicated for communication to the 1/O subsystem.



Once NOSE was running, we began converting the Gamma software. This process took 4-6 man months but
lasted about 6 months as, in the process of the conversion, we discovered that the interface between the SCSI disk
controller and memory was not able to transfer disk blocks larger than 1024 bytes (the pitfall of being a beta test
site). For the most part the conversion of the Gamma software was almost trivial as, by porting NOSE firgt, the
differences between the two systems in initiating disk and message transfers were completely hidden from the
Gamma software. In porting the code to the 386, we did discover a number of hidden bugs in the VAX version of
the code as the VAX does not trap when a null pointer is dereferenced. The higgest problem we encountered was
that nodes on the VAX multicomputer were numbered beginning with 1 while the hypercube uses 0 as the logical
address of the first node. While we thought that making the necessary changes would be tedious but straightfor-
ward, we were about half way through the port before we realized that we would have to find and change every
"for" loop in the system in which the loop index was also used as the address of the machine to which a message
was to be set. While this sounds silly now, it took us several weeks to find all the places that had to be changed. In

retrospect, we should have made NOSE mask the differences between the two addressing schemes.

From a database system perspective, however, there are a number of areas in which Intel could improve the
design of the iPSC/2. First, alight-weight process mechanism should be provided as an aternative to NX/2. While
this would have almost certainly increased the time required to do the port, in the long run we could have avoided
maintaining NOSE. A much more serious problem with the current version of the system is that the disk controller
does not perform DMA transfers directly into memory. Rather, as a block is read from the disk, the disk controller
does a DMA transfer into a 4K byte FIFO. When the FIFO is half full, the CPU is interrupted and the contents of
the FIFO are copied into the appropriate location in memory.? While a block instruction is used for the copy opera-
tion, we have measured that about 10% of the available CPU cycles are being wasted doing the copy operation. In
addition, the CPU is interrupted 13 times during the transfer of one 8 Kbyte block partialy because a SCSI disk

controller is used and partially because of the FIFO between the disk controller and memory.

3. Software Architecture of Gamma

In this section, we present an overview of Gamma's software architecture and describe the techniques that
Gamma employs for executing queries in a dataflow fashion. We begin by describing the alternative storage struc-
tures provided by the Gamma software. Next, the overall system architecture is described from the top down. After

describing the overall process structure, we illustrate the operation of the system by describing the interaction of the

2 Intel was forced to use such a design because the I/O system was added after the system had been completed and the only way of doing
1/0 was by using a empty socket on the board which did not have DMA access to memory.



processes during the execution of several different queries. A detailed presentation of the techniques used to control
the execution of complex queries is presented in Section 3.4. Thisis followed by an example which illustrates the
execution of a multioperator query. Finally, we briefly describe WiSS, the storage system used to provide low level

database services, and NOSE, the underlying operating system.

3.1. Gamma Storage Organizations

Relations in Gamma are horizontally partitioned [RIES78] across all disk drives in the system. The key
idea behind horizontally partitioning each relation is to enable the database software to exploit al the 1/O bandwidth

provided by the hardware. By declustering® the tuples of a relation, the task of parallelizing a selection/scan opera-

tor becomestrivial asall that is required isto start a copy of the operator on each processor.

The query language of Gamma provides the user with three alternative declustering strategies: round robin,
hashed, and range partitioned. With the first strategy, tuples are distributed in a round-robin fashion among the disk
drives. Thisisthe default strategy and is used for all relations created as the result of a query. If the hashed parti-
tioning strategy is selected, a randomizing function is applied to the key attribute of each tuple (as specified in the
partition command for the relation) to select a storage unit. In the third strategy the user specifies a range of key
values for each site. For example, with a 4 disk system, the command partition employee on emp_id (100, 300,
1000) would result in the distribution of tuples shown in Table 2. The partitioning information for each relation is
stored in the database catalog. For range and hash-partitioned relations, the name of the partitioning attribute is also

kept and, in the case of range-partitioned relations, the range of values of the partitioning attribute for each site

(termed arange table).
Distribution Condition ~ Processor #
emp_id< 100 1
100 < emp_id< 300 2
300 < emp_id < 1000 3
emp_id > 1000 4

An Example Range Table
Table 2

Once a relation has been partitioned, Gamma provides the normal collection of relational database system access
methods including both clustered and non-clustered indices. When the user requests that an index be created on a
relation, the system automatically creates an index on each fragment of the relation. Unlike VSAM [WAGN73] and

the Tandem file system [ENSC85], Gamma does not require the clustered index for a relation to be constructed on

3 Declustering is another term for horizontal partitioning that was coined by the Bubba project [LIVN87].



the partitioning attribute.

