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1. I n t r o d u c t i o n  

In the last years there has been an increased interest in the study of piecewise 

isometries; see, e.g., [AKT, ACP, G, L, LV, M, V1, V2] and the references therein. 

Classically, invertible piecewise isometries have been studied in one dimension; 

these are the so-called interval exchange mappings (IETs for short), which can 

appear for example as first return maps of geodesic and billiard flows. A natural 

generalization of IETs to the noninvertible case, interval translation mappings 

(ITMs for short), has been recently introduced by Boshernitzan and Korufeld 

[BK]. ITMs have been studied for their topological dynamics in [ST], and for their 

invariant measures and complexity in [BH]. Many 0-entropy maps of the interval 

are (semi)conjugate to ITMs [BH]. In [BK] several very interesting questions were 

asked, which we answer in this article for a special class of interval translation 

mappings. 

We define a class of ITMs which can be viewed as translations of two intervals 

on the circle. The example given in [BK] is a special member of our class. This 

example was the first one for which a Cantor attractor for an ITM was observed. 

We define an inducing procedure similar to Rauzy induction for interval exchange 

mappings [R, V1]. It defines a map G in parameter space which plays the same 

role as the well-known Gauss map for circle rotations; we call G the Gauss  m a p  

for our class of ITMs. Whether the induction procedure can be extended to all 

ITMs is a very interesting open problem.* 

Using the Gauss map, we prove that ahnost every map in our class is of finite 

type (i.e., its attractor is a union of intervals rather than a Cantor set), giving a 

partial answer to a question posed in [BK]. If the ITM has a Cantor attractor, we 

specify an isomorphism to a shift space generated by a chain of substitutions. We 

give an upper bound on the dimension of the attractor. Although the at tractor 

is "dynamically defined", it is interesting to note that its upper box dimension 

need not be equal to its Hausdorff dimension. Hausdorff measure, whether finite 

or not, is always T-invariant. Finally, we give sufficient conditions for mappings 

in our class to be uniquely ergodic, and a sufficient condition preventing unique 

ergodicity. 

In a companion paper, J. Cassaigne shows that the (subword) complexity p(n) 
of the subshift describing our system is linear, in fact p(n) <_ 3n [C2]. This yields 

a partial answer to another question posed in [BK]. Cassaigne's original technique 

[C1] is designed for substitution subshifts. In [C2], he extends the method for 

* Recently Suzuki et al. have defined an induction procedure similar to ours for a 
somewhat larger class of ITMs [SAIl. 
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the chain of subst i tut ions developed in our paper.  
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2. S t a t e m e n t  o f  results  

Let 0 =/30 </31 < . . .  </3~ -- 1, I = [0, 1) and, for i = 0 . . . . .  r, Bi de_=f [/3i-1,/3i). 

An  interval t ranslat ion mapping  is an interval map T: I -+ I given by 

T(x) de~-fx-[-'~i i f x  • Bi, 

where yi are fixed numbers  such tha t  T maps I into itself. We also define the 

image of 1 by T(1) def l imx-.1- T(x).  

~ f n ~  Define ~o -- I and ~n = T ( ~ n - 1 ) -  The set ~ - n n is called the at t rac tor  

of the ITM. We say tha t  T is of f in i t e  t y p e  iff tn = ~n+l for some n. In this case, 

the a t t rac tor  ft = ft~ is a finite union of  intervals, and Tla  is an interval exchange 

t ransformat ion (IET).  If  ft~+l is strictly smaller than  Qn for each n, then ~2 is a 

Cantor  set or the union of a Cantor  set and a finite collection of intervals. The 

lat ter  only happens when T is reducible; orbits do not visit bo th  the Cantor  set 

and the intervals. We will ignore this reducible case, and concentrate  on the case 

tha t  ft is a Cantor  set; T is said to be of t y p e  ~ in this case. For convenience, 

we will often consider ~ instead of f~ to be the a t t ractor ,  and assume tha t  T l ~ \ a  

is (re)defined by continuity from the left. 

Our  first result is a general s t ructure  theorem about  the topological dynamics  

of ITMs.  In  fact, this theorem is a consequence of results from [HR], but  since 

tha t  proof  requires extensive machinery and is spread out over several papers, 

we prefer to give a direct proof  for our case, which is more in the spirit of the 

well-known results for IETs,  see [KH]. 

THEOREM 1: [f T[-ff is transitive, then this restriction is minimal. 

I t  follows from [ST] tha t  f~ is a Cantor  set when T is of infinite type. We have 

THEOREM 2: Let d be the Hausdorff dimension of f~. The Hausdorff d dimen- 

sional measure Hd on ~ is T-invariant. 

Remark: This theorem is a new result for ITMs of infinite type. In general we 

do not know i f0  < Hd(~) < ec. In fact, i fd  = 0 then Hd(~) is infinite. Examples  

of ITMs for which d = 0 are produced in Theorem 10. 

The main results of this article are on interval t ranslat ion maps  of a special 
form. Consider U def {(c~,/3) : 0 <_ /3 < c~ < 1}, L clef {((~,/3) : 0 < a < f l + l  <_ 1} 
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and R d+__f U tA L. For (a,/3) in the interior U ° of U consider the I T M  T = 

T~,~: [0,1) -+ [0, 1) defined by (see Figure 1) 

x - k a  
T(x) de_f X -b/3 

x + f l - 1  

for x E [0, 1 - a ) ,  
for x E [1 - a ,  1 - / 3 ) ,  
for x E [1 - / 3 ,  1). 

/ 
c~ 

Figure 1. The  m a p  Ta,~. 

By identifying the  points  0 and 1 we get an interval t rans la t ion  m a p  of the  

circle with two intervals. In the th ree -pa ramete r  class of all I T M s  on the circle 

wi th  two intervals, the condit ion tha t  limy+/~/- T(y) =/33 lets us consider this two 

p a r a m e t e r  subfamily.  A special example  of an I T M  of this form was considered 

in [BK]. 

PROPOSITION 3: I f  Tc~,~ is aperiodic then its restriction to f~ is minimal. I f  

a single orbit of T~,~ is fnite, then every orbit is eventually periodic and the 

restriction to the attractor is isomorphic to a rational circle rotation. 

