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The Gamma Filter-A New Class of Adaptive IIR 
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Abstract-In this paper we introduce the generalized feedfor- 
ward filter, a new class of adaptive filters that combines at- 
tractive properties of finite impulse response (FIR) filters with 
some of the power of infinite impulse response (IIR) filters. A 
particular case, the gamma filter, generalizes Widrow’s adap- 
tive transversal filter (adaline) to an infinite impulse response 
filter. Yet, the stability condition for the gamma filter is trivial, 
and least mean square (LMS) adaptation is of the same com- 
putational complexity as the conventional transversal filter 
structure. Preliminary results indicate that the gamma filter is 
more efficient than the adaptive transversal filter. We extend 
the Wiener-Hopf equation to the gamma filter and develop some 
analysis tools. 

I. INTRODUCTION 
FINITE impulse response (IIR) filters are more effi- T”. cient than finite impulse response (FIR) filters, but in 

adaptive signal processing, FIR systems are used almost 
exclusively [ 5 ] ,  [ 121. This is largely due to the difficulty 
of ensuring stability during adaptation of IIR systems. 
Moreover, gradient descent adaptive procedures are not 
guaranteed to find global optima in the nonconvex error 
surfaces of IIR systems [ 101. 

Yet IIR systems have an important advantage over FIR 
systems. For a Kth order FIR system, both the region of 
support of the impulse response and the number of adap- 
tive parameters equal K. For an IIR system, the length of 
the impulse response is uncoupled from the order (and 
number of parameters) of the system. Since the length of 
the impulse response of a filter is closely related to the 
depth of memory of the system, IIR systems are preferred 
over FIR systems for modeling of systems and signals 
characterized by a deep memory and a small number of 
free parameters. These features are typical for low-pass 
frequency signals, as is the case for most biological and 
other real-world signals. 

In this paper we introduce the generalized feedforward 
filter, an IIR filter with restricted feedback architecture. 
The gamma filter, a particular instance of the generalized 
feedforward filter, is analyzed in detail. The gamma filter 
borrows desirable features from both IIR and FIR system: 
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trivial stability, easy adaptation, yet the uncoupling of the 
region of support of the impulse response and the filter 
order. 

A related filter architecture has been used in the past by 
Makhoul and Cosell [6] and Amin [l] in the context of 
spectral analysis. Other related work concerns the La- 
guerre filter, also a filter structure, although different, with 
a restricted feedback architecture [7]. Our approach dif- 
fers from previous research because filters are analyzed as 
short-term memory structures. This viewpoint is inspired 
by our work in neural networks for temporal processing 

This paper is organized as follows. In the next section 
the generalized feedforward filter is presented. This sec- 
tion is followed by the presentation of the gamma filter, 
an analysis of its properties, and a comparison with re- 
spect to FIR and IIR filter structures. In particular, we 
analyze stability properties, memory depth, adaptation 
equations, and generalize the Wiener-Hopf equations to 
the gamma filter. Next a simulation experiment concern- 
ing the gamma filter performance in a system identifica- 
tion configuration is presented. Finally, we introduce the 
y-transformation which provides a mathematical frame- 
work to describe gamma filters as conventional FIR filters 
in the y-domain, despite their IIR nature. As a result most 
FIR tools are applicable to gamma filters. 

[31. 

11. GENERALIZED FEEDFORWARD FILTERS-DEFINITIONS 
Consider the IIR filter architecture described by 

K 

Y(Z) = kzO WkXk(Z) (1) 

& ( z )  = G(z )Xk- , ( z ) ,  k = 1 ,  * , K (2) 
where X O ( z )  = X(z) ’  is the input signal and Y ( z )  the filter 
output (Fig. 1). . 

