The Garbage Collection Advantage:
Improving Program Locality

Xianglong Huang
The University of Texas at Austin
xlhuang@cs.utexas.edu

J Eliot B Moss

The University of Massachusetts, Amherst
moss@cs.umass.edu

ABSTRACT

As improvements in processor speed continue to outpaceoirepr
ments in cache and memory speed, poor locality increastteglyades
performance. Because copying garbage collectors movetsbibey
have an opportunity to improve locality. However, no statipy-
ing order is guaranteed to match program traversal ordenss Ja-
per introduce®nline object reorderingOOR) which includes a new
dynamic, online class analysis for Java that detects pnodgraver-
sal patterns and exploits them in a copying collector. OO&s wan-
time method sampling that drives just-in-time (JIT) corapdn. For
eachhot (frequently executed) method, OOR analysis identifies the
hot field accesses. At garbage collection time, the OOR ctolitehen
copies referents of hot fields together with their parenhdfrtements
include static analysis to exclude accesses in cold basik$)] heuris-
tics that decay heat to respond to phase changes, and atsegee
for hot objects. The overhead of OOR is on average negligihtd
always less than 2% on Java benchmarks in Jikes RVM with MMTK.
We compare program performance of OOR to static classiobkv
copying orders (e.g., breadth and depth first). Performaadation
due to static orders is often low, but can be up to 25%. In eshtr
OOR matches or improves upon the best static order sincesttay+
based copying tunes memory layout to program traversal.

Categories and Subject Descriptors

D.3.4 [Programming Language§: Processors-€ompilers, Memory
management (garbage collection)

General Terms

Languages, Performance, Experimentation, Algorithms

Keywords

adaptive, generational, compiler-assisted, locality

*This work is supported by NSF ITR CCR-0085792, NSF CCR-
0311829, NSF EIA-0303609, DARPA F33615-03-C-4106, ARC
DP0452011, and IBM. Any opinions, findings and conclusiors e
pressed herein are the authors and do not necessarily tbfbset of
the sponsors.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

OOPSLA'040ct. 24-28, 2004, Vancouver, British Columbia, Canada.

Copyright 2004 ACM 1-58113-831-8/04/001055.00.

Zhenlin Wang
Michigan Techgickd University
zlwang@mtu.edu

Stephen M Blackburn Kathryn S McKinley*
Australian National Unsigy
Steve.Blackburn@anu.edu.au

The University of Texas at Austin
nieyp@cs.utexas.edu

Perry Cheng
IBM T.J. Watson Research Center
perryche@us.ibm.com

1. Introduction

The goals of software engineering and high performance ftea at
odds. Common wisdom holds that garbage collected langusagdts
as Java offer software engineering benefits of reducedscarot de-
velopment time, but at a cost: the collector must periotlicaavenge
for unused memory. Common wisdom also holds that expliaitin-
aged languages such as C offer performance benefits at aaseftw
engineering cost. In theory, programmers can free memospas
as possible, and use specialized allocators for memoryesftig and
speed. However, C has a hidden performance cost. Because-it c
not move objects without violating language semanticeduires a
non-moving allocator, such as a free list. A free-list adltmr places
contemporaneously allocated objects in locations freleadtime, but
that are not necessarily adjacent or even nearby in menmrg.dbes
not have this restriction, and can thus use contiguous altot to
attain locality for contemporaneously allocated objeats] copying
collection to place objects with temporal locality closegéther.

Prior research on improving locality with generational yiog col-
lectors uses a priori static orders [13, 22], static clasfilprg [7, 18],
and online object instance sampling [Btatic ordersare problem-
atic when traversal patterns do not match the collectonglsiorder.
Although for many benchmarks the locality of static copyorders
has negligible impact, we show large differences of up to 25%-
tal time for some benchmarks. In a Java just-in-time (JIThpiter,
the generality ofstatic profilingis limited because it conflicts with
dynamic class loadingnstance based reorderirig potentially more
powerful than the class based orders we introduce heres siniects
with locality are not necessarily connected. However, denggspace
and time overheads just for the mature objects are signtf{6&a in
time for Cecil [9]) and miss the opportunity to improve latalvhen
the collector promotes youngyrsery objects.

We introduceonline object reorderingOOR) which includes a low
cost dynamic class analysis that drives a generationalicgmpllec-
tor [15, 21]. Previous copying collectors choose an a paoder such
as breadth first to copy reachable (live) objects. This onday not
match program traversal patterns, and thus exposes prqueeior-
mance to copying order jeopardy. The OOR collector instesbu
copying orders that match program access patterns to rinddlity.

OOR compiler analysis findkot (frequently executed) field ac-
cesses and is low cost (at most 1.9% of total time). It piggban
method sampling in an adaptive JIT compiler. The adaptivepter
in Jikes RVM uses timer-driven sampling to identify hot naeth, and
recompiles them at higher optimization levels. At compite, OOR
analysis enumerates the field accesses in each method g@xenu-
tion, when the adaptive compiler identifies a hot method&reigss
of its optimization choice), OOR analysis marks as hot thdgi¢he
method accesses. At garbage collection time, the OOR toflpref-
erentially copies referents of hot fields first together wlithir parent.

We further improve the OOR system by decaying heat to respmnd
phase changes, by exploiting Jikes RVM static analysis thuele
cold basic blocks from the reordering analysis, and by uaisgpa-
rate copy space to group objects of hot classes together.

data structures of LISP programs using static-graph redzgton to
improve locality of memory pages [22]. They found that usantgvo-
level queue for the Cheney scan groups objects effectidedyn et
al. later conclude that hierarchical decomposition is hoawgs effec-

In addition to the SPECjvm98 benchmarks, we use five Java pro- tive [13]. They suggest that users supply object type infdfom to

grams from the DaCapo benchmark suite [6] that vigorousty@se
garbage collection. Experimental results show that maognms
use data structures with only one or two pointer fields, amyicg
order does not influence their performance much. Howeverneer
of programs are very sensitive to copying order. For exang@pth-
first order consistently improves upon breadth first perémoe by

group objects. We automatically and adaptively examinediraéned
field accesses to generate such class advice.

Chilimbi and Larus use a continuously running online progli
technique to track recently referenced objects and butiehgporal
affinity graph[9] based on the frequency of accesses to pairs of ob-
jects within a temporal interval. The object pair need natrenected

around 25% on a wide range of heap sizes for one program. OOR by a pointer, but must lie in the same non-nursery generatioeduce

protects user programs from this source of potentially estveffects,
i.e., copying order jeopardy. Running time and hardwaréopeance
counter experiments show that OOR matches or improves upon t
best of the class-oblivious orders for each program by impgpmu-
tator locality. Additional experiments show that our aigfun is ro-
bust across architectures, and not very sensitive to theygatobs.

As a final experiment, we explore the questiétow significant is
the locality benefit of copying collection compared to noowing ex-
plicit memory managemeni®e first demonstrate that indeed copying
collectors offer a locality advantage over a high perforogamark-
sweep implementation [4, 5]. However, mark-sweep’s spdfie e
ciency yields better total performance when heap spaceiteli. To
examine roughly the difference between explicit mark-gwve®m-
ory management and copying collection, we compare copytd] t
time to only the mutator time of mark-sweep, thus excluding the di-
rect cost of freeing. This measure is imperfect since cootiis, im-
mediate freeing should reduce the total memory footpridtienprove
the locality of free-list allocations as compared to the enperiodic
‘inhale/exhale’ pattern of mark-sweep collection. Normd#iss, the
total (mutator+ collector) time using a copying collector is some-
times better than the mutator time alone of mark-sweep. In small
heaps, the idealized mark-sweep does much better, becapgag
collection triggers more frequent collections and thist clmsninates.
However, in moderate and large heaps, the mutator locadibefits
of contiguous allocation and copying collection can ofteat perfor-
mance improvementfcluding the cost of GCof up to 15%. Since
future processors will demand locality to achieve high perfance,
copying garbage collection may soon combine software eeging
with performance benefits. Furthermore, an OOR system wal p
vide growing benefits with its adaptive online mechanisnas thatch
object layout to past program usage patterns.