PROPOSITION 4: The map Ta,~ is of finite type if and only if  there is an interval 

J such that Ta,~ induced on J is an interval exchange of two intervals, i.e., T~,~ 

is isomorphic to a circle rotation. I f  T~,~ is aperiodic and of finite type, then it 

is uniquely ergodic. 

We remark  tha t  if a = 1 or a - - /3  then  T is a circle rotat ion,  while if/3 = 0 

then T is a noninvertible I T M  on two intervals and in this case the ident i ty on 

its a t t rac tor .  
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Proof  of Proposition 4: We begin by proving the if statement. By Proposition 

3, if T has a periodic point then it is of finite type. Thus we assume that T is 

aperiodic and therefore minimal on ~ by Proposition 3. Let J be an interval 

such that the induced map Td on J is an interval exchange of two intervals. We 

have J C f~ and thus T is of finite type since for any transitive ITM of infinite 

type f~ must be a Cantor set [ST]. 

We prove the only if statement by contradiction. Consider the first return map 

= TA, of T~./3 to the interval A1 := [1 - a, 1). Clearly we have T][1-~3-~) = 

T[[1-~,l-fl). There are two cases for the interval [1 - fl, 1). 

(i) The whole interval [1 - f l ,  1) returns at the same time. In this case the map 

2b is an interval translation map on two intervals. Thus/~ is an interval exchange 

of two intervals. 

(ii) There are two different return times, that is, there is a positive integer k 

such that  the left part of the interval returns in k steps and the right part of the 

interval returns in k - 1 steps. In this case the map/~ is of the form T~,,B, where 

O~ 

where k = [4J- 

Repeating the inducing procedure we either are always in case (ii) or at some 

time step we reach case (i), and then there is a subinterval J such that  the first 

return map on d is an interval exchange of two intervals. If we are always in case 

(ii) then the induced map to A,~ := [1 - n-1 I-L=o ai,  1) (where (ai,fli) de f Gi(oGfl)) 
is not invertible. This means that for each n the set A,~ is not contained in f~. 

Since ~ N An = Ui>o T~,(f~ V)An+l) this implies that ~ cannot contain any 

interval and thus T is of infinite type. 

Aperiodic circle rotations are always uniquely ergodic. Since the Kakutani 

tower of T~,~ over the induced map is finite, the map T~,Z is uniquely ergodic if 

and only if the induced rotation is uniquely ergodic. | 

Equation (1) defines the Gaus s  m a p  G: U ° -+ R. To understand the action 
1 of this map consider the reg ion  hCk def {(Oz~ fl) E U : ~ < oz ~ ~}, see Figure 2. 

For each k E N, G maps L/k into R in the following way: the right boundary of/dk 

is mapped onto the top boundary of R, the left boundary of Hk is mapped onto 

the bot tom boundary of R, the bottom boundary of Hk is mapped onto the left 

boundary of R and the top boundary of Hk is mapped onto the right boundary 

of R. Note that  if (a, fl) E 0/dk for some k, then Ta(~,l~ ) E O(R), thus of finite 
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type and consequently Tc~,~ is also of finite type. Let 

A def N a-n(U°),  

n>O 

see Figure 3. 

Isr. J. Math.  

/ / : i  

Uk~ 
i 
i 

G 

Figure 2. The action of the map G. 

R = U U L  

Ul 

COROLLARY 5: Tc~,/~ is of infinite type if and only if(a,~3) E A. 

Proof'. If (a,/3) ~ A then at some step of the inducing procedure Gn(a, 3) E 
L U OU and the induced map is an ITM on two intervals. 

If (a,/3) E A then the inducing procedure can be repeated indefinitely and thus 

T is of infinite type by the proof of Proposition 4. I 

THEOREM 6: The set A has Lebesgue measure O. In particular, for Lebesgue 

almost every (a,/3) E U the map T~,~ is of finite type and aperiodic. 

Let N -- {1, 2, 3 . . . .  }. The starting result of the analysis of our family of ITMs 

is: 

THEOREM 7': The set A is uncountable and is naturally indexed by 

](~ de f ( k  = kok~... ; ki E N, k2i ~ 1 in£ often and k2i+1 ~ 1 inf. often}. 
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For any sequence k, the map T~,/3[~ is isomorphic to the shift space (Za ,Z ,a )  

generated by the chain of substitutions kko o kkl o kk2 o . . .  where 

def  [ 1 -+ 2, 
\ k  = / 2 - + 3 1  k, 

3 --+ 31 k-1. 

0.6 

0.4 

0 

0.2 

0.8 

0.2 0.4 0.6 0.8 1 

Figure 3. Approx imat ion  of the set A based on an i tera ted function 

sys tem with 10,000 pixels. The  black should reach up to the top  

right corner (1, 1), bu t  does not because this is a neut ra l  fixed point  

of G (see Proposi t ion  15). 

We will call an I T M  s e l f - s i m i l a r  if there exists one and hence infinitely m a n y  

subintervals A ~ I such tha t  the induced mapp ing  Ta:  A -+ A differs f rom T 

only by affine scaling. 

PROPOSITION 8: The set of periodic points of G is countable and dense in A. 

The set  f~ is self-similar for any (a, fl) which is G-periodic. 

For each x E f t  define the i t i n e r a r y  e(x) de=f eo(x )e l (x )""  where ek(x) = j 

iff Tk(x)  6 Bj = [/3j-1,/3j). Let ~ = e(f~). The  subshift  ~ is called a d i c  if 

it is genera ted by a sequence l, where l = limn a l  o a2 o . . .  o an(a), and the 

subst i tu t ions  ~i are prinfitive and taken from a finite collection. 
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PROPOSITION 9: Let (a, f3) E A. If  the G-orbit of (a,/3) does not accumulate at 

the points (0, 0) or (1, 1) then Ta,Z is adic. This set of (a, ~) is uncountable and 

dense in A. 

Write dimH, dimB and dims for Hausdorff dimension and upper resp. lower 

box dimension. 

THEOREM 10: There exists r = 0.84955--- < 1 such that for all (a,/3) E A, 

d imB(f~3)  _< r. 