As a query is being optimized, the partitioning information for each source relation in the query is incor-
porated into the query plan produced by the query optimizer. In the case of hash and range-partitioned relations,
this partitioning information is used by the query scheduler (discussed below) to restrict the number of processors
involved in the execution of selection queries on the partitioning attribute. For example, if relation X is hash parti-
tioned on attribute y, it is possible to direct selection operations with predicates of the form "X.y = Constant" to a
single site; avoiding the participation of any other sites in the execution of the query. In the case of range-
partitioned relations, the query scheduler can restrict the execution of the query to only those processors whose

ranges overlap the range of the selection predicate (which may be either an equality or range predicate).

In retrospect, we made a serious mistake in choosing to decluster all relations across all nodes with disks. A
much better approach, as proposed in [COPESS], isto use the "heat" of arelation to determine the degree to which
the relation is declustered. Unfortunately, to add such a capability to the Gamma software at this point in time

would require afairly major effort - one we are not likely to undertake.

3.2. Gamma Process Structure

The overall structure of the various processes that form the Gamma software is shown in Figure 2. The role
of each process is described briefly below. The operation of the distributed deadlock detection and recovery
mechanism are presented in Sections 5.1 and 5.2. At system initialization time, a UNIX daemon process for the
Catalog Manager (CM) is initiated along with a set of Scheduler Processes, a set of Operator Processes, the

Deadlock Detection Process, and the Recovery Process.

Catalog M anager
The function of the Catalog Manager is to act as a central repository of al conceptual and internal schema
information for each database. The schema information is loaded into memory when a database is first
opened. Since multiple users may have the same database open at once and since each user may reside on
amachine other than the one on which the Catalog Manager is executing, the Catalog Manager is responsi-
ble for insuring consistency among the copies cached by each user.

Query Manager
One query manager process is associated with each active Gamma user. The query manager is responsible
for caching schema information locally, providing an interface for ad-hoc queries using gdl (our variant of
Quel [STONT76]), query parsing, optimization, and compilation.

Scheduler Processes

While executing, each multisite query is controlled by a scheduler process. This process is responsible for
activating the Operator Processes used to execute the nodes of a compiled query tree. Scheduler processes
can be run on any processor, insuring that no processor becomes a bottleneck. In practice, however,
scheduler processes consume almaost no resources and it is possible to run a large number of them on asin-
gle processor. A centralized dispatching process is used to assign scheduler processes to queries. Those
queries that the optimizer can detect to be single-site queries are sent directly to the appropriate node for
execution, by-passing the scheduling process.
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Operator Process

For each operator in aquery tree, at least one Operator Process is employed at each processor participating
in the execution of the operator. These operators are primed at system initialization time in order to avoid
the overhead of starting processes at query execution time (additional processes can be forked as needed).
The structure of an operator process and the mapping of relational operators to operator processes is dis-
cussed in more detail below. When a scheduler wishes to start a new operator on a node, it sends a request
to aspecial communications port known as the "new task" port. When arequest isreceived on this port, an
idle operator process is assigned to the request and the communications port of this operator process is
returned to the requesting scheduler process.

3.3. An Overview of Query Execution

Ad-hoc and Embedded Query Interfaces



Two interfaces to Gamma are available: an ad-hoc query language and an embedded query language inter-
face in which queries can be embedded in a C program. When a user invokes the ad-hoc query interface, a Query
Manager (QM) process is started which immediately connects itself to the CM process through the UNIX Internet
socket mechanism. When the compiled query interface is used, the preprocessor trandates each embedded query
into a compiled query plan which isinvoked at run-time by the program. A mechanism for passing parameters from

the C program to the compiled query plans at run timeis also provided.

