ERRATUM

Erratum to: The gas flow diode effect: theoretical and experimental analysis of moderately rarefied gas flows through a microchannel with varying cross section

I. Graur¹ · T. Veltzke² · J. G. Méolans¹ · M. T. Ho¹ · J. Thöming²

Published online: 19 April 2015

© Springer-Verlag Berlin Heidelberg 2015

Erratum to: Microfluid Nanofluid (2015) 18:391–402 DOI 10.1007/s10404-014-1445-4

In the original publication of the article, Eq. (13) is incorrect. This is a result of a mistake occurring during the type-setting stage of the article and it does not affect any of the other results or equations in the article. The correct version of the equation is given below:

$$Q^{H} = \frac{2}{3} \left(P_{1}^{2} - P_{2}^{2} \right) \frac{H_{2}^{2}}{H_{2} + 1} \tag{13}$$

Further, a small mistake occurred when calculating the standard deviation of the experimental results provided in Tables 2, 3, 4, 5, 6 and 7. The mean of all values, however, was stated correctly and the mistake does not affect Fig. 4 visibly. The tables with correct standard deviation are given in the following:

The online version of the original article can be found under doi:10.1007/s10404-014-1445-4.

I. Graur irina.martin@univ-amu.fr

J. G. Méolans joseph.meolans@univ-amu.fr

M. T. Ho mtho@polytech.univ-mrs.fr

J. Thöming thoeming@uni-bremen.de

- CNRS, IUSTI UMR 7343, Aix-Marseille Université, 13453 Marseille, France
- ² Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 1, 28359 Bremen, Germany

Table 2 Experimental results obtained in diffusor direction on the tapered channel according to Fig. 2 with CO₂ as working gas, analytical solution, numerical solution

p_1 (kPa)	p ₂ (kPa)	<i>T</i> ₀ (°C)	$\dot{M} (10^{-9} \text{ kg s}^{-1})$		α (%)	
			Exp.	Anal.	Num.	Num.
23.0389 ± 0.0963	3.0266 ± 0.0949	20.04	2.411 ± 0.047	2.6041	2.7810	13.3
28.3679 ± 0.0852	3.3626 ± 0.0943	20.03	3.404 ± 0.045	3.5473	3.7466	9.1
33.7133 ± 0.0746	3.7084 ± 0.0721	20.05	4.513 ± 0.047	4.6146	4.8329	6.6
39.0586 ± 0.0887	4.0720 ± 0.0768	20.05	5.733 ± 0.049	5.8039	6.0353	5.0
44.4236 ± 0.0821	4.4461 ± 0.0797	20.05	7.067 ± 0.059	7.1204	7.3634	4.0
55.1305 ± 0.0816	5.1696 ± 0.0639	20.07	10.049 ± 0.074	10.1177	10.3803	3.2
66.1574 ± 0.0712	5.9504 ± 0.0662	20.06	13.653 ± 0.080	13.7189	13.9981	2.5

Measurements were performed in triplicate and arithmetic mean and standard deviation are calculated. The deviation α of the numerical solution to the experimental results is: $\left| (\dot{M}_{exp}/\dot{M}_{num}) - 1 \right| \cdot 100 \,\%$

Table 3 Experimental results obtained in nozzle direction on the tapered channel according to Fig. 2 with CO_2 as working gas, analytical solution, numerical solution

p_1 (kPa)	p ₂ (kPa)	<i>T</i> ₀ (°C)	$\dot{M} (10^{-9} \text{ kg s}^{-1})$		α (%)	
			Exp.	Anal.	Num.	Num.
23.0154 ± 0.0459	3.0140 ± 0.0358	20.10	2.588 ± 0.042	3.1587	3.2192	19.6
28.3679 ± 0.0530	3.3753 ± 0.0374	20.10	3.656 ± 0.052	4.2626	4.3396	15.8
33.7229 ± 0.0596	3.7466 ± 0.0415	20.10	4.847 ± 0.046	5.4891	5.5829	13.2
39.0837 ± 0.0634	4.1230 ± 0.0514	20.07	6.139 ± 0.061	6.8407	6.9516	11.7
44.4620 ± 0.0603	4.5079 ± 0.0442	20.07	7.542 ± 0.053	8.3193	8.4468	10.7
55.1912 ± 0.0522	5.2426 ± 0.0376	20.08	10.662 ± 0.065	11.6449	11.8047	9.7
66.2069 ± 0.0694	6.0228 ± 0.0435	20.05	14.354 ± 0.099	15.5730	15.7628	8.9