There exist maps Ta,Z such that dimn(~a,Z) = d i m B ( ~ 3 )  = 0, as well as maps 

where 0 -- dima(fl~,Z) < dimB(fl~,~). 

1 for any T-invariant Borel Results of Boshernitzan imply that dimH(#) _> 

probability measure for almost every a, 3 and for any a,/3 which are algebraic 

[Bol]. The Hausdorff dimension of fl has been computed before in [BK] for one 

particular example. Let 

(2) Pk(x) = x 3 -  x 2 - kx + 1. 

Denote the roots of Pk by r k < rk _4 rk- One can check that r_ k ~ - v ~  + ½, 

rk .~ 1/k a n d r k  -~ x / ~ + ½  for large k. I f a k  = rk, then (ak, a2k) is a fixed 

point of G, and the Hausdorff dimension of ~a~,a~ equals --log(Pk)/log rk. For 

the case k -- 3, the details have been worked out in [BK]. If k --~ oo, then 
1 dimH(~a~,~) --+ 5" 

As we have seen in Proposition 4, every T~,Z of finite type is isomorphic to a 

circle rotation, and therefore uniquely ergodic. If T~,~ satisfies the hypotheses 

of Proposition 9 then unique ergodicity is relatively easy to prove. Fluctuations 

combined with large values in the sequence (ki) complicate a general analysis. 

Both cases occur: 

THEOREM 11: Let T~,~ be of type infinity, with sequence (ki) as in Theorem 7. 

I f  for some A > 1, ki >_ Aki-1 for all i sufficiently large, then T~,Z is not uniquely 

ergodic. 

THEOREM 12: Let Ta,/~ be of type infinity, with sequence (ki) as in Theorem 7. 

Let L2i = min(r  >_ 1; k2i+,. ~ 1}. If  

(3) ~i k2i - 1 i 1 
• -k2 i .k2i--li2i -~ oo 
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or  

k2i 
(4) I - [  + - o 

i>1 

(or either condition holds with 2i replaced by 2i - 1), then T~ 3 is uniquely 

ergodic. 

Conditions (3) and (4) have a non-empty symmetric difference. For instance, 

if k2i = 2 i, k2i-1 = 3 i, then (4) applies and not (3), while the case ki = i + 1 is 

covered only by Condition (3). Theorem 12 allows a corollary on the abundance 

of uniquely ergodic ITMs in our class. 

COROLLARY 13: The set AUE :---- {(oz,/3) e A[ T~,~ is uniquely ergodic} is a 

dense G~ set in A, i.e., for each compact set K C A, AUE n K is dense G6. 

The method for proving that the map T~,Z is uniquely ergodic or not has the 

same flavor as the method that  Keane [K] used for certain IETs. In fact, it gives 

also a way to estimate the number of ergodic measures, and so we retrieve a 

result proven in more generality by Buzzi and Hubert [BH]. 

COROLLARY 14: Each map T~,Z has at most two ergodic invariant measures. 

3. Transitive implies minimal 

In this section we give a direct proof of Theorem 1. 

Proof of Theorem 1: If T is of finite type, i.e., if TI~ is an IET, minimality is 

a well known consequence of transitivity (see for example Corollary 14.5.11 in 

[KH]). So assume that T is of type oo. Let y E ~ be such that ~ is a;(y), the 

omega limit set of y. 

CLAIM l: There exists 0 < i < r and an interval J C I such that JNf~  ~ 0 and 

J n c 

Note that /3o and/3r are not discontinuity points of the map T and therefore 

not necessary in Claim 1. 

Start with i = 1 and gl = I. Clearly J1 N ~  ~ 0. If J 1 N ~  C w(/31), 

then we are finished. Otherwise, there exists an interval J2 C J1, intersecting 

~, such that w(/31) N .]2 -- 0. Next check if J2 A ~ C w(/~2). If so, then we 

are finished. Otherwise, there exists an interval J3 C J2, intersecting ~,  such 

that w(/32) A J3 = 0. Continue this way. Since there are only finitely many 

discontinuity points, we arrive at some interval J~, intersecting ~ but disjoint 
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fromw(fl~) for a l l0  < i < r. But this implies that  J~ C ftn for a l l n ,  and T 

cannot be of type oc. 

CLAIM 2: There e.xists 0 < i < r such that ~ = w(fli). 

Let i and d be from Claim 1. Since orb(y) is dense in ~,  there exists Tk(y) E J. 
Therefore w(fli) D w(Tk(y)) D ~. 

CLAIM 3: ~ = W(fli) for each 0 < i < r. 

Let i0 be the i from Claim 2. Let Xi = {/32,0 < j < r a n d f i j  E w(fli)}. 

Clearly, Xio = {/35 . . . . .  flr-~} n ft. Note that if flj E Xi,  then Xj  C X~, and also 

that  X~ ?~ O. Indeed, if Xi = •, then there exists a neighborhood U of T(fli) such 

that Tk(u)  ~ flj for any 0 < j < r and any k_> 0. This implies that anygtn 

contains an interval of length >_ IU], contradicting that T is of type oc. 

To prove the claim, we need to show Xi = Xio for each i. Assume by contra- 

diction that Xi, is the /a  largest set strictly smaller than X~ o. Find ~ > 0 such 

that ]Tk(/3i) - fljl < ~ implies fly e Xi.  Find/3 • orb(fli,) and z • orb(y) such 

that I/3 - z I < ~/2 and iterate these points. Whenever some flj • (Tk(/3), Tk(z)) 
(in particular, /3j • Xi,) ,  continue iterating with Tk(z) and /3j. We get that 

each point in orb(z) is no more than ~/2 away from some iterate of some point 

flj • Xi~. Since orb(z) approximates every point in Xio arbitrarily closely, it 

follows that X~ = Xio. 
Now we can finish the proof. Take x • ~ arbitrary. No neighborhood U 9 T(x) 

can be iterated indefinitely without being cut, or otherwise T is not of type oc. 

Therefore there exists 0 < j < r such that  flj • w(x). By Claim 3, ~(x) D ~.  
| 

Proof of  Proposition 3: Theorem 2.4 of [ST] states that T~,fl I~ is minimal when 

it is aperiodic. 