We refer to this structure as the generalized feedfor- 
wardfilter. The tap-to-tap transfer function G(z) is called 
the (generalized) delay operator and it can be either re- 
cursive or nonrecursive. When G ( z )  = z-l, this filter 
structure reduces to a transversal (feedforward) filter. The 
memory structure of a transversal filter is simply a tapped 
delay line. By iteration of (2) we can write Y ( z )  as a func- 
tion of the input X ( z )  as a function of the input X ( z )  as 

K 

Y(z)  = W ~ [ G ( Z ) ] ~ X ( Z ) .  (3) 
k = O  

‘Read = as “is defined as.” 
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Fig. 1. The generalized feedforward filter 

We will also write Gk(z)  = [G(z)lk for the input-to-tap-k 
transfer function. Thus, the transfer function of the gen- 
eralized feedforward filter is 

Y(Z) H ( z )  E ~ C w ~ [ G ( z ) ] '  
X ( z )  k = O  

K 

(4) 

It follows from (4) that H ( z )  is stable whenever G(z )  is 
stable. As the filter structure H ( z )  is in general more com- 
plex than the delay operator G(z ) ,  it follows that stability 
is more easily controlled or guaranteed in the generalized 
feedforward filter when compared to an unrestricted re- 
cursive filter architecture. On the other hand, a judicious 
choice for the delay operator G(z )  may render the filter 
structure H ( z )  with some of the desirable properties of 
recursive filter structures. 

The past of x ( n )  is represented in the tap variables x,! ( n )  
(shaded area in Fig. 1). Although conventional digital 
signal processing structures are built around the tapped 
delay line [G(z)  = z-'1, we have observed that alternative 
delay operators may lead to better filter performance. In 
general, the optimal memory structure G(z )  is a function 
of the goal of the filter operation. This observation has 
led us to consider adaptive delay operators G(z ;  p ) ,  where 
p is an adaptive memory parameter, controlled by a per- 
formance feedback mechanism such as the LMS algo- 
rithm. As a notational convenience, G(z )  = G(z;  p )  will 
be adopted. 

This paper analyzes in detail the case G(z )  = p / ( z  - 
(1 - p ) ) ,  the gamma delay operator. The gamma delay 
operator can be interpreted as a leaky integrator, where 
1 - p is the gain in the integration (feedback) loop. 

111. THE GAMMA FILTER 

The gamma filte? is defined in the time domain as 
A .  DeJinitions 

K 

y(n> = c W k X k ( n )  
k = O  

xk (n )  = (1 - p)xk (n  - 1) + W k - , ( n  - I) ,  

k = l ; . * , K  (6) 

where xo(n )  = x ( n )  is the input signal and y ( n )  the filter 
output (Fig. 2). We will assume that the filter parameters 
WO, WI, * , wk and p are adaptive. 

Following the definitions in Section 11, the gamma in- 
put-to-tap-k transfer function Gk ( z )  is given by 

(7) 

Inverse z-transformation yields the impulse response for 
tap k 

where U ( n )  is the unit step function. Note that the gamma 
delay operator is normalized, that is, 

m 

When p = 1, the gamma filter reduces to Widrow's 
adaptive transversal Jilter [12]. For p # 1, the gamma 
filter transfer function is of IIR type due to the recursion 
in (6), and G(z)  implements a dispersive delay unit. In 
comparison to a general IIR filter, the feedback structure 
in the gamma filter is restricted by two conditions: 

Cl ) :  The recurrent loops are local with respect to the 
taps. 

C2): The loop gain 1 - p is global (all feedback loops 
have the same gain). 

In fact, conditions C1 and C2 are typical for all gen- 
eralized feedforward structures. Now let us analyze some 
of the properties of the adaptive filter. 

B. Stability 
Stability of the gamma filter is guaranteed if the poles 

are located within the unit circle. The gamma filter has a 
Kth order pole at z,, = 1 - p .  As a result, the gamma 
filter is stable when 0 < p < 2.  