Measurements were performed in triplicate and arithmetic mean and standard deviation are calculated. The deviation α of the numerical solution to the experimental results is: $|(\dot{M}_{exp}/\dot{M}_{num}) - 1| \cdot 100 \%$

Table 4 Experimental results obtained in diffusor direction on the tapered channel according to Fig. 2 with N_2 as working gas, analytical solution, numerical solution

p_1 (kPa)	p ₂ (kPa)	<i>T</i> ₀ (°C)	$\dot{M} (10^{-9} \mathrm{kg s^{-1}})$		α (%)	
			Exp.	Anal.	Num.	Num.
25.5150 ± 0.0955	3.3040 ± 0.0581	20.08	1.722 ± 0.044	2.0490	2.2330	22.9
31.4279 ± 0.0680	3.6811 ± 0.0295	20.08	2.431 ± 0.040	2.7513	2.9595	17.9
37.3339 ± 0.0457	4.0762 ± 0.0531	20.05	3.223 ± 0.011	3.5326	3.7636	14.4
43.2610 ± 0.0577	4.4717 ± 0.0475	20.06	4.095 ± 0.013	4.3972	4.6453	11.8
49.1804 ± 0.0175	4.8795 ± 0.0108	20.07	5.048 ± 0.034	5.3408	5.6053	9.9
61.0077 ± 0.0474	5.6739 ± 0.0210	20.06	7.178 ± 0.043	7.4699	7.7561	7.5
73.2224 ± 0.0176	6.5315 ± 0.0254	20.06	9.751 ± 0.023	10.0061	10.3127	5.4

Measurements were performed in triplicate and arithmetic mean and standard deviation are calculated. The deviation α of the numerical solution to the experimental results is: $|(\dot{M}_{\rm exp}/\dot{M}_{\rm num})-1|\cdot 100\,\%$

Table 5 Experimental results obtained in nozzle direction on the tapered channel according to Fig. 2 with N_2 as working gas, analytical solution, numerical solution

p_1 (kPa)	p ₂ (kPa)	<i>T</i> ₀ (°C)	$\dot{M} (10^{-9} \text{ kg s}^{-1})$		α (%)	
			Exp.	Anal.	Num.	Num.
25.4982 ± 0.0234	3.3167 ± 0.0131	20.08	1.848 ± 0.027	2.5415	2.5966	28.8
31.4365 ± 0.0376	3.7172 ± 0.0181	20.12	2.611 ± 0.019	3.3859	3.4543	24.4
37.0293 ± 0.0284	4.0850 ± 0.0142	20.10	3.462 ± 0.019	4.2574	4.3394	20.2
42.9162 ± 0.0304	4.4908 ± 0.0212	20.26	4.384 ± 0.034	5.2477	5.3447	18.0
48.8057 ± 0.0230	4.9114 ± 0.0696	20.26	5.387 ± 0.012	6.3192	6.4314	16.2
60.6650 ± 0.0216	5.7264 ± 0.0327	20.31	7.615 ± 0.023	8.7218	8.8644	14.1
72.7721 ± 0.0331	6.5730 ± 0.0234	20.09	10.252 ± 0.020	11.5187	11.6916	12.3

Measurements were performed in triplicate and arithmetic mean and standard deviation are calculated. The deviation α of the numerical solution to the experimental results is: $|(\dot{M}_{exp}/\dot{M}_{num})-1| \cdot 100 \%$

