
MNRAS 000, 000–000 (2021) Preprint 20 September 2022 Compiled using MNRAS LATEX style file v3.0

The Gamma-ray Bursts fundamental plane correlation as a cosmological
tool.

M. G. Dainotti1,2,3 ★, A. Ł. Lenart 4, A. Chraya,5, G. Sarracino6,7, S. Nagataki8,9, N. Fraĳa10,
S. Capozziello6,7,11, M. Bogdan12
1National Astronomical Observatory of Japan, 2 Chome-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
2 The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
3Space Science Institute, Boulder, Colorado
4Astronomical Observatory, Jagiellonian University, ul. Orla 171, 31-501 Kraków, Poland
5Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Punjab 140306, India
6SDipartimento di Fisica, “E. Pancini” Università “Federico II” di Napoli, Compl. Univ. Monte S. Angelo Ed. G, Via Cinthia, I-80126 Napoli (Italy)
7INFN Sez. di Napoli, Compl. Univ. Monte S. Angelo Ed. G, Via Cinthia, I-80126 Napoli (Italy)
8Interdisciplinary Theoretical & Mathematical Science Program, RIKEN (iTHEMS), 2-1 Hirosawa, Wako, Saitama, Japan 351-0198
9 RIKEN Cluster for Pioneering Research, Astrophysical Big Bang Laboratory (ABBL), 2-1 Hirosawa, Wako, Saitama, Japan 351-0198
10 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, Ciudad de México 04510
11 Scuola Superiore Meridionale, Università di Napoli Federico II Largo San Marcellino 10, 80138 Napoli (Italy)
12 University of Wroclaw, plac Grunwaldzki 2/4, Wroclaw, Lower Silesia Province, 50-384, Poland.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Cosmological models and their corresponding parameters are widely debated because of the current discrepancy between the
results of the Hubble constant, 𝐻0, obtained by SNe Ia, and the Planck data from the Cosmic Microwave Background Radiation.
Thus, considering high redshift probes like Gamma-Ray Bursts (GRBs) is a necessary step. However, using GRB correlations
between their physical features to infer cosmological parameters is difficult because GRB luminosities span several orders of
magnitude. In our work, we use a 3-dimensional relation between the peak prompt luminosity, the rest-frame time at the end of
the X-ray plateau, and its corresponding luminosity in X-rays: the so-called 3D Dainotti fundamental plane relation. We correct
this relation by considering the selection and evolutionary effects with a reliable statistical method, obtaining a lower central
value for the intrinsic scatter, 𝜎𝑖𝑛𝑡 = 0.18± 0.07 (47.1 %) compared to previous results, when we adopt a particular set of GRBs
with well-defined morphological features, called the platinum sample. We have used the GRB fundamental plane relation alone
with both Gaussian and uniform priors on cosmological parameters and in combination with SNe Ia and BAO measurements to
infer cosmological parameters like 𝐻0, the matter density in the universe (Ω𝑀 ), and the dark energy parameter 𝑤 for a 𝑤CDM
model. Our results are consistent with the parameters given by the ΛCDM model but with the advantage of using cosmological
probes detected up to 𝑧 = 5, much larger than the one observed for the furthest SNe Ia.

Key words: Gamma rays: general; Supernovae: general; Distance scale; cosmological parameters

1 INTRODUCTION

Gamma-Ray Bursts (GRBs) are incredibly powerful phenomena: they are the brightest objects after the Big Bang, as well as one
of the farthest astrophysical objects ever detected (Paczynski 1986; Piran 2004; Kumar & Zhang 2015). These features allow
us to use them as cosmological tools, similar to what has been achieved for Supernovae Type Ia (SNe Ia, Riess et al. (1998)).
Because of their high luminosity, GRBs can be observed up to very large distances, corresponding to high redshifts. Indeed,
GRBs have been observed up to 𝑧 = 8.2 and 𝑧 = 9.4 (Tanvir et al. 2009; Cucchiara et al. 2011), while SNe Ia has only been
observed up to 𝑧 = 2.26 (Rodney et al. 2015). Using GRBs as cosmological tools requires a full understanding of their physical
mechanisms. Both their energy emission mechanisms and progenitors are still being studied by the scientific community. For
their birth, there is a general consensus on two different main scenarios: the explosion of a very massive star at the end of its
lifetime (Narayan et al. 1992; Woosley et al. 1993; MacFadyen & Woosley 1999; Nagataki et. al 2007; Nagataki 2009, 2011),
followed by a core-collapse SNe (Stanek et al. 2003; MacFadyen et al. 2001) or the coalescence of two compact objects, like
black holes (BHs) or neutron stars (NSs) (Lattimer & Schramm 1976; Eichler et al. 1989; Li & Paczyński 1998; Rowlinson
et al. 2014; Rea et al. 2015; Stratta et al. 2018). The most probable frameworks for the central engine that powers the GRB
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2 Dainotti et al.

consider the following astrophysical objects: BHs, NSs, or fast spinning newly born highly magnetized NSs magnetars, (Usov
(1992); Liang et al. (2018); Ai et al. (2018); Komissarov and Barkov (2007); Barkov and Komissarov (2008)).
To identify the different possible natures of their origin, it is necessary to classify GRBs according to their observable features.
A general paradigm divides GRB light curves (LCs) into a rapid prompt energy emission followed by a longer emission phase
called the afterglow. The afterglow is usually detected in X-ray, optical, and also radio wavelengths (Sari et al. 1998; O’Brien
et al. 2006; Sakamoto 2007; Perley et al. 2014; Li et al. 2015; Morsony et al. 2016; Warren et al. 2017, 2018). We usually
detect the prompt emission of GRBs in high-energy bands, like from X-rays up to ≥ 100 MeV 𝛾-rays, but sometimes they have
been observed in the optical band as well (Fraĳa & Veres 2018; Panaitescu & Vestrand 2011; Fraĳa et al. 2020b).
A first categorization divides GRBs into Short and Long, depending on the duration of their prompt emission: 𝑇90 ≤ 2 s or
𝑇90 ≥ 2 s 1, respectively (Mazets et al. 1981; Kouveliotou et al. 1993). There is a very strong association between the prompt
duration and the progenitor of GRBs: indeed, the majority of Long GRBs originate from the core collapse of a very massive
star, while Short GRBs are born by the merging of two compact objects (Abbott et al. 2017; Troja et al. 2017; Zhang et al.
2006; Ito et al. 2015, 2021). A new classification of GRBs according to their progenitor mechanism has been proposed (Zhang
et al. 2006): Type I GRBs are the ones born by the merging of two compact objects, while Type II are the ones born by the core
collapse of very massive stars. Their progenitors can be inferred from morphological and physical characteristics.
The plateau phase of GRBs is a flat part of the GRB LC following the prompt phase, and it was discovered by the Neil Gehrels
Swift Observatory (Swift) (O’Brien et al. 2006; Sakamoto 2007; Willingale et al. 2007). The duration of this plateau usually
ranges from 102 to 105 s, after which a power-law (PL) decay phase is observed. Several scenarios describe the plateau, such as
the external shock model, according to which the shock front between the ejecta of the emission and the interstellar medium is
powered by a long-lasting energy emission from the central engine (Zhang et al. 2006), or due to the spin-down of a new-born
magnetar (Stratta et al. 2018; Fraĳa et al. 2020).
In the past decades many efforts have been performed by the scientific community in order to find possible correlations between
physical features of GRBs. Regarding correlations involving only the prompt features we cite, among the others, the relation
between the peak in the a𝐹a spectrum, 𝐸𝑝𝑒𝑎𝑘 the isotropic energy in the prompt emission, 𝐸𝑖𝑠𝑜 (Amati et al. 2002); and the
one between 𝐸𝑝𝑒𝑎𝑘 and the isotropic prompt luminosity 𝐿𝑖𝑠𝑜 (Yonetoku et al. 2004; Ito et al. 2019). We also mention the
correlations between the collimated-corrected energy 𝐸 𝑗𝑒𝑡 = 𝐸𝑖𝑠𝑜 × (1 − 𝑐𝑜𝑠\) where \ is the jet opening angle and 𝐸𝑝𝑒𝑎𝑘

found by Ghirlanda et al. (2004); the one found by Liang & Zhang (2005) between 𝐸𝑝 , 𝐸𝑖𝑠𝑜, and the break time of the optical
afterglow LCs, 𝑡𝑏 . The last two correlations, even if they involve prompt features, introduce the jet-break time, which can also
be inferred from the X-ray afterglow, which in some cases can include a plateau.
Several other correlations directly involving the plateau (Dainotti et al. 2008, 2013b, 2015a, 2016; Liang et al. 2010; Bernardini
et al. 2012a; Xu & Huang 2012; Margutti et al. 2013; Zaninoni et al. 2016; Shun-Kun et al. 2018; Tang et al. 2019; Zhao et
al. 2019; Srinivasaragavan et al. 2020; Wen et al. 2020) and their applications as cosmological probes (Cardone et al. 2010;
Postnikov et al. 2014; Dainotti et al. 2013a; Izzo et al. 2015) have been presented. For a more extensive discussion on the
prompt, prompt-afterglow relations, their selection biases and the application as cosmological tools see Dainotti & Del Vecchio
(2017); Dainotti & Amati (2018); Dainotti et al. (2018). One of these correlations is the so-called Dainotti relation, which

links the time at the end of the plateau emission measured in the rest frame, 𝑇∗
𝑋 , with the corresponding X-Ray luminosity of

the LC, 𝐿𝑋 (Dainotti et al. 2008), see Equation 2. This correlation is theoretically supported by the magnetar model (Dall’Osso
et al. 2011; Bernardini et al. 2012b; Rowlinson et al. 2014). Its extension in three dimensions has been discovered by adding
the prompt peak luminosity, 𝐿peak (Dainotti et al. 2016, 2017c) and is known as the fundamental plane correlation or the 3D
Dainotti relation. 2

To use this relation as a cosmological tool we selected a GRB sample with well-defined morphological properties and almost
flat plateaus, called the platinum sample, which was introduced in Dainotti et al. (2020a), and whose properties are detailed in
Sec. 2. We clarify that, following a well-established approach in the realm of the SNe Ia cosmology in which only the golden
SNe Ia LCs are taken (see Scolnic et al. (2018)), we choose a well-defined sample. This is built in the observer frame and not
in the rest-frame - namely, the LCs are in the fluxes versus time parameter space. This means that there is no involvement of
cosmological parameters in this selection of the LCs. Therefore there is no circularity problem involved in the application of
this sample for cosmological use. We correct this correlation for evolutionary effects due to the redshift and selection biases, as
done in Dainotti et al. (2020a), to infer cosmological parameters, such as the Hubble constant 𝐻0, the current mass density of
the universe, Ω𝑀 , and the dark energy parameter, 𝑤, for a 𝑤CDM model, together with other cosmological probes like the SNe
Ia and the Baryon Acoustic Oscillations (BAO). Indeed, the evolution of the cosmological parameters is a vital topic and it has

1 𝑇90 is the time during which a GRB ejects from 5% to 95% of its total measured photons during the prompt phase
2 We note that we are referring to the fundamental plane correlation related to GRBs, and not to other definitions of fundamental planes used in astronomy,
such as the fundamental plane of elliptical galaxies (Djorgovski & Davis 1987)
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The Gamma-ray Bursts fundamental plane correlation as a cosmological tool. 3

been discussed especially in relation to 𝐻0. It has been highlighted even for the SNe Ia by Dainotti et al. (2021a) and Dainotti
et al. (2022d) that there is an evolutionary trend on 𝐻0 as a function of the redshift, which can be possibly explained either with
selection biases or with a new physics (i.e., invoking the so-called 𝑓 (𝑅)-gravity theory). For a general review on the Hubble
constant tension see Abdalla et al. (2022).
In Sec. 2 the criteria used for the sample selection of the GRB data are detailed. In Sec. 3 we show the GRB fundamental plane
both with and without correcting for evolutionary effects and selection biases. In Sec. 4 we study the evolutionary parameters as
a function of cosmology. In Sec. 5 we apply the fundamental plane as a cosmological tool. Our results are shown in Sec. 6. In
Sec. 7 we present a comparison between the results obtained using GRBs alone versus the SNe Ia and SNe Ia + BAO sets. In
Sec. 8 we discuss the future use of GRBs as standalone probes. Finally, our conclusions are discussed in Sec. 9.

2 SAMPLE SELECTION

We take into account the GRBs which can be described by the Willingale et al. (2007) phenomenological model using the BAT
+ XRT LCs gathered from the Swift web page repository (Evans et al. 2009, 2010) 3. We fit this sample with the Willingale
functional form for 𝑓 (𝑡), which reads as follows:

𝑓 (𝑡) =


𝐹𝑖 exp

(
𝛼𝑖

(
1 − 𝑡

𝑇𝑖

))
exp

(− 𝑡𝑖
𝑡

)
for 𝑡 < 𝑇𝑖

𝐹𝑖

(
𝑡
𝑇𝑖

)−𝛼𝑖

exp
(− 𝑡𝑖

𝑡

)
for 𝑡 ≥ 𝑇𝑖 ,

(1)

modelled for both the prompt (index ‘i=p’) 𝛾 - ray and initial hard X-ray decay and for the afterglow (‘i=X’), so that the complete
LC 𝑓𝑡𝑜𝑡 (𝑡) = 𝑓𝑝 (𝑡) + 𝑓𝑋 (𝑡) contains two sets of four free parameters (𝑇𝑖 , 𝐹𝑖 , 𝛼𝑖 , 𝑡𝑖), where 𝛼𝑖 is the temporal power law (PL)
decay index and 𝑇𝑖 is the end time of the prompt and the plateau emission, respectively, while the time 𝑡𝑖 is the initial rise
timescale. The transition from the exponential to PL occurs at the point (𝑇𝑖 , 𝐹𝑖𝑒−𝑡𝑖/𝑇𝑖 ), where the two functions have the same
value and this point marks the beginning of the plateau. Using these criteria, we fit 222 LCs. The peak prompt luminosity at 1
second, 𝐿𝑝𝑒𝑎𝑘 , and the X-ray luminosity measured in the final part of the plateau phase, 𝐿𝑋 , have been calculated as follows:

𝐿 = 4𝜋𝐷2
𝐿 (𝑧) 𝐹 (𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 , 𝑇

∗
𝑋 ) · 𝐾. (2)

To calculate 𝐿𝑝𝑒𝑎𝑘 one substitutes the flux 𝐹 with 𝐹𝑝𝑒𝑎𝑘 which is the 𝛾-ray flux in 1 s interval (𝑒𝑟𝑔 𝑐𝑚−2𝑠−1) measured at the
peak of the prompt emission, while to calculate 𝐿X, one uses the flux 𝐹𝑋 , measured in X-rays at the end of the plateau; 𝐷𝐿 (𝑧)
is the luminosity distance computed for a particular redshift in the flat ΛCDM cosmological model, according to which we have
an energy equation of state 𝑤 = −1, Ω𝑀 = 0.3, and 𝐻0 = 70 𝐾𝑚 𝑠−1 𝑀𝑝𝑐−1; 𝑇∗

𝑋 is the time measured in the rest frame at the
end of the plateau, and 𝐾 is the 𝐾-correction for the cosmic expansion (Bloom et al. 2001). For GRBs whose spectrum is fitted
by a simple PL this correction is given by 𝐾 = (1 + 𝑧) (𝛽−1) , where 𝛽 is the spectral index of the plateau in the X-ray band (Evans
et al. 2009, 2010).
The Platinum Sample (Dainotti et al. 2020a) is a subset of the Gold Sample, the latter being defined in Dainotti et al. (2016)
and inspired by similar samples presented in the literature (Xu & Huang 2012; Tang et al. 2019). To define the Gold Sample,
we consider the following requirements for the plateau: 1) its beginning, defined by the quantity 𝑇𝑡 , must have at least five data
points; 2) its inclination must be < 41◦, this latter criterion is adopted in Dainotti et al. (2016) on the Gold Sample, where a
Gaussian distribution fit the plateau angles, and the outliers are beyond the threshold of 41◦.
To build the Platinum Sample, we also add the following requirements for the plateau: 3) its end time 𝑇𝑋 must not fall within
observational gaps of the LCs to allow us the determination of this quantity directly from the data and not from the LC fitting; 4)
it should last at least 500 𝑠; and 5) should not present flares at its start or during the entire duration of the plateau itself (refining
the idea of Xu & Huang (2012)).
Using these criteria, the platinum sample is composed of 50 GRBs out of the 222 plateaus analyzed. The furthest GRB in this
sample is at 𝑧 = 5.
Regarding the SNe Ia data, we use the Pantheon sample (Scolnic et al. 2018), a set composed of 1048 SNe Ia collected by
different surveys spanning from 𝑧 = 0.01 up to 𝑧 = 2.26.
It is important to note that the criteria defining our sample are objectively determined before the construction of the correlations
sought; sample cuts are introduced strictly following either data quality or physical class constraints.