C. Memory Depth Versus Filter Order 
We have discussed the strict coupling of the memory 

depth to the number of free parameters in the adaptive 
FIR filter structure and argued that this property leads to 
poor modeling of low-pass frequency bounded signals. IIR 

*The gamma filter was originally developed in continuous time as part 
of a neural net model for temporal processing [3]. We showed by transfor- 
mation s = ( z  - l / T J  that the impulse response of the continuous time 
gamma filter can be written as 

K 

h ( t )  = c wkgk(t) 
k = n  

where g,(t) = ( p k / ( k  - l ) ! )k- 'e-@' ,  k = 1 ,  . . . , K .  and g,,(t) = 6 ( t ) .  

The functions g k  ( t )  are the integrands of the (normalized) gamma function. 
Hence the name gamma model for structures that utilize tap variables of 
type xL ( t )  = (gk * x) ( t )  to store the past of x ( r )  (here denotes the convo- 
lution operator). Closely related are Laguerre functions, that were pro- 
posed by [13] as a very convenient basis for decomposition of linear sys- 
tems in  a signal processing context. In fact, the functions g l ( t ) ,  k = 1. 
. . .  , K ,  can be easily written in terms of Laguerre functions. Since the 
Laguerre functions are complete, it follows that the functions gk(r)  are com- 
plete in Lz [0, 001. 
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Fig. 2. The gamma filter structure. 

filters on the other hand have feedback connections, and 
consequently the memory depth is not coupled to the 
number of filter parameters. In this section an effort is 
made to quantify the relation memory depth versus filter 
order for the gamma filter. It will be shown that the mem- 
ory parameter p provides a mechanism to uncouple depth 
from the filter order. 

First, let us quantify the notion of memory depth. As a 
convenient measure of memory depth for a Kth order 
gamma filter we take the first moment (mean value) of the 
last (Kth) delay kernel in the filter. Such a measure can 
be interpreted as the mean sampling time for the last tap. 
The mean memory depth D for the Kth order filter is thus 
defined as 

m 

Next we define the (temporal) resolution R of the filter as 
the number of free parameters (i.e., the number of tap 
variables) per unit of time in the filter memory. This is 
equivalent to the number of taps (K) divided by the mean 
memory depth D. Thus 

K 
D " 

R E - =  

The following formula arises which is of fundamental im- 
portance for the characterization of the gamma memory 
structure: 

K = D x R .  (12) 

Equation (12) reflects the possible tradeoff of resolution 
versus memory depth in a memory structure for fixed or- 
der K. Such a tradeoff is not possible in a nondispersive 
tapped delay line, since the fixed choice of p = 1 sets the 
depth and resolution to D = K and R = 1, respectively. 
However, in the gamma memory, depth and resolution 
can be adapted by variation of p. The choice p = 1 rep- 
resents a memory structure with maximal resolution and 
minimal depth. In this case, the order K ,  the number of 
weights and depth D of the memory are equal. Very often 

this coupling leads to overfitting of the data set (using 
parameters to model the noise). Hence, the parameter p 
provides a means to uncouple the memory order and 
depth. 

The depth of memory as a function of frequency is 
measured by the group delay. In Fig. 3 we have plotted 
the group delay of G2 ( z )  = ( p / z  - (1 - P ) ) ~  (that is, the 
input-to-second-tap trapsfer function) for three values of 
p. Note that for p < 1 the group delay at low frequencies 
is greater than the tap index k = 2. Thus, for p < 1 ad- 
ditional memory depth is obtained for low frequencies at 
the cost of group delay for the high frequencies. When 
most of the information of a signal is in the low-pass re- 
gion, favoring low frequencies in the memory can be ef- 
ficient. 

As an example, assume a signal whose dynamics are 
described by a system with 5 parameters and maximal de- 
lay 10, that is, y ( t )  = f ( x ( t  - n,),  w,) where i = l ,  * - - , 
5 ,  and max, (n , )  = 10. If we try to model this signal with 
a regular FIR structure, the choice K = 10 leads to 
overfitting while K < 10 leaves the network unable to 
incorporate the influence of x ( t  - 10). In a gamma filter, 
the choice K = 5 and p = 0.5 leads to 5 free network 
parameters and mean memory depth of 10, obviously a 
more efficient memory structure. 

