
The Garbage Collection Advantage:
Improving Program Locality

Xianglong Huang Stephen M Blackburn Kathryn S McKinley�
The University of Texas at Austin Australian National University The University of Texas at Austin

xlhuang@cs.utexas.edu Steve.Blackburn@anu.edu.au mckinley@cs.utexas.edu

J Eliot B Moss Zhenlin Wang Perry Cheng
The University of Massachusetts, Amherst Michigan Technological University IBM T.J. Watson Research Center

moss@cs.umass.edu zlwang@mtu.edu perryche@us.ibm.com

ABSTRACT
As improvements in processor speed continue to outpace improve-
ments in cache and memory speed, poor locality increasinglydegrades
performance. Because copying garbage collectors move objects, they
have an opportunity to improve locality. However, no staticcopy-
ing order is guaranteed to match program traversal orders. This pa-
per introducesonline object reordering(OOR) which includes a new
dynamic, online class analysis for Java that detects program traver-
sal patterns and exploits them in a copying collector. OOR uses run-
time method sampling that drives just-in-time (JIT) compilation. For
eachhot (frequently executed) method, OOR analysis identifies the
hot field accesses. At garbage collection time, the OOR collector then
copies referents of hot fields together with their parent. Enhancements
include static analysis to exclude accesses in cold basic blocks, heuris-
tics that decay heat to respond to phase changes, and a separate space
for hot objects. The overhead of OOR is on average negligibleand
always less than 2% on Java benchmarks in Jikes RVM with MMTk.
We compare program performance of OOR to static class-oblivious
copying orders (e.g., breadth and depth first). Performancevariation
due to static orders is often low, but can be up to 25%. In contrast,
OOR matches or improves upon the best static order since its history-
based copying tunes memory layout to program traversal.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Memory
management (garbage collection)

General Terms
Languages, Performance, Experimentation, Algorithms

Keywords
adaptive, generational, compiler-assisted, locality�This work is supported by NSF ITR CCR-0085792, NSF CCR-
0311829, NSF EIA-0303609, DARPA F33615-03-C-4106, ARC
DP0452011, and IBM. Any opinions, findings and conclusions ex-
pressed herein are the authors and do not necessarily reflectthose of
the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

1. Introduction
The goals of software engineering and high performance are often at
odds. Common wisdom holds that garbage collected languagessuch
as Java offer software engineering benefits of reduced errors and de-
velopment time, but at a cost: the collector must periodically scavenge
for unused memory. Common wisdom also holds that explicitlyman-
aged languages such as C offer performance benefits at a software
engineering cost. In theory, programmers can free memory assoon
as possible, and use specialized allocators for memory efficiency and
speed. However, C has a hidden performance cost. Because it can-
not move objects without violating language semantics, it requires a
non-moving allocator, such as a free list. A free-list allocator places
contemporaneously allocated objects in locations free at that time, but
that are not necessarily adjacent or even nearby in memory. Java does
not have this restriction, and can thus use contiguous allocation to
attain locality for contemporaneously allocated objects,and copying
collection to place objects with temporal locality closer together.

Prior research on improving locality with generational copying col-
lectors uses a priori static orders [13, 22], static class profiling [7, 18],
and online object instance sampling [9].Static ordersare problem-
atic when traversal patterns do not match the collector’s single order.
Although for many benchmarks the locality of static copyingorders
has negligible impact, we show large differences of up to 25%in to-
tal time for some benchmarks. In a Java just-in-time (JIT) compiler,
the generality ofstatic profiling is limited because it conflicts with
dynamic class loading.Instance based reorderingis potentially more
powerful than the class based orders we introduce here, since objects
with locality are not necessarily connected. However, sampling space
and time overheads just for the mature objects are significant (6% in
time for Cecil [9]) and miss the opportunity to improve locality when
the collector promotes young (nursery) objects.

We introduceonline object reordering(OOR) which includes a low
cost dynamic class analysis that drives a generational copying collec-
tor [15, 21]. Previous copying collectors choose an a prioriorder such
as breadth first to copy reachable (live) objects. This ordermay not
match program traversal patterns, and thus exposes programperfor-
mance to copying order jeopardy. The OOR collector instead uses
copying orders that match program access patterns to provide locality.

OOR compiler analysis findshot (frequently executed) field ac-
cesses and is low cost (at most 1.9% of total time). It piggybacks on
method sampling in an adaptive JIT compiler. The adaptive compiler
in Jikes RVM uses timer-driven sampling to identify hot methods, and
recompiles them at higher optimization levels. At compile time, OOR
analysis enumerates the field accesses in each method. During execu-
tion, when the adaptive compiler identifies a hot method (regardless
of its optimization choice), OOR analysis marks as hot the fields the
method accesses. At garbage collection time, the OOR collector pref-
erentially copies referents of hot fields first together withtheir parent.

We further improve the OOR system by decaying heat to respondto
phase changes, by exploiting Jikes RVM static analysis to exclude
cold basic blocks from the reordering analysis, and by usinga sepa-
rate copy space to group objects of hot classes together.

In addition to the SPECjvm98 benchmarks, we use five Java pro-
grams from the DaCapo benchmark suite [6] that vigorously exercise
garbage collection. Experimental results show that many programs
use data structures with only one or two pointer fields, and copying
order does not influence their performance much. However, a number
of programs are very sensitive to copying order. For example, depth-
first order consistently improves upon breadth first performance by
around 25% on a wide range of heap sizes for one program. OOR
protects user programs from this source of potentially adverse effects,
i.e., copying order jeopardy. Running time and hardware performance
counter experiments show that OOR matches or improves upon the
best of the class-oblivious orders for each program by improving mu-
tator locality. Additional experiments show that our algorithm is ro-
bust across architectures, and not very sensitive to the policy knobs.

As a final experiment, we explore the question:How significant is
the locality benefit of copying collection compared to non-moving ex-
plicit memory management?We first demonstrate that indeed copying
collectors offer a locality advantage over a high performance mark-
sweep implementation [4, 5]. However, mark-sweep’s space effi-
ciency yields better total performance when heap space is limited. To
examine roughly the difference between explicit mark-sweep mem-
ory management and copying collection, we compare copying total
time to only the mutator time of mark-sweep, thus excluding the di-
rect cost of freeing. This measure is imperfect since continuous, im-
mediate freeing should reduce the total memory footprint and improve
the locality of free-list allocations as compared to the more periodic
‘inhale/exhale’ pattern of mark-sweep collection. Nonetheless, the
total (mutator+ collector) time using a copying collector is some-
times better than the mutator time alone of mark-sweep. In small
heaps, the idealized mark-sweep does much better, because copying
collection triggers more frequent collections and this cost dominates.
However, in moderate and large heaps, the mutator locality benefits
of contiguous allocation and copying collection can offer total perfor-
mance improvements,including the cost of GC, of up to 15%. Since
future processors will demand locality to achieve high performance,
copying garbage collection may soon combine software engineering
with performance benefits. Furthermore, an OOR system will pro-
vide growing benefits with its adaptive online mechanisms that match
object layout to past program usage patterns.