If there is a finite orbit, then there is an interval of periodic orbits. Let n be the 

period. We consider T as a mapping of the circle, thus the point 1 - / 3  is a point 

of continuity of T. Let [a, b) be a maximal interval such that T i is continuous on 
n- - I  i a [a,b) for i = 1 , 2 , . . . n  and T ~ is the identity. Let t3o := Ui=o T [ ,b); the set 

B0 consists of n-periodic points. By maximality, the points 1 - c~ and 1 must be 

right end points of two of the intervals which make up B0. Thus, it follows that  

T has no other periodic points. 

Let B := [-J~=o T - i B o  and C := I \ B. The set B is the basin of attraction of 

the periodic component A; it consists of a countable union of half open intervals. 

The set C is T-invariant. 
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Suppose that  the second statement in the proposition is not true, i.e., the set 

C is non-empty. 

The proof of this proposition is now a modification of the proof of Theorem 2.4 

of [ST]. This theorem gives a sharp upper bound on the number of minimal sets for 

an aperiodic ITM. We remind the reader of the notation. Let D := {/30,... ,/3r-1} 

and for an interval J let D(J) := {/3i E D: Tn~i ~ int (J)  for some n >_ 0}. We 

called an interval Y a m i n i m a l  i n t e r v a l  if D(J) ¢ ~ and D(J) = D(J1) for all 

subintervals J1 of J .  In the proof of Theorem 2.4 it was shown that  under the 

assumption of aperiodicity minimal intervals induce a partition of D and that  

there is no minimal interval J for which D ( J )  consists of a single/3.i. 

If  we drop the assumption of aperiodicity, then the same proof shows that  

nfinimal intervals induce a parti t ion of those/~i C D whose orbit is not periodic 

or preperiodic. Furthermore, in our case since 1 - / 3  is a point of continuity we 

can assume D := {0, 1 - a}. However, one of these two points must be the left 

endpoint of one of the intervals making up B0, thus it has a periodic orbit. Thus 

no minimal interval can exist since for every minimal interval D(J) consists of 

at least two points. | 

4. Properties of the Gauss map (Rauzy induction) 

In this section we collect some metric properties of the map G and describe the 

structure of the set A. 

PROPOSITION 15: The second iterate of the map G is uniforndy expanding out- 

side any neighborhood of the neutral fixed point (1, 1). 

Proof: The map G is infinite-to-one. Away from its singularities the Jacobian 

of G is 

D G =  ~r - 1-/3 c~ 
o~ 2 

with determinant - - a  -3 .  The eigenvalues of DG are 

Aq- de.f 1 a - -  /3 _[_ -~ 
_ _  ° 

O~ 

The point (1, 1) is the only nonexpanding fixed point of G: it is elliptic with 

eigenvalues ±1. The eigenvalue +1 does not occur at any other point in R (it 

occurs on the curve/3 = a - 1  + a - a 2 ) ,  while the eigenvalue - 1  occurs exactly on 

the intersection of the curve 3 = a2 + a - a -1 with R. Because of the influence 
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of this curve we consider the map G2((a,/3)) = (a",/3") where 

a 1 - a  
(a",/3") = ( ~  • (1 + t---~---]) + - -  

/ 3 - 1  2 / 3 - 1  

/3 ' /3 
o l o  L J) 

The Jacobian of G 2 is 

and the determinant is/3-3. Recall that k = 1 + [ ! ~ J .  The eigenvalues of DG 2 

are 
A+ de=f 1 + a(1 -- k) +/3k  ± X/(1 + a(1 - k) +/3k) 2 - 4/3 

2/3 2 

For k = 1, we get A + = 1//32 and A -  = 1//3. Note also that A -  = 1 / a  on the 

line a =/3. For the general case, the equation A- > 1 is equivalent to 

[(1 + a(1 - k) +/3k) - 2/32] 2 > (1 - a(1 - k) +/3k) 2 - 4/3, 

which follows from 1 + ~3 > /3(1 - a(1 - k) +/3k). Since/3 _< a <_ 1/k  this is 

easily checked to be true for all/3 E (0, 1). Hence G 2 is hyperbolic expanding 

outside a neighborhood of the fixed point (1, 1). | 

Proof  of  Theorem 6: Let V d=ef Uo N G-  1U o. Clearly A = An>o G-2n (V). Fix a 

small neighborhood Nz of the point (1, 1). Consider the first return map Fz to the 

set V \ N~. Consider Az ~ f  Nn>o Fz2n(u1  \ Nz). We have A = (1, 1) U (-Jz>o At 
since the elliptic point (1, 1) is weakly repelling for G. Since F 2 is uniformly 

expanding the set At has zero measure, and thus A has zero measure as well. 

It immediately follows that T~,~ is of finite type for Lebesgue a.e. (a,/3). 

However, among the finite type parameters, the (eventually) periodic ones form 

a countable union of smooth curves, so T~,~ is aperiodic for a.e. (a,/3). | 

Proof  of  Theorem 7: We can give symbolic dynamics for the set A. The sets 

Uk from Figure 2 form a Markov partition for the map GIA. If (a,/3) E OUk for 

some k, then Ta,~ is of finite type. Indeed, if (a,/3) ~ OUk is on the bottom or 

left boundary (excepting the points (0, 0) and (1, 0)) then G(a,  ~3) (L U, so the 

code of (a,/3) is not defined. On the other hand, if (a, ~) E aU is on the top or 

right boundary then G(a,/3) belongs to either the upper boundary or the right 

boundary of the triangle U and G permutes these two sets. Hence the code of 

(a,/3) will eventually have a 1 at every other position. It follows that the image 

of A under the coding map is indeed/C, and hence uncountable. 
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If (c~,/3) E AMI, Ij then G((~,/3) can be interpreted symbolically as the substitu- 

tion Xj in the following sense: Let T be the ITM and F be the first return map 

to the interval [1 - a, 1). 

• The left branch of F is identical to the middle branch of T. We denote this 

symbolically as 1 -+ 2. 

• Assuming that 1/(k + 1) < a _< 1/k we get that the middle branch of F 

involves one iterate of the third branch of T followed by k applications of 

the left branch of T: 2 -+ 31 k. 

