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Abstract. A new four-parameter model called the gamma–exponentiated exponential–Weibull distribution
is being introduced in this paper. The new model turns out to be quite flexible for analyzing positive data.
Representations of certain statistical functions associated with this distribution are obtained. Some special
cases are pointed out as well. The parameters of the proposed distribution are estimated by making
use of the maximum likelihood approach. This density function is utilized to model two actual data
sets. The new distribution is shown to provide a better fit than related distributions as measured by the
Anderson–Darling and Cramér–von Mises goodness–of–fit statistics. The proposed distribution may serve
as a viable alternative to other distributions available in the literature for modeling positive data arising in
various fields of scientific investigation such as the physical and biological sciences, hydrology, medicine,
meteorology and engineering.

1. Introduction

The Weibull distribution is a popular life time distribution model in reliability engineering. However,
this distribution does not have a bath tub or upside–down bath tub shaped hazard rate function, which is
why it cannot be utilized to model the life time of certain systems. To overcome this shortcoming, several
generalizations of the classical Weibull distribution have been discussed by different authors in recent
years. Many authors introduced flexible distributions for modeling complex data and obtaining a better
fit. Extensions of Weibull distribution arise in different areas of research as discussed for instance in [1–12],
[16], [20], [27], [29–31, 33]. Many extended Weibull models have an upside–down bath tub shaped hazard
rate, which is the case of the extensions discussed by [5], [18], [24], and [30], among others.

By adding parameters to an existing distribution we obtain classes of more flexible distributions, see for
instance the method by Zografos and Balakrishnan [33]. Their new distribution provides more flexibility
to model various types of data. The baseline distribution has the survivor function G(x) = 1 − G(x). Then,
the gamma–exponentiated extended distribution has cumulative distribution function (CDF) F(x) given by

F(x) =
1

Γ(α)

∫
− log G(x)

0
tα−1 e−t dt , α > 0, x ∈ R . (1)
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The gamma–exponentiated extended probability density function (PDF) related to (1) can be expressed in
the following form:

f (x) =
1

Γ(α)

(
− log G(x)

)α−1
1(x) , α > 0, x ∈ R .

Cordeiro et al. [8] introduced an exponential–Weibull distribution. The CDF and PDF of their distribution
are defined as follows:

G(x) =
(
1 − e−λ x−β xk)

1R+
(x), min{λ, β, k} > 0,

and

1(x) =
(
λ + β k xk−1

)
e−λ x−β xk

1R+
(x);

here and in what follows 1A(x) denotes the characteristic function of the set A, that is 1A(x) = 1 when x ∈ A
and equals 0 else.

Now, we generalize their model by applying the gamma–exponentiated technique [33], which results in
what we are referring to as the Gamma–exponentiated exponential–Weibull distribution. The new model’s
characterization is as follows.

In the sequel we apply the so–called regularized gamma function

Q(a, z) =
Γ(a, z)
Γ(a)

=
1

Γ(a)

∫
∞

z
ta−1e−t dt, <(a) > 0 ,

where Γ(a, x) denotes the familiar upper incomplete gamma function. Both, regularized gamma and incomplete
gamma, are in-built in Mathematica under GammaRegularized[a, z] and Gamma[a,z] respectively.

Consider a random variable X on a standard probability space (Ω,F,P), having cumulative distribution
function and the probability density function given by

F(x) =
(
1 −Q

(
α, λx + βxk

))
1R+

(x), (2)

f (x) =
1

Γ(α)

(
λ + β k xk−1

)
e−λ x−β xk (

λx + βxk
)α−1

1R+
(x), (3)

respectively, where the baseline survivor function G(x) = 1 − G(x) = exp{−(λx + βxk
)
}. Then we said

that X has Gamma–exponentiated exponential–Weibull, writing this X ∼ GEEW(θ), θ = (λ, β, k, α), where the
four–parameter vector θ is assumed to be strictly positive. Also the related hazard rate function becomes

h(x) =
f (x)

1 − F(x)
=

(
λ + β k xk−1

)
e−λ x−β xk

(
λx + βxk

)α−1

Γ
(
α, λx + βxk) 1R+

(x). (4)

The values appearing in (2), (3), that is in (4) can be evaluated numerically using computational packages
such as Mathematica, Maple, MATLAB and R.