2. Related Work
The key investigations of this work are (1) exploiting the object re-
ordering that happens during copying generational garbagecollec-
tion [15, 21], and (2) using online profiling to collect information for
controlling the copying order. Much previous research in this area
considers non-garbage collected languages (such as C) [7, 8, 22], or
does not address the effects of copying collectors [12]. In other words,
it neither considers nor exploits themovingof heap objects.

The related work most pertinent to ours falls into two categories:
techniques that group objects to improveinter-object locality [7, 9,
13, 22], and those that reorder fields within an instance to improve
intra-object locality [7, 12]. This prior work relies on static analysis or
offline profiling to drive object layout decisions and is class-oblivious
for the most part, i.e., it treats all classes the same.

One can improve inter-object locality by clustering together objects
whose accesses are highly correlated. The work in this area differs in
how to define correlation and specific methods to cluster objects. Wil-
son et al. describe a hierarchical decomposition algorithmto group

data structures of LISP programs using static-graph reorganization to
improve locality of memory pages [22]. They found that usinga two-
level queue for the Cheney scan groups objects effectively.Lam et
al. later conclude that hierarchical decomposition is not always effec-
tive [13]. They suggest that users supply object type information to
group objects. We automatically and adaptively examine fine-grained
field accesses to generate such class advice.

Chilimbi and Larus use a continuously running online profiling
technique to track recently referenced objects and build atemporal
affinity graph[9] based on the frequency of accesses to pairs of ob-
jects within a temporal interval. The object pair need not beconnected
by a pointer, but must lie in the same non-nursery generationto reduce
overhead. Their dynamic instance-level profiling records in a buffer
most pointers fetched from the heap. They report overheads of 6% for
Cecil. Exploiting the timer-driven sampling, already in the adaptive
optimization system of Jikes RVM, is much cheaper, while copying
cannot guarantee to improve every program by at least 6% so asto
overcome instance profiling costs. Their algorithm copies together
objects with high affinity only during collection of the old generation
whereas our system reorders objects during both nursery andold gen-
eration collections.

Chilimbi et al. split objects into hot and cold parts to groupthe hot
parts together [7]. This technique is not fully automated and requires
substantial programmer intervention. Chilimbi et al.’s clustering and
coloring methods also rely on manual insertion of special allocation
functions [8]. Our technique is automatic.

Intra-object locality can be improved by grouping hot fieldsto-
gether so that they will usually lie in the same cache line, and is
most useful for objects somewhat bigger than a cache line. The size
of hot objects in Java benchmarks is close to and rarely exceeds 32
bytes [10], whereas typical L1 cache line sizes are 32 or 64 bytes and
L2 line sizes are 64 to 256 bytes. Thus the performance improve-
ment offered by field reordering alone is usually small. Kistler and
Franz use an LRU stack to track the temporal affinity of objectfields,
and they partition and reorder fields based on their affinity graph [12].
They use a mark-sweep collector, where field reordering has no effect
on the object order after collection. Chilimbi et al.’s fieldreordering
depends on profiling to generate reordering advice [7]. The program-
mer then follows the advice to rewrite the code and reorder fields.

Rubin, Bodik, and Chilimbi developed a framework that attempts
to pull together much prior work in this area [18]. Their approach in-
volves the following steps. (1) Produce an access trace withinstance
and field labels. (2) Compress the trace to fit in main memory and in-
clude only accesses relevant to a specific cache size and configuration.
(3) Compute the objects with the most accesses and misses. (4) Use
object properties (e.g., size, field access frequencies, field access cor-
relations) to select optimizations. (5) Perform a hill-climbing search
of possible field and object layout schemes, and model missesfor each
scheme on the compressed trace. Their framework would need signif-
icant changes to address moving collectors, and is practical only as
an offline tool. In contrast, we exploit the reordering of objects inher-
ent in copying collection and our online analysis is inexpensive and
robust to phase behavior.

3. Background
We first describe how the adaptive compilation system in Jikes RVM
works, and the generational copying collector from the Memory Man-
agement Toolkit (MMTk) that we use, to set the stage to explain the
online object reordering system.

Jikes RVM [1] is an open source high performance Java virtualma-
chine (VM) written almost entirely in a slightly extended Java. Jikes
RVM does not havea bytecode interpreter. Instead, a fast template-

driven baseline compiler produces machine code when the VM first
encounters each Java method. The adaptive compilation system then
judiciously optimizes the most frequently executed methods [3]. Us-
ing a timer-based approach, it schedules periodic interrupts. At each
interrupt, the adaptive system records the currently executing method.
Using a threshold, it then selects frequently executing methods to opti-
mize. Finally, the optimizing compiler thread re-compilesthese meth-
ods at increasing levels of optimizations.

MMTk is a composable Java memory management toolkit that im-
plements a wide variety of high performance collectors thatreuse
shared components [4, 5]. It provides the garbage collectors of Jikes
RVM, and we use its generational copying collector (GenCopy).

A generational copying collector divides the heap into two portions,
a nurserycontaining newly allocated objects, and amature space,
containing older objects [15, 21]. It further divides the mature space
into two semispaces. It collects the nursery frequently (whenever it
fills up), by copying reachable nursery objects into one of the mature
semispaces. Once the mature semispace is full, at the next collection
the whole heap is collected, all surviving objects are copied into the
empty semispace and the roles of the semispaces are flipped.

Since the generational collector collects the nursery separately from
the mature space, it must assume any pointers into the nursery are live.
To find these pointers, the compiler insertswrite-barrier code, which
at run time records stores of pointers from mature to nurseryobjects
in a remembered set. When the collector starts a nursery collection,
the remembered set forms part of the set ofroot pointers, which also
consists of the stacks, registers, and static variables. Itcopies any
referents of the root pointers that lie in the nursery, and iteratively
enumerates the pointers in newly copied objects, copying their nursery
referents, until it copies all reachable nursery objects. Mature space
collection proceeds similarly, except the remembered set is empty and
the collector copies any uncopied object, not just nursery objects. This
scheme generalizes to multiple generations, but we use two.

We use a bounded generational collector. It follows Appel’sflexi-
ble nursery [2], which shrinks the nursery as mature space occupancy
grows, except that the nursery never exceeds a fixed chosen bound
(4MB). When mature space occupancy approaches the maximum to-
tal heap size, GenCopy shrinks the nursery, until it reachesa lower
bound (256KB) that triggers mature space collection. We select this
configuration because it performs almost as well as the Appelnurs-
ery [2], but has more regular behavior and lower average pause times.

MMTk manages large objects (8KB or bigger) separately in a non-
copying space, and puts the compiler and a few other core elements
of the system into the boot image, an immortal space. Blackburn et
al. include additional implementation details [4, 5].