D. LMS Adaptation 

In this section the least mean square (LMS) adaptation 
update rules for the gamma filter parameters wk and p are 
derived. In particular, our interest is to show that the up- 
date equations can be computed by an algorithm where 
the number of operations per time step scales by O(K), 
K being the filter order. This is interesting since to adapt 
a Kth order IIR filter with the LMS algorithm, O(K2) op- 
erations are necessary when the exact error gradients are 
utilized [ 121. 

Consider the gamma filter as described by the set of 
equations ( 5 )  and (6). Let the performance of the system 
be measured by the total error E,  defined as 

T T 

E c En = c ;e2(.)  
n = O  n=O 

T 

= C [d(n) - y(n)I2 (13) 
n = O  

where d(n )  is a target signal. The LMS algorithm corrects 
the filter coefficients proportionally to the negative of the 
local gradient, i.e., the coefficient update equations are in 
the direction of the negative gradients 

(15) 
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Fig. 3 .  Group delay of gamma memory at tap k = 2. 

where 11 is a step size parameter. We first expand for wk, 
yielding 

Similarly, the update equation for p evaluates to 

where ak(n)  = (axk(n)/ap).  The gradient signal (Yk(n) 
can be computed on-line by differentiating (6 )  [ 101, 1141, 
leading to 

ao(n) = 0 

a&I) = ( 1  - p)ayk(n - 1 )  + p a k - l ( n  - 1) 

+ [ X k - l ( n  - 1 )  - xk(n - 1 1 1 9  

, K .  ( 1 8 )  
The set of equations (16)-(18) constitutes the update al- 
gorithm in block mode adaptation. In practice, a local in- 
time approximation (i.e., sample by sample) of the form 

Awk(n) = qe(n)xk(n) ,  k = 0, * , K (19) 

k =  1 ,  * * 

K 

‘ Ap = 11 c e(n)wkak(n) (20) 
k = O  

works well if 11 is sufficiently small. (Equation 19) can be 
recognized as the update term in the LMS algorithm. No- 
tice that the number of operations per time step for (19) 

and (20) scale both as O ( K ) .  Thus, the entire LMS al- 
gorithm scales as O ( K ) ,  which coincides with the com- 
plexity for Widrow’s adaptive transversal filter. Equation 
(20) displays the same complexity as the IIR LMS routine 
per adaptive feedback parameter, but since the gamma fil- 
ter has only a single feedback coefficient (the global p )  it 
has a complexity smaller than a K coefficient IIR filter 
(which scales as O ( K 2 ) ) .  IIR structures with trivial sta- 
bility tests, such as the cascade of biquads or the lattice, 
have worse complexity of adaptation. 

The results of the last three sections are summarized in 
Table I. Clearly the gamma filter shares desirable features 
from both FIR and IIR filters. 

E. Wiener-Hopf Equations for the Gamma Filter 

The optimal weights for an adaptive linear combiner in a 
given stationary environment can be analytically ex- 
pressed by the Wiener-Hopf or normal equations [5].  Here 
these equations are extended to the gamma filter. We will 
show that the gamma normal equations generalize Wie- 
ner’s formulation for strictly feedforward filters. 

Consider the gamma filter structure as described by ( 5 )  
and (6). We define a performance index 4 = Ere2@)] 
where e(n)  = d ( n )  - y (n )  is an error signal and E [  * ] 
the expectation operator. In order to maintain a consistent 
notation with respect to the adaptive signal processing lit- 
erature, we introduce the vectors Xn = [xo(n), x,(n), 
. . .  , xK(n)lT and W - * , wdT.  Note that 
X ,  holds the tap variables and not the input signal sam- 
ples. Evaluating 4 leads to 