Graphical representations of the parameter effects are included in Section 2. Representations of certain
statistical functions are provided in Section 3. The parameter estimation technique described in Section 4
is utilized in connection with the modeling of two actual data sets originating from the engineering and
biological sciences in Section 5, where the new model is compared with several related distributions.

2. Some Graphical Representations of the GEEW Distribution

Graphs of the PDF (3) and the hazard rate function (4) are presented in this section for certain values of
parameters. It is manifest that the parameter k and α influence the shape of the hazard function.
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Figure 1: The GEEW PDF. Left panel: λ = 1.5, β = 5.1, k = 3 and α = 2 (dotted line) α = 5 (dashed line), α = 10 (solid line), α = 20
(thick line). Right panel: β = 5.1, k = 3, α = 2 and λ = 0.5 (dotted line) λ = 1.5 (dashed line), λ = 3 (solid line), λ = 7 (thick line).
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Figure 2: The GEEW PDF. Left panel: λ = 2.5, k = 3, α = 5, and β = 0.5 (dotted line), β = 3.5 (dashed line), β = 10 (solid line), β = 30
(thick line). Right panel: λ = 2.5, β = 3.5, α = 2, and k = 0.5, (dotted line) k = 1.5 (dashed line), k = 3 (solid line), k = 5 (thick line).

Figure 3: The GEEW hazard rate function. Left panel: λ = 2.5, β = 3.5, k = 1.5 and α = 1.5, (dotted line) α = 2.5 (short dashes), α = 5.5
(long dashes), α = 10 (solid line), α = 20 (thick line). Right panel: λ = 2.5, β = 2.5, k = 2.2 and α = 1.2, (dotted line) α = 2 (short
dashes), α = 3.5 (long dashes), α = 6 (solid line), α = 12 (thick line).

Figures 1 and 2 indicate how the four of the parameters including new scale parameter α affect the
GEEW(θ) density. These graphs illustrate the versatility of the GEEW distribution and indicate that the
new parameter α has a shifting effect in addition to a noticeable effect on the skewness and kurtosis of
this distribution. As can be seen from Figure 3, depending on the value of α, the hazard rate function can
assume a variety of shapes.

3. Statistical Functions of the GEEW distribution

Here, we derive computational sum–representations of general order moments associated with the the
rv X ∼ GEEW(θ) and obtain the explicit form of the quantile function in general case and two related
special cases are obtained. The resulting expressions can be evaluated exactly or numerically with symbolic
computational packages such as Mathematica, MATLAB or Maple. In numerical applications, infinite sum
can be truncated whenever convergence is observed.
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3.1. Moments
To derive the rth raw moment of the rv X ∼ GEEW(θ), θ = (λ, β, k, α) > 0, we need some auxiliary tools

is the form of a definite integral which integrand is related to the PDF (3) of X.

Lemma 3.1. For all positive (µ, a, ν, ρ), for which ρ + ν−1(` + µ) <N when ` ∈N, we have

Iµ(a, ν, ρ) =

∫
∞

0
xµ−1(1 + axν)ρ e−x dx

=
∑
n≥0

(−1)n (−ρ)n

n!

{
an γ

(
µ + νn, a−1/ν

)
+ aρ−n Γ

(
µ + ν(ρ − n), a−1/ν

)}
, (5)

where γ(a, z) = Γ(a) − Γ(a, z),<(a) > 0 signifies the lower incomplete gamma function.
Moreover, when ρ ∈N0, (µ, a, ν) > 0, we have

I∗µ(a, ν, ρ) = Γ(µ)
ρ∑

n=0

(−ρ)n (µ)νn
(−a)n

n!
. (6)

Proof. The binomial series of (1 + axν)ρ converges only for |x| < a−1/ν = a0, therefore we have to split the
integral into two parts

Iµ(a, ν, ρ) =

(∫ a0

0
+

∫
∞

a0

)
xµ−1(1 + axν)ρ e−x dx =: I1 + I2 .