Table 6 Experimental results obtained in *diffusor* direction on the tapered channel according to Fig. 2 with Ar (argon) as working gas, analytical solution, numerical solution

p_1 (kPa)	p ₂ (kPa)	<i>T</i> ₀ (°C)	$\dot{M} (10^{-9} \text{ kg s}^{-1})$		α (%)	
			Exp.	Anal.	Num.	Num.
24.1557 ± 0.0517	3.1894 ± 0.0273	20.29	1.855 ± 0.035	2.2111	2.4305	23.7
29.8508 ± 0.0545	3.5046 ± 0.0275	20.30	2.619 ± 0.053	2.9675	3.2207	18.7
35.0942 ± 0.0649	3.8842 ± 0.0242	20.30	3.494 ± 0.049	3.7328	4.0099	12.9
40.4200 ± 0.0402	4.2844 ± 0.0281	20.29	4.440 ± 0.039	4.5815	4.8817	9.0
46.0627 ± 0.0674	4.6966 ± 0.0457	20.30	5.459 ± 0.057	5.5599	5.8788	7.1
57.1809 ± 0.0531	5.4635 ± 0.0570	20.30	7.762 ± 0.072	7.7283	8.0797	3.9
68.6523 ± 0.0605	6.2922 ± 0.0259	20.48	10.537 ± 0.073	10.2871	10.6610	1.2

Measurements were performed in triplicate and arithmetic mean and standard deviation are calculated. The deviation α of the numerical solution to the experimental results is: $|(\dot{M}_{\rm exp}/\dot{M}_{\rm num})-1| \cdot 100\,\%$

Table 7 Experimental results obtained in *nozzle* direction on the tapered channel according to Fig. 2 with Ar (argon) as working gas, analytical solution, numerical solution

p_1 (kPa)	p_2 (kPa)	<i>T</i> ₀ (°C)	\dot{M} (10 ⁻⁹ kg s ⁻¹)		α (%)	
			Exp.	Anal.	Num.	Num.
23.9157 ± 0.0294	3.2167 ± 0.0346	20.08	1.998 ± 0.023	2.7266	2.7895	28.4
29.4861 ± 0.0311	3.5476 ± 0.0420	20.06	2.822 ± 0.023	3.6227	3.6999	23.7
34.8385 ± 0.0409	3.9118 ± 0.0374	20.04	3.759 ± 0.032	4.5532	4.6453	19.1
40.3653 ± 0.0440	4.2902 ± 0.0286	20.06	4.762 ± 0.048	5.5904	5.6985	16.4
46.0374 ± 0.0501	4.6987 ± 0.0596	20.31	5.832 ± 0.043	6.7281	6.8533	14.9
57.1578 ± 0.0368	5.4656 ± 0.0331	20.33	8.245 ± 0.045	9.2108	9.3707	12.0
68.6183 ± 0.0449	6.2951 ± 0.0431	20.33	11.092 ± 0.056	12.0960	12.2903	9.8

Measurements were performed in triplicate and arithmetic mean and standard deviation are calculated. The deviation α of the numerical solution to the experimental results is: $\left| (\dot{M}_{exp}/\dot{M}_{num}) - 1 \right| \cdot 100 \,\%$

Furthermore, a mistake occurred when calculating $\bar{K}n$ according to Eq. (11) with $\bar{p}=0.25(p_1^{\rm noz}+p_2^{\rm noz}+p_1^{\rm dif}+p_2^{\rm dif})$. The corrected values are given in Tables 8, 9 and 10 below:

Table 8 Mean Knudsen number and experimental and numerically calculated diodicity of carbon dioxide (CO₂) at 20.07 °C