2. Related Work

The key investigations of this work are (1) exploiting thgea re-
ordering that happens during copying generational garlcagec-
tion [15, 21], and (2) using online profiling to collect infoation for
controlling the copying order. Much previous research iis #rea
considers non-garbage collected languages (such as C) 22],8r
does not address the effects of copying collectors [12]theionvords,
it neither considers nor exploits theovingof heap objects.

The related work most pertinent to ours falls into two catego
techniques that group objects to impraméer-object locality [7, 9,
13, 22], and those that reorder fields within an instance torave
intra-object locality [7, 12]. This prior work relies on staticalysis or
offline profiling to drive object layout decisions and is dasblivious
for the most part, i.e., it treats all classes the same.

One can improve inter-object locality by clustering togetbbjects
whose accesses are highly correlated. The work in this dffeasdn
how to define correlation and specific methods to clusteratdbjéVil-
son et al. describe a hierarchical decomposition algorittgroup

overhead. Their dynamic instance-level profiling recorda buffer
most pointers fetched from the heap. They report overhefe@bs dor
Cecil. Exploiting the timer-driven sampling, already iretadaptive
optimization system of Jikes RVM, is much cheaper, whileytog
cannot guarantee to improve every program by at least 6% $o as
overcome instance profiling costs. Their algorithm copagether
objects with high affinity only during collection of the oleéégeration
whereas our system reorders objects during both nursergldmggn-
eration collections.

Chilimbi et al. split objects into hot and cold parts to grahp hot
parts together [7]. This technique is not fully automated eequires
substantial programmer intervention. Chilimbi et al.'sstkering and
coloring methods also rely on manual insertion of speciakation
functions [8]. Our technique is automatic.

Intra-object locality can be improved by grouping hot fietds
gether so that they will usually lie in the same cache lined &n
most useful for objects somewhat bigger than a cache line.size
of hot objects in Java benchmarks is close to and rarely esca2
bytes [10], whereas typical L1 cache line sizes are 32 or édstgnd
L2 line sizes are 64 to 256 bytes. Thus the performance ingprov
ment offered by field reordering alone is usually small. Kisand
Franz use an LRU stack to track the temporal affinity of obfietds,
and they partition and reorder fields based on their affiniépg [12].
They use a mark-sweep collector, where field reordering bafact
on the object order after collection. Chilimbi et al.’s fielebrdering
depends on profiling to generate reordering advice [7]. Thgnam-
mer then follows the advice to rewrite the code and reordkfsie

Rubin, Bodik, and Chilimbi developed a framework that afésn
to pull together much prior work in this area [18]. Their apgeh in-
volves the following steps. (1) Produce an access traceimstance
and field labels. (2) Compress the trace to fit in main memodyiian
clude only accesses relevant to a specific cache size andaxation.
(3) Compute the objects with the most accesses and misgelds¢4
object properties (e.g., size, field access frequencidd dizess cor-
relations) to select optimizations. (5) Perform a hilldting search
of possible field and object layout schemes, and model misseach
scheme on the compressed trace. Their framework would ngeift s
icant changes to address moving collectors, and is pracita as
an offline tool. In contrast, we exploit the reordering ofeatif inher-
ent in copying collection and our online analysis is inexges and
robust to phase behavior.

3. Background
We first describe how the adaptive compilation system insJRéM
works, and the generational copying collector from the Mgndan-
agement Toolkit (MMTK) that we use, to set the stage to erplae¢
online object reordering system.

Jikes RVM [1] is an open source high performance Java virhaal
chine (VM) written almost entirely in a slightly extended/da Jikes
RVM does not hava bytecode interpreter. Instead, a fast template-

driven baseline compiler produces machine code when the ¥&¥ fi
encounters each Java method. The adaptive compilatioersytsen
judiciously optimizes the most frequently executed me#hi@j. Us-
ing a timer-based approach, it schedules periodic intésrulst each
interrupt, the adaptive system records the currently ekagmethod.
Using a threshold, it then selects frequently executindod to opti-
mize. Finally, the optimizing compiler thread re-compilesse meth-
ods at increasing levels of optimizations.

MMTk is a composable Java memory management toolkit that im-
plements a wide variety of high performance collectors tieatse
shared components [4, 5]. It provides the garbage collecbdikes
RVM, and we use its generational copying colleci8eCopy.

A generational copying collector divides the heap into twdipns,

a nursery containing newly allocated objects, andrature space
containing older objects [15, 21]. It further divides thetora space
into two semispaces. It collects the nursery frequentlyeméver it
fills up), by copying reachable nursery objects into one efrttature
semispaces. Once the mature semispace is full, at the niéedtem

the whole heap is collected, all surviving objects are cdbji¢o the
empty semispace and the roles of the semispaces are flipped.

Since the generational collector collects the nurseryregpls from
the mature space, it must assume any pointers into the ganselive.
To find these pointers, the compiler insestste-barrier code, which
at run time records stores of pointers from mature to nursbpgcts
in aremembered setWhen the collector starts a nursery collection,
the remembered set forms part of the setooft pointers which also
consists of the stacks, registers, and static variablesodies any
referents of the root pointers that lie in the nursery, aedatively
enumerates the pointers in newly copied objects, copyieig tlursery
referents, until it copies all reachable nursery objectatuvke space
collection proceeds similarly, except the rememberedssatipty and
the collector copies any uncopied object, not just nursbjgats. This
scheme generalizes to multiple generations, but we use two.

We use a bounded generational collector. It follows Appiéd'si-
ble nursery [2], which shrinks the nursery as mature spacepancy
grows, except that the nursery never exceeds a fixed choserdbo
(4MB). When mature space occupancy approaches the maxiowm t
tal heap size, GenCopy shrinks the nursery, until it reaehksver
bound (256KB) that triggers mature space collection. Wectehis
configuration because it performs almost as well as the Appis-
ery [2], but has more regular behavior and lower averagegdames.

MMTk manages large objects (8KB or bigger) separately inr& no
copying space, and puts the compiler and a few other coreeslsm
of the system into the boot image, an immortal space. Blatkbt
al. include additional implementation details [4, 5].

4. Online Object Reordering

The Online Object Reordering (OOR) system is class-basedic,
and low-overhead. OOR consists of three components, eaghiclfi
extends a subsystem of Jikes RVM: (1) static compiler aigly2)
adaptive sampling for hot methods in the adaptive optinozasub-
system; and (3) object traversal and reordering in garbatiection.
Figure 1 depicts the structure and interactions of the OCdResy.
When Jikes RVM initially compiles a method, we collect infation
about field accesses within that method. Later, the Jikes Rdlp-
tive compilation system identifies frequently executedtl methods
and blocks using sampling (see Section 3). We piggyback in th
mechanism to mark hot field accesses by combining the hotadeth
information with the previously collected field accesse® thén use
this information during garbage collection to traverse hiog fields
first. The next three sections discuss each component in detad.

Detected
hot methods

Adaptive Sampling Optimizing Object Reordering GC copies fields
System Compiler Analysis by hotness

i,/ N/ \ /

Executing Field accesses in Hot field
Code in hot blocks designations

Obiject order affects locality of mutator

Flgure 1: OOR System Architecture

4.1 Static Identification of Field Accesses

OOR analysis first identifies potentially hot fields by notfied ac-
cesses when first compiling each method. The Jikes RVM optimi
ing compiler uses a static analysis with a coldness threddeainark

cold basic blocks. OOR does not enumerate field accesseddn co

blocks, and uses the compiler’s default threshold (seei@e6t5).
The compiler uses loop and branch prediction heuristicstonate
the execution frequency of basic blocks in a method. For @@m
it marks exception handler basic blocks as cold, and basitkblin
loops as potentially hot. For each method, OOR analysis erates
all the field accesses in potentially hot blocks, generatimdes of
the form<cl ass, of f set >. The tuples identify the class and off-
set of any potentially hot field, and OOR associates eacle twjih
the compiled method. This analysis thus filters out field ases the
compiler statically determines are cold and associates aflall non-
cold field accesses with each compiled method. At presendovet
perform any field access analysis in the Jikes RVM baselingder.
Since the Jikes RVM adaptive compilation framework recdegaot
methods with the optimizing compiler, we use it to apply onalg-
sis selectively to hot methods. Jikes RVM also collects dbiick
dynamic execution frequencies using a counter on everychrawe
believe this information can improve the accuracy of OORais,
although we have not implemented this feature here.