4. Online Object Reordering
The Online Object Reordering (OOR) system is class-based, dynamic,
and low-overhead. OOR consists of three components, each ofwhich
extends a subsystem of Jikes RVM: (1) static compiler analysis; (2)
adaptive sampling for hot methods in the adaptive optimization sub-
system; and (3) object traversal and reordering in garbage collection.
Figure 1 depicts the structure and interactions of the OOR system.
When Jikes RVM initially compiles a method, we collect information
about field accesses within that method. Later, the Jikes RVMadap-
tive compilation system identifies frequently executed (hot) methods
and blocks using sampling (see Section 3). We piggyback on this
mechanism to mark hot field accesses by combining the hot method
information with the previously collected field accesses. We then use
this information during garbage collection to traverse thehot fields
first. The next three sections discuss each component in moredetail.

Adaptive Sampling

Code
Executing

Profiling

System Analysis
Object Reordering

designations
Hot field

by hotness

Field accesses in
in hot blocks

hot methods
Detected

GC copies fields

Object order affects locality of mutator

Optimizing
Compiler

Figure 1: OOR System Architecture

4.1 Static Identification of Field Accesses
OOR analysis first identifies potentially hot fields by notingfield ac-
cesses when first compiling each method. The Jikes RVM optimiz-
ing compiler uses a static analysis with a coldness threshold to mark
cold basic blocks. OOR does not enumerate field accesses in cold
blocks, and uses the compiler’s default threshold (see Section 6.5).
The compiler uses loop and branch prediction heuristics to estimate
the execution frequency of basic blocks in a method. For example,
it marks exception handler basic blocks as cold, and basic blocks in
loops as potentially hot. For each method, OOR analysis enumerates
all the field accesses in potentially hot blocks, generatingtuples of
the form<class, offset>. The tuples identify the class and off-
set of any potentially hot field, and OOR associates each tuple with
the compiled method. This analysis thus filters out field accesses the
compiler statically determines are cold and associates a list of all non-
cold field accesses with each compiled method. At present, wedo not
perform any field access analysis in the Jikes RVM baseline compiler.
Since the Jikes RVM adaptive compilation framework recompiles hot
methods with the optimizing compiler, we use it to apply our analy-
sis selectively to hot methods. Jikes RVM also collects basic-block
dynamic execution frequencies using a counter on every branch. We
believe this information can improve the accuracy of OOR analysis,
although we have not implemented this feature here.

4.2 Dynamically Identifying Hot Fields
The Jikes RVM adaptive sampling system detects hot methods by pe-
riodically sampling the currently executing method. When the number
of samples for a method grows beyond a threshold the adaptivesys-
tem invokes the optimizing compiler on it. OOR analysis piggybacks
on this mechanism. The first time it identifies a hot method, itmarks
all the potentially hot field access for the method as hot. Each time
the sampling mechanism re-encounters a hot method (regardless of
whether the adaptive system recompiles it), it updates the heat metric
for the corresponding hot fields.

Figure 2 shows OOR’s decay mechanism for adapting to phase
changes. Other policies are possible of course. The high andlow
heat thresholds,HI andLO (default values of 100 and 30 respectively)
indicate the hottest field with heatHI1 Any field cooler thanLO is
regarded as cold. Initially all fields are cold, with heat 0. When the
timer goes off, the heuristic records the current sampling time,NOW(),
and updates one or more heat fields inclassfor the method.

This heuristic decays heat for unaccessed fields based on thelast
time the analysis updated the instantiating class,class.lastUpdate. How-
ever, the heuristic does not decay field heat for all classes every sample
period, since the cost would be prohibitive. Instead, it updates a class
only when the adaptive compiler samples another method thatuses a
field instantiated by it. In the worst case of not strictly decaying field

1The units for these thresholds are sample intervals, which are ap-
proximately 10ms:HI � 1 sec,LOW� 0.3 sec.

DECAY-HEAT (method)
1 for each f ieldAccessin methoddo
2 if POTENTIALLY HOT(f ieldAccess) then
3 hotField f ieldAccess: f ield
4 class hotField:instantiatingClass
5 class:hasHotField true
6 for each f ield in classdo
7 period NOW()�class:lastU pdate
8 decay HI=(HI + period)
9 f ield:heat f ield:heat�decay

10 if f ield:heat< LO then
11 f ield:heat= 0
12 hotField:heat HI
13 class:lastU pdate NOW()

Figure 2: Pseudocode for Decaying Field Heat

heat for all classes, the OOR collector will copy an old object using
obsolete hot field information. Since none of the hot methodsaccess
this field, the order in which the collector copies these objects will
simply be based on access orders further back in history and should
not degrade performance. If these objects never become hot again,
this mechanism does no harm. Otherwise, if their past accesses pre-
dict the future, program locality will benefit.

4.3 Reordering during Garbage Collection
The copying phase of the collector applies OOR advice. For each in-
stance of a class, the collector traverses the hot fields (if any) first. At
class load time, the OOR system constructs an array for each class,
with one integer representing the heat of each field in the class. Ini-
tially all fields have a heat of zero. OOR analysis uses the algorithm
in Figure 2 to set the heat value for each field and thus identify hot
fields to the collector. The OOR collector then copies and enqueues
the hot fields first. Figure 3 shows how the collector copies data. For a
nursery collection, it begins by processing the rememberedsets (these
are empty in a full heap collection), and then processes the roots.
ADVICE-PROCESS() places all uncopied objects (line 2) in the copy
buffer, and updates the pointer for already copied objects.ADVICE-
SCAN()) then copies all the hot fields first (line 3), and enqueues the
remaining fields to process later. Without advice, all fieldsare cold.

We also experiment with using ahot spacethat segregates hot ob-
jects from the others to increase their spatial locality, which should
improve cache line utilization, reduce bus traffic, and reduce paging.
We refine hot objects tohot referents—instances referred to by hot
fields, andhot parents—instances of classes that instantiate hot fields.
When copying an object, it is identified as a hot parent if thehasHot-
Field value of the object’s class is true. Hot referents are discovered
when traversing hot fields. Thehot spacecontains all the hot objects
and is part of the older space; during nursery garbage collection, the
collector copies into the hot space all objects that containhot fields
and the objects to which the hot fields point. During older generation
collection, the collector copies objects in the hot space toa new hot
space. It always copies all other objects into a separate space in the
older generation. We do not need to change the write barrier to add a
hot space since we always collect it at the same time as other objects in
the older generation. Therefore, this change does not influence write
barrier overhead in the mutator.

An advantage of advice-directed traversal is that it is not exclusive.
For those objects without advice, we can use the best static traversal
order available to combine the benefit of both methods. In ourcurrent
implementation, the default copy order is pure depth first for cold ob-
jects, last child first, because this static order generallygenerates good
performance, as we will show in the following section.