Query Execution

Gamma uses traditional relational techniques for query parsing, optimization [SELI79, JARK84], and code
generation. The optimization process is somewhat simplified as Gamma only employs hash-based algorithms for
joins and other complex operations. Queries are compiled into a left-deep tree of operators. At execution time,

each operator is executed by one or more operator processes at each participating site.

In designing the optimizer for the VAX version of Gamma, the set of possible query plans considered by the
optimizer was restricted to only left-deep trees because we felt that there was not enough memory to support right-
deep or bushy plans. By using a combination of left-deep query trees and hash-based join algorithms, we were able
to insure that no more than two join operations were ever active simultaneously and hence were able to maximize
the amount of physical memory which could be alocated to each join operator. Since this memory limitation was
really only an artifact of the VAX prototype, we have recently begun to examine the performance implications of

right deep and bushy query plans [SCHN89b].

Asdiscussed in Section 3.1, in the process of optimizing a query, the query optimizer recognizes that certain
gueries can be directed to only a subset of the nodes in the system. In the case of a single site query, the query is
sent directly by the QM to the appropriate processor for execution. In the case of a multiple site query, the optim-
izer establishes a connection to an idle scheduler process through a centralized dispatcher process. The dispatcher
process, by controlling the number of active schedulers, implements a simple load control mechanism. Once it has
established a connection with a scheduler process, the QM sends the compiled query to the scheduler process and
waits for the query to complete execution. The scheduler process, in turn, activates operator processes at each query
processor selected to execute the operator. Finally, the QM reads the results of the query and returns them through
the ad-hoc query interface to the user or through the embedded query interface to the program from which the query

was initiated.
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3.4. Operator and Process Structure

The algorithms for all the relational operators are written as if they were to be run on a single processor. As
shown in Figure 3, the input to an Operator Process is a stream of tuples and the output is a stream of tuplesthat is
demultiplexed through a structure we term a split table. Once the process begins execution, it continuously reads
tuples from its input stream, operates on each tuple, and uses a split table to route the resulting tuple to the process
indicated in the split table.* When the process detects the end of its input stream, it first closes the output streams
and then sends a control message to its scheduler process indicating that it has completed execution. Closing the

output streams has the side effect of sending "end of stream” messages to each of the destination processes.

CONTROL PACKET

\
\
\
\
\
v OUTGOING STREAMS

OF TUPLES
—
STREAM OF TUPLES PROCESS SPLIT -
EXECUTING " TABLE
OPERATOR
>
Figure3

The split table defines a mapping of values to a set of destination processes. Gamma uses three different
types of split tables depending on the type of operation being performed [DEWI86]. As an example of one form of
split table, consider the use of the split table shown in Figure 4 in conjunction with the execution of ajoin operation
using 4 processors. Each process producing tuples for the join will apply a hash function to the join attribute of each
output tuple to produce a value between 0 and 3. Thisvalue isthen used as an index into the split table to obtain the

address of the destination process that should receive the tuple.

4 Tuples are actually sent as 8K byte batches, except for the last batch.
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An Example Split Table
Figure 4

An Example

As an example of how queries are executed, consider the query shown in Figure 5. In Figure 6, the processes
used to execute the query are shown aong with the flow of data between the various processes for a Gamma
configuration consisting of two processors with disks and two processors without disks. Since the two input rela
tions A and B are partitioned across the disks attached to processors P1 and P2, selection and scan operators are ini-
tiated on both processors P1 and P2. The split tables for both the select and scan operators each contain two entries
since two processors are being used for the join operation. The split tables for each selection and scan are identical -
routing tuples whose join attribute values hash to 0 (dashed lines) to P3 and those which hash to 1 (solid lines) to P4.
The join operator executes in two phases. During the first phase, termed the Building phase, tuples from the inner
relation (A in this example) are inserted into a memory-resident hash table by hashing on the join attribute value.

After the first phase has completed, the probing phase of the join isinitiated in which tuples from the outer relation

are used to probe the hash table for matching tuples.® Since the result relation is partitioned across two disks, the
split table for each join operator contains two entries and tuples of C are distributed in a round-robin fashion among

P1 and P2.