4.2 Dynamically Identifying Hot Fields

The Jikes RVM adaptive sampling system detects hot methpgsb
riodically sampling the currently executing method. Wheaiumber
of samples for a method grows beyond a threshold the adaptie
tem invokes the optimizing compiler on it. OOR analysis pigacks
on this mechanism. The first time it identifies a hot methodhatks

all the potentially hot field access for the method as hot.hEaue

the sampling mechanism re-encounters a hot method (regardf
whether the adaptive system recompiles it), it updates ¢l imetric
for the corresponding hot fields.

Figure 2 shows OOR’s decay mechanism for adapting to phase

changes. Other policies are possible of course. The highamnd
heat threshold${l andLO (default values of 100 and 30 respectively)
indicate the hottest field with heati Any field cooler thanLO is
regarded as cold. Initially all fields are cold, with heat Oh&W the
timer goes off, the heuristic records the current samplmg tNow(),
and updates one or more heat fieldslassfor the method.

This heuristic decays heat for unaccessed fields based dasthe
time the analysis updated the instantiating clelass.lastUpdateHow-
ever, the heuristic does not decay field heat for all classaysample
period, since the cost would be prohibitive. Instead, itatpd a class
only when the adaptive compiler samples another methodidest a
field instantiated by it. In the worst case of not strictly agiag field

1The units for these thresholds are sample intervals, whiehap-
proximately 10msHI ~ 1 secLOW ~ 0.3 sec.

DECAY-HEAT (method
1 for each fieldAccessn methoddo
2 if POTENTIALLY HOT(fieldAccessthen
3 hotField + fieldAccessfield
4 class« hotField.instantiatingClass
5 classhasHotField« true
6 for each field in classdo
7 period «+ Now() — classlastU pdate
8 decay« HI/(HI + period)
9 field.heat«+ field.heatxdecay

10 if field.heat< LO then
11 field.heat=0

12 hotField.heat« HI

13 classlastU pdate— Now()

Figure 2: Pseudocode for Decaying Field Heat

heat for all classes, the OOR collector will copy an old objesing
obsolete hot field information. Since none of the hot metramtess
this field, the order in which the collector copies these cisjavill
simply be based on access orders further back in history famald
not degrade performance. If these objects never becomeghat,a
this mechanism does no harm. Otherwise, if their past aesqu®-
dict the future, program locality will benefit.

4.3 Reordering during Garbage Collection

The copying phase of the collector applies OOR advice. Fcin é&
stance of a class, the collector traverses the hot fieldsyiffarst. At
class load time, the OOR system constructs an array for dash,c
with one integer representing the heat of each field in thesclni-
tially all fields have a heat of zero. OOR analysis uses therglgn
in Figure 2 to set the heat value for each field and thus idehtt
fields to the collector. The OOR collector then copies andiengs
the hot fields first. Figure 3 shows how the collector copida.deéor a
nursery collection, it begins by processing the remembsetsi(these
are empty in a full heap collection), and then processes dbésr
ADVICE-PROCESS) places all uncopied objects (line 2) in the copy
buffer, and updates the pointer for already copied obje&tsvICE-
ScAN()) then copies all the hot fields first (line 3), and enquebes t
remaining fields to process later. Without advice, all figlds cold.
We also experiment with usingheot spacehat segregates hot ob-
jects from the others to increase their spatial localityjoltshould
improve cache line utilization, reduce bus traffic, and cedpaging.
We refine hot objects thot referents—instances referred to by hot

fields, andhot parents—instances of classes that instantiate hot fields.

When copying an object, it is identified as a hot parent ifttasHot-
Field value of the object’s class is true. Hot referents are discel
when traversing hot fields. THeot spacecontains all the hot objects
and is part of the older space; during nursery garbage ¢wiieche
collector copies into the hot space all objects that corttainfields
and the objects to which the hot fields point. During olderegation
collection, the collector copies objects in the hot space tew hot
space. It always copies all other objects into a separasespahe
older generation. We do not need to change the write baoiadd a
hot space since we always collect it at the same time as dbfests in
the older generation. Therefore, this change does not mfkierite
barrier overhead in the mutator.

An advantage of advice-directed traversal is that it is notusive.
For those objects without advice, we can use the best statiersal
order available to combine the benefit of both methods. Ircatment
implementation, the default copy order is pure depth firstfidd ob-
jects, last child first, because this static order genegaherates good
performance, as we will show in the following section.

5. Methodology

We now describe our experimental methodology, platformd,rale-
vant characteristics of the benchmarks we use. We use twiooahet
ologies for these experiments. (1) Thdaptivemethodology lets

ADVICE-BASED-COPYING()
Objects« EMPTYQUEUE()
Cold «+ EMPTYQUEUE()

1

2

3

4 for eachlocationin Remsetso
5 AbpvicE-PROCESqlocation)
6 for eachlocationin Rootsdo
7 ADVICE-PROCESsYlocation)
8
9

repeat
while ObjectsNOTEMPTY () do
10 ADVICE-SCAN (ObjectsDEQUEUE())
11 while Cold.NOTEMPTY () do
12 AbVICE-PROCESYCold.DEQUEUE())

13 until ObjectsISEMPTY()

ADVICE-PROCESglocation)
obj « xlocation
if NEEDSCOPYING(0bj) then
Ob jectsENQUEUE(CoPY(0bj))
if FORWARDED(0bj) then
xlocation+ NEWADDRESS0bj)

O WNBE

ADVICE-SCAN (obj)
1 for eachfieldin obj.fields) do

2 if field.isHot(location) // advice
3 then Abvice-PROCESSobj.field)
4 else Cold.ENQUEUE(obj. field)

Figure 3: Pseudocode for Advice Based Copying

the adaptive compiler behave as intended and is non-detistini
(2) Thepseudo-adaptivenethodology is deterministic and eliminates
memory allocation and mutator variations due to non-detastic
application of the adaptive compiler. We need this lattethoéol-
ogy because the non-determinism of the adaptive compilatistem
makes it a difficult platform for detailed performance sagdiFor ex-
ample, we cannot determine if a variation is due to the systesnge
being studied or just a different application of the adaptiempiler.

In the adaptive methodology, the adaptive compiler usesceber-
ministic sampling to detect hot methods and blocks, and thiéors
optimizations for the hot blocks. Thus on different exeons, it can
optimize different methods and, for example, choose taédiffer-
ent methods. Furthermore, any variations in the underlgygjem
induce variation in the adaptive compiler. We use this medhagy
only for measuring the overhead of our system.

For all other experiments, we use a deterministic methagotoat
holds the allocation load and the optimized code constdrg.pEeudo-
adaptive methodology gives a mixture of optimized and uintped
code that reflects what the adaptive compiler chooses, Bpeisified
by an advice file from a previous run. We run each benchmark five
times and profile the optimization plan of the adaptive cdengdor
each run. We pick the optimization plan of the run with bestqe
mance and store it in an advice file. For the performance meamsnt
runs, we execute two iterations of each benchmark and réposec-
ond. We turn off the adaptive compiler, but not the adaptams
pling. In the first iteration, the compiler optimizes setattmethods
at selected level of optimization according to the advice fiBefore
the second iteration, we perform a whole heap collectionughfthe
heap of compiler objects. We then measure the second d@erathus
we have optimized code only for the hot methods (as detedrime
the advice file). This strategy minimizes variation due te #dap-
tive compiler since the workload is not exposed to varyingoants
of allocation due to the adaptive compilation. We measutg tre
application behavior and exclude the compiler in this methagy.