Consequently, by the legitimate exchange of the order of integration and summation, we have

I1 =
∑
n≥0

(
ρ
n

)
an

∫ a0

0
xµ+νn−1 e−x dx =

∑
n≥0

(−ρ)n (−a)n

n!
γ(µ + νn, a0) .

On the other hand for x > a−1/ν = a0 transforming the binomial term in the integrand we have

I2 = aρ
∫
∞

a0

xµ+νρ−1
(
1 + a−1x−ν

)ρ
e−x dx =

∑
n≥0

(
ρ
n

)
aρ−n

∫
∞

a0

xµ+ν(ρ−n)−1 e−x dx

=
∑
n≥0

(−ρ)n (−a)ρ−n

n!
Γ(µ + ν(ρ − n), a0).

The sum of I1 and I2 gives the value of the considered integral.
In the case when ρ ∈ N0, the binomial term becomes a polynomial in xk which causes that the integral

turns out to be a polynomial in −a of degree ρ with generalized Pochhammer symbol coefficients. So the
expression (6).

Theorem 3.2. Let X ∼ GEEW(θ), θ = (λ, β, k, α) a rv having PDF

f (x) =
1

Γ(α)
(λ + βkxk−1)(λx + βxk)α−1 e−(λx+βxk) 1R+

(x) .

Then, for all r + α > 0 and α − 1 + (` + r + α)/(k − 1) <N when ` ∈N, we have

EXr =
1
λr

∑
m,n≥0

{ (
β

λk

)n [
q
(
r + α + km + (k − 1)n, a0

)
+
βk
λk

q
(
r + α + k(m + 1) + (k − 1)n − 1, a0

)]
+

(
β

λk

)α−n−1 [
Q
(
r + k(α − 1) + 1 + km − (k − 1)n, a0

)
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+
βk
λk

Q
(
r + kα + km − (k − 1)n, a0

)]} (−βλ−k)m

m!
(−1)n (1 − α)n

n!
, (7)

where a0 =
(
βλ−k

)−1/(k−1)
and q(a, z) = γ(a, z)/Γ(a),<(a) > 0 denotes the regularized lower incomplete gamma

function.

Proof. Firstly, we split the PDF f (x) in (3) into two addends as follows

f (x) =
λα

Γ(α)
xα−1

(
1 +

β

λ
xk−1

)α−1

e−(λx+βxk) 1R+
(x) +

λα−1βk
Γ(α)

xk+α−2

(
1 +

β

λ
xk−1

)α−1

e−(λx+βxk) 1R+
(x).

Obviously, the moment EXr is equal to the linear combination of two integrals Iµ(a, ν, ρ) described in Lemma
1. Indeed, expanding the the exponential terms exp{−βxk

} into Maclaurin series, then substituting x 7→ λx,
exchanging the order of integration and summation, finally applying Lemma 1, we arrive at

EXr =
1

λr Γ(α)

∑
m≥0

(−β)m

m!

{
Ir+α+km(βλ−k, k − 1, α − 1) +

βk
λk

Ir+α+k(m+1)−1(βλ−k, k − 1, α − 1)
}
.

The rest is straightforward via (5).

Certain attractive special cases of the Theorem 1, which are evidently not so obvious corollaries of
Lemma 1 and (7) are listed in the sequel. First we need the definition of the unified confluent Fox–Wright
hypergeometric function 1Ψ

∗

0, see Appendix A, then the Meijer G function, see Appendix B.

Theorem 3.3. Let X ∼ GEEW(θ). Then, for all α ∈N; (λ, β, k) > 0 and for all r > max{−α, 1 − α − k}, we have

EXr =
(r)α
λr

α−1∑
n=0

(1 − α)n(r + α)kn

n! 1Ψ
∗

0

[
(r + α + (k − 1)n, k)

−

∣∣∣∣ − β

λk

] (
−
β

λk

)n

+
(r + k − 1)α

λr+k

α−1∑
n=0

(1 − α)n(r + α + k − 1)kn

n! 1Ψ
∗

0

[
(r + α − 1 + k(n + 1), k)

−

∣∣∣∣ − β

λk

] (
−
β

λk

)n

.