3 http://www.swift.ac.uk/burst_analyser. We follow the criteria for the GRB sample selection considered in Srinivasaragavan et al. (2020) and Dainotti et al.
(2020a), and we use the platinum sample detailed in Dainotti et al. (2020a).
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Figure 1. Top panels: the 2D projections of the fundamental plane related to the platinum sample without correcting for redshift evolution (1a), and with the
corrections for selection and evolutionary effects (1b). Panels 1c, 1d, 1e and 1f : Histograms of the parameters 𝑎, 𝑏, 𝑐, and 𝜎𝑖𝑛𝑡 evaluated from the simulation
of evolutionary coefficients taken from the 1 𝜎 range.

3 THE 3D RELATION FOR THE PLATINUM GAMMA-RAY BURSTS

In order to robustly apply any GRB correlation as a cosmological tool we need to have a reliable model supporting the theoretical
scenario, like what has been done for SNe Ia. We also have to note that even if there is a very clear idea on the birth of the SNe Ia
after the complete disruption of the accreted white dwarf in a binary system, there is still a debate on the particular mechanism
that originates the SN explosion (Livio & Mazzali 2018). A possible example of a model that can satisfactorily explain the
plateau, which we have pinpointed in Sec. 1, is the magnetar model. Indeed, the intrinsic scatter, 𝜎𝑖𝑛𝑡 , of the correlation, and the
errors on the parameters can be derived directly from the values of the periods of the spin and the magnitude of the magnetic

MNRAS 000, 000–000 (2021)



The Gamma-ray Bursts fundamental plane correlation as a cosmological tool. 5

-1.0 -0.5 0.0 0.5 1.0
0

5

10

15

distance from plane (evolution)

n
u
m
b
e
r
o
f
G
R
B
s

-1.0 -0.5 0.0 0.5 1.0
0

5

10

15

distance from plane (no evolution)

n
u
m
b
e
r
o
f
G
R
B
s

Figure 2. The distributions of distances of the Platinum sample from the 3D fundamental plane with and without correction for evolution with their fitted
Gaussian distributions.

fields representative of the magnetar. Thus, the slope and the intercept of the 𝐿𝑋 − 𝑇∗
𝑋 relation are naturally derived from the

equation of the magnetar (Rowlinson et al. 2014; Stratta et al. 2018), which links 𝐿𝑋 to 𝑇∗
𝑋 using physical quantities of the

astrophysical object, such as the moment of inertia and the spin period through the following equations:

𝐿0,49 ∝ 𝐵2
𝑝,15𝑃

−4
0,3𝑅

6
6, (3)

𝑇𝑒𝑚,3 = 2.05𝐼45𝐵
2
𝑝,15𝑃

2

0,−3𝑅
−6
6 . (4)

In Equations 3 and 4, 𝐿0,49 is the plateau luminosity in 1049𝑒𝑟𝑔𝑠−1, 𝐼45 is the moment of inertia in units of 1045 g 𝑐𝑚2, 𝐵𝑝,15 is
the magnetic field strength at the poles in units of 1015 G, 𝑅6 is the radius of the neutron star in 106 cm and 𝑃0,−3 is the spin
period in milliseconds. If we substitute in Equation 3 the radii from Equation 4 we obtain the following:

log 𝐿0 ∝ (log(1052𝐼−1
45 𝑃

2
0,−3) − log(𝑇𝑒𝑚)), (5)

where it is possible to see immediately that the first term is a constant for a given fixed period of the magnetar and momentum
of inertia, and the luminosity is inversely correlated with the rest frame time at the end of the plateau emission. However, there
are additional explanations for the plateau emission and the existence of the 𝐿𝑝𝑒𝑎𝑘 − 𝐿𝑎 relation, which can be ascribed to the
external forward shock model by changing the microphysical parameters (Hascoet et al. 2014). In addition, in Stratta et al.
(2018) the properties of the Dainotti 3D relation are explained through the anti-correlation between 𝐿𝑝𝑒𝑎𝑘 and the spin period
within the model of the pulsar spin-down described in Contopoulos & Spitkovsky (2006).
Having stressed that this correlation and the 3D extension can be supported reliably within the magnetar scenario, we can safely
proceed with the description of the procedure for using this correlation as a cosmological tool. We leave the parameters 𝑎, 𝑏,
𝑐 of the fundamental plane free to vary and we fit the correlation using the D’Agostini (2005) Bayesian method. In the paper
the uncertainties on our computed values are always be quoted in 1 𝜎. The luminosities and times carry error bars which are
comparable, namely the Δ𝑥

𝑥 and Δ𝑦

𝑦 are of the same order of magnitude, where Δ𝑥 is the error on the x-axis (error on time in our
case) and Δ𝑦 is the error on y axis (luminosity at the end of the plateau phase in our case). Thus, it is necessary to adopt methods
which take into account both error bars like the D’Agostini (2005). The fundamental plane relation has the following form:

log 𝐿𝑋 = 𝑐 + 𝑎 · log𝑇∗
𝑋 + 𝑏 · (log 𝐿𝑝𝑒𝑎𝑘 ), (6)

where 𝑎 and 𝑏 are the best-fit parameters given by the D’Agostini (2005) procedure linked to log𝑇∗
𝑋 and log 𝐿𝑝𝑒𝑎𝑘 , respectively,

while 𝑐 is the normalization. The best fit results are: 𝑎 = −0.86 ± 0.13, 𝑏 = 0.56 ± 0.12, 𝑐 = 21.8 ± 6.3, and 𝜎𝑖𝑛𝑡 = 0.34 ± 0.04.
We stress that if we had an ad hoc choice of the sample we would not have had any outliers from the distribution of the geometric
distances of any point from the fundamental plane, while it is clear from the distribution of the distance from the platinum plane
that we have several GRBs at distance -0.5 which are outliers from the distribution of the GRBs from the plane itself.
The role of the corrections due to selection biases and evolutionary effects has been studied for the 𝐿𝑋 − 𝑇∗

𝑋 (Dainotti et al.
2013b) and for the 𝐿𝑋 − 𝐿𝑝𝑒𝑎𝑘 relations (Dainotti et al. 2015b, 2017b). Indeed, each physical feature, 𝐿𝑋 , 𝑇∗

𝑋 and 𝐿𝑝𝑒𝑎𝑘 , is
affected by selection biases due to instrumental thresholds and redshift evolution of the variables involved in the correlations. To
correct these effects for each variable, we employ the Efron & Petrosian (1992) method, which tests the statistical dependence
among 𝐿𝑋 , 𝑇∗

𝑋 and 𝐿𝑝𝑒𝑎𝑘 , see Dainotti et al. (2013b, 2015b, 2017b); Petrosian et al. (2015).
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6 Dainotti et al.

Figure 3. Paired smoothed histograms of the 𝜎𝑖𝑛𝑡 obtained for cases with and without evolution with different methods using the HyperFit online routine. The
thin black horizontal lines indicate the central value of the 𝜎𝑖𝑛𝑡 parameter from the D’Agostini fitting, while the red ones correspond to the 1 𝜎 error bars.

The fundamental plane correlation, once the selection effects are considered, becomes:

log 𝐿𝑋 − 𝑘𝐿𝑎 log(𝑧 + 1) = 𝑎𝑒𝑣 · (log𝑇∗
𝑋 − 𝑘𝑇𝑋 log(𝑧 + 1)) + 𝑏𝑒𝑣 · (log 𝐿𝑝𝑒𝑎𝑘 − 𝑘𝐿𝑝𝑒𝑎𝑘 log(𝑧 + 1)) + 𝑐𝑒𝑣 , (7)

where 𝑎ev, 𝑏ev, and 𝑐ev denote the parameters with redshift evolution. With evolution we define the dependence of the parameters
on the redshift. The 𝑘𝐿𝑝𝑒𝑎𝑘 , 𝑘𝑇𝑋 , and 𝑘𝐿𝑎 are the evolutionary coefficients computed by us for the whole sample of 222 GRBs:
𝑘𝐿𝑝𝑒𝑎𝑘 = 2.24+0.30

−0.30, 𝑘𝑇𝑋 = −1.25+0.28
−0.27, 𝑘𝐿𝑎 = 2.42+0.41

−0.74. Comparing these results with the ones obtained in the literature, we note
that the evolution on 𝐿𝑝𝑒𝑎𝑘 is compatible within 1 𝜎, the evolution on 𝑇∗

𝑎 is compatible within 1.6 𝜎, while the 𝐿𝑎 evolution is
compatible within 1.8 𝜎 with the ones taken from Dainotti et al. (2017b) and used in Dainotti et al. (2020a).
To verify the reliability of our results, we simulated random values of the power-law coefficients of the evolution, 𝑘𝐿𝑝𝑒𝑎𝑘 , 𝑘𝑇𝑋 , 𝑘𝐿𝑎

drawn from uniform distributions within the 1 𝜎 error range. For our best-fit computations of the Dainotti 3D relation we used the
D’Agostini (2005) and Reichart (2001) methods (the latter considers a slightly different likelihood, but still includes𝜎𝑖𝑛𝑡 , like the
D’Agostini one) with the same minimization algorithm. To further ensure the reliability of our results, we repeated this procedure
1000 times finding that the results from these two computations are compatible within 1 𝜎. The results of minimization of the
D’Agostini likelihood are shown in the central and bottom panels of Fig. 1. Considering these effects, the new best-fit parameters
for the fundamental plane of the platinum sample are 𝑎ev = −0.85±0.12, 𝑏ev = 0.49±0.13, 𝑐ev = 25.4±6.9, and𝜎𝑖𝑛𝑡 = 0.18±0.09.
We note that Rowlinson et al. (2014) predicts that the 𝑎 coefficient of the log 𝐿𝑋 − 𝛼 log(𝑧 + 1) ∝ log𝑇∗

𝑋 − 𝛽 log(𝑧 + 1) relation
should be 𝑎𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = −1, which is compatible with our results within 1.3 𝜎 error range. The central value of the intrinsic
scatter is 47.1% smaller than the one computed for the original fundamental plane.
We compare the two intrinsic scatters obtained with and without considering the corrections due to the EP method using the
following formula, adapted from Dainotti et al. (2020a):

𝑥 =
𝜎𝑖𝑛𝑡 ,𝑁𝑜𝐸𝑉 − 𝜎𝑖𝑛𝑡 ,𝐸𝑉√︃
𝜎2
𝜎𝑖𝑛𝑡,𝑁𝑜𝐸𝑉

+ 𝜎2
𝜎𝑖𝑛𝑡,𝐸𝑉

. (8)

We obtain 𝑥 = 1.98, meaning that the evolutionary effects do indeed reduce the intrinsic scatter on the platinum fundamental
plane correlation in a significant way. We also show in Fig. 2 the distances of each data point belonging to the Platinum sample
with respect to the best fit of the fundamental plane, both with the evolutionary effects (left panel) and without them (right panel).
The 2D projections of both fundamental planes are shown in the top panels of Fig. 1. These figures allow us to show how the error
bars for each GRB shown with the ellipses are placed around the plane when we correct for selection biases and redshift evolution
(right upper panel) and when we do not correct for them (left upper panel). We note that when the correction for evolution is
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The Gamma-ray Bursts fundamental plane correlation as a cosmological tool. 7

applied, the data points are closer to the plane including the errorbars, and fewer outliers are present compared to the situation in
which the evolution is not taken into account. To compare these two relations we computed for both cases the Akaike information
criterion (AIC) and the model weight: 𝐵𝑖 = 𝑒

𝐴𝐼𝐶𝑚𝑖𝑛−𝐴𝐼𝐶𝑖
2 for each relation, where 𝐴𝐼𝐶𝑚𝑖𝑛 = 𝑀𝐼𝑁 (𝐴𝐼𝐶𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐴𝐼𝐶𝑛𝑜𝑒𝑣 ), and

𝐴𝐼𝐶𝑖 is the AIC value corresponding to the relation for which the 𝐵 parameter is computed. For each model we computed the
“relative likelihood": 𝑃𝑖 =

𝐵𝑖∑
𝑗
𝐵 𝑗

, obtaining 𝑃𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 0.99 and 𝑃𝑛𝑜𝑒𝑣 = 0.01. Thus, the model with evolution is favoured

compared to the one without evolution.
To further confirm the reliability of our results and their independence for the particular Bayesian method adopted we performed
other best fit procedures for the fundamental plane, both with and without evolution. We also used the Reichart (2001) method,
which we recall is another Bayesian approach which takes also into account of both error bars, obtaining best fit results
compatible within 1 𝜎 to the D’Agostini ones, and an online fitting procedure called “HyperFit" (https://hyperfit.icrar.org/)
based on Robotham & Obreschkow (2015), built to obtain the best-fit of linear models that consider heteroscedastic errors for
multidimensional data using Bayesian inference. The latter tool offers the possibility to employ different algorithms and methods,
which we used to compute a smoothed paired histogram of the 𝜎𝑖𝑛𝑡 obtained for each case, with and without evolution, presented
in Fig. 3. The values obtained with the D’Agostini (2005) method are consistent with these histograms. Specifically, we add a
black line indicating the mean value of 𝜎𝑖𝑛𝑡 and red lines indicating the error on 𝜎𝑖𝑛𝑡 obtained by the D’Agostini (2005) method.
We also applied other best fit methods: the Principal Component Analysis, PCA, the PC Regression (PCR, Liu et al. (2003)),
and the Partial Least Squares (PLS), where the latter two are regression methods based on PCA. For PCA we found: 𝑎 = −1.19,
𝑏 = 0.44, 𝑐 = 28.87 and 𝑎ev = −1.17, 𝑏ev = 0.49, 𝑐ev = 26.75 for the no evolution and the evolution cases, respectively. When
comparing the PCA results with the D’Agostini (2005) ones for the non-evolution case the parameters 𝑎, 𝑏, and 𝑐 are within 2.5,
1, and 1.1 𝜎, respectively; for the evolution case 𝑏𝑒𝑣 and 𝑐𝑒𝑣 are consistent in 1 𝜎, while 𝑎𝑒𝑣 is consistent in 2.7 𝜎. The PCA
fitting does not account for the error bars, thus does not consider the intrinsic scatter that is instead computed by the Bayesian
methods of D’Agostini (2005) and Reichart (2001). This drives the difference in the results. For PCR and PLS we used the
bootstrapping technique to infer the errors on the best fit parameters. These methods are consistent with the D’Agostini ones in
1 𝜎, thus giving more reliability to our conclusions.