We report the second iteration because Eeckhout et al. St t
measuring the first iteration, whidghcludesthe adaptive compiler, is
dominated by the compiler rather than the benchmark behghig

For each experiment we report, we execute the benchmark five

times, interleaving the compared systems. We use the mathgids

Adaptive Fixed GC load
classes| methods|[alloc | alloc: || alloc [alloc: [[% nrs | % wb alloc pointers scan pointers scan non-null pointers|
Benchmark || loaded | compiled || (MB) min || (MB) min srv take 0 1 [many 0 1 [many 0 1 [many
jess 155 507 403 25:1 261 | 17:1 1 0.08 || 18% | 40% | 42% 1% | 52% | 47% 7% | 49% | 43%
jack 61 331 307 22:1 231 | 1711 3 315 || 48% | 31% | 22% || 21% | 44% | 35% || 34% | 53% | 13%
javac 160 821 593 23:1 185 7:1 23 1.21 29% | 34% 37% 5% | 27% 68% 6% | 34% 60%
raytrace 34 227 215 12:1 135 8:1 2 0.01 89% 1% 10% 55% | 12% 33% 57% | 14% 29%
mtrt 35 225 224 11:1 142 7:1 5 0.65 87% 2% 11% 55% | 12% 33% 57% | 14% 29%
compress 16 99 138 8:1 99 6:1 0 1.20 || 56% | 34% | 10% || 41% | 31% | 29% || 43% | 37% | 20%
db 8 92 119 6:1 82 4:1 9 1.21 4% | 95% 1% || 42% | 53% 5% || 42% | 53% 5%
mpegaudio 59 270 51 4:1 3 1:1 0 0.00 76% | 15% 10% 83% 5% 12% 83% 5% 12%
ps-fun 347 522 8602 | 410:1 || 8589 [409:1 0 0.00 || 95% 2% 3% || 25% | 30% | 45% || 25% | 30% | 44%
ipsixql 120 381 1777 | 105:1 || 1739 |102:1 31 1.17 40% 3% 56% 39% 2% 59% 39% 2% 59%
hsgldb 90 432 6804 76:1 || 6720 | 75:1 4 0.01 44% | 41% 16% 50% 0% 50% 50% 0% 50%
jython 175 1050 796 47:1 722 | 42:1 1| 0.103 0% | 78% | 22% 1% | 62% | 37% 2% | 64% | 34%
antlr 114 719 22 18:1 5 31 11 1.78 || 68% | 23% 9% || 25% | 26% | 48% || 30% | 41% | 28%
pseudojbb 13 92 339 7:1 216 5:1 32 1.82 || 51% | 26% | 23% || 36% | 29% | 35% || 37% | 29% | 34%
Table 1: Benchmark Characteristics

above, and take the fastest time. The variation betweer tnes-
surements is low. We believe this number is relatively undizd
by other system factors. When measuring the system overhehe
adaptive compiler, we believe the low variation from theidastime
reflects a stable application of the adaptive compiler.

5.1 Experimental Platform
We perform our experiments on four platforms and find sirtiks
across these. Section 7 reports on cross architecturets.eskbr
brevity and unless otherwise noted, we report experimemis ma-
chine with the following characteristics:

3.2GHz P4 The machine is a 3.2 GHz Pentium 4 with hyper-threading
enabled and user accessible performance counters. It has a 6
byte L1 and L2 cache line size, an 8KB 4-way set associa-
tive L1 data cache, a 13Kps L1 instruction trace cache, a
512KB unified 8-way set associative L2 on-chip cache, 1GB
main memory, and runs Linux 2.6.0.

We instrument MMTk and Jikes RVM to use the CPU's perfor-
mance counters to measure cycles, retired instructionsgridl L2
cache misses, and TLB (translation look-aside buffer) esiss both
the mutator and collector, as we vary the collector algorittheap
size, and other features. Because of hardware limitatieash per-
formance counter requires a separate execution. We usevers.5
of theperfctrIntel/x86 hardware performance counters for Linux with
the associated kernel patch and libraries [17].

5.2 DaCapo Benchmarks

As part of an ongoing effort with our collaborators in the @0
project [16], we collected several memory intensive Jaeg@ms for
the DaCapo benchmark suite f5[These benchmarks are intended to
exercise garbage collection vigorously in order to reveliector and
platform induced differences.

1. antlr: Language tool for constructing complier, language rec-

ognizer, and translators.

hsqldb: Database written in Java.

3. ipsixql: Persistent XML database.

4. jython: Python interpreter written in Java.
5. postscript-fun: A PostScript interpreter.

5.3 Benchmark Characteristics

Table 1 shows key characteristics of our benchmarks usieditad
workload and adaptive methodologies. We use the eight SFPEIY
benchmarks, five DaCapo benchmarks, pissudojbb, a variant of

2.

2A pre-release of these benchmarks may be downloaded at:
http://iwww.cs.utexas.edu/users/speedway/dacapo/DaCapo.html

SPEC]jbb2000 [19, 20] that executes a fixed number of traiosesct
(70000), rather than running for a fixed time (for compargsander

a fixed garbage collection load). Th#loc columns in Table 1 indi-
cate the total number of megabytes allocated under adagptivéixed
GC loads respectively. Thalloc:min column lists the ratio of total
allocation to the minimum heap size in which the program etex
in MMTk. Including the adaptive compiler substantially ireses al-
location and collector load (compare column four with sind dive
with seven). This behavior can obscure program behaviatsan
ther confirms Eeckhout et al. [11]. Notice thapegaudio allocates
only 3MB, and with a 4MB heap is never collected; hence we ex-
clude it from the remaining experiments. Also notice thatEraCapo
benchmarks place substantially more load on the memory geana
ment system than the SPECjvm98 benchmarks.

The % nursery survivatolumn indicates the percent of allocation
in the nursery that the collector copies. OOR can influeneesthbset
of these objects with two or more non-null pointers. Notitattmost
programs follow the weak generational hypothesis, butjtvat and
ipsixgl are memory intensive while not being very generational. How
ever, generational collectors still improve their perfamme [4].

The% whb takecolumn shows the percent of all writes that the write
barrier records in the remembered set. The remaining caunti-
cate the percentage of objects with 0, 1, or many pointerdielthe
alloc pointerscolumn indicates these proportions with respect to al-
located objects. Thscan pointersolumn indicates the proportions
with respect to objects scanned at collection time, scah non-null
pointersindicates the proportions with respect to non-null positar
objects scanned at collection time. Since OOR influencesaijécts
with two or more non-null pointers, the final column in Tablendi-
cates the proportion of scanned (copied) objects to whicRO&h be
applied effectively.

We ran all the experiments we report here on all the benctsnark
For all but four of these benchmarks, performance variatidue to
copying orders are relatively small. For brevity and clatite results
section focuses on programs that are sensitive to copy,@derjust
summarizes the programs where copy order has little effect.

6. Experimental Results

We now present evaluation of our online object reorderingtesy.
We begin with results that show that the overhead for thedexang
analysis, including its use by the collector, adds at most 2% to
total time. We then show some programs are sensitive to ogpyi
order. Comparisons with OOR show that it essentially matabre
improves over the oblivious orders. A series of experimeetson-
strates the sensitivity of OOR to the decay of field heat tpoed
to phase changes, the use of a hot space, cold block analgdi$iot
method analysis. We also compare OOR with class-obliviopgiag
on three additional architectures. Static ordering pemforce is not

Benchmark]| Default| OOR | Overhead
jess 4.39 4.43 0.84%

jack 5.79 5.82 0.57%
raytrace 4.63 4.61 -0.59%
mtrt 4.95 4.99 0.7%
javac 12.83| 12.70 -1.05%
compress 8.56 8.54 -0.2%
pseudojbb 13.39| 1343 0.36%
db 18.88| 18.88 -0.03%

antlr 0.94 0.91 -2.9%
gcold 1.21 1.23 1.49%
hsgldb || 160.56 | 158.46 -1.3%
ipsixql 41.62| 42.43 1.93%
jython 37.71| 37.16 -1.44%
ps-fun 129.24| 128.04 -1.03%
mean -0.19%

Table 2: OOR System Overhead

always consistent across architectures. However, OORistently
attains essentially the same performance as the bestmidicacross
these platforms.