Proof. By direct calculation we expand the exponential term exp{−βxk
} into Maclaurin series, then we

transform the binomial in the integrand, following the derivation steps used in Lemma 1 we deduce

EXr =
∑
m≥0

(−β)m

m!

{
λα

Γ(α)

∫
∞

0
xr+α−1

(
1 +

β

λ
xk−1

)α−1

e−λx dx

+
λα−1βk
Γ(α)

∫
∞

0
xr+α+k−2

(
1 +

β

λ
xk−1

)α−1

e−λx dx
}

=
1

λrΓ(α)

∑
m≥0

{
I∗r+α+km(βλ−k, k − 1, α − 1)

+
βk
λk

I∗r+α+k−1+km(βλ−k, k − 1, α − 1)
} (
−

β
λk

)m

m!
. (8)

Rewriting (6) into

I∗r+α+km(βλ−k, k − 1, α − 1) = Γ(r + α)
α−1∑
n=0

(1 − α)n (r + α + (k − 1)n)km(r + α)(k−1)n

(
−

β
λk

)n

n!
,
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we get

EXr =
(r)α
λr

α−1∑
n=0

(1 − α)n (r + α)(k−1)n

(
−

β
λk

)n

n!

∑
m≥0

(r + α + (k − 1)n)km

(
−

β
λk

)m

m!

+
(r + k − 1)α

λr+k

α−1∑
n=0

(1 − α)n (r + α + k − 1)(k−1)n

(
−

β
λk

)n

n!

×

∑
m≥0

(r + α + k − 1 + (k − 1)n)km

(
−

β
λk

)m

m!
,

which is equivalent to the stated formula.

Theorem 3.4. Let X ∼ GEEW(λ, (uλ)−2, 3, α). Then for all λ > 0,u > 0, α > −1 and for all r > −1, we have

EXr =
ur+αλr

2
√
πΓ(α)Γ(1 − α)

∑
n≥0

{
G31

13

(
(uλ)2

4

∣∣∣∣∣∣ 1 − r+α+3n
2

1 − r−α+3n
2 , 0, 1

2

)
+

3
λ3 G31

13

(
(uλ)2

4

∣∣∣∣∣∣ −
r+α+3n

2
α−r−3n

2 , 0, 1
2

)}
(−uλ−2)n

n!
.

Proof. Consider the formula which connects the I∗–type integrals which occur in Lemma 1 and the Meijer’s
G function [17, p. 347, Eq. 3.389 27]:∫

∞

0
x2µ−1(u2 + x2)α−1 e−λx dx =

u2(µ+α−1)

2
√
πΓ(1 − α)

G31
13

(
(uλ)2

4

∣∣∣∣∣∣ 1 − µ
1 − α − µ, 0, 1

2

)
,

where |arg(u)| < π
2 ,<(λ) > 0,<(µ) > 0. The parameters fit the theorem’s constraints, so∫

∞

0
x2µ−1(u2 + x2)α−1 e−λx dx =

u2α−2

λ2µ I∗2µ((uλ)−2, 2, α − 1) ,

therefore

I∗2µ((uλ)−2, 2, α − 1) =
(uλ)2µ

2
√
πΓ(1 − α)

G31
13

(
(uλ)2

4

∣∣∣∣∣∣ 1 − µ
1 − α − µ, 0, 1

2

)
.

Inserting in (8) the appropriate I∗2µ for 2µ = r + α + 3m and 2µ = r + α + 2 + 3m, respectively, we finish the
proof of the statement.

Remark 3.5. Finally, in the special case of Theorem 1, that is, for the rv X ∼ GEEW(λ, (bλ)−1, 2, α), when
λ > 0, b > 0, α > −1 and r > −1, the moments E Xr are expressible in terms of the Whittaker function of the second
kind Wa,b(z), introduced e.g. in [21, p. 134]. This case is also of interest since Whittaker function is implemented in
Mathematica as WhittakerW[k, m, z].

3.2. Quantile Function

The next statistical function, the quantile function QX for the rv X ∼ F(x), say

QX(p) = inf{x ∈ R : p ≤ F(x)} , p ∈ (0, 1) ;

it consists form the generalized inverse of the CDF for a fixed probability p.
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Theorem 3.6. Let X ∼ GEEW(θ), θ = (λ, β, k, α) > 0. Then the related quantile function QX(p) is the unique
positive solution of the equation

λx + βxk = Q−1
(
α, 1 − p

)
, x = QX(p), p ∈ (0, 1) ,

where Q−1 stands for the inverse of the function Q.