4 THE STUDY OF THE EVOLUTIONARY PARAMETERS AS A FUNCTION OF COSMOLOGY

The reliability of this procedure has already been proven via Monte Carlo simulations (Dainotti et al. 2013b). To correct for the
evolution we use 𝑔(𝑧) = 1/(1 + 𝑧)𝑘 , where the 𝑘 parameter mimics the evolution due to the redshift. As addressed in Dainotti
et al. (2015b), the functional form for the evolution can be a power law or a more complex function, and the results for these
functions are compatible within 2 𝜎 for the luminosities and 1 𝜎 for the time evolutions. Here, we detail our results of the EP
method for the whole sample of 222 GRBs for the studied parameters. The EP method takes into account these effects by using
an adaptation of the Kendall 𝜏 test, according to which 𝜏 has the following definition:

𝜏 =
∑

𝑖 (R𝑖 − E𝑖)√︁∑
𝑖 V𝑖

, (9)

where E𝑖 = (1/2) (𝑖 + 1) is the expectation value, 𝑅𝑖 is the rank, and V𝑖 = (1/12) (𝑖2 + 1) is the variance. To eliminate the
impact of the redshift on our data we demand 𝜏 = 0. 𝑅𝑖 is computed for each data point considering the position of the data
in the so-called associated sets, which are samples that include all the objects that can be detected considering a particular
observational limit (Dainotti et al. 2013b, 2015b, 2017c). The computations to derive the evolutionary coefficients follow the
same procedure for 𝐿𝑝𝑒𝑎𝑘 , 𝐿𝑋 , and 𝑇∗

𝑋 . The limiting values for these quantities are shown in the left panels of Fig. 4, while the
evolutionary coefficients are shown in the right panels. Here, for simplicity we detail only the computation for 𝐿𝑋 , given that
for the other parameters is similar. For this luminosity we compute the flux limit at the end of the plateau phase, 𝑓𝑙𝑖𝑚, and then
we compute the correspondent luminosity 𝐿𝑚𝑖𝑛 (𝑧𝑖), that would allow us to detect that object at a given 𝑧𝑖 . The associated set
for 𝑧𝑖 contains all GRBs with 𝐿𝑚𝑖𝑛 ≤ 𝐿 (𝑧 𝑗 ) and 𝑧 𝑗 ≤ 𝑧𝑖 , where with 𝑗 and 𝑖 we denote the objects of the associated set and of
the GRB sample, respectively. According to the EP method, the samples used to derive the evolutionary effects should not be
less than 90% of the original ones, so conservative choices regarding the limiting values are needed. The chosen coefficients for
the evolutionary functions (𝑔(𝑧), 𝑓 (𝑧), and ℎ(𝑧) for the 𝐿𝑝𝑒𝑎𝑘 , 𝐿𝑋 and 𝑇∗

𝑋 , respectively) are the ones for which 𝜏 = 0 as shown
with the red vertical lines in Fig. 4, while the dashed blue lines correspond to the 1 𝜎 for the evolutionary coefficients, which
is determined for 𝜏 ≤ 1. We have used this method on our sample of 222 GRBs to compute new evolutionary parameters, thus
updating the values with respect to the ones used in Dainotti et al. (2020a). We also would like to point out that Dainotti et al.
(2021b) has shown that this method is reliable regardless of the choice of the limiting values for several sample sizes for Short
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Figure 4. The application of the EP method to our entire sample for the parameters involved in the fundamental plane correlation. The limiting lines chosen for
the EP method are visible in red. The left panels show the distribution of studied parameters versus 𝑟𝑒𝑑𝑠ℎ𝑖 𝑓 𝑡 + 1, while the right panels show the relation
between 𝜏 and the evolutionary coefficients in red. The vertical red solid lines indicate the value for which 𝜏 = 0 and thus the evolution is removed. The dashed
blue lines represent the 1 𝜎 for the evolution, which is determined for 𝜏 ≤ 1.

GRBs (samples of 56, 32 and 34 GRBs). Thus, the discussion of Bryant, Osborne, & Shahmoradi (2021) on the EP method and
its applicability are not a concern given the approach and the reliability of the results in Dainotti et al. (2021b).
The previous analysis in this paper fixes the value of an evolutionary parameter at a given Ω𝑀 , 𝐻0, Ω𝑘 and 𝑤. One may wonder
how this influences the cosmological results. To verify the impact of the cosmological parameters when 𝑘𝐿𝑎 and 𝑘𝐿𝑝𝑒𝑎𝑘 depend
on Ω𝑀 , 𝐻0, Ω𝑘 and 𝑤, we repeat the EP method with luminosity distances computed over a grid of different Ω𝑀 , 𝐻0, Ω𝑘 and
𝑤 values. Similar analysis of the dependence of evolutionary parameters on cosmology was performed on quasars in Dainotti
et al. (2022d). This allows us to determine how the evolutionary functions vary when the cosmological parameters change. The
results of this procedure are presented in Fig. 5 and Fig. 6. We note that there are no changes of the evolutionary parameter, 𝑘 ,
as 𝐻0 varies. Regarding Ω𝑀 and Ω𝑘 , there is a mild evolution of the evolutionary parameter, although at very low values of Ω𝑀

(between 0 and 0.2) the evolution is noticeable, but still within 1 𝜎 when we account for the errorbars. When we consider the
behaviour of the evolutionary slope, 𝑘 , with Ω𝑘 , it is compatible in 1-𝜎 both for 𝑘𝐿𝑎 and 𝑘𝐿𝑝𝑒𝑎𝑘 over the whole considered
range of Ω𝑘 values. When we consider even a very wide range of the 𝑤 parameter, all obtained values of the 𝑘 are
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Figure 5. The 𝑘𝐿𝑎 (left) and 𝑘𝐿𝑝𝑒𝑎𝑘
(right) as a function of Ω𝑀 and 𝐻0. In the first four pictures the 1-𝜎 error bars are shown with the thin red line together

with the thick central line that represents the value of the slope of the function for which the evolution is removed. In the two bottom pictures the contour plots
of Ω𝑀 and 𝐻0 as a function of 𝑘𝐿𝑎 (left) and 𝑘𝐿𝑝𝑒𝑎𝑘

(right). The different colours indicate the different values of the 𝑘 parameters.

compatible with each other in less than 1-𝜎, thus again in this case the relation of 𝑘 with 𝑤 is negligible. To account for
those results, we created a numerical function (𝑘 = 𝑘 (Ω𝑀 )) with a linear interpolation method and varied the values and errors
on the 𝑘 parameters with Ω𝑀 . This is the first time in the literature that such a complete treatment has been performed, which
completely overcomes the circularity problem. In this approach we neglect the 𝑘 as a function of Ω𝑘 and 𝑤 because over a
reasonable range of parameters the change of 𝑘 is insignificant. Dainotti et al. (2022d) showed that the change of 𝑘 with
Ω𝑀 is much more significant for QSOs, this is a result derived using a much larger sample. Thus, in future for a large
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Figure 6. The 𝑘𝐿𝑎 (left) and 𝑘𝐿𝑝𝑒𝑎𝑘
(right) as a functions of 𝑤 and Ω𝑘 . In the pictures, the 1-𝜎, 2-𝜎 and 3-𝜎 error bars are shown with thin red,

orange and green lines, respectively. The thick central line represents the value of the slope of the function for which the evolution is removed assuming
𝑤 = −1 and Ω𝑘 = 0.

sample we may encounter a more significant relation of 𝑘 with Ω𝑘 and 𝑤. We postulate that all present cosmological
efforts should investigate the impact of selection biases and redshift evolution, contrary to assuming a lack of such effects.

5 THE GRB COSMOLOGY WITH THE FUNDAMENTAL PLANE RELATION

In order to check the reliability of the fundamental plane for cosmological purposes, we here perform a series of tests. First
of all we plot for a fixed fiducial cosmology the distance moduli (`𝐺𝑅𝐵) derived by the fundamental plane relation, with the
distance moduli obtained by the SNe Ia, `𝑆𝑁𝑒 in Fig. 6. The left and right panels respectively show GRBs without accounting
for selection biases and the right panel the ones accounting for selection biases.
To solve the so-called circularity problem, we compute the cosmological parameters together with the coefficients of the
fundamental plane relation, starting from the peak fluxes and the fluxes at the end of the plateau emission which are the observer
frame quantities of the corresponding peak prompt luminosity and the luminosity at the end of the plateau emission, respectively.
Thus, this procedure does not involve any fixed a priori cosmological models, and the results of this computation leads to the
best-fit cosmological parameters together with the coefficients of the fundamental plane correlation using the right hand side of
Equation 6 in which the luminosity is defined in Equation 2. More specifically, in our computation we run MCMC simulations
using either uniform or Gaussian priors onΩ𝑀 , 𝐻0 and𝑤, and compute the corresponding distance luminosity𝐷𝐿 (𝑧,Ω𝑀 , 𝐻0, 𝑤)
and the corresponding 𝐿𝑝𝑒𝑎𝑘 , 𝐿𝑋 for each value of this grid. Then, for each value of this grid, we compute the best fit parameters
of the plane. Thus, this procedure completely avoids the circularity problem. This method does not need any calibration of the
fundamental plane relation on other local probes; the correlation’s parameters are free to vary following Dainotti et al. (2013a).
For the flat ΛCDM cosmological model, in which 𝑤 = −1, and where we neglect the radiation contribution, the luminosity
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Figure 7. The distance moduli versus logarithm-ed redshift of SNe Ia (`𝑆𝑁𝑒) and GRBs (`𝐺𝑅𝐵) belonging to the platinum sample assuming the fundamental
plane relation and assuming Λ𝐶𝐷𝑀 . On the left for the case without correction for evolution, while on the right with correction.

distance used in Equation 2 is :

𝐷𝐿 (𝑧) = (1 + 𝑧) 𝑐
𝐻0

∫ 𝑧

0

𝑑𝑧′√︁
Ω𝑀 (1 + 𝑧′)3 + (1 −Ω𝑀 )

, (10)

where 𝑐 is the speed of light. For simplicity we can also write that integrand of Equation 10 as the following:

𝐸 (𝑧) = 1√︁
Ω𝑀 (1 + 𝑧′)3 + (1 −Ω𝑀 )

. (11)

We combine the GRB Platinum sample, the SNe Ia Pantheon Sample, and the BAO data presented in Sharov & Vasiliev
(2018). We note that even if according to Riess et al. (1998) Ω𝑀 and 𝐻0 are kinematically independent, we still have chosen
to take into account the separate case of varying both of them together as a check of how the precision reached by us on
these quantities depends on the parameter space’s dimension. We use the fundamental plane correlation both with and without
the correction computed by the EP method to see if this correction may carry a reduction on 𝜎𝑖𝑛𝑡 , and consequently on the
cosmological parameters. We derive `𝑜𝑏𝑠,𝐺𝑅𝐵𝑠 in such a way that it is completely independent from the `𝑆𝑁𝑒, by manipulating
the fundamental plane relation corrected for evolution:

`𝑜𝑏𝑠,𝐺𝑅𝐵𝑠 = 5(𝑏1 log 𝐹𝑝,𝑐𝑜𝑟 + 𝑎1 log 𝐹𝑋,𝑐𝑜𝑟 + 𝑐1 + 𝑑1 log𝑇∗
𝑋 ) + 25, (12)

where log 𝐹𝑝,𝑐𝑜𝑟 and log 𝐹𝑋,𝑐𝑜𝑟 are the prompt and afterglow emission fluxes, respectively, corrected by the 𝐾-correction and the
evolutionary functions. We show some of the algebraic computations performed to obtain Equation 6 starting from Equation 2.
For the case where we do not take into account the evolutionary effects, considering the relation between fluxes and luminosities
given by Equation 2 we obtain:

log10 (4𝜋𝑑2
𝐿) + log10 𝐾𝑋 − 𝑏 · (log10 (4𝜋𝑑2

𝐿) + log10 𝐾𝑝𝑒𝑎𝑘 ) = 𝑏 · log10 𝐹𝑝𝑒𝑎𝑘 + 𝑎 · log10 𝑇
∗
𝑋 + 𝐶 − log10 𝐹𝑋 , (13)

where 𝐾𝑝𝑒𝑎𝑘 and 𝐾𝑋 are the 𝐾-corrections computed for the prompt and the afterglow, respectively, and 𝑎, 𝑏, and 𝐶 are the
coefficients of the fundamental plane correlation. Isolating the luminosity distance from the previous equation we obtain:

log10 (𝑑𝐿) = − log10 𝐹𝑋 + log10 𝐾𝑋

2(1 − 𝑏) + 𝑏 · (log10 𝐹𝑝𝑒𝑎𝑘 + log10 𝐾𝑝𝑒𝑎𝑘 )
2(1 − 𝑏) − (1 − 𝑏) log10 (4𝜋) + 𝐶

2(1 − 𝑏) + 𝑎 log10 𝑇
∗
𝑋

2(1 − 𝑏) . (14)

With new definitions of the coefficients and the fluxes we finally reproduce Equation 12 considering also the relation between
luminosity distance and distance modulus.
We compare both `𝑜𝑏𝑠,𝐺𝑅𝐵𝑠,𝑆𝑁𝑒 with the theoretical `𝑡ℎ , defined as:

`𝑡ℎ = 5 · log 𝐷𝐿 (𝑧,Ω𝑀 , 𝐻0, 𝑤) + 25. (15)

We now present the constraints given by BAO measurements used in our computations.
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12 Dainotti et al.

The data comes from Sharov & Vasiliev (2018) who refer to the equation for the 𝑑𝑧 (𝑧′) function defined as:

𝑑𝑧 (𝑧′) = 𝑟𝑠 (𝑧𝑑)
𝐷𝑉 (𝑧′) , (16)

where 𝐷𝑉 (𝑧′) = 𝑐

𝐻0

[
𝑧′

𝐸 (𝑧′) ×
(∫ 𝑧′

0

𝑑𝑧

𝐸 (𝑧)

)2] 1
3

, & 𝑟𝑠 (𝑧𝑑) = 55.514 · 𝑒 [72.3(Ωaℎ
2+0.0006)2 ]

(Ω𝑀 ℎ2)0.25351 (Ω𝑏ℎ2)0.12807 𝑀𝑝𝑐. (17)

The value 𝑧𝑑 corresponds to the decoupling of photons in the comoving sound horizon scale 𝑟𝑠 (𝑧𝑑) using the fitting formula
from Sharov & Vasiliev (2018).
For this approach we combine the likelihoods and write the logarithm-ed equation as:

L(𝐺𝑅𝐵𝑠 + 𝑆𝑁𝑒𝐼𝑎 + 𝐵𝐴𝑂) =
∑︁
𝑖

[
log

(
1√

2𝜋𝜎`,𝑖

)
− 1

2

(
`𝑡ℎ,𝐺𝑅𝐵,𝑖 − `𝑜𝑏𝑠,𝐺𝑅𝐵,𝑖

𝜎`,𝑖

)2]

− 1
2
[(`𝑡ℎ,𝑆𝑁𝑒 − `𝑜𝑏𝑠,𝑆𝑁𝑒)𝑇 × 𝐶𝑖𝑛𝑣 × (`𝑡ℎ,𝑆𝑁𝑒 − `𝑜𝑏𝑠,𝑆𝑁𝑒) + (Δ𝑑𝑧)𝑇 × 𝐶𝐵𝐴𝑂

𝑖𝑛𝑣 × Δ𝑑𝑧],
(18)

where the first term relates to GRBs’ distance moduli (Dainotti et al. 2013a; Amati et al. 2019), the second to the SNe Ia’s,
where 𝐶𝑖𝑛𝑣 is the inverse of the covariance matrix of the SNe Ia data taken from Scolnic et al. (2018), and the third to the BAO,
where 𝐶𝐵𝐴𝑂

𝑖𝑛𝑣 is the inverse of the covariance matrix of the BAO data taken from Sharov & Vasiliev (2018) and the Δ𝑑𝑧 is defined
as: Δ𝑑𝑧,𝑖 = 𝑑𝑜𝑏𝑠𝑧 (𝑧𝑖) − 𝑑𝑡ℎ𝑧 (𝑧𝑖); 𝑑𝑜𝑏𝑠𝑧 (𝑧𝑖) is taken from the data, while 𝑑𝑡ℎ𝑧 (𝑧𝑖) is computed with the Equation 16.
We have also computed the cosmological parameters using only SNe Ia data as well as SNe Ia+BAO, to verify if adding GRBs
would confirm the results and to what extent we could enhance the precision on the cosmological parameters.

6 RESULTS

The results presented here are divided in three major steps. First, we show the capability of GRBs as alone standardizable candles
with the fundamental plane using Equations 6 and 7, as well as the Equation for `𝐺𝑅𝐵, 12, without calibration using Gaussian
priors based on the values of SNe Ia in Scolnic et al. (2018) (see 6.1). Then, we show the calibration on SNe Ia using Gaussian
priors (see 6.2). Then, we derive the cosmological parameters with uniform priors, both with and without calibrating GRBs on
the SNe Ia (see 6.3) and we compare with the results with Gaussian priors. The analysis has the scope of showing the precision
of GRBs in constraining cosmological parameters in a flat ΛCDM model. Second, we use GRBs together with SNe Ia and BAO
to verify the usefulness of GRBs in combination with other probes, see 6.4). These results will entail both the observational data
of GRBs with no correction for evolution as well as accounting for these corrections. The third step is instead the analysis of
the open cosmological model with the GRB fundamental plane relation both corrected and uncorrected for selection biases and
redshift evolution (see 6.6).