6.1 Overhead of Reordering Analysis

To explore the overhead of the analysis, we measure thetérsti
tion of the benchmark (where the compiler is active) withdateaptive
compiler on a moderate heap size (k.8naximum live) and pick the
fastest of 5 runs. This experiment performs the additionattime
work to record hot class fields, and examines the resultsliaction
time, but never acts on those results. Therefore, the sydesall the
work of class reordering, but obtains no benefit from it. €&bktom-
pares the original adaptive system with the augmented raysiee
table shows some improvements as well as degradations. ¥t,wo
OOR adds a 2% overhead, but this overhead is obscured by large
variations due to the timer-based sampling. For the exanegaro-
gram, VM, and heap size, the timer-based sampling can cauize v
tions up to 5% because of the non-determinism, and thisti@miés
the dominant factor, not the OOR analysis.

6.2 Class Sensitive vs. Class Oblivious

This and all remaining sections apply the pseudo-adaptiethod-
ology, reporting only application behavior. This sectioompares
static and OOR copying orders. OOR uses a hot space (Sedti®ns
and 6.4), the decay function described in Section 4.2, actlégs
field accesses from cold blocks (Sections 4.1 and 6.5). Tdnfgu-
ration produces the best results across all architectures.

Most of the benchmark programs vary due to copy order by less
than 4%. However, four programigthon, db, jess, andjavac) show
variations of up to 25% due to copying order, so we focus omthe
Figure 4 {ess) and Figure 5jgthon, db, javac) compare OOR with
three static, class-oblivious orders: breadth first, dépgh and par-
tial depth first using the first two children (a hierarchiceder). The
figures present total time, mutator time, mutator L2 mis&esn(per-
formance counters), and garbage collection time. Notiatttie total
time of jess andjavac and the mutator L2 misses pthon use scales
different from the other benchmarks in the figures.

First consider variations due to a priori breadth or deptt fin
db andjython (Figure 5). Indb, class-oblivious depth first and partial
depth first using the first two children perform over 25% hratidotal
time than breadth first copying order. Fess (Figure 4), partial depth
first is more than 20% worse than breath first. fytivon, depth first
performs about 18% better than breadth first and partialhdeyst.
Locality explains these differences as shown in the mutatee and
L2 miss graphs. For a few other programs, partial depth fffstoa
minor improvement (1 to 4%) over the best of breadth or depsh fi
The wide variation in performance is a pathology of statipytog
orders, and is of course undesirable.

Heap size
15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB
' b ' ' ' Depth First - |
‘ Breadth First —e—
+ Partial DF 2 Children ---4---
¢} .

R

15

3.2

Time (sec)

s 13

Normalized Time

128

§ -\
126
.S\
a
1
1 1 1 1 1
1 15 2 25 3
Heap size relative to minimum heap size

(a) Total Time

Heap size

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB
15 T T T T T

Debth Fws{ -
Breadth First —e—

14 b Partial DF 2 Children ---4--- | 3
g OOR .

13 428

T3 WV SV iy W NS NS

26

12

Normalized Mutator Time
Mutator Time (sec)

11

. egagegto s s ot o g

22

1 1 1 1 1
1 15 2 25 3
Heap size relative to minimum heap size

(b) Mutator Time

Heap size
15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB
T T T T T

Debth F\rs{ -
Breadth First —e—
Partial DF 2 Children ---4---
¢} .

16

14

Mutator L2 Misses (1076)

Normalized Mutator L2 Misses

1 15 2 25 3
Heap size relative to minimum heap size

(c) L2 Mutator Misses

Heap size

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB
5 L— T T T 1.4
T .

Debth Fws{ -
45 |- Breadth First —e—
) Partial DF 2 Children ---=

(K OOR -4]|
4 t

35 \ 41

3
s“i R

25 3

0.8

Normalized GC Time
@
GC Time (sec)

Lo
15 .\“ =
N

1 15 2 25 3
Heap size relative to minimum heap size

(d) GC Time
Figure 4: OOR vs. Class-Oblivious Traversalgjess]

0.4

Figures 4 and 5 show that OOR is not subject to this variatiah a
matches or improves over the best static ordersjalac andjess,
OOR sometimes degrades mutator time by 2 to 3% which degrades
the total performance by 2%. The worst case for OOR on alllvenc
marks and platforms is 4% fapsixql on the 3.2 GHz P4. For all other
benchmarks, OOR matches or improves over the best mutatlitio
and total performance.

These results are consistent with cache and page replatainen
gorithms, among others, that use past access patternsdictpiiee
future. OOR dynamically tunes itself to program behaviod #rus
protects copying garbage collection from the high variaithat come
from using a single static copying order that may or may notchna
program traversal orders.

Heap size Heap size Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB
16 T T T T " Denth Fret -5 16 T T T T T P — 16 5D T T L —— 10
epth Firs epth Firs epth Firs q
Breadth First —e— Breadth First —o— 7| 18 Breadth First —e—
15 Partial DF 2 Children ---4--- 4 24 15 Partial DF 2 Children ---4--- 15 Partial DF 2 Children ---2--- 4 g 5
. T .
19
14 1.4 14
g 12 g 116 2
= = g 185 ¢
§ 13 " o § 13 415 & E 1.3 &
3 iy 4120 ¢ 5 2 5 18 ¢
£ 12 N N FOE 12 uE £ 12 .5 F
S \—XA f_H_e_H 2 S 17
4 s J
11 18 11 N 13 11 7
i - N 1. W omoma . K‘““n.,“‘w‘m. 412 2 les
1 moa 16 1 1 i .
L L L L L L L L L L L L L L L
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) jython Total Time (b) db Total Time (c) javac Total Time
Heap size Heap size Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB
5 T T T T j Depth First - s T T T T T Déplh First - 4 17 el T T T) Depth First -
Breadth First —e— q 22 Breadth First —e— Breadth First —e— {5g
1al Partial DF 2 Children ---4--- 1al Partial DF 2 Children ---4--- 1.08 |- Partial DF 2 Children ---4---
o R 121 o R 916 ° |
57
g g £ 106 '
= T F T o
5 13 1208 5 13 1158 5 156 &
g e & oo’ o ooo o o oo g E 104 s
2 b £ 2 E 2 £
= 2, £ = {uE 2, {55 &
T 12 e e T 3 12 A= -
; . d185 © 5§ © <]
2 g = g = 154 &
£ N \ 117 3 E 1= g 2
g 11 g 11 g 453
P ..\Q....'. 116 H12 098 1ss
Mg W oaaa Wk -
L. 115 1 0.96
L L L L L L L L L L 411 L L L L L 451
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(d) jython Mutator Time (e) db Mutator Time (f) javac Mutator Time
Heap size Heap size Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB
T T T T " Depth First —a—] 160 2 T T Depth First = ar T T T " Depth First -
i i i 132
45 | Breadth First —e— Breadth First —e— Breadth First —e—
o Partial DF 2 Children ---4--- o Partial DF 2 Children ---4.-- 7 220 » Partial DF 2 Children ---&---
3 w1408 181 0 . . 8 18 O e 430
2 4 g £ lao & = {28 &
N 35 1120 2 o S 2
5 g 5 ' g 3 1° 26 §
g 410 2 S 1180 2 3 2
5 3 s 3 s 3 124 =
] ~ 2 4l ~ £ 44 ~
3 25 - {10 3 3 5
g 2 48 5 ¢ 5 8 122 5
5 160 = 3§ 12 4140 5 § 12 20 2
2 2 = 18
a0 e + 120
1 1 1 1 1 1 1 1 1 1 1 1 1 4 16
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(9) jython L2 Mutator Misses (h) db L2 Mutator Misses (i) javac L2 Mutator Misses
Heap size Heap size Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB
5 a 5 -
T T T T " Depth l‘=wsl M T T T : A T T De‘pth Fw‘sl M 407 i T < T T) Depth F‘irsl . Jas
45 F Breadth First —e— 135 45 - 3 Breadth First —e— 45 |- Breadth First —e—
Partial DF 2 Children ---4--- Partial DF 2 Children ---4--- H Partial DF 2 Children ---=---
B - B OOR s | oo B i)
o 413 o o .
[[= t S
° 35 ? 25 g’ ° 35 i 4os g’ o 35 L“\ §
[} 125 = © f >0 H 13 3
@ @ : @
I E g ° E 3 3 ‘ £
H , F 3 - 404 F X 25 F
i o o o ® 325 o
£ 25 : o E 25 Ao o E 25 Ll ®
5 i 5 5 Ll)
= 2 Py 415 z 2 \3 03 2, A |
15 [15 15 115
P . 11 B\ 02
1 = 1 1 A d 1
1 15 2 25 3 1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
() jython GC Time (k) db GC Time () javac GC Time