Proof. The quantile function we derive by inverting (2). So, fixing p ∈ (0, 1) fixed, solving the equation
1 −Q

(
α, λx + βxk

)
= F(x) = p with respect to the regularized upper incomplete Gamma–function Q, we get

Q
(
α, λx + βxk

)
= 1 − p. Because Γ′(a, z) = −za−1e−z < 0, the function Γ(a, z) = Γ(α) Q(a, z) is monotone in z,

therefore Q possesses an unique inverse Q−1. Thus we yield

λx + βxk = Q−1
(
α, 1 − p

)
,

which finishes the proof.

Corollary 3.7. Let X ∼ GEEW(λ, (uλ)−2, 3, α). Then for all p ∈ (0, 1) we have

QX(p) =
3

√
−

(uλ)2

2
Q−1 +

√
(uλ)4

4
(Q−1)2 +

u4λ6

27
+

3

√
−

(uλ)2

2
Q−1 −

√
(uλ)4

4
(Q−1)2 +

u4λ6

27
,

where Q−1 = Q−1
(
α, 1 − p

)
stands for the inverse of the function Q.

Moreover, when X ∼ GEEW(λ, (bλ)−1, 2, α), we have

QX(p) =
bλ
2


√
λ2 + 4

Q−1(α, 1 − p)
bλ

− λ

 , p ∈ (0, 1) .

4. Parameter Estimation

In this section, we will make use of the GEEW(θ), extended Weibull (ExtW) [26], exponential–Weibull
(EW) [8], gamma exponentiated exponential (GEE) distribution [28], two parameter Weibull (Weibull)
and two parameter gamma (Gamma) distributions to model two well–known real data sets, namely the
’Carbon fibres’ [25] and the ’Cancer patients’ [20] data sets. The parameters of the GEEW distribution can
be estimated from the loglikelihood of the samples in conjunction with the NMaximize command in the
symbolic computational package Mathematica. Additionally, two goodness-of-fit measures are proposed to
compare the density estimates.

4.1. Maximum Likelihood Estimation
In order to estimate the parameters of the proposed GEEW density function as defined in Equation (7),

the loglikelihood of the sample is maximized with respect to the parameters. Given the data x = (x1, · · · , xn),
the loglikelihood function is

`(θ) = −n log Γ(α) −
n∑

i=1

(
λ xi + β xk

i

)
+ (α − 1)

n∑
i=1

(
λ xi + β xk

i

)
+

n∑
i=1

log
(
λ + β k xk−1

i

)
,

where f (x) is as given in (3). The associated nonlinear loglikehood system ∂`(θ)
∂θ = 0 for MLE estimator

derivation reads as follows:

∂`(θ)
∂λ

=

n∑
j=1

λα + (1 + k(α − 1))βxk−1
j

(λ + βkxk−1
j )(λ + βxk−1

j )
−

n∑
j=1

x j = 0
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∂`(θ)
∂β

=

n∑
j=1

xk−1
j [(λ(k + α − 1) + αkβxk−1

j ]

(λ + βkxk−1
j )(λ + βxk−1

j )
−

n∑
j=1

xk
j = 0

∂`(θ)
∂k

= β
n∑

j=1

(1 + k ln x j)xk−1
j

λ + βkxk−1
j

+ (α − 1)β
n∑

j=1

xk
j ln x j

λ + βxk−1
j

−

n∑
j=1

xk
j ln x j = 0

∂`(θ)
∂α

= −nψ(α) +

n∑
j=1

ln(λx j + βxk
j) = 0 , (9)

where ψ(x) = [ln Γ(x)]′ denotes the familiar digamma (or differentiated Gamma) function. The system (9)
we solve numerically.