6.1 GRBs alone with no calibration with Gaussian priors

We here clarify that in all computations we do not minimize the relation of the evolutionary parameters as a function of Ω𝑀 ,
but we use the evolutionary function 𝑘 (Ω𝑀 ). This indeed is an independent computation, see sec. 4, which shows how the
evolutionary functions depend on Ω𝑀 . There is no minimization involved in this computation.
We have tested two approaches to derive the cosmological parameters with GRBs. For each approach we vary a) both Ω𝑀 and
𝐻0, b) only Ω𝑀 , c) only 𝐻0 and d) only 𝑤. For our computations related to GRBs we consider the Gaussian priors of 3 𝜎 based
on the results and the uncertainties computed in Scolnic et al. (2018). Although this procedure does not allow to test if there
are deviations beyond the 3 𝜎 limit, it still allows us to understand the role and the impact of GRBs as standalone cosmological
probes, and what are the uncertainties we can achieve considering the current state of the art. We use the following likelihoods:

(i) We assume a likelihood with Equations 2 and 6 without evolution, see Fig. 8.
(ii) We assume a likelihood with Equation 7 with the evolution considering fixed values of 𝑘𝐿𝑝𝑒𝑎𝑘 , 𝑘𝐿𝑎 and 𝑘𝑇𝑋 , see Fig. 9.
(iii) We assume a likelihood with Equation 7 and considering a function for the evolutionary parameters 𝑘𝐿𝑝𝑒𝑎𝑘 and 𝑘𝐿𝑎 , since

they vary together with the cosmological parameters, and we fix the 𝑘𝑇𝑋 , since it does not depend on the cosmological models,
see Fig. 10.

(iv) The likelihood from Equation 12, `𝐺𝑅𝐵, without evolution, see Fig. 11.
(v) The likelihood from Equation 12, `𝐺𝑅𝐵, for the fixed evolutionary parameters, see Fig. 12.
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No calibration on SNe Ia,
Equation 12

parameters varied Model 𝛀𝑴 𝑯0 𝑤 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.316 ± 0.063 70 -1 0.268 0.190

without evolution 𝐻0 ΛCDM 0.30 73.225 ± 3.307 -1 0.984 0.987

without evolution Ω𝑀 and 𝐻0 ΛCDM 0.320 ± 0.068 73.149 ± 3.026 -1 0.307, 1.025 0.137, 1.09

without evolution 𝑤 𝑤CDM 0.30 70 −0.673 ± 0.717 0.460 0.484

with fixed evolution Ω𝑀 ΛCDM 0.308 ± 0.063 70 -1 0.142 0.063

with fixed evolution 𝐻0 ΛCDM 0.30 72.869 ± 2.921 -1 0.988 0.992

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 0.304 ± 0.064 73.128 ± 3.008 -1 0.089, 1.024 0.109, 1.10

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.977 ± 0.620 0.037 0.064

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.295 ± 0.062 70 -1 0.064 0.144

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 0.297 ± 0.065 73.036 ± 3.139 -1 0.015, 0.955 0.214, 1.02

No calibration on SNe Ia,
Equations 6 and 7

parameters varied Model 𝛀𝑴 𝑯0 𝑤 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.302 ± 0.061 70 -1 0.049 0.033

without evolution 𝐻0 ΛCDM 0.30 73.152 ± 3.113 -1 1.021 1.024

without evolution Ω𝑀 and 𝐻0 ΛCDM 0.302 ± 0.064 73.074 ± 3.145 -1 0.163, 0.99 0.031, 1.09

without evolution 𝑤 𝑤CDM 0.30 70 −1.133 ± 1.048 0.127 0.111

with fixed evolution Ω𝑀 ΛCDM 0.299 ± 0.065 70 -1 0.000 0.077

with fixed evolution 𝐻0 ΛCDM 0.30 73.073 ± 3.126 -1 0.992 0.995

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 0.294 ± 0.065 72.785 ± 3.049 -1 0.058, 0.900 0.260, 0.971

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.978 ± 0.662 0.033 0.059

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.305 ± 0.063 70 -1 0.095 0.016

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 0.305 ± 0.064 73.126 ± 3.101 -1 0.103, 0.996 0.093, 1.065

Table 1. Results of the fitting of the cosmological parameters without calibration on SNe Ia, using GRBs alone and using Gaussian priors with `𝐺𝑅𝐵 (first
part) and with the Fundamental plane Equation, 6 (2nd part) without evolution correction, with fixed evolution, and with evolution correction as a function of
Ω𝑀 . In the first column we define the studied case and the type of evolution correction. In the second column we define which cosmological parameters are left
free to vary. In the subsequent columns we present the values of parameters with error bars obtained in the computation for the corresponding cases. The fixed
values are presented in bold. In the last column we present a comparison of each of the case results with the ones obtained with SNe Ia alone, present in Table
5. For this purpose we compute the z-score given by: 𝑧 = |𝑋𝑆𝑁 −𝑋𝐺𝑅𝐵 |√︃

𝜎2
𝑋,𝑆𝑁

+𝜎2
𝑋,𝐺𝑅𝐵

, where 𝑋 is a computed value of the considered cosmological parameter for SNe

Ia and GRBs, respectively, while 𝜎𝑋 is its error.

(vi) The likelihood from Equation 12, `𝐺𝑅𝐵, for the evolutionary parameters 𝑘𝐿𝑎 and 𝑘𝐿𝑝𝑒𝑎𝑘 as functions of Ω𝑀 , see Fig. 13.

The Gaussian priors are justified by the fact that the underlying physics of the fundamental plane is not expected to vary within
any given cosmology since it relies on a fundamental physical process, the magnetar emission, which gives rise to the plateau
and, in turn, naturally drives the anti-correlation between 𝐿𝑋 and 𝑇𝑎 (Rowlinson et al. 2014; Rea et al. 2015; Stratta et al.
2018), and the prompt kinetic energy is positively correlated with the kinetic power in the afterglow (Dainotti, Ostrowski, &
Willingale 2011; Dainotti et al. 2015b), as it is predicted within the standard fireball model assuming microphysical variations
(van Eerten 2014a,b).

6.2 GRBs alone calibrated with SNe Ia with Gaussian priors

When it comes to observational cosmology, one can set up a standard candle by calibrating it with other well-known cosmological
probes. This method is widely used in the literature with different approaches (it is, indeed, the main procedure to build the
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(d) Varying only 𝑤 without correction for evolution

Figure 8. Cosmological results for the GRBs alone (with no calibration) without evolution using the equation of the fundamental plane, Equation 6 and using
the 3 𝜎 Gaussian priors on the cosmological results reported in Scolnic et al. (2018). We derive in the sub-panels 𝑎, 𝑏, 𝑐 and 𝑑 the values of Ω𝑀 , 𝐻0, Ω𝑀

and 𝐻0 contemporaneously, and 𝑤 , respectively.

so-called cosmological ladder on which the most updated cosmological late-type results are based upon). To investigate the case
of GRBs calibrated with SNe Ia we performed the following procedure:

(i) First we fit a set of 𝑎, 𝑏, 𝑐, and 𝜎𝑖𝑛𝑡 parameters related to the GRBs fundamental plane with the part of our GRBs sample
whose redshift overlaps with the redshift range of SNe Ia (up to 𝑧 = 2.25), which corresponds to 25 GRBs. We fix the 𝐻0
and Ω𝑀 parameters considering the values obtained using SNe Ia alone (for simplicity, we use 𝐻0 = 70 𝑘𝑚 𝑠−1𝑀𝑝𝑐−1 and
Ω𝑀 = 0.3), but using Gaussian priors with 3 𝜎 based on the values of Scolnic et al. (2018).
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Figure 9. Cosmological results for the GRBs alone with no calibration with Fundamental Plane using fixed evolution on 3 𝜎 Gaussian priors on the cosmological
parameters investigated following Scolnic et al. (2018). Panels a), b) c) and d) show the contours from the case (ii) for the case of Ω𝑀 , 𝐻0, Ω𝑀 and 𝐻0
together, and 𝑤 .

(ii) We have then performed the same steps i)-vi) as in the previous Sec. 6.1 with the only difference that the parameters of the
plane are fixed to the sample of the 25 GRBs with 𝑧 < 2.25 overlapping with the SNe Ia.

The results for this analysis are presented without the corrections for evolution in Figs. 15 and 19; with the correction for
the evolutionary effects and selection biases in Figs. 16 and 20; and considering these corrections, but with the evolutionary
parameter computed as a function of Ω𝑀 , 𝑘 = 𝑘 (Ω𝑀 ), in Figs. 17 and 21.
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Calibration with SNe Ia,
Equation 12

parameters varied Model 𝛀𝑴 𝑯0 𝒘 𝚫
𝑮𝑹𝑩𝑪
𝑮𝑹𝑩𝑵𝑶−𝑪 % 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.292 ± 0.068 70 -1 7.94 0.102 0.176

without evolution 𝐻0 ΛCDM 0.30 73.286 ± 3.007 -1 -9.07 1.102 1.105

without evolution Ω𝑀 and 𝐻0 ΛCDM 0.295 ± 0.064 73.358 ± 3.006 -1 -5.88, -0.66 0.044, 1.103 0.249,1.176

without evolution 𝑤 𝑤CDM 0.30 70 −1.094 ± 0.673 -6.13 0.140 0.114

with fixed evolution Ω𝑀 ΛCDM 0.316 ± 0.068 70 -1 7.94 0.249 0.176

with fixed evolution 𝐻0 ΛCDM 0.30 72.762 ± 3.227 -1 10.48 0.864 0.868

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 0.306 ± 0.060 73.264 ± 3.082 -1 -6.25, 2.46 0.125, 1.046 0.083, 1.116

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.743 ± 0.694 11.94 0.370 0.395

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.298 ± 0.063 70 -1 1.61 0.016 0.095

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 0.295 ± 0.064 73.159 ± 3.134 -1 -1.54, -0.16 0.044, 0.996 0.249, 1.064

Calibration with SNe Ia,
Equations 6 and 7

parameters varied Model 𝛀𝑴 𝑯0 𝒘 𝚫
𝑮𝑹𝑩𝑪
𝑮𝑹𝑩𝑵𝑶−𝑪 % 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.306 ± 0.069 70 -1 13.11 0.101 0.029

without evolution 𝐻0 ΛCDM 0.30 73.519 ± 3.119 -1 0.19 1.137 1.140

without evolution Ω𝑀 and 𝐻0 ΛCDM 0.301 ± 0.065 73.089 ± 3.251 -1 1.56, 3.37 0.044, 0.939 0.083, 1.004

without evolution 𝑤 𝑤CDM 0.30 70 −0.906 ± 0.697 -33.49 0.159 0.159

with fixed evolution Ω𝑀 ΛCDM 0.295 ± 0.060 70 -1 -7.69 0.066 0.149

with fixed evolution 𝐻0 ΛCDM 0.30 73.272 ± 3.143 -1 0.54 1.050 1.140

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 0.296 ± 0.066 73.201 ± 3.062 -1 1.54, 0.43 0.029, 1.033 0.226, 1.103

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.959 ± 0.631 -4.68 0.065 0.0918

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.300 ± 0.073 70 -1 15.87 0.014 0.055

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 0.296 ± 0.064 73.024 ± 3.073 -1 0, -0.90 0.030, 0.972 0.233,1.042

Table 2. Cosmological parameters obtained using GRB alone calibrated on SNe Ia (indicated with the subscript C) using Gaussian priors with distance modulus
equation (first part) and with the Fundamental plane equation (2nd part) without evolution, with evolution with fixed parameters, and with evolution correction
as a function of Ω𝑀 . In the first column we define the studied type of the correction for the evolution. In the second column we define which cosmological
parameters are left free to vary, while in the third column we define the investigated cosmological model. In the next three columns we present the values of
parameters with error bars obtained in computation for each given case, namely with the fixed cosmological parameters present in bold. In the 7th column,
we show the percentage increase/decrease between the uncertainties of GRBs alone without calibration (indicated with No-C) and with Gaussian priors from
Table 1 (the Δ𝐺𝑅𝐵%) vs the results from this Table with calibration (indicated with C) and with Gaussian priors. The formula for the percentage change is:
Δcomparing−Δreference

Δreference
, where Δreference is the error obtained with GRBs without calibration. With the negative sign we indicate a percentage decrease in the error,

while with the positive one, we indicate a percentage increase in the error. Finally, in the last two columns we show the z-scores computed with respect to the
SNe Ia alone and SNe Ia+ BAO results, respectively.

We find that all the results of GRBs alone without calibration lie within 1 𝜎 with respect to the cosmological results obtained
with calibration on SNe Ia. The percentage change in the uncertainty values of the cosmological parameters is shown in the
seventh column of Table 2. We also compare cosmological parameters obtained by GRBs alone with calibration using Gaussian
priors and the results obtained with SNe Ia alone. We have found out that the results, both using Equation regarding `𝐺𝑅𝐵, 12,
as well as the Fundamental plane Equations 6 and 7 fall within 1 𝜎 as shown by the 𝑧-score in Table 2. The only exception to
this result is the case of GRBs calibrated with SNe Ia using the fundamental plane for the case without evolution and with fixed
evolution varying 𝐻0. Indeed, we note that the z-score for this case is slightly larger than 1 (𝑧 = 1.140). All the z-score with
respect to the GRB results are shown in the last two columns of Table 2.

6.3 GRBs alone with and without calibration with the SNe Ia with uniform priors

The aim of the previous sections is to explore the possibility of using GRBs as standalone standard candles up to redshift 5.
Indeed, the aim is not to explore parameter spaces which may lead to exotic scenarios, but rather to consider the reliability
of GRBs as cosmological probes. This is the reason why Gaussian priors up to 3 𝜎 around the best-fit values of the SNe Ia
computations have been investigated. It is clear that given the sample size and the large scatter, the applicability of GRBs as
cosmological probes nowadays is not definitive, but one of our goals is to show that the complementarity of using GRBs in
combination with SNe Ia is beneficial for exploring the cosmological setting at high-z. This can allow access to the universe in
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Figure 10. Cosmological results for the GRBs alone (with no calibration) with Fundamental Plane using evolutionary functions and the assumptions of 3 𝜎
Gaussian priors on the cosmological parameters investigated following Scolnic et al. (2018). Panels a) and b) show the contours from case (iii) for the case of
Ω𝑀 and the case of Ω𝑀 and 𝐻0 together, respectively.

principle up to 𝑧 = 9.4, which is the redshift of the furthest GRB ever detected, and, in our case regarding the platinum sample,
up to 𝑧 = 5. If we consider Gaussian priors, we can recover similar results without the need of exploring the full parameter space.
However, to explore how strong the impact of the Gaussian priors on our results is, and for comparing also with the results of
GRBs and SNe Ia+BAO together, in which uniform priors have been used, we consider the steps i)-vi) with Gaussian priors as
well. We here vary Ω𝑀 , 𝑤, and 𝐻0 alone to appreciate the differences of the parameters computing them one by one, with the
only difference that the priors are uniform and are the following : 0.0 ≤ Ω𝑀 ≤ 1, 50 ≤ 𝐻0 ≤ 100 and −2 ≤ 𝑤 ≤ 0. We have
repeated each MCMC run 100 times, and plotted the distribution of Ω𝑀 , 𝑤, and 𝐻0 both by calibrating the results on SNe Ia for
`𝐺𝑅𝐵, see Fig. 22 and Fig. 23 for Equations 6 and 7, respectively. The same MCMC run 100 times is adopted without calibration
on SNe Ia for `𝐺𝑅𝐵, see Fig. 24 and Fig. 25 for Equations 6 and 7, respectively.