• Still assuming that 1 / (k+1 )  < (~ <_ 1/k we get that the middle branch o f f  

involves one iterate of the third branch of T followed by k - 1 applications 

of the left branch of T: 3 -+ 31 k-1. 

Take kn = j if Gn((c~,/3)) E //j. Let An be the n-th inducing interval, and 

assume we want to code orbits of the first return map TA n according to the 

natural partition into branch domains, using symbols {1, 2, 3}. Following the 

above pattern, we see that if x E An has itinerary u for TAm, then ~:k~_, (u) is 

the itinerary of x for TA~_,. By induction, the limit 

s -- SoSlS2 . . . .  lim Xko o . . .  o :~k~ (3) 
i--+c~ 

gives the itinerary of the point 1. Recall that,  since 1 ¢ [0, 1), we defined 

T(1) -- l imx_~l-T(x).  Thus T ~ ( T ( 1 ) )  E Bj if and only if si = j. Let 

~ , ~  = {hi(S) : i >_ 0} be the corresponding shift space. Then the above cod- 

ing extends to a map h: ~ --4 ~, /3  which is continuous and one-to-one, except 

possibly at the countable set Ui T~,~({1 - (~, 1 - /3}) .  I 

Proof  o f  Proposition 8: The map GIA is coded by the full shift on a countable 

alphabet. Thus there are countably periodic codes. Since GIA is non-uniformly 

expanding (see Proposition 15), each periodic code corresponds to a single point 

and the periodic points tie dense in A. 

We turn to the self-similarity assertion. Let (hi, ~i) -- Gi( (~,/3)- Let A n : :  

[1 - lli=0n-1 hi, 1). The map G rescales the induced map to be defined on a interval 

of length 1, thus T and TA, differ only by scaling for all k E N if and only if 

(a,/3) is a G-periodic point with period n. I 

Proof  of Proposition 9: Let Ok be the set of points (a,/3) E A such that 

Gi(((~,/3)) • Uj>kl4j for all i _> 0. The set Ok is a subshift of finite type (in 

fact, the full shift on k symbols), thus it is uncountable. Clearly the set Uk Ok is 

dense in A. By Theorem 7, for (c~,/3) E Ok, T~,/3 is isomorphic to the shift space 

~ , ~ .  The substitutions Xk are primitive for all k _> 2. By assumption, (1, 1) 
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is not an accumulation point of orb(a,/3), so the substitution X~ appears only 

in blocks of bounded length, and each "block" k~ o k~, 2 < r < k, is primitive. 

Hence E~,~ is adic. Note that  it is uniquely ergodic as well, but this holds more 

generally; see Theorem 12. | 

5. D i m e n s i o n  r e s u l t s  

P r o o f  o f  T h e o r e m  10: We will compute upper bounds for the box dimension 

by finding suitable covers of ~ .  Let (ai,  ~i) = Gi(c~,/3) for i >_ 0. The map 

G i computes the parameters  of the ITM that  results from the first return map 
i - -1  

TA~ to the interval Ai :-- [1 - 7ri, 1) where 7ri := 1-[j=o a j ,  so 7to = 1. The 

map Tt,~ consists of three branches, the left branch of TA~ is defined on an 

interval of length 7ri,1 = ni(1 - a i) ,  the middle branch is defined on an interval 

of length ~i,2 = ni(ai  - ~i), while the length of the right branch is 7ri/3i. Also 

put ffi,3 = 7riO~ i. Let ki = [ ~ J .  Then the intersection of ~ and the domain of 

the left branch can be covered by k~ - 1 intervals of length 7ri~i = ni+~,3 and one 

interval of length ni(/~i - ai /~i+~) --  7~i+L2. The domain of the middle branch is 

an interval of length ~ri(ai - ~i) = ~ri+~,~ and the interval Ai+I is the union of 

an interval of length 7~i((~i - / ~ i )  = ~i+1,~ and an interval of length 7~i/~i = ~i+~,3. 

This is illustrated in Figure 4. 

"ffi+1,3 

t 
1 - ~ri 

7t'i+ 1,3 ~ 71"/+ ll.2 

7i ' i+1,1 . . 71"i+1,3 . 

f I I 
1 - ~i+1 1 - -  71"i+ 2 1 

Figure 4. Cover of [1 - ~i) A ~ with intervals 7ri+l, j for k i + l  = 3. 

The map T pushes the interval A~ and its subintervals of length ~ , j  around 

through [0, 1). The first return map to any image Tk(A~) has the same structure 

as TA~, and hence Tk (A~ )n~  is covered by the same number of intervals of length 

7~,j as Ai. Similarly, any interval of length ~i,j can be replaced by a number of 
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intervals of length 7ri+l,j,, according to the scheme: 

r~i,1 is covered by 1 x rci+L2 and (ki+l - 1) x rri+L3; 

rci,2 is covered by 1 x 7ri+l,1; 

rr<a is covered by 1 x rci+l,~ and 1 x r~.i+1,a. 

If we denote the number  of such intervals by li,j, then the computa t ion  of their 

increase can be performed using a matrix:  

(5) ~ li+,,2 = O1 0 0 | li,2 
\ Ii+1,3 ki+, - 1 0 1 \ li,3 

The upper  box dimension of ~ is bounded by 

log(li,1 + li,2 + li,3) 
dimB(fi)  _< l imsup 

i - log 7ri 

Let p = log(~2)/ log 2 = 0.84955-. . ,  where T2 is the leading root  of P2 defined 

by Equat ion  (2). One can verify that  Tk _< k p for all k _> 1. Therefore  we get for 

a rb i t rary  (a, fl) E A: 

dimB(12a,5) <_ l imsup 
i 

< lim sup 
i 

= lira sup 
i 

This proves the upper  bound.  

log(/i,1 + li,2 't- li,3) 
- log 7ri 

1 i - og(C [Ij=0 rkj) 
i 

log I l j  =0 kj 

~ j = 0  log rkj _< P. 
i 1 Ej=O Og kj 

As an example,  if (c~, fl) is the fixed point of G in Uk, k > 2, then /3 = a 2 

and a is the root  rk E (k-~l' !]k of the polynomial  Pk from (2). The  char- 

acteristic polynomial  of the matr ix  in (5) is also Pk for k = ki; recall tha t  

~k is its leading root.  Then  we find l<j = O ( ~ )  for each j ,  and therefore 

d i m s ( ~ , Z )  _< - - log(~k) / log(rk) .  For k -- 3 this bound equals 0 .6635 . . .  and 

in [BK] (due to self-similarity) it is shown tha t  if ki - 3, it is exact  and equal 

to the Hausdorff  dimension. The same can be shown if ki - k is constant .  