SMCD

A B

Figure 5

® Thisis actually adescription of the simple hash join algorithm. The operation of the hybrid hash join algorithm is contained in Section 4.
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One of the main problems with the DIRECT prototype was that every data page processed required at least
one control message to a centralized scheduler. In Gamma this bottleneck is completely avoided. In fact, the
number of control messages required to execute a query is approximately egual to three times the number of opera-

tors in the query times the number of processors used to execute each operator. As an example, consider Figure 7

which depicts the flow of control messages® from a scheduler process to the processes on processors P1 and P3 in
Figure 6 (an identical set of messages would flow from the scheduler to P2 and P4). The scheduler begins by initiat-
ing the building phase of the join and the selection operator on relation A. When both these operators have com-
pleted, the scheduler next initiates the store operator, the probing phase of the join, and the scan of relation B.

When each of these operators has completed, aresult message is returned to the user.

® The "Initiate" message is sent to a "new operator" port on each processor. A dispatching processes accepts incoming messages on this
port and assigns the operator to a process. The process which is assigned, replies to the scheduler with an "ID" message which indicates the
private port number of the operator process. Future communications to the operator by the scheduler use this private port number.
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3.5. Operating and Storage System

Gamma is built on top of an operating system designed specifically for supporting database management sys-
tems. NOSE provides multiple, lightweight processes with shared memory. A non-preemptive scheduling policy is
used to help prevent convoys [BLAS79] from occurring. NOSE provides communications between NOSE
processes using the reliable message passing hardware of the Intel iPSC/2 hypercube. File services in NOSE are
based on the Wisconsin Storage System (WiSS) [CHOUS85]. Critical sections of WiSS are protected using the
semaphore mechanism provided by NOSE.

The file services provided by WiSS include structured sequential files, byte-stream files as in UNIX, B*
indices, long data items, a sort utility, and a scan mechanism. A sequential file is a sequence of records. Records
may vary in length (up to one page in length), and may be inserted and deleted at arbitrary locations within a
sequential file. Optionally, each file may have one or more associated indices which map key values to the record
identifiers of the records in the file that contain a matching value. One indexed attribute may be designated as a clus-
tering attribute for the file. The scan mechanism is similar to that provided by System R’'s RSS [ASTR76] except

that the predicates are compiled by the query optimizer into 386 machine language to maximize performance.
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4. Query Processing Algorithms

4.1. Selection Operator

Since all relations are declustered over multiple disk drives, paralelizing the selection operation involves
simply initiating a selection operator on the set of relevant nodes with disks. When the predicate in the selection
clause is on the partitioning attribute of the relation and the relation is hash or range partitioned, the scheduler can
direct the selection operator to a subset of the nodes. If either the relation is round-robin partitioned or the selection
predicate is not on the partitioning attribute, a selection operator must be initiated on all nodes over which the rela-
tion is declustered. To enhance performance, Gamma employs a one page read-ahead mechanism when scanning
the pages of afile sequentially or through a clustered index. This mechanism enables the processing of one page to

be overlapped with the 1/0 for the subsegquent page.

4.2. Join Operator

The multiprocessor join algorithms provided by Gamma are based on concept of partitioning the two relations
to be joined into digoint subsets called buckets [GOOD81, KITS83, BRAT84]. by applying a hash function to the
join attribute of each tuple. The partitioned buckets represent disjoint subsets of the original relations and have the
important characteristic that all tuples with the same join attribute value are in the same bucket. We have imple-
mented parallel versions of four join algorithms on the Gamma prototype: sort-merge, Grace [KITS83], Simple
[DEWI184], and Hybrid [DEWI84]. While al four algorithms employ this concept of hash-based partitioning, the
actual join computation depends on the algorithm. The parallel hybrid join algorithm is described in the following
section. Additional information on all four parallel algorithms and their relative performance can be found in
[SCHN89a]. Since this study found that the Hybrid hash join almost always provides the best performance, it is
now the default algorithm in Gamma and is described in more detail in the following section. Since these hash-
based join algorithms cannot be used to execute non-equijoin operations, such operations are not currently sup-

ported. To remedy this situation, we are in the process of designing a parallel non-equijoin algorithm for Gamma.