We consider the scenarios of no evolutionary correction (upper panels of Figs. 22, 23, 24, 25), with evolution correction using
fixed parameters (middle panel of Figs. 22, 23, 24, 25), and with evolutionary functions (bottom panels of Figs. 22, 23, 24, 25).
Both without and with calibration on SNe Ia using `𝐺𝑅𝐵, the Ω𝑀 and 𝐻0 uncertainty values tend to be higher by 328.57%,
327.58% (without evolution and calibration); 328.57%, 384.42% (with fixed evolution and without calibration); 326.47%,
348.29% (without evolution and with calibration); 297.06%, 306.57% (with fixed evolution and calibration), respectively, than
the results obtained using Gaussian prior of 3 𝜎. Also, without and with calibration on SNe Ia using `𝐺𝑅𝐵, uncertainties on the
value of Ω𝑀 using the 𝑘 (Ω𝑀 ) evolutionary function are higher by 335.48% and 328.57%, respectively, than the results obtained
using Gaussian priors of 3 𝜎.
Now, considering Fundamental plane Equations 6 and 7, the uncertainties on the values for both Ω𝑀 and 𝐻0 obtained by
GRBs alone are higher by 359.01%, 355.19% (without evolution and calibration); 315.38%, 356.49% (with fixed evolution and
without calibration); 305.80%, 337.32% (without evolution and with calibration); 366.67%, 338.11% (with fixed evolution and
calibration), respectively, than the results obtained using Gaussian prior of 3 𝜎. Also, without and with calibration on SNe Ia
using Equations 6 and 7, uncertainties on the value of Ω𝑀 using the 𝑘 (Ω𝑀 ) evolutionary function are higher by 328.57% and
283.56%, respectively, than the results obtained using Gaussian priors of 3 𝜎.
Surprisingly, the uncertainty values of 𝑤 using uniform priors are always smaller for both without and with calibration on SNe
Ia and both with `𝐺𝑅𝐵 and Equations 6 and 7 by 19.11% (without evolution and calibration), 6.45% (with fixed evolution and
without calibration), 16.42% (without evolution and with calibration), 16.43% (with fixed evolution and calibration), compared
to the values obtained with Gaussian priors. Considering the Fundamental plane Equations 6 and 7, the uncertainties on the
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Figure 11. Cosmological results for the GRBs alone (with no calibration) with `𝐺𝑅𝐵 , see Equation 12, without evolution and the assumptions of 3 𝜎 Gaussian
priors on the cosmological parameters investigated following Scolnic et al. (2018). Panels a), b), c) and d) show the contours from the case (iv) for the case of
Ω𝑀 , 𝐻0, Ω𝑀 and 𝐻0 together, and 𝑤 , respectively.

value of 𝑤 using uniform priors for the case of no evolution and fixed evolution for no calibration are smaller than the values
of 𝑤 with Gaussian priors by 44.65% and 12.39%, respectively, and in the case of calibration on SNe Ia they are smaller in the
cases of without evolution (18.22%) and with evolution (9.67%).
We note that the values of Ω𝑀 and 𝐻0 obtained considering the Gaussian priors are generally larger than the respective
computations taking into account uniform priors. However, as we have pointed out this is not the case for 𝑤, thus it is not clear
yet why the uniform priors would enlarge the uncertainties only on Ω𝑀 and 𝐻0. On the other hand, the values of 𝑤 have narrow
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Figure 12. Cosmological results for the GRBs alone (with no calibration) with `𝐺𝑅𝐵 , see Equation 12, using fixed evolution and the assumptions of 3 𝜎

Gaussian priors on the cosmological parameters investigated following Scolnic et al. (2018). Panels a), b), c) and d) show the contours from case (v) for the
case of Ω𝑀 , 𝐻0, Ω𝑀 and 𝐻0 together, and 𝑤 , respectively.

ranges and the difference between Gaussian and uniform priors may be less appreciable. This trend is slightly mitigated when
we correct for the evolution and with the evolutionary functions, but the large uncertainties prevent to see a net difference. In the
future, when we have more data with smaller uncertainties, the trend noted using the evolutionary functions can be important to
reduce such a bias against higher values of Ω𝑀 . On the other hand, we have seen a trend of increasing values for Ω𝑀 when we
consider cosmological computations with other high redshift probes (Colgàin et al. 2022). This trend, however, does not appear
when we simulate many GRBs based on the features of the 10 closest GRBs to the fundamental plane (Dainotti et al. 2022c).
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Figure 13. Cosmological results for the GRBs alone (with no calibration) with `𝐺𝑅𝐵 using evolutionary functions and the assumptions of 3 𝜎 Gaussian priors
on the cosmological parameters investigated following Scolnic et al. (2018). Panels a) and b) show the contours from the case (vi) for the case of Ω𝑀 and the
case of Ω𝑀 and 𝐻0 together, respectively.

Results are shown in Sec. 8. All averaged cosmological results over 100 MCMC runs using uniform priors lie within 1 𝜎 with
respect to the cosmological results obtained using Gaussian priors, both considering calibration and no-calibration on the SNe
Ia, see Table 3 and 4.

6.4 GRBs in combination with SNe Ia and BAO with and without the correction for selection biases and redshift evolution

Results for the cosmological computations using GRBs+BAO+SNe Ia are shown in Fig. 26 and for SNe Ia alone and SNe +BAO
are shown in 27. All results are summarized in Table 5. We show the cosmological parameters obtained using: 1) SNe Ia alone 2)
SNe Ia+BAO 3) SNe Ia+BAO+GRBs without correction for evolutionary effects; 4) SNe Ia+BAO+GRBs with these corrections.
The contour plots at 68% (dark blue) and 95% (light blue) are computed for each case. In all figures, the following fiducial values
(at which the parameters are fixed) have been taken into account: Ω𝑀 = 0.30, 𝐻0 = 70 𝑘𝑚 𝑠−1𝑀𝑝𝑐−1 and 𝑤 = −1 (bold-faced
in Table 5).
In Fig. 26 we present the cosmological results of SNe Ia+GRBs+BAO both with (panels d, e, f, h) and without evolution (panels
a, b, c, and g) for GRBs. When we consider SNe Ia vs SNe Ia+BAO+GRBs with evolution, we observe smaller computed
uncertainties for the cosmological values (see Table 5) once more probes are taken into account. More specifically, we see a
decrease of 14.3% for Ω𝑀 , and 16.7% for 𝑤. When Ω𝑀 and 𝐻0 are varied contemporaneously, we obtain a decrease in the
scatter of 68.2%, and 52.9%, respectively. When we compare SNe Ia+BAO vs SNe Ia+BAO+GRBs with evolution, we reproduce
the precision on Ω𝑀 with no reduction of the uncertainties. However, we note an increase of the scatter on 𝐻0 of 14.3% when
both Ω𝑀 and 𝐻0 are varied contemporaneously. Furthermore, we see an increase of the scatter when 𝐻0 and 𝑤 are varied alone
of 7.7 % and 7.1 %, respectively. For completeness, all the percentage variations with respect to the SNe Ia and SNe Ia+BAO
results are shown in the last two columns of Table 5. We stress that to check the numerical errors on the computation of the
MCMC chain, we ran the computation of 𝐻0 100 times and we found that the uncertainty on the scatter on 𝐻0 is 0.004, which
is two orders of magnitude smaller than the error in the results. Similarly, we find the scatter is two orders of magnitude smaller
for 𝑤 (0.0006), while it is one order smaller for Ω𝑀 (0.0002).
When we treat 𝑘𝐿𝑝𝑒𝑎𝑘 and 𝑘𝐿𝑎 as a function of Ω𝑀 , the results remain unchanged. Both the best fit value and the uncertainties
on parameters do not change within the computation accuracy of the MCMC algorithm in both cases, varying Ω𝑀 alone and
together with 𝐻0.
In Fig. 27 we show the results obtained using SNe Ia (panels a, b, c and g) and SNe Ia+BAO (panels d, e, f and h), to quantify
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Figure 14. The Fundamental plane relation parameters with the nearest 25 GRBs used to calibrate them on SNe Ia using `𝐺𝑅𝐵 , Equation 12. Panels a) and b)
show the contours of the plane fitting parameters without evolution and with fixed evolution respectively.

No calibration with SNe Ia
with uniform priors, Equa-
tion 12

parameters varied Model < 𝛀𝑴 > < 𝑯0 > < 𝒘 > 𝚫𝑮𝑹𝑩𝑼
𝑮𝑹𝑩𝑮

% 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.58 ± 0.27 70 -1 328.57 1.040 1.022

without evolution 𝐻0 ΛCDM 0.30 77.51 ± 14.14 -1 327.58 0.533 0.534

without evolution 𝑤 𝑤CDM 0.30 70 −0.91 ± 0.58 -19.11 0.155 0.184

with fixed evolution Ω𝑀 ΛCDM 0.56 ± 0.27 70 -1 328.57 0.966 0.948

with fixed evolution 𝐻0 ΛCDM 0.30 77.48 ± 14.15 -1 384.42 0.531 0.531

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.93 ± 0.58 -6.45 0.121 0.150

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.56 ± 0.27 70 -1 335.48 0.966 0.948

No Calibration with uniform
priors, Equation 6 and 7

parameters varied Model < 𝛀𝑴 > < 𝑯0 > < 𝒘 > 𝚫𝑮𝑹𝑩𝑼
𝑮𝑹𝑩𝑮

% 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.53 ± 0.28 70 -1 359.01 0.825 0.807

without evolution 𝐻0 ΛCDM 0.30 75.00 ± 14.17 -1 355.19 0.355 0.356

without evolution 𝑤 𝑤CDM 0.30 70 −0.98 ± 0.58 -44.65 0.034 0.064

with fixed evolution Ω𝑀 ΛCDM 0.53 ± 0.27 70 -1 315.38 0.855 0.837

with fixed evolution 𝐻0 ΛCDM 0.30 74.99 ± 14.27 -1 356.49 0.352 0.352

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.98 ± 0.58 -12.39 0.034 0.064

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.55 ± 0.27 70 -1 328.57 0.929 0.911

Table 3. Averaged cosmological parameters of 100 runs with no calibration using GRBs alone assuming uniform priors (indicated with the subscript U) and
with `𝐺𝑅𝐵 (first part of the Table) and with Fundamental plane equation, see Equation 6 (2nd part) without evolution, and with the evolution correction as
a function of Ω𝑀 . In the header we use the notation: "<>" to distinguish results obtained in this analysis from the ones for which Gaussian priors have been
considered. The third column before the last corresponds to the percentage change in errors computed comparing the current results obtained with the GRBs
alone with Gaussian priors (indicated with the subscript G) without calibration taking as a reference point GRB values from Table 1. The last column represents
the z-score from the SNe Ia taking the SNe Ia as a reference point.
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Figure 15. Cosmological results for the GRBs alone (with calibration on SNe Ia) with `𝐺𝑅𝐵 using no correction for the evolution and the assumptions of 3 𝜎

Gaussian priors on the cosmological parameters investigated following Scolnic et al. (2018). Panels a), b), c) and d) show the contours from the case (vi) for the
case of Ω𝑀 , 𝐻0, Ω𝑀 and 𝐻0 together, and 𝑤 , respectively.

how much the uncertainties on the cosmological parameters are changed when we add BAO. In the a) panel, we use SNe Ia only.
We vary 𝐻0 fixing Ω𝑀 and 𝑤; in the b) panel we vary Ω𝑀 and fix 𝐻0 and 𝑤; in the c) panel we vary 𝐻0 and Ω𝑀 with 𝑤 fixed;
in the d) panel we vary 𝑤 for the 𝑤CDM model and fix 𝐻0 and Ω𝑀 . In the bottom panels, the figures show the same quantities,
considering BAO+SNe Ia. The constraints derived when GRBs are added to the SNe Ia +BAO samples lead to a reduction or a
confirmation of the scatter when using SNe Ia only, with the additional advantage that GRBs span up to 𝑧 = 5 in our sample.

6.5 Comparing our results to the other cosmological computations with GRBs in the literature

Many scientists have tried to address the problem of using GRBs as cosmological tools for almost two decades from now and we
here discuss only a few papers which are more closely related to the fundamental plane relation or when a similar study about
the comparison with and without the calibration on SNe Ia has been performed. As an example, cosmological computations
have been performed in Moresco et al. (2022) involving GRBs both with and without calibration against SNe Ia considering
uniform priors based on the Amati correlation between the peak energy in the a𝐹a of the prompt emission spectrum and the
isotropic prompt emission (Amati et al. 2008). For their sample composed of 70 GRBs without calibration, they have found
Ω𝑀 = 0.27+0.38

−0.18. To compare their results to ours, we symmetrize their results and obtain: Ω𝑀 = 0.27 ± 0.28, which is similar
to the variance obtained by us for an analogous case in Table 3. In particular, for the case without correction for evolution and
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Figure 16. Cosmological results for the GRBs alone (with calibration on SNe Ia) with `𝐺𝑅𝐵 using correction for evolution and the assumptions of 3 𝜎 Gaussian
priors on the cosmological parameters investigated following Scolnic et al. (2018). Panels a), b), c) and d) show the contours from the case (vi) for the case of
Ω𝑀 , 𝐻0, Ω𝑀 and 𝐻0 together, and 𝑤 , respectively.

with the likelihood based on the Equation 6 without calibration and with uniform priors, we reproduce the same precision (line
10 in Table 3 and the Figures 25, 23), while for all the other cases we have slightly smaller variance (0.27). For the sample
of 208 GRBs, whose size is four times bigger than the one of our sample, they found Ω𝑀 = 0.26+0.23

−0.12 and Ω𝑀 = 0.30+0.06
−0.06

for the cases without and with calibration, respectively. Both results hold a higher precision than our computations. We remind
that our results without evolution and without and with calibration yield Ω𝑀 = (0.53 ± 0.28) and Ω𝑀 = (0.52 ± 0.28). In Liu
et al. (2022b), cosmological computations have been performed with 220 GRBs calibrated with SNe Ia considering uniform
priors based on the Amati correlation (Amati et al. 2008) and improved the Amati correlation (Liu et al. 2022a) using the
copula function, a multivariate cumulative distribution function. They have found Ω𝑀 > 0.651 with the Amati correlation and
Ω𝑀 = 0.308 ± 0.192 with the improved Amati correlation. The result with the improved Amati correlation is consistent with
the ones obtained by us for GRBs alone calibrated with SNe Ia using uniform priors and the distance modulus Equation, 12, see
Table 4. Though in this paper, the variance of the measurement is smaller than ours (without evolution: 0.28, with evolution fixed
and 𝑘 = 𝑘 (Ω𝑀 ) : 0.27) it is probably due to the fact that their GRB sample size is more than four times the size of our sample.
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Figure 17. Cosmological results for the GRBs alone (with calibration on SNe Ia) with `𝐺𝑅𝐵 correcting with the evolutionary functions and the assumptions
of 3 𝜎 Gaussian priors on the cosmological parameters investigated following Scolnic et al. (2018). Panels a) and b) show the contours from the case (vi) for
the case of Ω𝑀 and the case of Ω𝑀 and 𝐻0 together, respectively.
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(b) Plane parameters with fixed evolution

Figure 18. The Fundamental plane relation parameters obtained with the nearest 25 GRBs used to calibrate them on SNe Ia using the Equation 6. Panels a) and
b) show the contours of the plane fitting parameters without evolution and with fixed evolution respectively.

Wang, Dai, & Zhu (2007) performed cosmological computations with 69 GRBs without calibration on SNe Ia using the distance
modulus Equation, 12, and 𝜒2 minimization technique to obtain Ω𝑀 = 0.34 ± 0.10. Their results are consistent with the ones
we obtained for GRBs alone without calibration using uniform priors and the distance modulus Equation, 12, see Table 3. The
variance in their measurements is smaller than the one in our cosmological calculations as in the comparisons above (without
evolution: 0.28, with evolution fixed and 𝑘 = 𝑘 (Ω𝑀 ) : 0.27).
Cao, Khadka, & Ratra (2022) performed a set of computations involving GRBs using the Dainotti Fundamental plane correlation
with 3 different sets consisting of 60 events altogether (one set of 5 GRBs only, one of 24, and the other composed of 31 GRBs)
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Ω𝑀 and 𝐻0 without correcting for the evolution.

3 2 1 0 1
w

(d) Using fundamental plane on full sample varying
only 𝑤 without correction for evolution.