5. Methodology
We now describe our experimental methodology, platforms, and rele-
vant characteristics of the benchmarks we use. We use two method-
ologies for these experiments. (1) Theadaptivemethodology lets

ADVICE-BASED-COPYING()
1 Ob jects EMPTYQUEUE()
2 Cold EMPTYQUEUE()
3
4 for each locationin Remsetsdo
5 ADVICE-PROCESS(location)
6 for each locationin Rootsdo
7 ADVICE-PROCESS(location)
8 repeat
9 while Ob jects:NOTEMPTY() do

10 ADVICE-SCAN (Ob jects:DEQUEUE())
11 while Cold:NOTEMPTY() do
12 ADVICE-PROCESS(Cold:DEQUEUE())
13 until Ob jects:ISEMPTY()
ADVICE-PROCESS(location)
1 ob j �location
2 if NEEDSCOPYING(ob j) then
3 Ob jects:ENQUEUE(COPY(ob j))
4 if FORWARDED(ob j) then
5 �location NEWADDRESS(ob j)
ADVICE-SCAN (ob j)
1 for each f ield in ob j: f ields() do
2 if f ield:isHot(location) // advice
3 then ADVICE-PROCESS(ob j: f ield)
4 else Cold:ENQUEUE(ob j: f ield)

Figure 3: Pseudocode for Advice Based Copying

the adaptive compiler behave as intended and is non-deterministic.
(2) Thepseudo-adaptivemethodology is deterministic and eliminates
memory allocation and mutator variations due to non-deterministic
application of the adaptive compiler. We need this latter methodol-
ogy because the non-determinism of the adaptive compilation system
makes it a difficult platform for detailed performance studies. For ex-
ample, we cannot determine if a variation is due to the systemchange
being studied or just a different application of the adaptive compiler.

In the adaptive methodology, the adaptive compiler uses non-deter-
ministic sampling to detect hot methods and blocks, and thentailors
optimizations for the hot blocks. Thus on different executions, it can
optimize different methods and, for example, choose to inline differ-
ent methods. Furthermore, any variations in the underlyingsystem
induce variation in the adaptive compiler. We use this methodology
only for measuring the overhead of our system.

For all other experiments, we use a deterministic methodology that
holds the allocation load and the optimized code constant. The pseudo-
adaptive methodology gives a mixture of optimized and unoptimized
code that reflects what the adaptive compiler chooses, but isspecified
by an advice file from a previous run. We run each benchmark five
times and profile the optimization plan of the adaptive compiler for
each run. We pick the optimization plan of the run with best perfor-
mance and store it in an advice file. For the performance measurement
runs, we execute two iterations of each benchmark and reportthe sec-
ond. We turn off the adaptive compiler, but not the adaptive sam-
pling. In the first iteration, the compiler optimizes selected methods
at selected level of optimization according to the advice file. Before
the second iteration, we perform a whole heap collection to flush the
heap of compiler objects. We then measure the second iteration. Thus
we have optimized code only for the hot methods (as determined in
the advice file). This strategy minimizes variation due to the adap-
tive compiler since the workload is not exposed to varying amounts
of allocation due to the adaptive compilation. We measure only the
application behavior and exclude the compiler in this methodology.

We report the second iteration because Eeckhout et al. show that
measuring the first iteration, whichincludesthe adaptive compiler, is
dominated by the compiler rather than the benchmark behavior [11].

For each experiment we report, we execute the benchmark five
times, interleaving the compared systems. We use the methodologies

Adaptive Fixed GC load
classes methods alloc alloc: alloc alloc: % nrs % wb alloc pointers scan pointers scan non-null pointers

Benchmark loaded compiled (MB) min (MB) min srv take 0 1 many 0 1 many 0 1 many
jess 155 507 403 25:1 261 17:1 1 0.08 18% 40% 42% 1% 52% 47% 7% 49% 43%
jack 61 331 307 22:1 231 17:1 3 3.15 48% 31% 22% 21% 44% 35% 34% 53% 13%

javac 160 821 593 23:1 185 7:1 23 1.21 29% 34% 37% 5% 27% 68% 6% 34% 60%
raytrace 34 227 215 12:1 135 8:1 2 0.01 89% 1% 10% 55% 12% 33% 57% 14% 29%

mtrt 35 225 224 11:1 142 7:1 5 0.65 87% 2% 11% 55% 12% 33% 57% 14% 29%
compress 16 99 138 8:1 99 6:1 0 1.20 56% 34% 10% 41% 31% 29% 43% 37% 20%

db 8 92 119 6:1 82 4:1 9 1.21 4% 95% 1% 42% 53% 5% 42% 53% 5%
mpegaudio 59 270 51 4:1 3 1:1 0 0.00 76% 15% 10% 83% 5% 12% 83% 5% 12%

ps-fun 347 522 8602 410:1 8589 409:1 0 0.00 95% 2% 3% 25% 30% 45% 25% 30% 44%
ipsixql 120 381 1777 105:1 1739 102:1 31 1.17 40% 3% 56% 39% 2% 59% 39% 2% 59%
hsqldb 90 432 6804 76:1 6720 75:1 4 0.01 44% 41% 16% 50% 0% 50% 50% 0% 50%
jython 175 1050 796 47:1 722 42:1 1 0.103 0% 78% 22% 1% 62% 37% 2% 64% 34%

antlr 114 719 22 18:1 5 3:1 11 1.78 68% 23% 9% 25% 26% 48% 30% 41% 28%
pseudojbb 13 92 339 7:1 216 5:1 32 1.82 51% 26% 23% 36% 29% 35% 37% 29% 34%

Table 1: Benchmark Characteristics

above, and take the fastest time. The variation between these mea-
surements is low. We believe this number is relatively undisturbed
by other system factors. When measuring the system overheadin the
adaptive compiler, we believe the low variation from the fastest time
reflects a stable application of the adaptive compiler.

5.1 Experimental Platform
We perform our experiments on four platforms and find similarities
across these. Section 7 reports on cross architecture results. For
brevity and unless otherwise noted, we report experiments on a ma-
chine with the following characteristics:

3.2GHz P4 The machine is a 3.2 GHz Pentium 4 with hyper-threading
enabled and user accessible performance counters. It has a 64
byte L1 and L2 cache line size, an 8KB 4-way set associa-
tive L1 data cache, a 12Kµops L1 instruction trace cache, a
512KB unified 8-way set associative L2 on-chip cache, 1GB
main memory, and runs Linux 2.6.0.

We instrument MMTk and Jikes RVM to use the CPU’s perfor-
mance counters to measure cycles, retired instructions, L1and L2
cache misses, and TLB (translation look-aside buffer) misses of both
the mutator and collector, as we vary the collector algorithm, heap
size, and other features. Because of hardware limitations,each per-
formance counter requires a separate execution. We use version 2.6.5
of theperfctr Intel/x86 hardware performance counters for Linux with
the associated kernel patch and libraries [17].