Figure 5: OOR vs. Class-Oblivious Traversalgjython, db & javac]

6.3 Capturing Phase Changes

OOR can adapt to changesthin the execution of a given applica-
tion. Section 4.2 describes how the decay model ensuredidit
heat metrics adapt to changes in application behavior. Weexam-
ine the sensitivity of this approach. We use a synthetic berck,
phase, which exhibits two distinct phases. Thease benchmark re-
peatedly constructs and traverses large trees of arityid traversals
favor a particular child. Each phase creates and destropy tnees
and performs a large number of traversals. The first phaserses
only the 4th child, and the second phase traverses the 1th chi
Figure 6 compares the default depth first traversal in Jikésl R
against OOR and OOR without phase change detection gohtise

benchmark. Phase change detection improves OOR total tir28%
and improves over the default depth first traversal by 55%taldun
performance is improved by 37% and 70% respectively (Fig(iog).
Much of this difference is explained by reductions in L2 resof

50% and 61% (Figure 6(c)). Figure 7 compares OOR with and-with

out phase change detection jess, jython, javac, anddb. These and
the other benchmarks are insensitive to OOR’s phase chalagtia
ity, which indicates that they have few, if any, traversalerphases.

6.4 Hot Space

In order to improve locality further, OOR groups objectshwitot
fields together in a separate copy space within the matureespa
described in Section 4.3. Figure 8 shows results from fopregenta-

Heap size Heap size

60MB 70MB

50MB

Heap size

60MB 70MB 60MB 70MB

20MB 30MB 40MB 50MB 20MB 30MB 40MB
5

' ' ' ' Depll‘w First [j j j j

OOR w/o phase change =

OOR w/ phase change —&— |

3.5

OOR w/o phase change
OOR w/ phase change —&—

20MB 30MB 40MB 50MB
4
Depll‘w First [j j j

' Depth‘ First .
OOR w/o phase change &
35 OOR w/ phase change —6—

180

160

35

25

S o000 _ o0 -0 -C -0 -8
25 . 140

L N
.--e---e---®

Normalized Time
Time (sec)

25

120

Mutator Time (sec)

100

Normalized Mutator Time

15

Normalized Mutator L2 Misses
Mutator L2 Misses (10°6)

15

80

e 15

w A O O N ® ©

i P -

of oo o 60

15 2 25
Heap size relative to minimum heap size

(a) phase Total Time

3 15 2

Heap size relative to minimum heap size

(b) phase Mutator Time

25 3 1 15 2 25 3

Heap size relative to minimum heap size

(c) phase Mutator L2 Misses

Figure 6: Performance Impact of Phase Changes Using a Synttie Benchmark

tive benchmarks for OOR with and without a hot space. On aeera
these configurations perform similarly. However, in our exments
for other platforms, we found OOR with the hot space usuadlg h
slightly better results (see Figure 11(b) in Section 7). fbespace
generally reduces the footprint of the hot objects but teisdiit is not
as significant as copying order.

6.5 Hot Field Analysis

We now explore the impact of the Jikes RVM static analysisshs
olds for basic block heat on OOR (see Section 4.1). The Jikédd R
optimizing compiler assigns a heat value to basic blockedbam
static loop iteration estimates (or counts if availablej Branches. It
then classifies them as hot or cold based on a run-time coafigor
threshold. OOR directly uses this classification to enutediald ac-
cesses in hot basic blocks. The default configuration maekéetvest
blocks cold (BB1 in Figure 9). BB20 through BB150 mark inea
ingly more basic blocks cold. Figure 9 presents the seitgittf OOR
to this threshold. Most of the benchmarks, includjess andjavac,
are fairly insensitive to it, bujython is particularly sensitive, with a
worst case degradation of 20%. Fdiy, when OOR marks only ba-
sic blocks with heat greater than 20 as hot, the program leasdist
performance. One possible explanation is that this thidsteuses
OOR to distribute an important data structure between thieahd
cold spaces. With thresholds higher and lower than 20, O@R-pr
ably tends to put the whole data structure in one space orttter.o
Based on these results, we use the Jikes RVM default and mérdta
any basic block with a heat greater than or equal to one.

6.6 Hot Method Analysis

Finally, Figure 10 examines the sensitivity of the sampfirgjuency

for selecting hot methods. Hot methods are identified adogrtb

the number of times the adaptive optimization infrastreesamples
them. Figure 10 shows OOR with sampling rates of 20ms, 10nts, a
5ms. More frequent sampling marks more methods as hot. OOR is
quite robust with respect to this threshold. One possibj#agration

for this insensitivity is that method heat tends to be binteetaethods

are either cold or very hot. Another explanation is that warathods
(those neither hot nor cold) tend not to impact locality tighb field
traversal orders.

7. Different Platforms

This section examines the sensitivity of OOR to architextaria-
tions, including processor speed and memory system. Wehain t
same experiments as before on an three additional aralmiésct

933MHz PPC The Apple G4 has a 933MHz PowerPC 7450 proces-
sor, separate 32KB on-chip L1 data and instruction caches, a
256KB unified L2 cache, 512MB of memory, and runs Linux
2.4.25.

1.9GHz AMD The 1.9GHz AMD Athlon XP 2600+ has a 64 byte L1
and L2 cache line size. The data and instruction L1 caches are
64KB 2-way set associative. It has a unifiedclusives12KB
16-way set associative L2 cache. The L2 holds only replace-
ment victims from the L1, and does not contain copies of data
cached in the L1. The Athlon has 1GB of main memory and
runs Linux 2.6.0.

2.4GHz P4 The 2.4GHz Pentium 4 uses hyper-threading. It has a 64
byte L1 and L2 cache line size, an 8KB 4-way set associative
L1 data cache, a 12kps L1 instruction trace cache, and a
512KB unified 8-way set associative L2 on-chip cache, 1 GB
main memory, and runs Linux 2.6.0.

3.2GHz P4 The 3.2GHz Pentium 4 is configured identically to the
2.4GHz P4 except for the faster clock speed (see Section 5.1)

We present a representative benchmark with variationsalioeality.
Figure 11 showgython on all four architectures. Not surprisingly, the
two Intel Pentium 4 architecture graphs have very similapsis and
the 3.2GHz P4 is faster. Comparing between architectu@sssthat
the memory architecture mainly dictates differences antomgersal
orders. The 1.9GHz AMD and 933MHz PPC are less sensitive to
locality because they have larger and relatively fastenesacompared
to the P4s which have higher clock speeds. Interestingtystbwer
AMD processor achieves the best, performance, possiblytalits
large non-inclusive caches. However, on all four architext, OOR
consistently provides the best performance, across attirearks and
architectures.

8. The Copying Advantage

We now present evidence confirming the locality advantagesy-
ing. We first examine mutator locality by comparing a staddapy-
ing collector with a non-copying mark-sweep collector. \Wert com-
pare the mutator time of a non-copying mark-sweep collegitbr the
total time of the copying collector to see whether the besefitopy-
ing can ever outweigh the cost of garbage collection.

Figure 12(a) compares just the mutator performance of thadwed
(4MB) nursery generational copying collector using OOR telele
heap mark-sweep collector [5], labeled OOR and Mark-Sweggpetc-
tively. The figure shows mutator time as a function of heap &
javac, a representative program. OOR has a mutator-time advantag
of around 8-10% over Mark-Sweep due to fewer L1 missegeat
(Figure 12(b)). The L2 and TLB misses follow the same tremd] a
this advantage holds across all of our benchmarks, ranging & few
percent onjython andcompress, to 15% onpseudojbb and 45% on
ps-fun. Our analysis confirms a prior result [4]: it iscality rather
than the cost of the free-lishechanisnthat accounts for the perfor-
mance gap. Note that this result is contrary to the oft-hedaon
that non-moving collectors ‘disturb the cache less’ tharcdpying
collectors.