Figure 19. Cosmological results for the GRBs alone (with calibration) using the fundamental plane, Equation 6 with no evolution and the assumptions of 3 𝜎

Gaussian priors on the investigated cosmological parameters following Scolnic et al. (2018). Panels a), b), c) and d) show the contours from the case (vi) for the
case of Ω𝑀 , 𝐻0, Ω𝑀 and 𝐻0 together, and 𝑤 , respectively.

and using also the Amati relation for 118 GRBs. The considered likelihood corresponds to the one derived from equation 6.
In the analysis uniform priors were applied. Cao, Khadka, & Ratra (2022) obtained closed contours for only two cases: 115
GRBs (3 events are removed due to the overlap with the other sample) and for 5 GRBs. They obtained using the Fundamental
plane alone: Ω𝑀 = 0.630+0.352

−0.135 and Ω𝑀 = 0.520+0.379
−0.253 for the two samples, respectively. We symmetrize those results in order to

compare them with ours, obtaining: Ω𝑀 = 0.630± 0.244 and Ω𝑀 = 0.520± 0.316. In the first case the results are slightly more
precise than the one obtained by us in Table 3, but the considered sample is more than 2 times larger, while the others are slightly
less precise, but for a very small sample size of GRBs. In the newer paper Cao, Dainotti, & Ratra (2022) used the Platinum
sample for the Dainotti Fundamental plane correlation and 118 events using Amati correlation, out of which 17 overlap with
the Platinum sample, thus using 101 events in addition to the Platinum sample and obtained: Ω𝑀 > 0.411 using the Platinum
sample alone, Ω𝑀 > 0.256 using the 118 GRBs sample alone, and Ω𝑀 = 0.614± 0.255 using both samples together (101+ 50).
The variance of those measurements (0.255) is slightly smaller than the ones of our results (0.28 − 0.27) when both the Amati
and the Dainotti relations are combined. The difference in the results when the only Platinum sample is used is due to the fact
that we run the analysis 100 times and we average our results, instead in the mentioned paper the results are computed only one
time.
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Figure 20. Cosmological results for the GRBs alone (with calibration on SNe Ia) using Fundamental plane, Equation 6 with fixed evolution and the assumptions
of 3 𝜎 Gaussian priors for the cosmological parameters investigated following Scolnic et al. (2018). Panels a), b), c) and d) show the contours from the case
(vi) for the case of Ω𝑀 , 𝐻0, Ω𝑀 and 𝐻0 together, and 𝑤 , respectively.

6.6 The flatness of the universe

Due to the recent results in which the flatness of the universe is questioned by Di Valentino et al. (2020) and several other authors
we also consider scenarios accounting for its curvature. To consider not-flat universe models we use the appropriate formula for
the distance luminosity which reads as follows:

𝑑𝐿 = (1 + 𝑧) × 𝑑𝑀 , (19)
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Figure 21. Cosmological results for the GRBs alone (with calibration on SNe Ia) using Fundamental plane, Equation 6 with evolutionary functions and the
assumptions of 3 𝜎 Gaussian priors on the cosmological parameters investigated following Scolnic et al. (2018). Panels a) and b) show the contours from the
case (vi) for the case of Ω𝑀 and the case of Ω𝑀 and 𝐻0 varied together respectively.

Calibration with SNe Ia with
uniform priors, Equation 12

parameters varied Model < 𝛀𝑴 > < 𝑯0 > < 𝒘 > 𝚫𝑮𝑹𝑩𝑼
𝑮𝑹𝑩𝑮

% 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.50 ± 0.28 70 -1 326.47 0.718 0.700

without evolution 𝐻0 ΛCDM 0.30 74.11 ± 13.48 -1 348.29 0.307 0.308

without evolution 𝑤 𝑤CDM 0.30 70 −1.01 ± 0.56 -16.42 0.018 0.012

with fixed evolution Ω𝑀 ΛCDM 0.59 ± 0.27 70 -1 297.06 1.077 1.059

with fixed evolution 𝐻0 ΛCDM 0.30 79.04 ± 13.12 -1 306.57 0.691 0.692

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.88 ± 0.58 -16.43 0.207 0.236

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.54 ± 0.27 70 -1 328.57 0.892 0.874

Calibration with SNe Ia with
uniform priors, Equations 6
and 7

parameters varied Model < 𝛀𝑴 > < 𝑯0 > < 𝒘 > 𝚫𝑮𝑹𝑩𝑼
𝑮𝑹𝑩𝑮

% 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑆𝑁+𝐵𝐴𝑂

without evolution Ω𝑀 ΛCDM 0.52 ± 0.28 70 -1 305.80 0.789 0.771

without evolution 𝐻0 ΛCDM 0.30 75.70 ± 13.64 -1 337.32 0.420 0.421

without evolution 𝑤 𝑤CDM 0.30 70 −0.97 ± 0.57 -18.22 0.053 0.082

with fixed evolution Ω𝑀 ΛCDM 0.52 ± 0.28 70 -1 366.67 0.789 0.771

with fixed evolution 𝐻0 ΛCDM 0.30 75.71 ± 13.77 -1 338.11 0.417 0.418

with fixed evolution 𝑤 𝑤CDM 0.30 70 −0.97 ± 0.57 -9.67 0.053 0.082

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 0.52 ± 0.28 70 -1 283.56 0.789 0.771

Table 4. Averaged Cosmological parameters over 100 runs of the MCMC derived from the calibration on the SNe Ia using GRBs alone assuming uniform priors
(indicated with the subscript U) and with `𝐺𝑅𝐵 (first part of the Table) and with Fundamental plane equation, see Equation 6 (2nd part) without evolution, and
with the evolution correction, see Equation 7 and as a function of Ω𝑀 . Columns’ content is analogous to Table 2. The third column before the last corresponds
to the percentage change in errors computed comparing the current results obtained with the GRBs alone with Gaussian priors (indicated with the subscript G)
with no calibration taking as reference point values from Table 2. The last two columns represent the z-score from the SNe Ia taking the SNe Ia as a reference
point.
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(e) Varying only 𝐻0 with fixed evolution
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(f) Varying only 𝑤 with fixed evolution
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(g) Varying only Ω𝑀 with evolutionary function

Figure 22. The distributions of the cosmological parameters for the GRBs with calibration and with `𝐺𝑅𝐵 using the assumptions of uniform priors of 100
runs of MCMC. Panels a), b), c) show the contours from case with no evolution (upper panel), evolution with fixed parameters (central panel) and with the
evolutionary functions (lower panel) for the case of Ω𝑀 , 𝐻0, and 𝑤 , respectively.

where 𝑑𝑀 is the transverse comoving distance given by the formula:

𝑑𝑀 =




𝑐
𝐻0

√
Ω𝑘

sinh
(√

Ω𝑘 ×
∫ 𝑧

0
𝑑𝑧′√

Ω𝑀 (1+𝑧′)3+Ω𝑘 (1+𝑧′)2+ΩΛ

)
Ω𝑘 > 0

𝑐
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×
∫ 𝑧
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𝑑𝑧′√

Ω𝑀 (1+𝑧′)3+Ω𝑘 (1+𝑧′)2+ΩΛ
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sin
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𝑑𝑧′√

Ω𝑀 (1+𝑧′)3+Ω𝑘 (1+𝑧′)2+ΩΛ

)
Ω𝑘 < 0.

(20)

The results shown in Table 6 correspond to the computation of Ω𝑘 parameter with the other parameters fixed: Ω𝑀 = 0.30,
𝐻0 = 70 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1. All the obtained values are compatible within 1.5 𝜎 with Ω𝑘 = 0 corresponding to the flat universe. To
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(d) Varying only Ω𝑀 with fixed evolution

70 72 74 76 78
H0

0

5

10

15

20

25

30
Fr

eq
ue

nc
y

< H0 > : 75.71
H0: 13.77

Histogram ( < H0 > )

(e) Varying only 𝐻0 with fixed evolution

1.10 1.05 1.00 0.95 0.90 0.85
w

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

< w > : -0.97
w: 0.57

Histogram ( < w > )

(f) Varying only 𝑤 with fixed evolution
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(g) Varying only Ω𝑀 with evolutionary function

Figure 23. The distributions of the cosmological parameters for the GRBs with calibration and with 𝐿𝑋 , Equations 6 and 7 using the assumptions of uniform
priors and over 100 runs of MCMC. Panels a), b), c) show the contours from case with no evolution (upper panel), evolution with fixed parameters (central
panel) and with the evolutionary functions (lower panel) for the case of Ω𝑀 , 𝐻0, and 𝑤 , respectively.

compare the results we use the z-score, defined as:

𝑧 =
|Ω𝑘, 𝑓 𝑙𝑎𝑡 −Ω𝑘 |

ΔΩ𝑘

=
|Ω𝑘 |
ΔΩ𝑘

. (21)

The z-score results are presented in the last column of Table 6. We note an interesting trend. When we add more probes to the
SNe Ia sample, the value of Ω𝑘 becomes less close to Ω𝑘 = 0 (the flat universe). The addition of the correction for evolution
is indeed leading to a more compatible value (1.18 for z-score) with the flat universe. We present the results of the following
computation in Fig. 28.
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(a) Varying only Ω𝑀 without evolution
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(d) Varying only Ω𝑀 with fixed evolution
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Figure 24. The distributions of the cosmological parameters for the GRBs without calibration and with `𝐺𝑅𝐵 using the assumptions of uniform priors of 100
runs of MCMC. Panels a), b), c) show the contours from case with no evolution (upper panels), evolution with fixed parameters (central panels) and with the
evolutionary functions (lower panel) for the case of Ω𝑀 .

7 THE COMPARISON OF GRBS ALONE AND SNE IA ALONE AND SNE IA+BAO

In this section, we evaluate the comparison between the cosmological parameters and their uncertainties of GRBs alone with the
SNe Ia alone, and then SNe Ia + BAO. This analysis is done using GRBs for which we consider Gaussian priors of 3 𝜎 on the
values of the cosmological parameters from SNe Ia taken from Scolnic et al. (2018). We divide our comparison between GRBs
without and with calibration on SNe Ia, see Tables 7 and 8, respectively. Specifically, we compare the results in the i)-vi) cases
as detailed in Sec. 6.1 without calibration, and in Sec. 6.2 for i)-vi) cases with the calibration. In this way, it will be clear which
analysis brings smaller uncertainties. Looking specifically at the distance in terms of 𝜎 to the SNe Ia and SNe Ia+BAO, we refer
to Table 1 for the comparison of GRBs without calibration with the Gaussian priors.
We first consider the comparison with SNe Ia alone. All the cosmological parameter results, except for the 𝐻0 one when the
likelihood of `𝐺𝑅𝐵 (see the upper part of Table 1) is considered in the cases of no evolution and fixed evolution, fall within 1 𝜎.
For the cases with and without evolution the z-score is 1.024 and 1.025, respectively, when varying both Ω𝑀 and 𝐻0.
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(a) Varying only Ω𝑀 without evolution
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(b) Varying only 𝐻0 without evolution
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(c) Varying only 𝑤 without evolution

0.50 0.52 0.54 0.56
M

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

< M > : 0.53
M: 0.27

Histogram ( < M > )

(d) Varying only Ω𝑀 with fixed evolution

72 73 74 75 76 77
H0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

< H0 > : 74.99
H0: 14.27

Histogram ( < H0 > )

(e) Varying only 𝐻0 with fixed evolution
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(f) Varying only 𝑤 with fixed evolution
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(g) Varying only Ω𝑀 with evolutionary function

Figure 25. The distributions of the cosmological parameters for the GRBs without calibration and with 𝐿𝑋 , Equations 6 and 7 using the assumptions of uniform
priors and over 100 runs of MCMC. Panels a), b), c) show the contours from case with no evolution (upper panels), evolution with fixed parameters (central
panels) and with the evolutionary functions (lower panel) for the case of Ω𝑀 .

When we look instead at the second part of Table 1 we consider the likelihood for Equations 6 and 7, and the only case that fall
outside 1 𝜎 is the one for which 𝐻0 is computed without accounting for the evolution (z-score = 1.021).
When comparing with SNe Ia + BAO and considering the likelihood of GRBs with `𝐺𝑅𝐵, all cases fall within 1 𝜎 with
the exception again of 𝐻0 without evolution (z-score = 1.09), with fixed evolution (z-score = 1.10) and with the 𝑘 = 𝑘 (Ω𝑀 )
evolutionary function (z-score = 1.02). When comparing with SNe Ia + BAO and considering the likelihood for Equations 6 and
7, all cases fall within 1 𝜎 with the exception again of 𝐻0 without evolution when varying only 𝐻0 (z-score = 1.024) and when
varying both Ω𝑀 and 𝐻0 (z-score = 1.09), and with 𝑘 = 𝑘 (Ω𝑀 ) evolutionary function (z-score = 1.065).
In Table 2, we show results obtained for GRBs alone calibrated with SNe Ia with Gaussian priors compared with SNe Ia alone
and SNe Ia + BAO. We start the comparison with the SNe Ia only first. We see that the results which are not compatible within
1 𝜎 with the likelihood of `𝐺𝑅𝐵 (upper part of Table 2) are the following: 𝐻0 varied alone without correction for evolution is
compatible in 1.102 𝜎, 𝐻0 varied together with Ω𝑀 without correction for evolution is compatible in 1.103 𝜎, and 𝐻0 varied
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Figure 26. Cosmological results for the GRBs and SNe Ia data with the BAO constraints with uniform priors.

MNRAS 000, 000–000 (2021)



By Distance Modulus and Fundamental Plane 33

69.7 69.8 69.9 70.0 70.1 70.2 70.3
H0

(a) SNe Ia

0.28 0.30 0.32
M

(b) SNe Ia

1.05 1.00 0.95
w

(c) SNe Ia

69.6 69.8 70.0 70.2 70.4
H0

(d) SNe Ia + BAO

0.29 0.30 0.31 0.32
M

(e) SNe Ia + BAO

1.06 1.04 1.02 1.00 0.98
w

(f) SNe Ia + BAO

0.25 0.30 0.35

M

69.0

69.5

70.0

70.5

71.0

H
0

69.5 70.0 70.5 71.0
H0

(g) SNe Ia

0.30 0.32

M

69.4

69.6

69.8

70.0

70.2

H
0

69.4 69.7 70.0 70.3
H0

(h) SNe Ia + BAO

Figure 27. Cosmological results considering only SNe Ia and SNe Ia+BAO using uniform priors. In a) we fix 𝐻0, in b) we fix Ω𝑀 in c) we fix Ω𝑀 and 𝐻0.
The central panel is the same as the upper panel but adding BAO.
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Figure 28. The upper left and right panels show the values of Ω𝑘 fixing 𝐻0 and Ω𝑀 for the SNe Ia and SNe Ia +BAO, respectively. The lower right and left panel
shows again the values of Ω𝑘 , but for the SNe Ia+BAO +GRBs with no evolution and SNe Ia+BAO +GRBs with evolution with fixed parameters, respectively.
The priors on all probes are uniform.

together with Ω𝑀 with fixed correction for evolution is compatible in 1.046 𝜎. Results that are not compatible in 1 𝜎 with
SNe Ia when we consider again calibrated GRBs alone with Gaussian priors, but using instead the likelihood derived from the
Fundamental plane equation (Equations 7 and 6) (see the lower part of Table 2), are the following: 𝐻0 varied alone without
correction for evolution is compatible in 1.137 𝜎, 𝐻0 varied alone with fixed correction for evolution is compatible in 1.050 𝜎,
and 𝐻0 varied together with Ω𝑀 with fixed correction for evolution is compatible in 1.033 𝜎.
When we compare SNe Ia + BAO results with the ones obtained with calibrated GRBs alone using the likelihood of `𝐺𝑅𝐵

(see the upper part of Table 2) we obtain that the following are not compatible in 1 𝜎: 𝐻0 varied alone without correction for
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SNe Ia sample Model 𝒘 𝛀𝑴 𝑯0 − 𝚫𝑺𝑵𝒆
𝑺𝑵𝒆+𝑩𝑨𝑶