Hybrid Hash-Join

A centralized Hybrid hash-join algorithm [DEWI84] operates in three phases. In the first phase, the algo-
rithm uses a hash function to partition the inner (smaller) relation, R, into N buckets. The tuples of the first bucket
are used to build an in-memory hash table while the remaining N-1 buckets are stored in temporary files. A good
hash function produces just enough buckets to ensure that each bucket of tuples will be small enough to fit entirely
in main memory. During the second phase, relation Sis partitioned using the hash function from step 1. Again, the

last N-1 buckets are stored in temporary files while the tuples in the first bucket are used to immediately probe the
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in-memory hash table built during the first phase. During the third phase, the algorithm joins the remaining N-1
buckets from relation R with their respective buckets from relation S. The join is thus broken up into a series of
smaller joins; each of which hopefully can be computed without experiencing join overflow. The size of the smaller

relation determines the number of buckets; this calculation isindependent of the size of the larger relation.

Our parallel version of the Hybrid hash join agorithm is similar to the centralized algorithm described above.
A partitioning split table first separates the joining relations into N logical buckets. The number of buckets is
chosen such that the tuples corresponding to each logical bucket will fit in the aggr egate memory of the joining pro-
cessors. The N-1 buckets intended for temporary storage on disk are each partitioned across all available disk sites.
Likewise, ajoining split table will be used to route tuples to their respective joining processor (these processors do
not necessarily have attached disks), thus parallelizing the joining phase. Furthermore, the partitioning of the inner
relation, R, into buckets is overlapped with the insertion of tuples from the first bucket of R into memory-resident
hash tables at each of the join nodes. In addition, the partitioning of the outer relation, S, into buckets is overlapped
with the joining of the first bucket of Swith the first bucket of R. This requires that the partitioning split table for R
and S be enhanced with the joining split table as tuples in the first bucket must be sent to those processors being
used to effect the join. Of course, when the remaining N-1 buckets are joined, only the joining split table will be
needed. Figure 8 depicts relation R being partitioned into N buckets across k disk sites where the first bucket is to

be joined on m processors (m may be less than, equal to, or greater than k).

4.3. Aggregate Operations

Gamma implements scalar aggregates by having each processor compute its piece of the result in parallel.
The partial results are then sent to a single process which combines these partia results into the final answer.
Aggregate functions are computed in two steps. First, each processor computes a piece of the result by calculating a
value for each of the partitions. Next, the processors redistribute the partial results by hashing on the "group by"
attribute. The result of this step isto collect the partial results for each partition at a single site so that the final result

for each partition can be computed.

4.4. Update Operators

For the most part, the update operators (replace, delete, and append) are implemented using standard tech-
nigues. The only exception occurs when a replace operator modifies the partitioning attribute of a tuple. In this
case, rather than writing the modified tuple back into the local fragment of the relation, the modified tuple is passed

through a split table to determine which site should contain the tuple.

5. Transaction and Failure Management

In this section we describe the mechanisms that Gamma uses for transaction and failure management. While
the locking mechanisms are fully operational, the recovery system is currently being implemented. We expect to

begin the implementation of the failure management mechanism in early 1990.
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5.1. Concurrency Control in Gamma

Concurrency control in Gamma is based on two-phase locking [GRAY 78]. Currently, two lock granularities,
file, and page, and five lock modes, S, X, IS, IX, and SIX are provided. Each site in Gamma has its own local lock
manager and deadlock detector. The lock manager maintains a lock table and a transaction wait-for-graph. The
cost of setting a lock varies from approximately 100 instructions, if there is no conflict, to 250 instructions if the
lock request conflicts with the granted group. In this case, the wait-for-graph must be checked for deadlock and the

transaction that requested the lock must be suspended via a semaphore mechanism.

In order to detect multisite deadlocks, Gamma uses a centralized deadlock detection algorithm. Periodicaly,
the centralized deadlock detector sends a message to each node in the configuration, requesting the local transaction
wait-for-graph of that node. Initialy, the period for running the centralized deadlock detector is set at one second.
Each time the deadlock detector fails to find a global deadlock, thisinterval is doubled and each time a deadlock is
found the current value of the interval is halved. The upper bound of the interval is limited to 60 seconds and the
lower bound is 1 second. After collecting the wait-for-graph from each site, the centralized deadlock detector
creates a global transaction wait-for-graph. Whenever a cycle is detected in the global wait-for-graph, the central-

ized deadlock manager chooses to abort the transaction holding the fewest number of locks.