[ W O ,  w l ,  

4 = E[d2(n ) ]  + WTRW - 2PTW (2 1) 

where R = E [XnXT]  and P = E [ d ( n )  X,] . The goal of 
adaptation is to minimize 4 in the space of K + 1 weights 
and p .  When 4 is minimal, the conditions ( a ( / a w k )  = 0 
and ( a ( / d p )  = 0 necessarily hold. Partial differentiation 
of (21) with respect to the system parameters yields the 
following results: 

R W =  P (22) 

and 

WT[Rp  W - PPI = 0 (23) 

where 

and 

Note that (22) is the same expression as the Wiener- 
Hopf equation for the adaptive transversal filter. The dif- 
ference lies in the fact that the vector Xn holds the tap 
variables x k ( n )  and not the samples x ( n  - k ) .  The extra 
scalar condition (23) is a result of requiring (at / a  p )  = 
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TABLE I 
COMPARISON OF FIR, IIR, A N D  GAMMA FILTER PROPERTIES 

Kth Order Filter FIR Gamma IIR 

Stability Always Trivial Nontrivial 
stable stability stability 

o < / . L < 2  

Memory depth 

Complexity of 

vs. order Coupled K Uncoupled K / p  Free 

adaptation 0 (K) O W )  O ( K z )  

0. Thus, (23) provides an analytical expression for the 
optimal memory structure. This expression also reveals 
that the signal cyk (n)  = (axk (n)  /a p) is needed in order to 
compute the optimal memory structure (that is, the opti- 
mal value of p). This observation is confirmed in the 
expressions for the LMS algorithm. 

It is insightful to rewrite the gamma normal equations 
(22), (23) in terms of the input signal x ( n ) .  Let us define 
the delay kernel vector G(n) [g(n) ,  g2(n),  * - , 
gK(n)IT.  Then (22) and (23) evaluate to 

E{[G(n)  x ( 4 l  [G(n) x(41T1W 

= WTE [d (n )  [y * x ( n ) ] ] .  (25) 

where denotes the conyolution operator. 
Note that these equations in the time domain include 

infinite summations (g(n)  may be of infinite length), but 
in the z domain they can be computed exactly by contour 
integration as long as G(z)  is a rational function of z .  

The optimal coefficients for the class of generalized 
feedforward filters can be computed from (22) (or (24)), 
augmented with a number of adjoint scalar equations (23) 
or (25), one for each adaptive parameter in G(z ) .  

IV. EXPERIMENTAL RESULTS 

We have presented two frameworks to obtain an optimal 
gamma filter architecture. In Section 111-D the LMS ad- 
aptation algorithm was derived and Section 111-E was de- 
voted to the Wiener-Hopf equations for the gamma filter. 
In this section we present numerical simulation results for 
both optimization models when the gamma filter is used 
in a system identification configuration. The goal of this 
section is twofold. First, we will show that the optimal 
filter architecture indeed outperforms Widrow's adaptive 
linear combiner. Also, it will be shown that the filter coef- 
ficients wk converge to the optimal values if the LMS up- 
date rules of Section 111-D are used. 

The system to be identified is the third-order elliptic 
low-pass filter described by3 

H ( Z )  = 1 - 2 . 1 2 9 1 ~ ~ '  + 1 . 7 8 3 4 ~ - ~  - 0 . 5 4 3 5 ~ - ~  * 
0.0563 - 0.0009~-' - 0 . 0 0 0 9 ~ - ~  + 0 . 0 5 6 3 ~ - ~  

(26) 
The performance index E as a function of p was computed 
by evaluating (2 1) in the z domain (residue theorem). The 
optimal weight vector W* is computed by solving the 
Wiener-Hopf equation (22), and substituting back into 
(21). We assumed a normal (0, 1)-distributed white noise 
input, which translates to a constant spectrum in the z do- 
main. p was parametrized over the real domain [0, l]. In 
this particular case where we model a low-pass filter, the 
range 0 < p < 1 is most interesting despite the fact that ' 

the gamma filter is stable for a larger domain (0 < p < 
2). All computations were performed with Mathematica 
[15] on a NeXT computer. The results are displayed ifi 
Fig. 4(a). Restrictions on the computational resources 
limited evaluations to K I 3. Note that these results pre- 
sent theoretical rather than experimental results since the 
Wiener-Hopf equations were solved analytically in the 
frequency domain. Observe that for all memory orders K 
the optimal performance is obtained for p < 1. Hence, 
the optimal gamma filter outperforms the conventional 
adaptive transversal filter by a large margin. Note that the 
optimal memory depth Dopt = K / p o p ,  = 5 is constant for 
different memory orders. 