%

varying Ω𝑀 ΛCDM -1 0.299 ± 0.007 70 - 16.7

varying 𝐻0 ΛCDM -1 0.30 69.97 ± 0.13 - 0%

varying Ω𝑀 and 𝐻0 ΛCDM -1 0.298 ± 0.022 70.02 ± 0.34 - 214.3 %, 142.3 %

varying 𝑤 𝑤CDM −1.000 ± 0.018 0.30 70 - 28.6 %

SNe Ia + BAO sample Model 𝒘 𝛀𝑴 𝑯0 𝚫𝑺𝑵𝒆+𝑩𝑨𝑶
𝑺𝑵𝒆

% −
varying Ω𝑀 ΛCDM -1 0.304 ± 0.006 70 -14.3 % -

varying 𝐻0 ΛCDM -1 0.30 69.96 ± 0.13 0 % -

varying Ω𝑀 and 𝐻0 ΛCDM -1 0.311 ± 0.007 69.82 ± 0.14 -68.2 %, -58.8 % -

varying 𝑤 𝑤CDM −1.017 ± 0.014 0.30 70 -22.2 % -

SNe Ia + BAO + GRB sample NO EV Model 𝒘 𝛀𝑴 𝑯0 𝚫𝑺𝑵𝒆+𝑩𝑨𝑶+𝑮𝑹𝑩𝑵𝑶𝑬𝑽
𝑺𝑵𝑬

% 𝚫𝑺𝑵𝒆+𝑩𝑨𝑶+𝑮𝑹𝑩𝑵𝑶𝑬𝑽
𝑺𝑵𝑬+𝑩𝑨𝑶

%

varying Ω𝑀 ΛCDM -1 0.306 ± 0.006 70 -14.3 % 0 %

varying 𝐻0 ΛCDM -1 0.30 69.94 ± 0.13 0 % 0 %

varying Ω𝑀 and 𝐻0 ΛCDM -1 0.310 ± 0.007 69.84 ± 0.15 -68.2%, -55.9 % 0%, 7.1 %

varying 𝑤 𝑤CDM −1.017 ± 0.014 0.30 70 -22.2 % 0%

SNe Ia + BAO + GRB sample EV Model 𝒘 𝛀𝑴 𝑯0 𝚫𝑺𝑵𝒆+𝑩𝑨𝑶+𝑮𝑹𝑩𝑬𝑽
𝑺𝑵𝑬

% 𝚫𝑺𝑵𝒆+𝑩𝑨𝑶+𝑮𝑹𝑩𝑬𝑽
𝑺𝑵𝑬+𝑩𝑨𝑶

%

varying Ω𝑀 ΛCDM -1 0.306 ± 0.006 70 -14.3 % 0 %

varying 𝐻0 ΛCDM -1 0.30 69.94 ± 0.14 7.7 % 7.7%

varying Ω𝑀 and 𝐻0 ΛCDM -1 0.310 ± 0.007 69.83 ± 0.16 -68.2 %, -52.9 % 0%,14.3 %

varying 𝑤 𝑤CDM −1.017 ± 0.015 0.30 70 -16.7 % 7.1%

Table 5. Results of the fitting of the cosmological parameters using the SNe Ia (the upper part of the Table), SNe Ia+BAO (the second part), and SNe
Ia+BAO+GRBs using GRBs without calibration on SNe Ia and with uniform priors without (the third part) and with (the bottom) the correction for the
evolution indicated with EV, using together the platinum sample, the Pantheon sample for SNe Ia and the BAO measurements of Sharov & Vasiliev (2018).
The values in bold are fixed at fiducial values. We also show two columns with the percentage increase/decrease between the uncertainties of SNe Ia only (the
Δ𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑆𝑁𝐸

%) versus the other results, and the BAO+SNe Ia (Δ𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑆𝑁𝑒+𝐵𝐴𝑂

%) versus the other results. The formula is:
Δcomparing−Δreference

Δreference
,

where Δreference is the uncertainty obtained with SNe Ia (6th column) and SNe Ia + BAO (7th column) samples. With the negative sign we indicate a percentage
decrease on the uncertainty compared to the reference sample (indicated with a lower subscript), while with the positive one a percentage increase.

Sample 𝛀𝒌 𝒛-score

SNe Ia sample −0.003 ± 0.018 0.17

SNe Ia + BAO sample −0.016 ± 0.012 1.33

SNe Ia + BAO + GRB sample NO EV −0.017 ± 0.012 1.42

SNe Ia + BAO + GRB sample EV −0.013 ± 0.011 1.18

Table 6. Results of the fitting of the Ω𝑘 parameter for different samples and probes. All the obtained values are compatible within 1.5 𝜎 with Ω𝑘 = 0
corresponding to the flat universe. To compare the results with the flat cosmology we use the z-score, defined as: 𝑧 =

|Ω𝑘, 𝑓 𝑙𝑎𝑡−Ω𝑘 |
ΔΩ𝑘

= |Ω𝑘 |
ΔΩ𝑘

.

evolution is compatible in 1.105 𝜎, 𝐻0 varied together with Ω𝑀 without correction for evolution is compatible in 1.176 𝜎, 𝐻0
varied together with Ω𝑀 with fixed correction for evolution is compatible in 1.116 𝜎, 𝐻0 varied together with Ω𝑀 with the
correction for evolution as 𝑘 = 𝑘 (Ω𝑀 ) is compatible in 1.064 𝜎.
When we compare SNe Ia + BAO results with the ones obtained with calibrated GRBs alone using the likelihood derived from
the Fundamental plane equation (Equations 7 and 6) (see the lower part of Table 2) we obtain, that the following results are
not compatible in 1 𝜎: 𝐻0 varied alone without correction for evolution is compatible in 1.140 𝜎, 𝐻0 varied together with Ω𝑀

without correction for evolution is compatible in 1.004 𝜎, 𝐻0 varied alone with fixed correction for evolution is compatible in
1.140 𝜎, 𝐻0 varied together with Ω𝑀 with fixed correction for evolution is compatible in 1.103 𝜎, 𝐻0 varied together with Ω𝑀

with the correction for evolution as 𝑘 = 𝑘 (Ω𝑀 ) is compatible in 1.042 𝜎.
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Likelihood based on `𝐺𝑅𝐵 , Equation 12 parameters varied Model 𝚫𝑮𝑹𝑩
𝑺𝑵

% 𝚫𝑮𝑹𝑩
𝑺𝑵+𝑩𝑨𝑶

%

without evolution Ω𝑀 ΛCDM 800.00 950.00

without evolution 𝐻0 ΛCDM 2443.85 2443.85

without evolution Ω𝑀 and 𝐻0 ΛCDM 209.09, 790.00 871.43, 2061.43

without evolution 𝑤 𝑤CDM 3883.33 5021.43

with fixed evolution Ω𝑀 ΛCDM 800.00 950.00

with fixed evolution 𝐻0 ΛCDM 2146.92 2146.92

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 190.91, 784.71 814.29, 2048.57

with fixed evolution 𝑤 𝑤CDM 3344.44 4328.57

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 785.71 933.33

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 195.46, 823.24 828.57, 2142.14

Likelihood based on 𝐿𝑋 , Equations 6 and 7 parameters varied Model 𝚫𝑮𝑹𝑩
𝑺𝑵

% 𝚫𝑮𝑹𝑩
𝑺𝑵+𝑩𝑨𝑶

%

without evolution Ω𝑀 ΛCDM 771.43 916.67

without evolution 𝐻0 ΛCDM 2294.62 2294.62

without evolution Ω𝑀 and 𝐻0 ΛCDM 190.91, 825.00 814.29, 2146.43

without evolution 𝑤 𝑤CDM 5722.22 7385.71

with fixed evolution Ω𝑀 ΛCDM 828.57 983.33

with fixed evolution 𝐻0 ΛCDM 2304.62 2304.62

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 195.46, 796.77 828.57, 2077.86

with fixed evolution 𝑤 𝑤CDM 3577.78 4628.57

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 800.00 950.00

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 190.91, 812.06 9042.86, 2115.00

Table 7. The table of comparison between the cosmological parameters derived from SNe Ia and from SNe Ia + BAO with GRBs alone using Gaussian priors
without calibration on SNe (Table 1). The table is divided into two parts. The first part compares SNe Ia and SNe Ia + BAO with GRBs alone with no calibration
(in particular, the percentage decrease of the errors on the measurements) when the computation of the cosmological parameters with GRBs has been performed
using Equations 6 and 7. The second part is related to the comparison with SNe Ia and SNe Ia +BAO with GRBs alone, but using `𝐺𝑅𝐵 , Equation 12. The
uncertainty percentage change is computed with formulas: Δ𝐺𝑅𝐵

𝑆𝑁
% = Δ𝐺𝑅𝐵−Δ𝑆𝑁

Δ𝑆𝑁
and Δ𝐺𝑅𝐵

𝑆𝑁+𝐵𝐴𝑂
% = Δ𝐺𝑅𝐵−Δ𝑆𝑁+𝐵𝐴𝑂

Δ𝑆𝑁+𝐵𝐴𝑂
. Those quantities measure how

much SNe Ia alone and SNe Ia+BAOs have smaller scatter than the GRBs alone. With the negative sign we indicate a percentage decrease on the uncertainty
compared to the reference sample (indicated with a lower subscript), while with the positive one a percentage increase. References for comparisons are SNe Ia
and SNe Ia + BAO.

We now check the compatibility of the results obtained with GRBs alone with uniform priors in Tables 3, 4. In Table 3 where
GRBs have not been calibrated with SNe Ia and with the likelihood based on `𝐺𝑅𝐵, the only case that exceeds 1 𝜎 limit for both
SNe Ia alone and SNe Ia + BAO is when we vary Ω𝑀 only without correction for the evolution. The z-scores for SNe Ia alone
and SNe Ia + BAO in this case are 1.040 and 1.022, respectively.
In Table 4 the only case of GRBs alone with calibration with uniform priors and with the likelihood based on `𝐺𝑅𝐵 that exceeds
the 1 𝜎 limit for both SNe Ia alone and SNe Ia+ BAO is the one where we compute Ω𝑀 only with fixed correction for evolution.
The z-scores for SNe Ia alone and SNe Ia + BAO in this case are 1.077 and 1.059, respectively. When we look instead at the
lower part of Tables 3 and 4 considering the likelihood Equations 6 and 7, all cases for SNe Ia alone and SNe Ia + BAO fall
within 1 𝜎.
All the percentage variations of SNe Ia alone and SNe Ia+BAO results with respect to the GRB results (SNe Ia and SNe Ia +
BAO are taken as reference in the percentage variation computation, respectively) both without and with calibration on SNe Ia
are shown in the last two columns of Tables 7 and 8, respectively. The percentage variation of SNe Ia + BAO with GRBs alone
(Δ𝐺𝑅𝐵

𝑆𝑁+𝐵𝐴𝑂%) is in general larger than the one of SNe Ia alone with GRBs (Δ𝐺𝑅𝐵
𝑆𝑁 %). More specifically, looking at Table 7 where

GRBs have not been calibrated, the minimum percentage increase (190.91 %) is when comparing with SNe Ia results and in two
cases 1) when we vary Ω𝑀 and 𝐻0 together with fixed evolution using distance modulus `𝐺𝑅𝐵, equation 12 and 2) when we
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Calibration with SNe Ia, Equation 12 parameters varied Model 𝚫𝑮𝑹𝑩
𝑺𝑵

% 𝚫𝑮𝑹𝑩
𝑺𝑵+𝑩𝑨𝑶

%

without evolution Ω𝑀 ΛCDM 871.43 1033.33

without evolution 𝐻0 ΛCDM 2213.08 2213.07

without evolution Ω𝑀 and 𝐻0 ΛCDM 190.91, 784.11 814.29, 2047.14

without evolution 𝑤 𝑤CDM 3638.89 4707.14

with fixed evolution Ω𝑀 ΛCDM 871.43 1033.33

with fixed evolution 𝐻0 ΛCDM 2382.31 2382.31

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 172.72, 806.47 757.14, 2101.43

with fixed evolution 𝑤 𝑤CDM 3755.56 4857.14

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 800.00 950.00

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 190.91, 821.76 814.29, 2138.57

Calibration with SNe Ia, Equation 6 and 7 parameters varied Model 𝚫𝑮𝑹𝑩
𝑺𝑵

% 𝚫𝑮𝑹𝑩
𝑺𝑵+𝑩𝑨𝑶

%

without evolution Ω𝑀 ΛCDM 885.71 1050.00

without evolution 𝐻0 ΛCDM 2299.23 2299.23

without evolution Ω𝑀 and 𝐻0 ΛCDM 195.45, 856.17 828.57, 2222.14

without evolution 𝑤 𝑤CDM 3772.22 4878.57

with fixed evolution Ω𝑀 ΛCDM 757.14 900

with fixed evolution 𝐻0 ΛCDM 2317.69 2317.69

with fixed evolution Ω𝑀 and 𝐻0 ΛCDM 200.00, 800.59 842.86, 2087.14

with fixed evolution 𝑤 𝑤CDM 3405.56 4407.14

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 ΛCDM 942.86 1116.67

with 𝑘 = 𝑘 (Ω𝑀 ) Ω𝑀 and 𝐻0 ΛCDM 190.91, 803.82 814.29, 2095.00

Table 8. The Table of comparison between the cosmological parameters derived from SNe Ia and from SNe Ia + BAO with GRBs alone using Gaussian priors
with calibration on SNe Ia. The first part compares SNe Ia and SNe Ia +BAO with GRBs alone calibrated with SNe Ia (in particular, the percentage decrease
of the uncertainties on the measurements) when the computation of the cosmological parameters with GRBs has been performed using Equations 6 and 7. The
second part is related to the comparison with SNe Ia and SNe Ia +BAO with GRBs alone, but using `𝐺𝑅𝐵 , Equation 12. The percentage decrease is computed
with formulas: Δ𝐺𝑅𝐵

𝑆𝑁
% = Δ𝐺𝑅𝐵−Δ𝑆𝑁

Δ𝑆𝑁
and Δ𝐺𝑅𝐵

𝑆𝑁+𝐵𝐴𝑂
% = Δ𝐺𝑅𝐵−Δ𝑆𝑁+𝐵𝐴𝑂

Δ𝑆𝑁+𝐵𝐴𝑂
. Those quantities measure how much GRBs alone have a larger scatter than SNe

alone and SNe Ia + BAO. With the negative sign we indicate a percentage decrease on the uncertainty compared to the reference sample (indicated with a lower
subscript), while with the positive one a percentage increase. References for comparisons are SNe alone and SNe Ia + BAO.

vary Ω𝑀 and 𝐻0 together with evolutionary functions, 𝑘 = 𝑘 (Ω𝑀 ) using fundamental plane equations, 6 and 7. The maximum
percentage increase (5021.43 %) is when comparing with SNe Ia + BAO results and in the case when we vary 𝑤 in the case
without evolution using distance moduli `𝐺𝑅𝐵, equation 12.
Now, considering the comparison of calibrated GRBs with SNe Ia and SNe Ia + BAOs (see Table 8), the percentage variation of
the uncertainties spans from 172.72% when comparing with SNe Ia only in the case of fixed evolutionary parameters and varying
Ω𝑀 and 𝐻0 together using distance moduli `𝐺𝑅𝐵, equation 12, to almost 4878.57% when comparing with SNe Ia + BAOs
and varying 𝑤 in the case without evolution using fundamental plane equations, 6 and 7. In general, the minimum percentage
difference in the uncertainty has been found for the case when both Ω𝑀 and 𝐻0 are varied together, both for the calibration and
no-calibration cases, and when comparing with SNe Ia alone results. The maximum percentage difference, instead, is found for
the case where 𝑤 is varied both for the calibration and no-calibration cases, and when comparing with SNe Ia + BAO results. We
can conclude that SNe Ia alone and SNe Ia + BAO have tighter constraints on the cosmological parameters than GRBs alone,
which in turn has larger uncertainties, as expected.
This conclusion does not undermine the possibility of using GRBs as standalone cosmological probes. Indeed, in the very first
papers regarding SNe Ia cosmology, (Riess et al. 1998; Perlmutter et al. 1999), the uncertainties on the Ω𝑀 parameter was
0.28±0.09, which, compared to the current analysis, is 47.54% larger than the same parameter computed using GRBs for the case
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Figure 29. Posterior contours for Ω𝑀 considering 800 simulated GRBs on the platinum fundamental plane.

without evolution and calibration. Further, when we compare this value to GRBs for the case in which evolutionary functions,
𝑘 = 𝑘 (Ω𝑀 ) are considered and with calibration on SNe Ia (the largest variance obtained in Tables 1 and 2 Ω𝑀 = 0.300± 0.073),
our results have an uncertainty on Ω𝑀 23.29% smaller. In addition, the current sample of GRBs is 100 times smaller than
the current sample of SNe Ia. In the next section indeed we calculate the predictions on the uncertainties on the cosmological
parameters if we simulate a sample of 800 GRBs.

