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Abstract. In [l] Moore showed that the existence of mutually

erasable configurations in a two-dimensional tessellation space is

sufficient for the existence of Garden-of-Eden configurations. In [2 ]

Myhill showed that the existence of mutually indistinguishable

configurations is both necessary and sufficient for the existence of

Garden-of-Eden configurations.

After redefining the basic concepts with some minor changes

in terminology, and after restating the main results from [l] and

[2], we shall establish the equivalence between the existence of

mutually erasable configurations and the existence of mutually

indistinguishable configurations. This implies that the converse of

Moore's result is true as well. We then show that by limiting the

universe to the set of all finite configurations of the tessellation

array, both of the above conditions remain sufficient, but neither

is then necessary. Finally, we establish a necessary and sufficient

condition for the existence of Garden-of-Eden configurations when

only finite configurations are considered.

I. The tessellation structure and the Garden-of-Eden theorems.

The tessellation array, which was first used by Von Neumann [3] in

obtaining his results on machine self-reproduction, can be visualized

as an infinite two-dimensional Euclidean space divided into square

cells, in the fashion of a checkerboard, where each cell can hold any

symbol from a finite set A. We use the set Z2 of ordered pairs of inte-

gers to name the cells in the tessellation array. An array configuration,

i.e., a symbol placed in each cell, is formally a mapping c'.Z2—>A. The

restriction of an array configuration c to a subset 5 of Z2 will be de-

noted by (c)s- We speak of this as the configuration of S in array con-

figuration c. Each cell will behave like a deterministic and synchro-

nous finite-state machine, and the symbol in cell (i, j) at time / will

depend on the symbol in cell (i, j) at time t — 1 as well as the symbols

in certain neighboring cells at time t — 1. In this paper, as in [l] and

[2], we fix the neighbors of any cell to be those cells (including the

cell itself) which have each of their coordinates differing by at most

1 from the coordinate of the given cell. Figure 1 shows the neighbors

of cell (i, j).
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The function a which specifies the symbol to be placed in a cell at

time / given the symbols in the neighbors of the cell at time t — 1 is to

be the same for all cells in the tessellation array. This function a,

which we call a local transformation, acting on all cells simultaneously

determines a global transformation r which maps the set of all array

configurations to the set of all array configurations. Any global trans-

formation defined in this way, i.e., from a local transformation, will

be referred to as a parallel transformation.

Moore's result. Let 5 be an arbitrary finite nonempty subset of the

set of cells of the tessellation array (i.e., Z2). Let N(S) be the set

containing exactly all neighbors of any cell in 5. Note SQN(S).

For finite S1C.Z2, a configuration (c{)s where S = N(N(Si)) is said

to be erasable if there exists an array configuration c2 such that (a),

(b), and (c) below hold.

(a) (Ci)aT(JV(,Si))-Si = (C^NÍNCSM-Sv

(b) (ci)s, 5¿(c2)si,and

(c) (t(C2) Wi) = (r(ci) Wi).

Such C\ and c2 will be said to be mutually erasable.

An array configuration c is said to be a Garden-of-Eden (GOE)

configuration if no array configuration c' exists such that r(e') =c.

Theorem 1. (Moore's Garden-of-Eden Theorem). With respect

to a given tessellation structure, if erasable configurations exist, then

there exist Garden-of-Eden configurations.

The proof of this result is found in [l].

Myhill's result. Let 5 be any finite nonempty set of cells. DistinctLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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configurations (ci)s and (£2) s of S are said to be indistinguishable if

and only if the following holds: If for any finite set E of cells that

includes the set 5, (ci)s and (c2)s are extended to array configurations

C\ and c2 subject only to the requirement that (ci)E-s = {cî)ss, then

(r(ci))jV(S) = (r(c2))Ar(s).

Theorem 2 (Myhill). The existence of indistinguishable configura-

tions is necessary and sufficient for the existence of Garden-of-Eden

configurations.

The proof of this result is found in [2].1

The equivalence of the Moore and Myhill concepts of erasability.

In [2], Myhill noted that by "weakening" the erasability requirement

of Moore, he would be able to establish a necessary as well as suffi-

cient condition for the existence of GOE configurations.2 However,

since E may be taken to be N(N(S)), indistinguishability trivially

implies erasability; and since it follows at once from Theorems 1 and

2 that erasability implies indistinguishability, we have :

Theorem 3. With respect to an arbitrary tessellation structure, the

existence of erasable configurations is necessary and sufficient for the

existence of indistinguishable configurations.