In Fig. 4(b) we show the relative total error J = 
oa/o: after convergence using the LMS update rule (19). 
We parametrized p over the domain [0, 11 using a step 
size A p  = 0.1. The experimental results of Fig. 4(b) 
match the theoretical optimal performance (Fig. 4(a)) very 
well. This experiment shows that the filter weights {wk} 
can indeed be learned by on-line LMS learning. When K 
= 5 ,  the adaptive linear combiner performs as well as a 
third-order ( K  = 3) gamma filter with p = 0.6. In practice 
we prefer the third-order gtjmma filter (5 free parameters) 
over the fifth-order transversal filter (6 parameters). Par- 
simony in the number of free parameters provides the 
gamma filter with better modeling (generalization) char- 
acteristics. 

The effect of the memory parameter p on the filter per- 
formance increases when we model a system with longer 
impulse response (smaller cutoff frequency) but the same 
number of parameters. In Fig. 5 the performance index 4 
versus p is plotted for a third-order elliptic low pass filter 
H2(z )  with smaller cutoff frequency (wco = 0 . 0 6 ~  rad). 
As in the previous experiments, we employed a system 
identification protocol and computed the optimal perfor- 
mance error as a function of p by solving the Wiener- 
Hopf equations. The unknown system was given by 

1 - 0.87312-I - 0 . 8 7 3 1 ~ ~ ~  + zP3 
H2(z )  = 1 - 2.86532-I + 2 . 7 5 0 5 ~ ~ ~  - 0 . 8 8 4 3 ~ - ~ '  

(27) 

'This filter has been described in Oppenheim and Schafer [8]. 
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y-l G(z). (28) 

n = O  

Thus, the gamma transform is equivalent to the Laurent 
series expansion of the signal p-"x(n)  evaluated at the 

It is clear that the third-order adaline structure performs 
very poorly (4 = 1) whereas the third-order gamma filter 
with p = 0.15 performs at 4 = 0.1. 

We have experimented with several signals (sinusoids 
in noise, Feigenbaum map, electroencephalogram (EEG)) 
for various processing protocols (prediction, system iden- 
tification, classification) [3]. Invariably the optimal mem- 
ory structure4 was obtained for p < 1. These data will be 
reported in a forthcoming publication. 

4The optimal memory structure is defined as the structure of lowest di- 
mensionality that minimizes the performance index J .  

or 

where C is a closed contour that encircles the point yo. 
Equations (30) and (32) relate the time domain and the 
y-domain. Since the gamma filter is a FIR filter in the 
y-domain, all design and analysis tools available for this 
class of filters are without restriction applicable to gamma 
filters in the y-domain. 
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Fig. 6. Asecond-order gamma filter, and the relation between z and y domains. 

0 0 

4 

5 

(a) (b) 
Fig. 7. (a) Frequency magnitude response and (b) impulse response of gamma filter (35) as a function of p.  