5.2 DaCapo Benchmarks
As part of an ongoing effort with our collaborators in the DaCapo
project [16], we collected several memory intensive Java programs for
the DaCapo benchmark suite [6].2 These benchmarks are intended to
exercise garbage collection vigorously in order to reveal collector and
platform induced differences.

1. antlr : Language tool for constructing complier, language rec-
ognizer, and translators.

2. hsqldb: Database written in Java.

3. ipsixql: Persistent XML database.

4. jython : Python interpreter written in Java.

5. postscript-fun: A PostScript interpreter.

5.3 Benchmark Characteristics
Table 1 shows key characteristics of our benchmarks using the fixed
workload and adaptive methodologies. We use the eight SPECjvm98
benchmarks, five DaCapo benchmarks, pluspseudojbb, a variant of

2A pre-release of these benchmarks may be downloaded at:
http://www.cs.utexas.edu/users/speedway/dacapo/DaCapo.html

SPECjbb2000 [19, 20] that executes a fixed number of transactions
(70000), rather than running for a fixed time (for comparisons under
a fixed garbage collection load). Thealloc columns in Table 1 indi-
cate the total number of megabytes allocated under adaptiveand fixed
GC loads respectively. Thealloc:min column lists the ratio of total
allocation to the minimum heap size in which the program executes
in MMTk. Including the adaptive compiler substantially increases al-
location and collector load (compare column four with six, and five
with seven). This behavior can obscure program behaviors and fur-
ther confirms Eeckhout et al. [11]. Notice thatmpegaudio allocates
only 3MB, and with a 4MB heap is never collected; hence we ex-
clude it from the remaining experiments. Also notice that the DaCapo
benchmarks place substantially more load on the memory manage-
ment system than the SPECjvm98 benchmarks.

The% nursery survivalcolumn indicates the percent of allocation
in the nursery that the collector copies. OOR can influence the subset
of these objects with two or more non-null pointers. Notice that most
programs follow the weak generational hypothesis, but thatjavac and
ipsixql are memory intensive while not being very generational. How-
ever, generational collectors still improve their performance [4].

The% wb takecolumn shows the percent of all writes that the write
barrier records in the remembered set. The remaining columns indi-
cate the percentage of objects with 0, 1, or many pointer fields. The
alloc pointerscolumn indicates these proportions with respect to al-
located objects. Thescan pointerscolumn indicates the proportions
with respect to objects scanned at collection time, andscan non-null
pointersindicates the proportions with respect to non-null pointers in
objects scanned at collection time. Since OOR influences only objects
with two or more non-null pointers, the final column in Table 1indi-
cates the proportion of scanned (copied) objects to which OOR can be
applied effectively.

We ran all the experiments we report here on all the benchmarks.
For all but four of these benchmarks, performance variations due to
copying orders are relatively small. For brevity and clarity, the results
section focuses on programs that are sensitive to copy order, and just
summarizes the programs where copy order has little effect.

6. Experimental Results
We now present evaluation of our online object reordering system.
We begin with results that show that the overhead for the reordering
analysis, including its use by the collector, adds at most 1 to 2% to
total time. We then show some programs are sensitive to copying
order. Comparisons with OOR show that it essentially matches or
improves over the oblivious orders. A series of experimentsdemon-
strates the sensitivity of OOR to the decay of field heat to respond
to phase changes, the use of a hot space, cold block analysis,and hot
method analysis. We also compare OOR with class-oblivious copying
on three additional architectures. Static ordering performance is not

Benchmark Default OOR Overhead
jess 4.39 4.43 0.84%
jack 5.79 5.82 0.57%

raytrace 4.63 4.61 -0.59%
mtrt 4.95 4.99 0.7%

javac 12.83 12.70 -1.05%
compress 8.56 8.54 -0.2%
pseudojbb 13.39 13.43 0.36%

db 18.88 18.88 -0.03%
antlr 0.94 0.91 -2.9%

gcold 1.21 1.23 1.49%
hsqldb 160.56 158.46 -1.3%
ipsixql 41.62 42.43 1.93%
jython 37.71 37.16 -1.44%
ps-fun 129.24 128.04 -1.03%
mean -0.19%

Table 2: OOR System Overhead

always consistent across architectures. However, OOR consistently
attains essentially the same performance as the best staticorder across
these platforms.

6.1 Overhead of Reordering Analysis
To explore the overhead of the analysis, we measure the first itera-
tion of the benchmark (where the compiler is active) with theadaptive
compiler on a moderate heap size (1.8� maximum live) and pick the
fastest of 5 runs. This experiment performs the additional run-time
work to record hot class fields, and examines the results at collection
time, but never acts on those results. Therefore, the systemdoes all the
work of class reordering, but obtains no benefit from it. Table 2 com-
pares the original adaptive system with the augmented system. The
table shows some improvements as well as degradations. At worst,
OOR adds a 2% overhead, but this overhead is obscured by larger
variations due to the timer-based sampling. For the exact same pro-
gram, VM, and heap size, the timer-based sampling can cause varia-
tions up to 5% because of the non-determinism, and this variation is
the dominant factor, not the OOR analysis.

6.2 Class Sensitive vs. Class Oblivious
This and all remaining sections apply the pseudo-adaptive method-
ology, reporting only application behavior. This section compares
static and OOR copying orders. OOR uses a hot space (Sections4.3
and 6.4), the decay function described in Section 4.2, and excludes
field accesses from cold blocks (Sections 4.1 and 6.5). This configu-
ration produces the best results across all architectures.

Most of the benchmark programs vary due to copy order by less
than 4%. However, four programs (jython, db, jess, andjavac) show
variations of up to 25% due to copying order, so we focus on them.
Figure 4 (jess) and Figure 5 (jython, db, javac) compare OOR with
three static, class-oblivious orders: breadth first, depthfirst, and par-
tial depth first using the first two children (a hierarchical order). The
figures present total time, mutator time, mutator L2 misses (from per-
formance counters), and garbage collection time. Notice that the total
time of jess andjavac and the mutator L2 misses ofjython use scales
different from the other benchmarks in the figures.

First consider variations due to a priori breadth or depth first on
db andjython (Figure 5). Indb, class-oblivious depth first and partial
depth first using the first two children perform over 25% better in total
time than breadth first copying order. Forjess (Figure 4), partial depth
first is more than 20% worse than breath first. Forjython, depth first
performs about 18% better than breadth first and partial depth first.
Locality explains these differences as shown in the mutatortime and
L2 miss graphs. For a few other programs, partial depth first offers a
minor improvement (1 to 4%) over the best of breadth or depth first.
The wide variation in performance is a pathology of static copying
orders, and is of course undesirable.