Heap size Heap size
15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB
' ' ' 6OR w/b phase‘ changé u] OO;? w/o h(‘)t spacé e
OOR w/ phase change —e— OOR &
18 \ 145 18 \ 145
@ @
E 16 14 5 E 16 14 &
B 3\ b} B b}
& 8
s 135 & 3 135 &
£ 14 \ £ £ 14 \ £
S S
z z
1.2 \ 13 1.2 13
1 .25 1 S st s8-u w8 0 g e 25
L L L h L L . L L L
1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(a)jess Total Time (a)jess Total Time
Heap size Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB
32 32
' ' OdR w/o phase cha‘\nge - ' ' ' ' OOR \I\‘I/O hot sp‘)ace —a
OOR w/ phase change —— | 30 OOR & 130
18 18
428 428
@ @
E 16 426 E 16 426
2 2
§ q2a ¢ § q2a ¢
K] £ K] £
g 14 122 £ g 14 122 £
S S
z z
420 420
12 12
418 418
. il S s . T 16
L L) h N L L . h L
1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(b) jython Total Time (b) jython Total Time
Heap size Heap size
15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB
2 2
' ' ' ' OdR w/o‘ phasé chanée - ' ' ' ' ' OOR" w/o hbt spa‘ce —a
OOR W/ phase change —e— - 22 OOR & 422
18 18
420 420
@ @
E 16 . E 16 o
3 1 e 3 1 e
8 o i o
E e
g 14 116 £ g 14 116 £
S S
z z
12 14 12 14
1 .\‘\.\'\H—.—'\. 412 N K"\ﬁ..._ P
L h L L L h "
1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(c) db Total Time (c) db Total Time
Heap size Heap size
20MB 30MB 40MB 50MB 60MB 70MB 80MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB
r T T T T T T 2 T T T T T T
OOR w/o phase change & OOR w/o hot space —=—
OOR w/ phase change —&— | 12 OOR @ {12
18 18
" 411 @ 411
@ @
£ % £
F 18 11039 F 18 11039
3 & 3 &
o @ N @
] 49 E] 49 E
3 14 £ £ 14 £
2 2
18 18
12 12 %
\-1”'”'/‘\.-‘_ 17 w 17
1 e 1
L L L L L L L L h L
1 15 2 25 3 1 15 2 25 3

Heap size relative to minimum heap size

(d) javac Total Time

Heap size relative to minimum heap size

(d) javac Total Time

Figure 7: Absence of Phasic Behavior in Standard Benchmarks Figure 8: OOR without Hot Space
result less than 1 indicates that the total time for the augpybllector
is less than the Mark-Sweep mutator time.

Three patterns emerge in our results. Figure 13(a) shows tlep-
resentative benchmarkgseudojbb, ps-fun, andipsixgl. ipsixql is the
only outlier where the Mark-Sweep mutator actually has stestly
better performance than the copying collector. Seven beadks are
like pseudojbb. In modest to large heaps, the locality advantage of
copying garbage collection compensates for its colleat@sts, to the
point where the total time of OOR is the same as the mutata tifn
Mark-Sweep.ps-fun represents five benchmarks, where the locality
advantage is so significant that OOR improves over the mutiate

We now examine the overall impact of garbage collection wthen
locality advantage and collection overhead are combinéglré 13
compares théeotal execution time of the copying collector (labeled
OOR) with themutatortime of mark-sweep (Mark-Sweep), which
we regard as an approximation to the performance of exptieinory
management. We use a standard free-list allocator [14,di$abtract
the cost of garbage collection. The approximation is imgtf On
one hand, the application does not pay the codtrafe() . On the
other hand, it does not reclaim memory as promptly as expliem-
ory managementdoes. In both graphs, the performance obgyéeng
collector is normalized against the mutator time for Make®p. A

Heap size Heap size

N 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB N 15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB
' ' ' ' " OOR BB150 -a- ' ' ' OOR 20ms Sample rate -
OOR BB100 ---&--- OOR 10ms Sample rate —&—
1 OOR BB50 - - 45 1 OOR 5ms Sample rate - - 45
18 OOR BB20 —e— 18
OORBB1 =
E 16 \ 14 5 g 16 \ 1 &
E 14 735 E g 14 135 E
L L
12 33 12 \ 33
. \. 358 [— 425 1 l\uk,_k - 425
1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(a)jess Total Time (a)jess Total Time
Heap size Heap size
5 30MB 40MB 50MB 60MB 70MB 80MB 90MB 30MB 40MB 50MB 60MB 70MB 80MB 90MB
' ' ' 'OOR BB150 ~a 2 2 ' ' " OOR 20ms Samplerate —— | -2
OOR BB100 ---4--- | 30 OOR 5ms Sample rate & | 30
OOR BB50 ---e-—- OOR 10ms Sample rate —#—
18 OOR BB20 —e— 18
OORBB1 —m— 28 128
o o
E 16 426 E 16 426
3 Jau & 3 Jou &
5 2 5 2
g 14 122 £ g 14 122 £
ke ke
N a 420 4 20
1.2 « = = g o 1.2
118 18
1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(b) jython Total Time (b) jython Total Time
Heap size Heap size
125MB20MBZSMB3OMB35MB40MB45MB 50MB 55MB 60MB 65MB 125MB20MBZSMB3OMB35MB40MB45MB 50MB 55MB 60MB 65MB
T T T T T T OORBBI100 A T OOR 20ms Sample rate ----—-
OOR BB150 . +4 22 OOR 10ms Sample rate —=— - 22
OOR BB20 —&— OOR 5ms Sample rate &
18 OOR BB50 ---e-— 18
OORBB1 - | 59 420
g g 16
: 16 118 ’g : : 418 ’g
g L g L
8 P 8 o
g 14 116 £ g 14 116 £
ke ke
1.2 14 1.2 14
:
1 S;S\ijﬁ:-%—a 412 . l\-\"k- 412
1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(c) db Total Time (c) db Total Time
Heap size Heap size
20MB 30MB 40MB 50MB 60MB 70MB 80MB 20MB 30MB 40MB 50MB 60MB 70MB 80MB
[' ' ' "OOR BBI50 -4 2T ! ! GOR 20ms Sample rate --o--
OOR BB100 -2 | 12 OOR 10ms Sample rate —a— | 15
OOR BB50 ------ OOR 5ms Sample rate &
18 OOR BB20 —&— 18
2 OOR BB1 - 411 411
fl i el]
[1 410 g o 410 g
2 o 2 s
S 14 19 E g 14 1° £
f\, f\,
18 18
12 12
1 -9 1) A
1 15 2 25 3 1 15 2 25 3
Heap size relative to minimum heap size Heap size relative to minimum heap size
(d) javac Total Time (d) javac Total Time
Figure 9: Using Different Policies to Determine Cold Fields Figure 10: Using Different Policies to Determine Hot Method
of Mark-Sweep, even in small heap sizes. Figure 13(b) is reaixe to the virtual machine context, and adaptively matches @raves
because it shows that for one of the largest and most reatistich- over the best static, class-oblivious order for a given @nyg
marks in our suite, garbage collection produces a net peefocewin. Common wisdom holds that the software engineering bendfits o
These results stand against the conventional wisdom thidaga col- garbage collection come with a performance penalty. We shaiv
lection always comes at a performance price. copying collectors have a locality advantage over the fistearga-

nizations of explicitly managed memory. Copying collestachieve
good locality by placing contemporaneously allocated csjeogether

9. Conclusions in memory and copying connected objects together in thenmapace.

We show that the performance of class-oblivious tra_ve_nsdaéns can OOR further adapts copying order to program access pattsinse
be unpredictable and expose programmers to variationsdeuts future processors will demand locality to achieve high periance,
their control. We show that our online object reorderingasyselimi- we can look forward to a future where garbage collection dogg

nates copying ordeggambling It has a negligible overhead, is amenable ¢ ¢vare engineering and performance benefits.