5.2. Recovery Architecture and L og Manager

The algorithms currently being implemented for coordinating transaction commit, abort, and rollback operate
as follows. When an operator process updates a record, it also generates a log record which records the change of
the database state. Associated with every log record is alog sequence number (LSN) which is composed of a node
number and a local sequence number. The node number is statically determined at the system configuration time

whereas the local sequence number, termed current L SN, isamonotonically increasing value.

Log records are sent by the query processors to one or more Log Managers (each running on a separate pro-
cessor) which merges the log records it receives to form a single log stream. If M is the number of log processors
being used, query processor i will direct its log records to the (i mod M) log processor [AGRAS85]. Because this
algorithm selects the log processor statically and a query processor always sends its log records to the same log pro-
cessor, the recovery process at a query processing node can easily determine where to request the log records for

processing a transaction abort.

When a page of log records is filled, it is written to disk. The Log Manager maintains a table, called the
Flushed Log Table, which contains, for each node, the LSN of the last log record from that node that has been

flushed to disk. These values are returned to the nodes either upon request or when they can be piggybacked on
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another message. Query processing nodes save thisinformation in alocal variable, termed the Flushed L SN.

The buffer managers at the query processing nodes observe the WAL protocol [GRAY 78]. When a dirty page
needs to be forced to disk, the buffer manager first compares the page’s LSN with the local value of Flushed LSN.
If the page LSN of a page is smaller or equal to the Flushed LSN, that page can be safely written to disk. Other-
wise, either a different dirty page must be selected, or a message must be sent to the Log Manager to flush the
corresponding log record(s) of the dirty page. Only after the Log Manager acknowledges that the log record has
been written to the log disk will the dirty data page be written back to disk. In order to reduce the time spent wait-
ing for a reply from the Log Manager, the buffer manager always keeps T (a pre-selected threshold) clean and
unfixed buffer pages available. When buffer manager notices that the number of clean, unfixed buffer pages has fal-
len below T, a process, termed local log manager, is activated. This process sends a message to the Log Manager
to flush one or more log records so that the number of clean and unfixed pages plus the number of dirty pages that

can be safely written to to disk isgreater than T.

The scheduler process for a query is responsible for sending commit or abort records to the appropriate Log
Managers. |If atransaction completes successfully, a commit record for the transaction is generated by its scheduler
and sent to each relevant Log Manager which employs a group commit protocol. On the other hand, if a transaction
is aborted by either the system or the user, its scheduler will send an abort message to all query processors that parti-
cipated in its execution. The recovery process at each of the participating nodes responds by requesting the log
records generated by the node from its Log Manager (the LSN of each log record contains the originating node
number). As the log records are received, the recovery process undoes the log records in reverse chronological
order using the ARIES undo agorithm [MOHAS89]. The ARIES agorithms are also used as the basis for check-

pointing and restart recovery.

5.3. Failure Management

To help insure availability of the system in the event of processor and/or disk failures, Gamma employs a
new availability technique termed chained declustering [HSIA90]. Like Tandem’'s mirrored disk mechanism
[BORR8L1] and Teradata's interleaved declustering mechanism [TERA85, COPES9], chained declustering employs
both a primary and backup copy of each relation. All three systems can sustain the failure of a single processor or
disk without suffering any loss in data availability. In [HSIA90], we show that chained declustering provides a
higher degree of availability than interleaved declustering and, in the event of a processor or disk failure, does a
better job of distributing the workload of the broken node. The mirrored disk mechanism, while providing the

highest level of availability, does avery poor job of distributing the load of afailed processor.
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Data Placement with Chained Declustering

With chained declustering, nodes (a processor with one or more disks) are divided into disjoint groups called
relation-clusters and tuples of each relation are declustered among the drives that form one of the relation clusters.
Two physical copies of each relation, termed the primary copy and the backup copy, are maintained. Asan exam-
ple, consider Figure 9 where M, the number of disks in the relation cluster, is equal to 8. The tuplesin the primary
copy of relation R are declustered using one of Gamma' s three partitioning strategies with tuples in the i-th primary
fragment (designated Ri) stored on the {i mod M}-th disk drive. The backup copy is declustered using the same
partitioning strategy but the i-th backup fragment (designated ri) 