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.5 2 2.5 3

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(a) Total Time

1

1.1

1.2

1.3

1.4

1.5

1 1.5 2 2.5 3

2.2

2.4

2.6

2.8

3

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(b) Mutator Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

2.5

3

3.5

4

4.5

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 M
ut

at
or

 L
2

M
is

se
s

M
ut

at
or

 L
2

M
is

se
s

(1
0^

6)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(c) L2 Mutator Misses

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2

1.4
15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(d) GC Time

Figure 4: OOR vs. Class-Oblivious Traversals[jess℄
Figures 4 and 5 show that OOR is not subject to this variation and

matches or improves over the best static orders. Injavac and jess,
OOR sometimes degrades mutator time by 2 to 3% which degrades
the total performance by 2%. The worst case for OOR on all bench-
marks and platforms is 4% foripsixql on the 3.2 GHz P4. For all other
benchmarks, OOR matches or improves over the best mutator locality
and total performance.

These results are consistent with cache and page replacement al-
gorithms, among others, that use past access patterns to predict the
future. OOR dynamically tunes itself to program behavior and thus
protects copying garbage collection from the high variations that come
from using a single static copying order that may or may not match
program traversal orders.

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.5 2 2.5 3

16

18

20

22

24

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(a) jython Total Time

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.5 2 2.5 3

12

13

14

15

16

17

18

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(b) db Total Time

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.5 2 2.5 3

6.5

7

7.5

8

8.5

9

9.5

10

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(c) javac Total Time

1

1.1

1.2

1.3

1.4

1.5

1 1.5 2 2.5 3

15

16

17

18

19

20

21

22

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(d) jython Mutator Time

1

1.1

1.2

1.3

1.4

1.5

1 1.5 2 2.5 3
11

12

13

14

15

16

17

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(e) db Mutator Time

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1 1.5 2 2.5 3
5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(f) javac Mutator Time

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3

40

60

80

100

120

140

160

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 M
ut

at
or

 L
2

M
is

se
s

M
ut

at
or

 L
2

M
is

se
s

(1
0^

6)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(g) jython L2 Mutator Misses

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

120

140

160

180

200

220

15MB20MB25MB30MB35MB40MB45MB50MB55MB60MB65MB

N
or

m
al

iz
ed

 M
ut

at
or

 L
2

M
is

se
s

M
ut

at
or

 L
2

M
is

se
s

(1
0^

6)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(h) db L2 Mutator Misses

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3
16

18

20

22

24

26

28

30

32

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 M
ut

at
or

 L
2

M
is

se
s

M
ut

at
or

 L
2

M
is

se
s

(1
0^

6)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(i) javac L2 Mutator Misses

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(j) jython GC Time

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3

0.2

0.3

0.4

0.5

0.6

0.7

15MB20MB25MB30MB35MB40MB45MB50MB55MB60MB65MB

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(k) db GC Time

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3

1

1.5

2

2.5

3

3.5

4

4.5

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

Partial DF 2 Children
OOR

(l) javac GC Time
Figure 5: OOR vs. Class-Oblivious Traversals[jython, db & javac℄

6.3 Capturing Phase Changes
OOR can adapt to changeswithin the execution of a given applica-
tion. Section 4.2 describes how the decay model ensures thatfield
heat metrics adapt to changes in application behavior. We now exam-
ine the sensitivity of this approach. We use a synthetic benchmark,
phase, which exhibits two distinct phases. Thephase benchmark re-
peatedly constructs and traverses large trees of arity 11. The traversals
favor a particular child. Each phase creates and destroys many trees
and performs a large number of traversals. The first phase traverses
only the 4th child, and the second phase traverses the 7th child.

Figure 6 compares the default depth first traversal in Jikes RVM
against OOR and OOR without phase change detection on thephase

benchmark. Phase change detection improves OOR total time by 25%
and improves over the default depth first traversal by 55%. Mutator
performance is improved by 37% and 70% respectively (Figure6(b)).
Much of this difference is explained by reductions in L2 misses of
50% and 61% (Figure 6(c)). Figure 7 compares OOR with and with-
out phase change detection onjess, jython, javac, anddb. These and
the other benchmarks are insensitive to OOR’s phase change adaptiv-
ity, which indicates that they have few, if any, traversal order phases.

6.4 Hot Space
In order to improve locality further, OOR groups objects with hot
fields together in a separate copy space within the mature space, as
described in Section 4.3. Figure 8 shows results from four representa-

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3
4

6

8

10

12

14

16
20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
OOR w/o phase change
OOR w/ phase change

(a) phase Total Time

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.5 2 2.5 3

3

4

5

6

7

8

9

10

20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
OOR w/o phase change

OOR w/ phase change

(b) phase Mutator Time

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3

60

80

100

120

140

160

180

200

20MB 30MB 40MB 50MB 60MB 70MB

N
or

m
al

iz
ed

 M
ut

at
or

 L
2

M
is

se
s

M
ut

at
or

 L
2

M
is

se
s

(1
0^

6)

Heap size relative to minimum heap size

Heap size

Depth First
OOR w/o phase change

OOR w/ phase change

(c) phase Mutator L2 Misses

Figure 6: Performance Impact of Phase Changes Using a Synthetic Benchmark

tive benchmarks for OOR with and without a hot space. On average,
these configurations perform similarly. However, in our experiments
for other platforms, we found OOR with the hot space usually has
slightly better results (see Figure 11(b) in Section 7). Thehot space
generally reduces the footprint of the hot objects but this benefit is not
as significant as copying order.

6.5 Hot Field Analysis
We now explore the impact of the Jikes RVM static analysis thresh-
olds for basic block heat on OOR (see Section 4.1). The Jikes RVM
optimizing compiler assigns a heat value to basic blocks based on
static loop iteration estimates (or counts if available) and branches. It
then classifies them as hot or cold based on a run-time configuration
threshold. OOR directly uses this classification to enumerate field ac-
cesses in hot basic blocks. The default configuration marks the fewest
blocks cold (BB1 in Figure 9). BB20 through BB150 mark increas-
ingly more basic blocks cold. Figure 9 presents the sensitivity of OOR
to this threshold. Most of the benchmarks, includingjess and javac,
are fairly insensitive to it, butjython is particularly sensitive, with a
worst case degradation of 20%. Fordb, when OOR marks only ba-
sic blocks with heat greater than 20 as hot, the program has the worst
performance. One possible explanation is that this threshold causes
OOR to distribute an important data structure between the hot and
cold spaces. With thresholds higher and lower than 20, OOR prob-
ably tends to put the whole data structure in one space or the other.
Based on these results, we use the Jikes RVM default and mark as hot
any basic block with a heat greater than or equal to one.

6.6 Hot Method Analysis
Finally, Figure 10 examines the sensitivity of the samplingfrequency
for selecting hot methods. Hot methods are identified according to
the number of times the adaptive optimization infrastructure samples
them. Figure 10 shows OOR with sampling rates of 20ms, 10ms, and
5ms. More frequent sampling marks more methods as hot. OOR is
quite robust with respect to this threshold. One possible explanation
for this insensitivity is that method heat tends to be bimodal—methods
are either cold or very hot. Another explanation is that warmmethods
(those neither hot nor cold) tend not to impact locality through field
traversal orders.