Figure 11: Performance on Different Architectures

Normalized Time

Normalized Time

Normalized Time

Normalized Time

Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB

' ' ' ' ' Depth ‘F\rst -
1.35 Breadth First —e— 52
OOR w/o hot space ---e---

13 | Partial DF 2 Children -- A. 450
125 48
1.2 46
1.15 o 44
11 O d a2
Ai\S\re/Q/G¥~e—e—e-e—e—e—e—e—e
1.05 Tagaad 4 40

L S e =
! 438
0.95 1 1 1 1

1
1 15 2 25 3
Heap size relative to minimum heap size

Time (sec)

(a) jython 933MHz PowerPC Total Time

Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB
T T T T T

‘Deplh First - 417
1.35 |- Breadth First —e—
OOR w/o hot space ---e---
13 Partial DF 2 Children ---4--- | 14
125
415
12
115 114
11
1.05 113
1
q 12
0.95 1 1 1 1 1
1 15 2 25 3
Heap size relative to minimum heap size
(b) jython 1.9GHz AMD Total Time
Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB
' ' ' ' ' Depth ‘F\rst -
1.35 |- Breadth First —e—
OOR w/o hot space ---e--- | 36
1.3 fol Partial DF 2 Children ---a---
125 1%
e
A a . -
12) R N~ i =2 H 32
115
130
11 .: .
Tt »
1.05 o e T T T 28
s v Eotogogoeg et
0.95 1 1 1 1 L 1%
1 15 2 25 3
Heap size relative to minimum heap size
(c) jython 2.4GHz P4 Total Time
Heap size
30MB 40MB 50MB 60MB 70MB 80MB 90MB
T T T T T T T
Depth First & | 55
1.35 |- Breadth First —e—
OOR w/o hot space ---e---
13 Partial DF 2 Children ---2--- 4 21
2, -
1.25 S 4 20
12 B - pe—e—a—o q1
115 A
\ {1
11
tos L&ty =t \ / J17
g ‘r""---znnnnn
1 o909 400902 16
0.95 1 1 1 1 1

1 15 2 25 3
Heap size relative to minimum heap size

(d) jython 3.2GHz P4 Total Time

10. REFERENCES

[1] B. Alpern et al. The Jalapefio virtual machihBM Systems

Journal 39(1):211-238, February 2000.

[2] A. W. Appel. Simple generational garbage collection &t
allocation.Software Practice and Experienck9(2):171-183,

1989.

Time (sec)

Time (sec)

Time (sec)

Heap size
20MB 30MB 40MB 50MB 60MB 70MB 80MB
1.2 T T T T T ™ 64
Mark-Sweep —e—
o 115 6.2
£ ~
- O
= 16 8
2 £
- 458 £
K 5
8 105 2
2 156 £
£ =
5 N S S SN
1 54
4152
0.95
1 15 2 25 3
Heap size relative to minimum heap size
(a) Mutator Time
Heap size
20MB 30MB 40MB 50MB 60MB 70MB 80MB
1.
T T T T T yv—
Mark-Sweep —6—
o 15 = 240
2
2 T
S 14)
- 4220 2
3]
g 13 8
2 200 2
= hat
[12 5
g 180 §
5 11 =
z
1 T Wy 160
.
1 15 2 25 3

Heap size relative to minimum heap size

(b) Mutator L1 Cache Misses

Figure 12: Mutator Performance for Copying and Mark-Sweep
Collectors onjavac

[3] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapefio JVM.ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applicationsages 47—-65, Minneapolis, MN,
October 2000.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. |
ACM SIGMETRICS Conference on Measurement & Modeling
Computer Systempages 25-36, NY, NY, June 2004.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and w&te
High performance garbage collection in Java with IMTk. In
Proceedings of the International Conference on Software
Engineering pages 137-146, Scotland, UK, May 2004.

[6] S. M. Blackburn, K. S. McKinley, J. E. B. Moss, S. Augart,
E. D. Berger, P. Cheng, A. Diwan, S. Guyer, M. Hirzel,

C. Hoffman, A. Hosking, X. Huang, A. Khan, P. McGachey,

D. Stefanovic, and B. Wiedermann. The DaCapo benchmarks.
Technical report, 2004.
http://ali-www.cs.umass.edu/DaCapo/Benchmarks.

[7] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-cdose
structure definition. IIACM SIGPLAN Conference on
Programming Languages Design and Implementatiages
13-24, Atlanta, GA, May 1999.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conso®
structure layout. IACM SIGPLAN Conference on
Programming Languages Design and Implementati@ges
1-12, Atlanta, GA, May 1999.

[9] T. M. Chilimbi and J. R. Larus. Using generational garbag
collection to implement cache-conscious data placement. |
ACM International Symposium on Memory Managempeages
37-48, Vancouver, BC, Oct. 1998.

Total Time Normalized To MarkSweep Mutator Total Time Normalized To MarkSweep Mutator

Total Time Normalized To MarkSweep Mutator

Heap size
120MB

40MB
T

60MB 80mMB 100MB 140MB
T T T T

OOR

18

16

14

12

0.8

0.95

0.9

0.85

0.8

20MB
4

1

15 2 25 3
Heap size relative to minimum heap size

(a) Total Time pseudojbb

20MB
T

Heap size

30MB 40MB 50MB 60MB 70MB
T T T T

OOR

15 2 25 3
Heap size relative to minimum heap size

(b) Total Time,ps-fun

Heap size
30MB 40MB 50MB 60MB 70MB 80MB

T T T T T T
OOR -

15 2 25 3
Heap size relative to minimum heap size

(c) Total Time,ipsixql

Figure 13: Garbage Collection vs. Idealized Mark-Sweep

[10] S. Dieckmann and U. Holzle. A study of the allocatiortaeior
of the SPECjvm98 Java benchmarksPimceedings of the
European Conference on Object-Oriented Programmpages
92-115, June 1999.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

L. Eeckhout, A. Georges, and K. D. Bosschere. How Java
programs interact with virtual machines at the
microarchitectural level. IACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 244-358, Anaheim, CA, Oct. 2003.

T. Kistler and M. Franz. Automated data-member laydut o
heap objects to improve memory-hierarchy performaAGM
Transactions on Programming Languages and Systems
22(3):490-505, May 2000.

M. S. Lam, P. R. Wilson, and T. G. Moher. Object type diest
garbage collection to improve locality. In Y. Bekkers and

J. Cohen, editorACM International Workshop on Memory
Managementumber 637 in Lecture Notes in Computer
Science, pages 404-425, St. Malo, France, Sept. 1992.
Springer-Verlag.

D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

H. Lieberman and C. E. Hewitt. A real time garbage cdbec
based on the lifetimes of objectSommunications of the ACM
26(6):419-429, 1983.

J. E. B. Moss, K. S. McKinley, S. M. Blackburn, E. D. Berge
A. Diwan, A. Hosking, D. Stefanovic, and C. Weems. The
DaCapo project. Technical report, 2004.
http://ali-www.cs.umass.edu/DaCapol/.

M. Pettersson. Linux Intel/x86 performance count2(3.
http://user.it.uu.se/ mikpe/linux/perfctr/.

S. Rubin, R. Bodik, and T. Chilimbi. An efficient
profile-analysis framework for data-layout optimizatiohs
ACM Symposium on the Principles of Programming
Languagespages 140-153, Portland, OR, 2002.

Standard Performance Evaluation Corporat®RECjvm98
Documentationrelease 1.03 edition, March 1999.
Standard Performance Evaluation Corporat®RECjbb2000
(Java Business Benchmark) Documentatiefease 1.01
edition, 2001.

D. M. Ungar. Generation scavenging: A non-disruptiighh
performance storage reclamation algorithmARM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environmemtages 157-167,
April 1984.

P. R. Wilson, M. S. Lam, and T. G. Moher. Effective
static-graph reorganization to improve locality in
garbage-collected systems.ACM SIGPLAN Conference on
Programming Languages Design and Implementatiages
177-191, Toronto, Canada, June 1991.