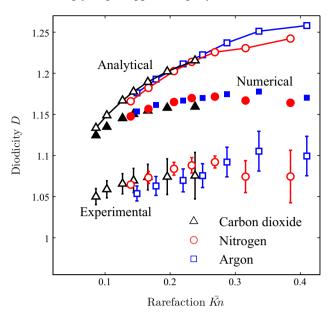
$\bar{K}n$	D	D		
	Exp.	Num.	Num.	
0.2382 ± 0.0447	1.0755 ± 0.0284	1.1598	7.27	
0.1955 ± 0.0367	1.0742 ± 0.0218	1.1584	7.27	
0.1657 ± 0.0311	1.0737 ± 0.0157	1.1548	7.02	
0.1437 ± 0.0270	1.0696 ± 0.0148	1.1506	7.04	
0.1268 ± 0.0238	1.0657 ± 0.0123	1.1455	6.96	
0.1028 ± 0.0193	1.0588 ± 0.0105	1.1350	6.71	
0.0860 ± 0.0161	1.0500 ± 0.0098	1.1246	6.63	

 $\bar{K}n$ and D are calculated according to Eqs. (11), (23), (30) and (31) using values stated in Tables 1, 2 and 3. The deviation α of the numerical solution to the experimental results is: $\left|(D_{\text{exp}}/D_{\text{num}})-1\right|\cdot 100\,\%$

Table 9 Mean Knudsen number and experimental and numerically calculated diodicity of nitrogen (N₂) at 20.12 °C

$ar{K}n$	D	D		
	Exp.	Num.	Num.	
0.3849 ± 0.0722	1.0745 ± 0.0319	1.1646	7.74	
0.3157 ± 0.0592	1.0743 ± 0.0194	1.1669	7.93	
0.2688 ± 0.0504	1.0920 ± 0.0073	1.1723	6.85	
0.2332 ± 0.0437	1.0880 ± 0.0094	1.1694	6.96	
0.2059 ± 0.0386	1.0838 ± 0.0078	1.1654	7.00	
0.1668 ± 0.0313	1.0732 ± 0.0072	1.1562	7.18	
0.1394 ± 0.0261	1.0646 ± 0.0034	1.1480	7.27	

 $\bar{K}n$ and D are calculated according to Eqs. (11), (23), (30) and (31) using values stated in Tables 1, 4 and 5. The deviation α of the numerical solution to the experimental results is: $|(D_{\text{exp}}/D_{\text{num}}) - 1| \cdot 100 \%$


Table 10 Mean Knudsen number and experimental and numerically calculated diodicity of argon (Ar) at $20.25~^{\circ}\text{C}$

$ar{K}n$	D	α (%)	
	Exp.	Num.	
0.4097 ± 0.0768	1.0993 ± 0.0241	1.1716	6.17
0.3362 ± 0.0630	1.1053 ± 0.0241	1.1782	6.19
0.2871 ± 0.0538	1.0921 ± 0.0181	1.1759	7.13
0.2498 ± 0.0468	1.0755 ± 0.0145	1.1706	8.12
0.2200 ± 0.0413	1.0697 ± 0.0140	1.1671	8.34
0.1783 ± 0.0334	1.0630 ± 0.0115	1.1607	8.42
0.1491 ± 0.0280	1.0538 ± 0.0091	1.1540	8.68

 $\bar{K}n$ and D are calculated according to Eqs. (11), (23), (30) and (31) using values stated in Tables 1, 6 and 7. The deviation α of the numerical solution to the experimental results is: $\left|(D_{\rm exp}/D_{\rm num})-1\right|\cdot 100\,\%$

Accordingly, Fig. 5 appears slightly different.

Fig. 5 Diodicity versus mean Knudsen number. Analytical data (*interconnected with lines*), numerical data (*filled symbols*) and experimental data (*open symbols*) are prepared according to Eqs. (11) and (23) with values stated in Tables 2, 3, 4, 5, 6 and 7 in "Appendix". The experimental uncertainty of D is expressed by *vertical errorbars* that are calculated according to Eq. (30). The *horizontal errorbars* are not shown but the experimental uncertainty of $\bar{K}n$ according to Eq. (31) is tabulated. All depicted values are provided in Tables 8, 9 and 10 in the "Appendix"

Acknowledgments We would like to acknowledge Vadiraj Hemadri who called attention to this mistake. We apologize for any inconvenience.