7. Different Platforms
This section examines the sensitivity of OOR to architecture varia-
tions, including processor speed and memory system. We run the
same experiments as before on an three additional architectures.

933MHz PPC The Apple G4 has a 933MHz PowerPC 7450 proces-
sor, separate 32KB on-chip L1 data and instruction caches, a
256KB unified L2 cache, 512MB of memory, and runs Linux
2.4.25.

1.9GHz AMD The 1.9GHz AMD Athlon XP 2600+ has a 64 byte L1
and L2 cache line size. The data and instruction L1 caches are
64KB 2-way set associative. It has a unified,exclusive512KB
16-way set associative L2 cache. The L2 holds only replace-
ment victims from the L1, and does not contain copies of data
cached in the L1. The Athlon has 1GB of main memory and
runs Linux 2.6.0.

2.4GHz P4 The 2.4GHz Pentium 4 uses hyper-threading. It has a 64
byte L1 and L2 cache line size, an 8KB 4-way set associative
L1 data cache, a 12Kµops L1 instruction trace cache, and a
512KB unified 8-way set associative L2 on-chip cache, 1 GB
main memory, and runs Linux 2.6.0.

3.2GHz P4 The 3.2GHz Pentium 4 is configured identically to the
2.4GHz P4 except for the faster clock speed (see Section 5.1).

We present a representative benchmark with variations due to locality.
Figure 11 showsjython on all four architectures. Not surprisingly, the
two Intel Pentium 4 architecture graphs have very similar shapes and
the 3.2GHz P4 is faster. Comparing between architectures shows that
the memory architecture mainly dictates differences amongtraversal
orders. The 1.9GHz AMD and 933MHz PPC are less sensitive to
locality because they have larger and relatively faster caches compared
to the P4s which have higher clock speeds. Interestingly, the slower
AMD processor achieves the best, performance, possibly dueto its
large non-inclusive caches. However, on all four architectures, OOR
consistently provides the best performance, across all benchmarks and
architectures.

8. The Copying Advantage
We now present evidence confirming the locality advantages of copy-
ing. We first examine mutator locality by comparing a standard copy-
ing collector with a non-copying mark-sweep collector. We then com-
pare the mutator time of a non-copying mark-sweep collectorwith the
total time of the copying collector to see whether the benefits of copy-
ing can ever outweigh the cost of garbage collection.

Figure 12(a) compares just the mutator performance of the bounded
(4MB) nursery generational copying collector using OOR to awhole
heap mark-sweep collector [5], labeled OOR and Mark-Sweep respec-
tively. The figure shows mutator time as a function of heap size for
javac, a representative program. OOR has a mutator-time advantage
of around 8-10% over Mark-Sweep due to fewer L1 misses onjavac
(Figure 12(b)). The L2 and TLB misses follow the same trend, and
this advantage holds across all of our benchmarks, ranging from a few
percent onjython andcompress, to 15% onpseudojbb and 45% on
ps-fun. Our analysis confirms a prior result [4]: it islocality rather
than the cost of the free-listmechanismthat accounts for the perfor-
mance gap. Note that this result is contrary to the oft-heardclaim
that non-moving collectors ‘disturb the cache less’ than docopying
collectors.

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

2.5

3

3.5

4

4.5

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o phase change
OOR w/ phase change

(a) jess Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

16

18

20

22

24

26

28

30

32
30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o phase change
OOR w/ phase change

(b) jython Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

12

14

16

18

20

22

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o phase change
OOR w/ phase change

(c) db Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

7

8

9

10

11

12

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o phase change
OOR w/ phase change

(d) javac Total Time

Figure 7: Absence of Phasic Behavior in Standard Benchmarks

We now examine the overall impact of garbage collection whenthe
locality advantage and collection overhead are combined. Figure 13
compares thetotal execution time of the copying collector (labeled
OOR) with themutator time of mark-sweep (Mark-Sweep), which
we regard as an approximation to the performance of explicitmemory
management. We use a standard free-list allocator [14, 4] and subtract
the cost of garbage collection. The approximation is imperfect. On
one hand, the application does not pay the cost offree(). On the
other hand, it does not reclaim memory as promptly as explicit mem-
ory management does. In both graphs, the performance of the copying
collector is normalized against the mutator time for Mark-Sweep. A

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

2.5

3

3.5

4

4.5

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o hot space
OOR

(a) jess Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

16

18

20

22

24

26

28

30

32
30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o hot space
OOR

(b) jython Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

12

14

16

18

20

22

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o hot space
OOR

(c) db Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

7

8

9

10

11

12

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR w/o hot space
OOR

(d) javac Total Time

Figure 8: OOR without Hot Space

result less than 1 indicates that the total time for the copying collector
is less than the Mark-Sweep mutator time.

Three patterns emerge in our results. Figure 13(a) shows three rep-
resentative benchmarks:pseudojbb, ps-fun, andipsixql. ipsixql is the
only outlier where the Mark-Sweep mutator actually has consistently
better performance than the copying collector. Seven benchmarks are
like pseudojbb. In modest to large heaps, the locality advantage of
copying garbage collection compensates for its collectioncosts, to the
point where the total time of OOR is the same as the mutator time of
Mark-Sweep.ps-fun represents five benchmarks, where the locality
advantage is so significant that OOR improves over the mutator time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

2.5

3

3.5

4

4.5

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR BB150
OOR BB100

OOR BB50
OOR BB20
OOR BB1

(a) jess Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

16

18

20

22

24

26

28

30

32
30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR BB150
OOR BB100

OOR BB50
OOR BB20
OOR BB1

(b) jython Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

12

14

16

18

20

22

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR BB100
OOR BB150

OOR BB20
OOR BB50
OOR BB1

(c) db Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

7

8

9

10

11

12

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR BB150
OOR BB100

OOR BB50
OOR BB20
OOR BB1

(d) javac Total Time

Figure 9: Using Different Policies to Determine Cold Fields

of Mark-Sweep, even in small heap sizes. Figure 13(b) is remarkable
because it shows that for one of the largest and most realistic bench-
marks in our suite, garbage collection produces a net performancewin.
These results stand against the conventional wisdom that garbage col-
lection always comes at a performance price.

9. Conclusions
We show that the performance of class-oblivious traversal orders can
be unpredictable and expose programmers to variations outside of
their control. We show that our online object reordering system elimi-
nates copying ordergambling. It has a negligible overhead, is amenable

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

2.5

3

3.5

4

4.5

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR 20ms Sample rate
OOR 10ms Sample rate

OOR 5ms Sample rate

(a) jess Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

16

18

20

22

24

26

28

30

32
30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR 20ms Sample rate
OOR 5ms Sample rate

OOR 10ms Sample rate

(b) jython Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

12

14

16

18

20

22

15MB 20MB 25MB 30MB 35MB 40MB 45MB 50MB 55MB 60MB 65MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR 20ms Sample rate
OOR 10ms Sample rate
OOR 5ms Sample rate

(c) db Total Time

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

7

8

9

10

11

12

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR 20ms Sample rate
OOR 10ms Sample rate
OOR 5ms Sample rate

(d) javac Total Time

Figure 10: Using Different Policies to Determine Hot Methods

to the virtual machine context, and adaptively matches or improves
over the best static, class-oblivious order for a given program.