If k is taken very large, then Tk ~ V~ + ½, while a = rk ~-, 1/k.  Therefore 
1 !2 - < dimB(12a,~) --< 5 + e for sufficiently large k. This is in agreement  with the 

lower bound given in [Bol]. 
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Now to prove that dimH (~a,~) = 0 for some values of ((~,/~) we argue as follows: 

Let, as before, ~ri be the length of the domain of the i-th first return map TAb. 

We can cover ~ with Ni := li,1 + li,2 + li,s intervals of length _< 7ri. Given Ni and 

~i, choose ai and/~i (thus determining/~i+1) so that 

(6) N i l  1 + 1J (~i,5'i) 1/i + Nil~J(~iai l~i+l)  1/i < 1. 

This can be achieved as follows: write ai = 1/ki  - c  and /3i = k i t  + ¢' for 

0 < ¢' << ~ << (ki) -2 and 0 < ~' < ai - ki¢. Then (6) follows from 

1/i 1 
NiTr~/i(ki + a)lfl/ ic 1/i ~- gi7ri+l~ic (s')l/i < 1, 

which is easily satisfied for (~, ~)  taken in an appropriate region near (0, 0). 

By the above reasoning, the domain of the left branch of TAi can be covered 

by [~-~J intervals of length ~ri/3i. The domain of the middle branch of TAb is the 

domain of the left branch of TA~+I and can therefore be covered by 1 L~J =/,~J 
intervals of length ~r~a#3i+l. Finally, the domain of the right branch of Ts~ is 

a single interval of length ~i~i. Putt ing these things together, we derive that  

is covered by Ni [--1~ + lJ intervals of length ~'i/~ and N~ [ Z~-~] intervals of length 

7r~(~i/~i+~. Due to the choice (6), the corresponding "critical exponent" of this 

cover is < 1/i .  If (a,/~) is such that indeed (6) holds for infinitely many i, then 

d i m n ( ~ , ~ )  = d i m s ( ~ , ~ )  = 0. 
In particular, if (c~i,/~i) is a sequence which alternates values satisfying (6) 

with long blocks of ki := [1/c~ d ~ 3, say, then we will find that the upper 

box dimension dimB(~o,Z) = 0.6635-.- is larger than the Hausdorff dimension 

dim~(~a,~) = 0. This concludes the proof. | 

6. I n v a r i a n t  m e a s u r e s  

In this section we prove Theorems 2, 11 and 12 as well as some related results. 

Throughout the section, T~,~ is assumed to be of type infinity, with corresponding 

sequence (ki). Let us start with some notation. Let s = 80818283... be the fixed 

point of )~ko o );kl o . . . .  For a E {1, 2, 3}, write 

freq(Ta,~) = ~ CHn>_N,k>I l ~ { k  <_ i < k + n;s i  = a } ,  
a N_) I  

where CH denotes the convex hull over all k > 1 and n > N. Without the sub- 

script a, freq(T~,~) is the vector with three components. We say that freq(T~,~) 
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exis ts  if each component is a single point, which then satisfies freql(Ta,~ ) + 

freq2(To,f~ ) + freq3(T~,~ ) = 1. 

LEMMA 16: If  (a,/~) ¢ (5, ~), then freq(T~,z) n freq(T6,~) = 0. 

In other words, the frequency vector freq uniquely determines the parameter 
(~,/3). 

Proof." Each substitution "(k has an associated matrix Ak whose characteristic 

polynomial is Pk as in (2). Define the simplex 

s = { ( / , y ,  : )  • R 3 : 0  < x , y , z , x  + y + : = 1}; 

the coordinates x, y, z will play the role of freql(Ta,z ), freq2(T~,~ ), freq3(T~,~ ). 

The matrix Ak gives rise to a mapping Fk on S given by 

1 
F k ( x , y , z ) =  k ( y +  z) + x + y ( k ( y +  z) - z , x , y +  z).  

Pass to new coordinates ~ -- x + y and ~] -- y + z. Since x ÷ y ÷ z -- 1 on S, this 

gives a new map ( , 1 )  
T'k(~,rl) = 1 k r l+~ ,  kTl+~ , 

defined on  the triangle S = {((, rl) : (, ~ <_ 1, 1 < ( + ~}. The map Fk preserves 

lines, and the images Fk(S) are triangles Vk with corners (1, 1), (k-x, ! )  and 
k k 

(_k 1_) These triangles have disjoint interiors and tile the triangle S. On 
k + l  ~ k + l  " 

1)k, there is one inverse map 

(7) k (~, ~J) = (1 + k(~ - 1), 1 - ~). 

The map Fk has derivative 

eigenvalues 
1 

A+ = (k - ~ + x/(k + ~)2 + 4¢), 
2(ky + 

and determinant - 1 / ( k ~  + ~)3. This determinant is less than or equal to 1 in 

absolute value. Write 

Zi,j = Fkj o Fkj+l o . . .  o Fki (S)  and Zj = lim Zi,j. 
i--~ o¢ 
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Since -Fk preserves lines but  contracts  a r e a ,  Zi,j is convex, while Zj is a point  or 

a straight arc. 

Since (a,/3) ¢ (&,/3) and G 2 is (non-uniformly) expanding (see Proposi t ion 15), 

(ki) and (ki) are not the same. Therefore Zi,o(T~,~) and Zi,o(T~,~) are not the 

same for some i. If they are disjoint, then also Zo(T~,z) ¢ Zo(T~,3). Trans- 

forming back to the coordinates x, y, z, we obtain tha t  the frequency vectors 

freq(T~,z) ¢ freq(T~,~). 