Corollary 3.1. The existence of erasable configurations is necessary

and sufficient for the existence of Garden-of-Eden configurations.

It might be noted that Myhill's argument for the variant of the

converse of Moore's theorem can be applied almost without change

to prove the converse of Moore's theorem directly.

II. The restriction to finite configurations. If we designate one

symbol in A as the quiescent symbol (usually, this will be denoted by

0), then we can define a finite configuration as an array configuration

with only finitely many cells containing nonquiescent symbols. More

precisely, c:Z2—*A is finite if the cardinality of {î£Z2| c(i)^A — {o} }

is finite.

If parallel transformation r is defined from a local transformation

a which places the quiescent symbol in any cell at time t if all its

neighboring cells contain quiescent symbols at time t — 1, then if c

is a finite configuration, so is t(c). This condition on a is necessary

and sufficient for preserving finite configurations.

1 Myhill established this result in [2] using the concept of "finite configuration,"

which we define later. However, this is unnecessary as can be seen in a later version

of his paper [4] where this concept is not even introduced. He also redefines in-

distinguishable configurations in a slightly different way than in \z ].

2 In the later version, [4 ], Myhill no longer speaks of this alteration as a weakening.
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Moore stated in [l] that he wished to direct his attention exclu-

sively to finite configurations, and indeed his proof of Theorem 1

is independent of whether the universe is the set of all configurations,

or only the set of all finite configurations.

We now proceed to establish that the converse of Theorem 1

(whether stated in terms of erasable or indistinguishable configura-

tions) is not true when the universe is limited to the set of all finite

configurations. Hence, Myhill's converse requires the universe of

all array configurations.

Theorem 4. For an arbitrary tessellation structure, and with respect

to the set of all finite configurations only, the existence of Garden-of-Eden

configurations does not imply the existence of erasable or indistinguish-

able configurations.

Proof. The particular tessellation structure used in this proof will

be one-dimensional. This is no essential limitation since it is a trivial

matter to embed this in two dimensions. Alternatively, we might

have defined the local transformation for the two-dimensional struc-

ture directly and have it actually depend only on certain neighbors.

For a one-dimensional tessellation array we use the integers to name

the cells. Consider the local transformation v\ defined by:

000 0
001 1

010 1
011 0
100 1
101 0

110 1

111 0

I.e., for any i, if at time / cells i — \,i, and i-\-i contain the respective

symbols indicated in any line of the left column above, then at time

/ + 1 cell i will contain the corresponding symbol of the right column.

We now proceed to show that o\ defines a parallel transformation n

on the set Cf of all finite configurations that is one-to-one and

properly into Cf- Hence, any finite configuration without a preimage

under n is a GOE configuration, and that no erasable or indistin-

guishable configurations exist follows easily from the fact that t\ is

one-to-one.

Consider an arbitrary finite configuration c and suppose c(i) = 1

and for all j<i, c(j')=0. If ti(c')=c, then the definition of ait the

respective symbols in c'(i — 1), c'(i), and c'(i+l) must be one of the

following:
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(a) 001,

(b) 010,
(c) 100,

(d) 110.
That there is no such c' subject to case (c) follows from the fact that

(Ti(110)=o-i(010) = 1 and c(i —1) = 0. That no such c' exists subject

to case (b) is established in a similar way. For case (d), with a little

work, the reader can verify that c(j) =0 for all j<i implies c'(k) = 1

for all k<i+l, hence no finite c' exists for this case.