4.2. Goodness–of–Fit Statistics
The Anderson-Darling [1] and the Cramér-von Mises [14, 32] statistics determine how closely a specific

distribution whose associated CDF fits the empirical distribution associated with a given data set. These
statistics one define

A∗0 = −
( 9

4n2 +
3

4n
+ 1

) n +
1
n

n∑
j=1

(2 j − 1) log (zi (1 − zn−i+1))


W∗

0 =
( 1

2n
+ 1

)  n∑
j=1

(
z j −

2 j − 1
2n

)2

+
1

12n

 ,
respectively, where z j = F(y j), and the y j values being the ordered observations. The smaller these statistics
are, the better the fit. Upper tail percentiles of the asymptotic distributions of these goodness–of–fit statistics
were tabulated e.g. in [25].

5. Applications

In this section, we present two applications where the GEEW model is compared with other related
models, namely extended Weibull (ExtW) [26], exponential–Weibull (EW) [8], gamma exponentiated ex-
ponential (GEE) distribution [28], two parameter Weibull (Weibull) and two parameter gamma (Gamma)
distributions. We make use of two data sets: first, the uncensored real data set on the breaking stress of
carbon fibres (in Gba) as reported in [8] and, secondly, the remission times (in months) of a random sample
of 128 bladder cancer patients as reported in [20].

• The classical gamma (Gamma) distribution with density function

f (x) =
xξ−1 e−x/φ

φξ Γ(ξ)
1R+

(x), ξ, φ > 0 .

• The classical Weibull (Weibull) distribution with density function

f (x) =
k
λ

( x
λ

)k−1
e−(x/λ)k

1R+
(x), k, λ > 0 .

• The gamma exponentiated exponential (GEE) distribution [28] with density function

f (x) =
λαδ e−λ x

(
1 − e−λ x

)α−1 (
− log

(
1 − e−λx

))δ−1

Γ(δ)
1R+

(x), λ, α, δ > 0 .



T. Pogány, A. Saboor / Filomat 30:12 (2016), 3159–3170 3167

• The exponential–Weibull (EW) distribution [7] with density function

f (x) =
(
λ + β k xk−1

)
e−λ x−β xk

1R+
(x), λ, β, k > 0 .

• The extended Weibull (ExtW) distribution [26] with density function

f (x) = a (c + b x) x−2+b exp
{
−c/x − axbe−c/x

}
1R+

(x), a > 0 , b > 0 , c ≥ 0 .
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Figure 4: Left panel: The GEEW density estimates superimposed on the histogram for Carbon fibres data. Right panel: The GEEW
CDF estimates and empirical CDF.

Table 1: Estimates of the Parameters (Standard Errors) and Goodness-of-Fit Statistics for the Carbon Fibres Data

Distributions Estimates A∗0 W∗

0
Gamma(ξ, φ) 7.48803 0.36853 1.32674 0.24815

(1.2755) (0.0649)
Weibull(k, λ) 3.44120 47.0505 0.49168 0.08430

(0.3309) (20.119)
GEE(λ, α, δ) 0.26555 10.0365 7.23658 1.43415 0.26682

(0.2162) (2.5950) (7.0529)
EW(k, λ, β) 3.73666 0.01709 0.01402 0.40365 0.06479

(0.4458) (0.0213) (0.0084)
ExtW(a, b, c) 16.1979 1 ∗ 10−7 8.05671 2.26745 0.41615

(25.712) (0.9388) (1.6531)
GEEW(λ, β, k, α) 0.15704 0.03692 3.22861 1.77021 0.3784 0.0595

(0.3779) (0.0390) (0.6368) (1.3851)
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Figure 5: Left panel: The GEEW density estimates superimposed on the histogram for Cancer Patients data. Right panel: The GEEW
CDF estimates and empirical CDF.