If Zi,o(Ta,z) and Zi,o(Ta,~) meet in their boundaries for all i > 1, then kj = 

]¢j = 1 for all i > io. Note tha t  -F1, under iteration, contracts  the triangle 

to the left upper  corner (0, 1). Therefore Zio(Ta,z) = Zio(Ta,3) = (0, 1). Since 

ki ¢ ]¢i for some i < i0, we get tha t  Zo(T~,~) ¢ Z0(Ta,/~ ) after all. | 

LEMMA 17: Let T~,~ be of infinite type. Then Zo(Tc~,Z) is a single point if and 
only if Ta,z is uniquely ergodie. 

It is clear tha t  ffeq(T~,~) exists if and only if Zo(T~,z) is a single point. 

Moreover, Zo(T~,z) is a single point  if and only if Zi(T~,z) is a single point 

for some i k 0. 

Proof." By Theorem 7, (f~,T~,~) is isomorphic to a shift space E~,~ via 

an "isomorphism" which is one-to-one except on the countable set 
- i  1 [-Ji T~,Z({ - a,  1 - / 3 } ) .  This set supports  no invariant probabil i ty measure. 

So it suffices to determine when (Ea,~, a)  is uniquely ergodic. 

First  assume tha t  Z0 is a singleton. Let  ~ > 0 be arb i t rary  and C = co'"CM 
be any word. Each t E Ea,~ is a concatenat ion of words of the form W(i) = 
~ko o . - .  o XkN (i), for i E {1, 2, 3} and some fixed N.  More precisely, 

t ----- WW(i l )W(i2)W(i3) '"  

where W is a suffix (possibly empty)  of W(io). Let  us say tha t  an occurrence 

of C in t N - o v e r l a p s  if t[k,k+M ] -= C and k < ]WW(i l ) . . .  W(ir)l < k + M for 

some r. By taking N sufficiently large, we can assume tha t  

l imsup 1 # { i ;  C = t[ih+M] and N-overlaps} <_ ~, 
n ?-t 

uniformly over all t E E~,~. Therefore 

lim 1 # { 0  _< i < n : C = t[i#+Ml and does not N-overlap} 
n n 

differs from v(C, t) := lima 1 # { 0  < i < n; C = t[i,i+M]} by no more than  ~. 
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Since Zo(T,~,~) is a singleton, there exists freq E S, such that for each e' > 0 

there is M > N such that for each word V(b) = X.kN+I o . . .  o ~kM (b), 

[#{0  < j <_ [V(b)i; V(b)j = a} ~, 
IV(b)] - freq~ < ~,  

for a, b = 1, 2, 3. For each a E {1, 2, 3}, let Ca be the number of occurrences of C 

in the word W(a). Then 

3 f ~ a = ,  Ca- ( req a +O(¢ )) 
v ( c , t )  = . . . .  + o ( c ) .  

E =s IW(a)l(fre% +O(¢ )) 
Since ~ and c ~ are arbitrary, we see that v(C, t) is independent of the string t. 

Thus unique ergodicity follows. 

Conversely, if Zo(T~,~) is not a single point, it has diameter diamZ0 := ~ > O. 

It follows that  diamZi,o(T~,~) >_ 5 for every i E N. The extremal points of Zi,0 

are the images under Fko ° "'" o/}kl of the corners of S. For simplicity, we can 

assume that the vertical height of Zi,o >_ 5/2. Recall that the variables x, y and z 

give the frequencies of the symbols 1, 2 and 3 in words of E~,~, and that x = 1 -  ~. 

There exists a, b E {1, 2, 3} such that for infinitely many j ,  we find that  the 

frequencies of the symbol 1: 

1 
(a)l#{symbols 1 in Xko o ~ k l  o . - .  Xki(a)} Ix o O O . o . O  Xa~ 

and 
1 

differ by at least 5/2. Hence E~,Z is not uniquely ergodic. 

#{symbols b in Xko o ~ k  1 o . . .  ~ki(b)} 

Proof of Theorem 11: According to Lemma 17 we need to show that com- 

positions Fko o /~k, o . . .  do not contract the simplex S to a single point. The 

composition of two snaps F has the form 

( ) - 1 ~' k I F2(~ ,~ )=Fk ' °Fk(~ ,~] )=  1 - k , + ( k - 1 ) y +  + ( k - - - ~ r ] + ~  " 

The snap Fk2,-1 o Fk2~ acts on the second component as 

hi: ~-+ 
k2i-1 T (k2i - 1)~ T ~" 

We will show limj_~oo ht o h2 o . . .  o hj([0,  1]) is a non-degenerate interval. 



144 H. BRUIN AND S. TROUBETZKOY Isr. J. Math. 

Let  r = 1 / ( A - l )  and r '  = 1 - 1 / A .  Take io so large tha t  ki >_ Aki-1 for all i >_ io 

as well as r < vlk2io_2 . Obviously, hi is an increasing MSbius t ransformat ion on 

[0, 1]. Assume tha t  2i _> io + 2. Then  

T t hi(r') >_ T ' k 2 i  > - -  - -  T ' .  

k2i /A + r '(k~i  - 1) + 1 - 1/A + r '  

It follows tha t  hi([r ' ,  1]) C ( r ' ,  1), and hence 

lira hio o hio+l o . . .  o hi( l )  E r'. 
j-+oc 

On the other  hand, if y <_ r / k2 i ,  then 

I + T  l + r  V 
h ~ ( , ~ )  < < - -  - 

k 2 i - 1  - Ak2i-2 k2i-2" 

By induction we find l imj_.~ hio o hio+l o . - - o  hj (0) < r /k2 io-~ .  Therefore 

[p,q] :-- lim hi oh2 o ' " o  hi([0,1]) 
j--40¢ 

= h i  o h2 o . . . o  h/o_1( .lim hio o hio+, o . . . o  hi([0, 1])) 