We have established so far that only case (a) can hold and it is

not difficult to see that if a finite c' exists such that ri(c') =c where

c(i) = 1 and c(j) = 0 for all j<i, then c'(i+l) = 1 and c'(k) =0 for all

k<i-\-1. Hence, from the specification of a\ it is also easy to see that

c(i+i) uniquely determines c'(i+2), c(i+2) uniquely determines

c'(i+S), etc. It follows from these remarks that for any finite con-

figuration c, there can be at most one finite configuration c' such

thatri(c')=c

To show that GOE configurations exist, consider the finite con-

figuration c defined as follows: c(0) = 1 and c(i) = 0 for all i?¿0. From

the remarks above we have that if a finite configuration c' exists

such that ti(c') =c then c'(j) = 0 for all j<i, and c'(l) = 1. From the

specification of n, c(l) =0 implies c'(2) = 1, c(2) = 0 implies c'(3) = 1,

etc. Therefore c' is not finite and hence c is a GOE configuration,3

Q.E.D.
It is easily verified that under the restriction to Cf any surjective

(i.e., onto) parallel transformation is also bijective (i.e., one-to-one

and onto). This is seen as follows. Suppose there could exist distinct

C\, c-¿(E.Cf such that t(ci)=t(c2) and r is surjective. One could then

easily define a finite set 5 of cells (that would include all nonquies-

cent cells of Ci and c2) such that (ci)s and (c2)s would be mutually

erasable, hence GOE configurations would exist and r could not be

surjective. This establishes:

Theorem 5. With respect to Cf and any arbitrary tessellation struc-

ture, t is surjective iff it is bijective.

Theorem 6. With respect to Cf and any arbitrary tessellation struc-

ture, t is not bijective iff Garden-of-Eden configurations exist.

Note that Theorems 5 and 6 are not true if the restriction to finite

configurations is dropped. This can be seen by noting that C\ defined

* It can be shown for any tessellation structure that the existence of one GOE

configuration implies the existence of infinitely many GOE configurations.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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by: ci(i) = 0 for all i, and c2 defined by: c2(i) = l for all i, are both

mapped by n (from the proof of Theorem 4) to ft, hence n is not

bijective on the set of all configurations. That for n GOE configura-

tions do not exist when the restriction to finite configurations is

dropped can be seen as follows.

We shall say that a one-dimensional parallel transformation r on

a tessellation space of binary cells has property R (property L) iff for

any o, £>£ {O, 1}, a(Oab)5¿o-(la&) (o-(abO)¿¿a(abl)), where a definest.

With a little thought the reader should be able to see that any r with

property R or L can have no GOE configurations, ti has property L.

(Additional details appear in [5].)

III. On Moore's concept of erasability. In his definition of erasable

configurations of a set S = N(N(S')) of cells, Moore used the cells in

N(N(S')) — S' as two layers of "insulation" around the cells in S'.

We wish to establish here that Theorem 1 would not be true if

Moore's definition were weakened by replacing N(N(S')) by just

N(S'), i.e. by using one layer of insulation rather than two.

Consider the parallel transformation t2 on a one-dimensional array

(again this can be trivially embedded in a two-dimensional structure)

with binary cells defined by the local transformation <r2 specified by:

000 0
001 0
010 1
011 0
100 1
101 1
110 0

111 1

That t2 is surjective with respect to CF can be established by

showing that, for any c(ECf, there is a c'£Cf such that t2(c')=c.

Suppose c(i) = l and, for all k>i, c(k) = 0. Then let c'(i —1) = 1 and

c'(k)=0 for all k>i— 1. From the definition of r2 and since t2 has

property R, there will exist a c' such that t2(c') =c. That c' is finite

is seen as follows. If c(J) = i and c(k)=0 for all k<j, then c'(J— 1),

c'(j) and c'(j+l) must contain respectively one of 010, 100, 101, or

111. In each case the reader can verify that c(k) =0 for all k<j will

require that c' be finite. This establishes that no GOE configurations

can exist. Yet erasable configurations do exist (with respect to the

weakened definition), e.g., let S' be a unit set, then the configurations

001 and 011 for N(S') would be erasable. More precisely, if ri(c') =c,

then c'(i — 2), c'(i — l), c'(i), c'(i+l), and c'(i+2) containing respec-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



164 S. AMOROSO AND G. COOPER

tively, 00010 or 00111, would each result in c(i—l), c(i), and c(i+i)

containing 001.

IV. Concluding remarks. The reader trying to find the point

where Myhill's proof [2] of the converse breaks down under the

limitation to finite configurations, may find himself faced with an

antinomy. The proof may seem independent of which universe of

configurations, i.e. C or Cf, is considered. The solution can be found

in the following remark. For a given parallel transformation r, and

with universe Cf, we called a configuration c GOE if no finite c'

existed such that t(c') =c. For Moore and Myhill, however, such a c

might not be GOE. For them c is GOE only if no such c' exists,

whether finite or not.

We might note further in closing, that each theorem stated above

can be easily generalized to tessellation arrays of arbitrary dimen-

sion, and with a little more work, to neighborhoods of more general

structure.
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