Table 2: Estimates of the Parameters (Standard Errors) and Goodness-of-Fit Statistics for the Bladder Cancer Patients Data

Distributions Estimates A∗0 W∗

0
Gamma(ξ, φ) 1.17251 7.98766 0.77625 0.13606

(0.2451) (0.8956)
Weibull(k, λ) 1.04783 10.6510 0.96345 0.15430

(0.0676) (2.1645)
GEE(λ, α, δ) 0.12117 1.21795 1.00156 0.71819 0.12840

(0.1068) (0.1877) (0.8659)
EW(k, λ, β) 1.04783 1.005 ∗ 10−7 0.09389 0.96345 0.15430

(0.3142) (0.3013) (0.1179)
ExtW(a, b, c) 1.96210 1 ∗ 10−21 3.74383 13.3317 2.49818

(0.7081) (0.1384) (0.3895)
GEEW(λ, β, k, α) 1 ∗ 10−10 1.30988 0.52009 3.74791 0.2991 0.0453

(0.0983) (1.9112) (0.3223) (3.3941)

The PDF and CDF estimates of the GEEW(θ), extended Weibull (ExtW) [26], exponential–Weibull
(EW) [8], gamma exponentiated exponential (GEE) distribution [28], two parameter Weibull and two
parameter Gamma distributions are plotted in Figures 4 and 5 for the Carbon fibres and Cancer patients
data, respectively. The estimates of the parameters and the values of the Anderson-Darling and Cramér-
von Mises goodness–of–fit statistics are given in Tables 1 and 2. It is seen that the proposed GEEW model
provides the best fit for the both data sets.
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Appendix A. The unified Fox–Wright generalized hypergeometric function

Here

pΨ
∗

q

[ (a,A)p
(b,B)q

∣∣∣∣ z ]
=

∞∑
n=0

∏p
j=1(a j)A jn∏q
j=1(b j)B jn

zn

n!

stands for the unified variant of the Fox–Wright generalized hypergeometric function with p upper and q lower
parameters; (a,A)p denotes the parameter p–tuple (a1,A1), · · · , (ap,Ap) and a j ∈ C, bi ∈ C \Z−0 , Ai,B j > 0 for
all j = 1, p, i = 1, q, while the series converges for suitably bounded values of |z|when

∆p,q := 1 −
p∑

j=1

A j +

q∑
j=1

B j > 0 .
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In the case ∆ = 0, the convergence holds in the open disc |z| < β =
∏q

j=1 BB j

j ·
∏p

j=1 A−A j

j .
The function 1Ψ

∗

0 we call confluent. The convergence condition becomes ∆1,0 = 1 − A1 > 0.
Let us point out that the original definition of the Fox–Wright function pΨq[z] (consult formula collec-

tion [15] and the monographs [19], [22]) contains Gamma functions instead of the here used generalized
Pochhammer symbols. However, these two functions differ only up to constant multiplying factor, that is

pΨq

[ (a,A)p
(b,B)q

∣∣∣∣ z ]
=

∏p
j=1 Γ(a j)∏q
j=1 Γ(b j)

pΨ
∗

q

[ (a,A)p
(b,B)q

∣∣∣∣ z ]
.

The unification’s motivation is clear - for A1 = · · · = Ap = B1 = · · · = Bq = 1, pΨ
∗
q[z] one reduces exactly to

the generalized hypergeometric function pFq[z].

Appendix B. Meijer G–function

The symbol Gm,n
p,q (·| ·) denotes Meijer’s G−function [23] defined in terms of the Mellin–Barnes integral as

Gm,n
p,q

(
z
∣∣∣∣ a1, · · · , ap

b1, · · · , bq

)
=

1
2πi

∫
C

∏m
j=1 Γ(b j − s)

∏n
j=1 Γ(1 − a j + s)∏q

j=m+1 Γ(1 − b j + s)
∏p

j=n+1 Γ(a j − s)
zs ds,

where 0 ≤ m ≤ q, 0 ≤ n ≤ p and the poles a j, b j are such that no pole of Γ(b j − s), j = 1,m coincides with any
pole of Γ(1 − a j + s), j = 1,n; i.e. ak − b j <N, while z , 0. C is a suitable integration contour which startes at
−i∞ and goes to i∞ separating the poles of Γ(b j − s), j = 1,m which lie to the right of the contour, from all
poles of Γ(1− a j + s), j = 1,n, which lie to the left of C. The integral converges if δ = m + n− 1

2 (p + q) > 0 and
|arg(z)| < δπ, see [21, p. 143] and [23].

The G function’s Mathematica code reads

MeijerG[{{a1, ..., an}, {an+1, ..., ap}}, {{b1, ..., bm}, {bm+1, ..., bq}}, z].