]) Dhl  o h2 o . . . o hio_l  - - ,  r ~ . 
k2io-2 

In part icular,  p < q. Lemma 17 implies tha t  E~,~ and therefore T~,~ are not 

uniquely ergodic. | 

P r o o f  o f  T h e o r e m  12: According to Lemma 17, we need to show tha t  Zo (or 

equivalently ZI)  is a single point. The  first component  of t72 (~, y) contracts  the 

interval to a single point  because the derivative with respect to ~ is < 1 with 

equali ty only if k = k t = 1 and ~ = 0. Hence Zo has "width" 0. For the "height",  

we need the second component  of ~2(~, y), for which we will use the maps hi 

from the proof  of Theorem 11. The  composit ions Hi = hi  o . . .  o hi are M5bius 

t ransformations represented by the matrix-mult ipl icat ions 

B i =  b ~'1 b ~'2 
2,1 2,2 

= k 2 - 1  k l + ~ l  " " \ k 2 i - 1  k 2 / - l + ~ i  ' 

where the ~i E [0, 1]. Since 

Hi([0, 1]) C [Hi(0), lim ///(71)] i i i i = [bl,2/b2, 2, bl,1/b2,1], 
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it suffices to show tha t  B i contracts  the cone C := (R>o) 2 to a one-dimensional  

subcone as i --+ ec. In order to do this, we use the Hilbert metric on C: Given 

v, w E C, define 
( i n f ( ~ ; , v  - w e e }  

O(v,  w) = log \sup{A; w - Ave  C}/" 

In fact, O is a semi-metr ic ,  because O(v,w) = 0 if and only if v is a mul- 

tiple o f w .  Let T : C --+ C be a linear map.  I t  is shown in, e.g., [B] tha t  

O(T(v), T(w)) <_ t a n h ( D / 4 ) O ( v ,  w) for D = supv,.w,eT(O O(v', w'). In  par t icu-  

lar, T is a contract ion if T maps  OC \ {0} into the interior of  C. 

In  our sett ing,  the t ransformat ions  T are represented by matr ices  of the form 

and we can easily check tha t  D is assumed by taking v ~ = (1, O) T and w ~ = (0, 1) T, 

SO 
k(k'  + ~) 

D - l o g  ~ - N .  

Hence the contract ion factor  is 

. ~  _ . ~  tanh(~)_V(~-": v ~(~'+:) 

V (k-I):  V k(k'+:) 

_ v ~ k '  + : )  - v ~  - 1 ) :  

V / ~  + : )  + ~ - I): 
=1 - 2 v/k(k - 1)(k '  + : ) :  - (k - 1 ) : / 2  

kk ~ + : 

t , the first componen t  The  variable ~ is the result  of i terat ing h: : ~-~ 1 k'+:+(k-1)~ 

x unless k = U = k'  of ~2.  The  image h( : )  >_ : = 1. I f  k = 1, then  : = 0 is an 

indifferent a t t r ac t ing  fixed point,  and h a ( l )  = 1/(n + 1). Therefore,  in the above 

calculation,  we can es t imate  : _> 1/L2i. Hence, the height of Zo is less than  

k2i -_ 1 ~/ 1 

The  assumpt ion  on (ki) gives tha t  Zo is indeed a single point.  This  finishes the 

proof  of  the theorem with condit ion (3). 
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For condition (4), as in the proof of the part with condition (3), the width of 

the Z1 is 0. The compositions of Mhbius transformations Hi = hi o h2 o . . .  o hi 

satisfy 
i 

IH/([0, 1])[ = ~/H'(0) .  HI(l)  G H~(0) _< 1-I ha(0)' 
j--=l 

where the last inequality follows because each hi is increasing with decreasing 

derivative. We compute 

k2j  k 2 j -  1 ~- 
: (kv-  + (k j - + 

and therefore ha(0 ) < k2 j / ( k2 j -1  + 1/L2j) .  It follows that 

diamZ1 < limHi([0, 1]) < li~n 1-I k2j = O. 
-- J l<j<_i k 2 j - 1  -k 

Lemma 17 yields unique ergodicity. | 

Proof of Corollary 13: Note that the coding map (c~, fl) ~-+ k E tC is continuous 

on A. Hence it suffices to consider the space/C. For any cylinder 

Cel...en = {k  6 IC I ki -- ei, i -- 1 , . . . ,  n}, 

let U m = {k 6 IC[ ki = ei, i = 1, n, kn+i = 2, i = 1, ,m}. Clearly 
e I .-.e n • . ., • .. 

Lira = e n  Uel...e~ Um is open and dense in/C. Moreover, for each k 6 g m e l  " " e n  e l  " " e n  

we have 
k2i - 1 ~/  1 m - 2 

E -k~ V k 2 i - l L 2 i  >- 4----~" i 

Therefore Nm um is a dense Ge set of sequence k satisfying condition (3). This 

proves the corollary. | 

Proo f  o f  Corollary 14: The maximum of two ergodic measures corresponds to 

at most two extremal points of the sets Zo in the proof of Lemma 16; see [K]. 

This also follows immediately from the result of Buzzi and Hubert, [BH]. | 

The next result gives a candidate (modulo finiteness) of an invariant measure. 

Proo f  of  Theorem 2: Let ~ be a cover of f~ by the intervals forming ~t~ satisfying 

J • ~ # 0. The map T induces a multivalued map ¢ of the J 's  by ¢ ( J )  = J '  if 

T ( J )  ~ J '  # 0. Thus ~/, has one value at J if T I j  is continuous, otherwise it has 
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two values provided n is sufficiently large. As a result, at most r of the J ' s  can 

have more than one ¢-preimage, where r is the number of discontinuity points. 

Take c > 0 so small that any two J, jr  C 12 are at least c apart. Let U de f {Ui} 
be an open cover of ft with the diameters of the Ui all less than c. Suppose J is an 

interval such that ~b(J) has exactly one preimage. If the subcover of U covering J 

gives a good approximation of Hd(J),  i.e., ~u~ng¢¢ diam(Ui) d ~ Hd(J),  then the 

translated subcover {T(Ui)}u, nJ¢O satisfies ~-~-u~nJ¢0 diam(T(Ui)) d ~ Hd(T(J) ) .  

Since there are only finitely many intervals J such that ~p(J) has more than one 

preimage, the union of these intervals is negligible as the n --+ oc (and hence 

E ~ 0). So when minimizing over all a-covers L/, we can restrict ourselves to 

T-invariant ~-covers and find that Hausdorff measure is T-invariant. | 
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