Common wisdom holds that the software engineering benefits of
garbage collection come with a performance penalty. We showthat
copying collectors have a locality advantage over the free-list orga-
nizations of explicitly managed memory. Copying collectors achieve
good locality by placing contemporaneously allocated objects together
in memory and copying connected objects together in the mature space.
OOR further adapts copying order to program access patterns. Since
future processors will demand locality to achieve high performance,
we can look forward to a future where garbage collection combines
software engineering and performance benefits.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3

38

40

42

44

46

48

50

52

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

OOR w/o hot space
Partial DF 2 Children

OOR

(a) jython 933MHz PowerPC Total Time

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3

12

13

14

15

16

17

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

OOR w/o hot space
Partial DF 2 Children

OOR

(b) jython 1.9GHz AMD Total Time

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3

26

28

30

32

34

36

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

OOR w/o hot space
Partial DF 2 Children

OOR

(c) jython 2.4GHz P4 Total Time

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3

16

17

18

19

20

21

22

30MB 40MB 50MB 60MB 70MB 80MB 90MB

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

Depth First
Breadth First

OOR w/o hot space
Partial DF 2 Children

OOR

(d) jython 3.2GHz P4 Total Time

Figure 11: Performance on Different Architectures

10. REFERENCES
[1] B. Alpern et al. The Jalapeño virtual machine.IBM Systems

Journal, 39(1):211–238, February 2000.
[2] A. W. Appel. Simple generational garbage collection andfast

allocation.Software Practice and Experience, 19(2):171–183,
1989.

0.95

1

1.05

1.1

1.15

1.2

1 1.5 2 2.5 3

5.2

5.4

5.6

5.8

6

6.2

6.4

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size

OOR
Mark-Sweep

(a) Mutator Time

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.5 2 2.5 3

160

180

200

220

240

20MB 30MB 40MB 50MB 60MB 70MB 80MB

N
or

m
al

iz
ed

 M
ut

at
or

 L
1

M
is

se
s

M
ut

at
or

 L
1

M
is

se
s

(1
0^

6)

Heap size relative to minimum heap size

Heap size

OOR
Mark-Sweep

(b) Mutator L1 Cache Misses

Figure 12: Mutator Performance for Copying and Mark-Sweep
Collectors on javac

[3] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapeño JVM. InACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 47–65, Minneapolis, MN,
October 2000.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
ACM SIGMETRICS Conference on Measurement & Modeling
Computer Systems, pages 25–36, NY, NY, June 2004.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water?
High performance garbage collection in Java with JMTk. In
Proceedings of the International Conference on Software
Engineering, pages 137–146, Scotland, UK, May 2004.

[6] S. M. Blackburn, K. S. McKinley, J. E. B. Moss, S. Augart,
E. D. Berger, P. Cheng, A. Diwan, S. Guyer, M. Hirzel,
C. Hoffman, A. Hosking, X. Huang, A. Khan, P. McGachey,
D. Stefanovic, and B. Wiedermann. The DaCapo benchmarks.
Technical report, 2004.
http://ali-www.cs.umass.edu/DaCapo/Benchmarks.

[7] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious
structure definition. InACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages
13–24, Atlanta, GA, May 1999.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. InACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages
1–12, Atlanta, GA, May 1999.

[9] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In
ACM International Symposium on Memory Management, pages
37–48, Vancouver, BC, Oct. 1998.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.5 2 2.5 3

40MB 60MB 80MB 100MB 120MB 140MB

T
ot

al
 T

im
e

N
or

m
al

iz
ed

 T
o

M
ar

kS
w

ee
p

M
ut

at
or

Heap size relative to minimum heap size

Heap size

OOR

(a) Total Time,pseudojbb

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1 1.5 2 2.5 3

20MB 30MB 40MB 50MB 60MB 70MB

T
ot

al
 T

im
e

N
or

m
al

iz
ed

 T
o

M
ar

kS
w

ee
p

M
ut

at
or

Heap size relative to minimum heap size

Heap size

OOR

(b) Total Time,ps-fun

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 1.5 2 2.5 3

20MB 30MB 40MB 50MB 60MB 70MB 80MB

T
ot

al
 T

im
e

N
or

m
al

iz
ed

 T
o

M
ar

kS
w

ee
p

M
ut

at
or

Heap size relative to minimum heap size

Heap size

OOR

(c) Total Time,ipsixql

Figure 13: Garbage Collection vs. Idealized Mark-Sweep

[10] S. Dieckmann and U. Hölzle. A study of the allocation behavior
of the SPECjvm98 Java benchmarks. InProceedings of the
European Conference on Object-Oriented Programming, pages
92–115, June 1999.

[11] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java
programs interact with virtual machines at the
microarchitectural level. InACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 244–358, Anaheim, CA, Oct. 2003.

[12] T. Kistler and M. Franz. Automated data-member layout of
heap objects to improve memory-hierarchy performance.ACM
Transactions on Programming Languages and Systems,
22(3):490–505, May 2000.

[13] M. S. Lam, P. R. Wilson, and T. G. Moher. Object type directed
garbage collection to improve locality. In Y. Bekkers and
J. Cohen, editors,ACM International Workshop on Memory
Management, number 637 in Lecture Notes in Computer
Science, pages 404–425, St. Malo, France, Sept. 1992.
Springer-Verlag.

[14] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

[15] H. Lieberman and C. E. Hewitt. A real time garbage collector
based on the lifetimes of objects.Communications of the ACM,
26(6):419–429, 1983.

[16] J. E. B. Moss, K. S. McKinley, S. M. Blackburn, E. D. Berger,
A. Diwan, A. Hosking, D. Stefanovic, and C. Weems. The
DaCapo project. Technical report, 2004.
http://ali-www.cs.umass.edu/DaCapo/.

[17] M. Pettersson. Linux Intel/x86 performance counters,2003.
http://user.it.uu.se/ mikpe/linux/perfctr/.

[18] S. Rubin, R. Bodik, and T. Chilimbi. An efficient
profile-analysis framework for data-layout optimizations. In
ACM Symposium on the Principles of Programming
Languages, pages 140–153, Portland, OR, 2002.

[19] Standard Performance Evaluation Corporation.SPECjvm98
Documentation, release 1.03 edition, March 1999.

[20] Standard Performance Evaluation Corporation.SPECjbb2000
(Java Business Benchmark) Documentation, release 1.01
edition, 2001.

[21] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. InACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 157–167,
April 1984.

[22] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective
static-graph reorganization to improve locality in
garbage-collected systems. InACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages
177–191, Toronto, Canada, June 1991.