8 THE FUTURE USE OF GRB COSMOLOGY AS STANDALONE PROBES

Regarding the use of GRBs as standalone standard candles, in Dainotti et al. (2022c), we studied how many GRBs are required to
obtain constraints on the cosmological parameters (in particular on Ω𝑀 ) similar to the ones obtained in the literature using SNe
Ia, thus giving a realistic forecast of the time required to reach these limits, taking into account present and future telescopes and
missions. In order to do so, we simulated different numbers of GRBs starting from the physical features of the platinum sample,
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as well as an optical sample of GRBs, opening this studies also to the optical wavelength domain. One of our simulations is
shown in Fig. 29, where we note a closed contour for Ω𝑀 for 800 GRBs. The number of 800 GRBs gives a satisfactory precision
on Ω𝑀 . Indeed, we have also computed that the number of platinum GRBs which are needed to achieve the same precision
reached by Conley et al. (2011) with 472 SNe Ia is 789 if no machine learning and lightcurve reconstructions are involved.
More specifically, in Dainotti et al. (2022c) we have studied, via simulations, the effects that the platinum and the optical
samples will have on future studies when the sample size will be increased thanks to 1) new observations by SVOM,
Theseus and other ground-based observations 2) the use of machine learning (Dainotti et al. in preparation), 3) the use
of lightcurves reconstruction (Dainotti et al. in preparation). Going more-in depth in the analysis performed in the cited
paper, the simulations were based on the best-fit fundamental planes obtained by considering different baseline samples.
Indeed, not only the entire platinum and optical sets were considered but also subsets built by choosing the closest
GRBs to the best-fit planes following two different methods. Then, the simulations were performed by creating GRBs
observations lying on the best-fit planes, considering as starting distributions the ones provided by the observed GRBs
used as a baseline. We have also run simulations in which we halved the errors on the quantities involved in the best-fit
fundamental planes, simulating the increase in the precision which is expected to be achieved by future observations. The
goal was to infer how many simulated GRBs are needed to reach pivotal thresholds on the precision on Ω𝑀 achieved by
the SNe Ia cosmological literature, namely Conley et al. (2011); Betoule et al. (2014), and Scolnic et al. (2018) results, who
found an error on Ω𝑀 equal to 0.10, 0.042, and 0.022, respectively, with the assumption that the ratio of the X-rays and
optical plateau will be the same as currently. Indeed, this is a conservative estimate, since we expect to have more GRBs
in the future at high redshift and more enhanced sensitivities in X-rays and optical so that more plateaus can indeed be
observed. Once we have found the exact number of simulated GRBs necessary to achieve these limits, we have considered
both present and future missions and observational campaigns (especially the future SVOM and Theseus missions), to
give a realistic time period in which these precisions shall be reached by the standalone GRBs used as cosmological probes.
This has been done both considering the current observed data, as well as taking into account machine learning and
lightcurve reconstruction methods, which can be used for inferring the redshifts of GRBs observations and decreasing
the errors on the observed quantities themselves, respectively. With the analysis of machine learning we will be able to
double the optical plateaus, while with the lightcurve reconstruction analysis we will be able to obtain a lightcurve with
almost half (47.5 %) of the error carried by the lightcurves not reconstructed. When the machine learning, lightcurve
reconstruction and errorbars divided by half will be applied for the optical sample, it is calculated in this analysis that
the precision obtained by SNe Ia on Ω𝑀 as the one in Conley et al. (2011) is reachable now, while the precision of Betoule
et al. (2014) is reachable in 2026, and the precision of Scolnic et al. (2018) is reachable in 2042. All these results have been
gathered in the tables 9 and 10 presented in Dainotti et al. (2022c). This shows the increasing importance the GRBs in
the next decades for cosmological applications. Thus, with these two tandem papers we have shown that GRBs have not
only the credibility to be used reliably as standard candles, but they can be an important aid and complementary tool
together with the SNe Ia to extend the Hubble diagram at high redshifts. For a more complete discussion, we refer to the
paper itself (Dainotti et al. 2022c).

9 SUMMARY, DISCUSSION AND CONCLUSIONS

The fundamental plane relation carried a 𝜎𝑖𝑛𝑡 = 0.18± 0.07 when selection biases and redshift evolution is accounted for, which
is the smallest intrinsic scatter in the current literature regarding GRB correlations involving the plateau emission. In this paper,
we first investigate the reliability of the 3D fundamental plane as an intrinsic correlation when we correct for selection biases
and redshift evolution, then we also study its application as a cosmological tool. To this end, we performed several tests to check
the reproducibility of the parameters of the correlation, see Fig. 1, when we consider simulations of the evolutionary coefficients
within a 1 𝜎 range. We also tested the reliability of the intrinsic scatter on the fundamental plane by showing the distribution of
this quantity obtained with the HyperFit online routine, which uses many fitting methods to derive the best-fit parameters of the
fundamental plane both with and without the evolutionary corrections, see Fig. 3. Before applying the fundamental plane relation
corrected for the evolutionary effects as a cosmological tool, we investigate to which extent the parameters of the evolutionary
functions, determined through statistical methods, depend on the cosmological ones, see Fig. 4. We find out that while the
evolutionary parameters have no dependence on 𝐻0, on the other end, they depend on Ω𝑀 , Ω𝑘 and 𝑤. This discovery opens
the way to the application of the evolution to the fundamental plane both considering fixed parameters for the evolution, as well
as the evolutionary function dependent on Ω𝑀 and in the future also on Ω𝑘 and 𝑤. Thus, the application of the fundamental
plane corrected for selection biases and redshift evolution allows us to estimate cosmological parameters for GRBs alone for the
first time considering such correction.
To use GRBs as standalone cosmological probes, we have adopted two methods: the Fundamental plane (Equations 6, 7), and
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the distance moduli, `𝐺𝑅𝐵, variables (Equation 12), taking into account GRBs without calibration on SNe Ia, see 6.1, as well
as considering these calibrations on SNe Ia, see 6.2. We have obtained cosmological parameters by GRBs alone using Gaussian
priors of 3 𝜎 based on the values of SNe Ia, see Tables 1 and 2. We show the percentage change between the uncertainties of
GRBs alone without and with calibration on SNe, see the seventh column of Table 2. We find that all the results lie within 1 𝜎
when comparing cases i-vi) both with and without calibration.
We, then, explored how strong the impact of the Gaussian priors is on our results and how much the parameter space of GRBs
can be constrained. To do so, we obtain averaged cosmological parameter results over 100 runs performed by MCMC by GRBs
alone using a uniform prior, see Sec. 6.3. Then, we compare the uncertainties on the results of GRBs alone using both Gaussian
and the uniform priors, see the seventh column of Tables 3 and 4. We find that all the results obtained by GRBs alone using
uniform priors lie within 1 𝜎 with respect to the cosmological ones obtained by GRBs alone using Gaussian priors both with
and without the calibration on SNe Ia. We used as Gaussian priors the parameters based on the results of SNe Ia.
The uncertainties on the cosmological parameter values using `𝐺𝑅𝐵 for both Ω𝑀 and 𝐻0 obtained by GRBs alone are higher
by 328.57%, 327.58% (without evolution and calibration, the upper part of Table 3); 328.57%, 384.42% (with fixed evolution
and without calibration, the upper part of Table 3); 326.47%, 348.29% (without evolution and with calibration, the upper part of
Table 4); 297.06%, 306.57% (with fixed evolution and calibration, the upper part of Table 4), respectively, than the uncertainties
on the results obtained using Gaussian priors of 3 𝜎.
We then note that the uncertainties on the value of Ω𝑀 using the 𝑘 (Ω𝑀 ) evolutionary function, both without and with calibration
on SNe Ia using `𝐺𝑅𝐵, are higher by 335.48% and 328.57%, respectively (Table 3) than the ones obtained using Gaussian
priors of 3 𝜎.
Surprisingly, the uncertainties on the values of 𝑤 using `𝐺𝑅𝐵 and uniform priors for the case of no evolution and fixed evolution
and for no calibration are smaller than the values of 𝑤 with Gaussian priors by 19.11% and 6.45% (upper panel of Table 3),
respectively, while for the case considering the calibration on SNe Ia they are smaller in both of without evolution (16.42%)
and with evolution (16.43%) cases, the upper panel of Table 4. This difference may be due to the fact that the variation in 𝑤 is
smaller than the variation of 𝐻0 (50 < 𝐻0 < 100) and Ω𝑀 (0 < Ω𝑀 < 1).
Now, considering the Fundamental plane Equations 6 and 7, the uncertainties on the values for both Ω𝑀 and 𝐻0 obtained by
GRBs alone are higher by 359.01%, 355.19% (without evolution and without calibration, the lower part of Table 3); 315.38%,
356.49% (with fixed evolution and without calibration, the lower part of Table 3); 305.80%, 337.32% (without evolution and
with calibration, the lower part of Table 4); 366.67%, 338.11% (with fixed evolution and with calibration, the lower part of Table
4), respectively, than the uncertainties on the correspondent results obtained using Gaussian priors of 3 𝜎 based on the results
of SNe Ia.
Also, when using 𝑘 (Ω𝑀 ) evolutionary function without and with calibration on SNe Ia using Equations 6 and 7, uncertainties
on the value of Ω𝑀 are higher by 328.57% and 283.56%, respectively, than the correspondent results obtained using Gaussian
priors of 3 𝜎.
Similarly to the results obtained with the `𝐺𝑅𝐵, when we compare the values of 𝑤 using the Fundamental plane Equations 6
and 7 with and without evolution, respectively, in the case without calibration, the uncertainties on 𝑤 using uniform priors for
the case without evolution and fixed evolution are smaller than the values of 𝑤 with Gaussian priors by 44.65% and 12.39%,
respectively (lower part of Table 3). In the case of calibration on SNe Ia, the values of 𝑤 are smaller in the cases of no evolution
(18.22%) and with evolution (9.67%) (lower part of Table 4). We have also computed the percentage change of the uncertainties
between the results obtained by GRBs alone with Gaussian priors without calibration and with calibration on SNe Ia, see the
last two columns of Tables 7 and 8, respectively, with the results obtained by SNe Ia alone and SNe + BAOs. We have concluded
from this analysis that SNe Ia alone and SNe Ia + BAO have tighter constraints on the cosmological parameters than GRBs alone.
To better understand what the advantage of using Gaussian priors is with respect to uniform priors in the comparison with other
probes, we have then computed the z-scores of GRBs alone with respect to the SNe Ia alone and SNe Ia + BAO results, see the
last two columns of Tables 1, 2, 3, 4. The last two columns of Tables 1 and 2, present GRB results alone using Gaussian priors
compared with the SNe Ia and SNe Ia + BAO with no calibration and with calibration, respectively, see Sec. 7 for more details.
The last two columns of Tables 3 and 4, present the same comparison among the GRBs alone and SNe Ia and SNe Ia+BAO
results, but using uniform priors.
More specifically, we first consider the comparison with SNe Ia using both the `𝐺𝑅𝐵 (upper panels of Tables 1 and 2) and
the fundamental plane equations 6 and 7 (lower panels of Tables 1 and 2) using Gaussian priors. In relation to the cases of no
calibration, we obtain that all cases have z-score < 1 with the only exception of 𝐻0, for which the maximum z-score = 1.025 in
the case of Ω𝑀 and 𝐻0 varied contemporaneously without considering evolution. In relation to the cases with calibration, we
obtain that in all cases z-score < 1 with the only exception of 𝐻0 without evolution varied alone for which the maximum z-score
is 1.137.
Now we consider the comparison between SNe Ia+ BAO and GRBs with both `𝐺𝑅𝐵 and the fundamental plane Equations 6 and
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7, see Table 1 and Table 2 using Gaussian priors. In relation to the cases of no calibration, we obtain that all cases have z-score < 1
with the only exception of 𝐻0 for which the maximum z-score = 1.10 in the case of Ω𝑀 and 𝐻0 varied contemporaneously with
fixed evolution. In relation to the cases considering the calibration, we obtain that in all cases z-score< 1, with the only exception
of 𝐻0 for which the maximum z-score is 1.176 in the case of Ω𝑀 and 𝐻0 varied contemporaneously without considering
evolution.
Now, we consider the comparison with SNe Ia using both the `𝐺𝑅𝐵 (upper panels of Tables 3 and 4) and the fundamental plane
equations 6 and 7 (lower panels of Tables 3 and 4) using uniform priors. In relation to the cases of no calibration, we obtain that
all cases have z-score < 1 with the only exception of Ω𝑀 for which the maximum z-score = 1.040 in the case when Ω𝑀 only is
varied without considering evolution. In relation to the cases with calibration, we obtain that in all cases z-score < 1 with the
only exception of Ω𝑀 with fixed evolution varied alone for which the maximum z-score is 1.077.
Now we consider the comparison between SNe Ia+ BAO and GRBs with both `𝐺𝑅𝐵 and the fundamental plane Equations 6 and
7, see Table 3 and Table 4 using uniform priors. In relation to the cases of no calibration, we obtain that all cases have z-score < 1
with the only exception of Ω𝑀 for which the maximum z-score= 1.022 in the case when Ω𝑀 only is varied without evolution.
In relation to the cases considering the calibration, we obtain that in all cases z-score< 1, with the only exception of Ω𝑀 for
which the maximum z-score is 1.059 in the case when Ω𝑀 only is varied contemporaneously with fixed evolution. The most
notable comparison is achieved between SNe Ia, SNe Ia + BAO vs SNe Ia + BAO + GRBs using a uniform prior, for the cases
of both without and with correction for evolution, see Table 5. For the case without correction for evolution, we reduced the
scatter related to Ω𝑀 by 14.3%, Ω𝑀 and 𝐻0 by 68.2% and 55.9% when varied together, and 𝑤 by 22.2%, in comparison to the
results obtained by SNe Ia alone. For the case of correction for evolution, we reduced the scatter related to Ω𝑀 by 14.3%, Ω𝑀

and 𝐻0 by 68.2% and 52.9% when varied together, and 𝑤 by 16.7%, in comparison to the results obtained by SNe Ia alone. All
our results are consistent at the 68% level with the ΛCDM model. The crucial points of our derivations are: 1) we have obtained
cosmological parameters compatible with the ΛCDM model; 2) in all cases, except for 𝐻0, we obtained a smaller intrinsic scatter
by using GRBs + SNe Ia +BAO compared to SNe Ia alone, see subsection 6.4.
From this analysis we have concluded that, even if uncertainties are smaller in the SNe Ia alone and SNe Ia+BAO cases, GRBs
alone can still be used to verify if cosmological parameters are compatible with the ones inferred by the SNe Ia. Indeed, we may
conclude that GRBs alone can be used as cosmological tools, which carry the great advantage of being observed up to 𝑧 = 5 in
the Platinum sample case.
We have also computed the z-scores of GRBs alone using a uniform prior with respect to the SNe Ia alone and SNe Ia + BAO
results, see last two columns of Tables 3 and 4, to check the compatibility of the GRBs results using a uniform prior with the
SNe Ia and SNe Ia + BAO ones, see Sec. 7. We obtained the maximum z-score of 1.077 for the Ω𝑀 parameter when it is varied
with fixed evolution and when we compare SNe Ia results with the ones obtained with calibrated GRBs alone using the `𝐺𝑅𝐵

likelihood. Surprisingly, the average results of GRBs alone using uniform priors do not change even if we correct for evolution,
both fixing the parameters as well as using a function for the evolution, see Tables 3 and 4. However, it is very likely that this
result is due to the paucity of the sample size, given that when we simulate 800 GRBs starting from the ones closest to the
fundamental plane (Dainotti et al. 2022c) we do not recover these results. On the other hand, the closest GRBs to the plane
in the simulated data have been built with a given fiducial cosmology. Thus, it is necessary to wait for additional data to come
with future missions, such as SVOM and Theseus (Wei et al. 2016; Amati et al. 2018) to cast light on this discrepancy. Very
interestingly, also other probes at high redshift, like the quasars, show a tendency to have a higher value of Ω𝑀 (Colgàin et al.
2022). Although this discussion surely deserves much attention, it is far beyond the scope of the current paper.
Although results related to GRB cosmology have been reached by previous studies for the prompt correlation (Amati et al. 2008;
Kodama et al. 2008; Wang et al. 2016; Demiansky et al. 2017; Luongo & Muccino 2020) and the Combo relation (Izzo et al.
2015), this is the first time cosmological constraints have been achieved considering a 3D correlation involving the plateau, and
it is also the first time the evolutionary parameters have been included in the computation of cosmological ones, thus allowing
a road-map for a new methodology to treat selection biases and redshift evolution contemporaneously inside the cosmological
setting.
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Figure 1. Top page of the AAS Journals’ website, http://journals.aas.org, on October 15, 2017. Each RNAAS manuscript is
only allowed one figure or table (but not both). Including the data behind the figure in a Note is encouraged, and the data will
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