As an example, let us analyze a simple second-order 
gamma filter with wo = - 1, wl = 0 and w2 = 1 (Fig. 6). 
Note that the pole(s) of a gamma filter are located at the 
origin in the y plane. The zeros are located at y = -1 
and y = 1. Thus, the system is feedforward in the 
y-domain. The transfer function in the y-domain is easily 
obtained by inspection: 

(33) 

Substitution of (29) gives for the transfer function in the 
z domain 

(34) 

The impulse response of a gamma filter can be expressed 
as 

K 

h(n)  = Wkgk(n) 
k = O  

= -6(n) + (n  - 1)p2(1 - p ) 9 7 ( n  - 2). (35)  
In Fig. 7 the system’s magnitude frequency and impulse 
responses are displayed as a function of p.  Note that if p 
is close to 1, the gamma filter behaves as the FIR system 
H ( z )  = z-’ - 1. When p gets smaller, the “peak” of the 
frequency response becomes sharper, which is typical for 
IIR filters as compared to FIR filters of the same order. 
Thus, the global filter parameter p determines whether 
FIR or IIR filter characteristics are obtained. 

VI. DISCUSSION 

In this paper the analytical development of a new class 
of adaptive filters-the gamma filters-has been pre- 
sented. In FIR filter structures, filter memory depth and 
filter order are coupled. As a result, when long impulse 
responses are required in an FIR filter, the filter order must 
be high. Thus the FIR filter order usually exceeds the 
number of degrees of freedom of the system to be mod- 
eled, leading to poor modeling performance. In IIR filters 
these two aspects appear uncoupled. However, the sim- 
plicity of the adaptation of the FIR and its inherent sta- 
bility are normally practical factors for the choice of the 
FIR over IIR designs. 

The gamma filters implement a remarkable compromise 
between these two extremes. While the memory depth is 
adjustable independently from the filter order, the stabil- 
ity and adaptation characteristics of the gamma filter are 
similar to FIR structures. The error surface is still qua- 
dratic with respect to the filter weights { wk} , but it is not 
convex in p.  As an experimental rule of thumb, we have 
observed that gradient descent adaptation of p leads to the 
global minimum if we choose the initial value po = 1 .  
The structure of the error surface as a function of p (Fig. 
4) is in general not convex which potentially leads to ad- 
aptation problems for a simple gradient descent algo- 
rithm. We are currently studying this problem. 

We have shown with a system identification problem 
that the gamma filter outperforms the conventional adap- 
tive transversal filter of the same order. In general, the 
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gamma filter is preferable if the processing problem in- 
volves with energy ‘Oncent rated at low frequen- 
cies and relatively few degrees of freedom. Applications 

[ 121 B. Widrow and S .  Steams, Adaptive Signal Processing. Englewood 

[ 131 N. Wiener, Extrapolation, Interpolation and Smoothing of Stationan 
New York: Wiley, 

Cliffs, NJ: Prentice-Hall, 1985. 

Time Series, with Engineering Applications. 
involving long delays as in channel equalization, room 
acoustics, or identification of systems with long impulse 
responses seem to be particularly appropriate for the 
gamma filter. Yet the identification of application areas 
where the gamma filter outperforms adaline is still an open 
question. We are also currently investigating the practical 
importance of alternative delay operators G ( z ) .  

Related work has been conducted in the area of La- 
guerre filters where the delay operators are first-order all- 
pass filters [7], [ll]. The work in this paper, however, 
takes a different viewpoint. We have analyzed filter struc- 
tures as networks for storing history traces of a signal, 
that is, in terms of its computational properties as a short- 
term memory structure. Second, unlike previous work, we 
present the theoretical framework for adaptation of the 
memory structure by gradient descent in order to match 
the filter memory to the input signal. 

Although not explored here, it is possible to treat the 
generalized feedforward filter as an approximation prob- 
lem using the basis functions Gk(z). In this context, re- 
cently [9] showed that alternative basis functions (differ- 
ent from Gk(z) = z?) may indeed outperform 
conventional transversal filters, but the authors did not 
use an adaptive Gk(z) and did not provide an extended 
framework. 

In the neural network community it is common to speak 
of the adaline (adaptive linear neuron) structure instead of 
adaptive transversal filter. In related work, we have also 
referred to the adaptive gamma filter as adaline ( p )  [4]. 
In this terminology, adaline( 1) is equivalent to Widrow’s 
adaline. 
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