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Abstract—A Gaussian noise (GN) model, precisely accounting
for an arbitrary frequency dependent signal power profile along
the link, is presented. This allows accurate evaluation of the im-
pact of inter-channel stimulated Raman scattering (ISRS) on the
optical Kerr nonlinearity. Additionally, the frequency dependent
fiber attenuation can be taken into account and transmission sys-
tems that use hybrid amplification schemes can be modeled, where
distributed Raman amplification is partly applied over the opti-
cal spectrum. For the latter two cases, a set of coupled ordinary
differential equations must be numerically solved to obtain the
signal power profile yielding a semianalytical model. However for
lumped amplification and negligible variation in fiber attenuation,
a less complex and fully analytical model is presented denoted as
the analytical ISRS GN model. The derived model is exact to first-
order for Gaussian modulated signals and extensively validated
by numerical split-step simulations. A maximum deviation of only
0.1 dB in nonlinear interference power between simulations and
the ISRS GN model is reported. The model is applied to a trans-
mission system that occupies the entire C + L band (10 THz optical
bandwidth). At optimum launch power, changes of up to 2 dB in
nonlinear interference power due to ISRS are reported. The ISRS
GN model is quantitatively compared with other models published
in the literature and found to be significantly more accurate.

Index Terms—C + L band transmission, first-order pertur-
bation, gaussian noise model, nonlinear interference, nonlinear
distortion, optical fiber communications, stimulated raman
scattering.

I. INTRODUCTION

ANALYTICAL models that predict the performance degra-
dation in optical fiber communications due to Kerr non-

linearity have become widespread in recent years. Most ap-
proaches analytically solve the nonlinear Schrödinger equation
using a first-order perturbation approach with respect to the
nonlinearity coefficient. The resulting expressions offer unique
insight into the underlying parameter dependencies and are key
enablers of efficient system design [1], rapid achievable rate esti-
mations of point-to-point links [2]–[4] and physical layer aware
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network optimization. The latter is essential for optical network
abstraction and virtualization leading to optimal and intelligent
techniques to maximize optical network capacity [5]. Analyti-
cal models also offer a significant reduction in computational
complexity with minor inaccuracies compared to split-step sim-
ulations and experiments [6]–[11].

The literature offers a wide range of analytical models varying
in accuracy and complexity [12]–[23]. The first approaches in
the context of modern coherent receivers and dispersion uncom-
pensated links date back to 1993 and 2002 [12], [13], enabling
the computation of the perturbation caused by Kerr nonlinearity.
Similar results were independently derived by other groups and
the model became widely known as the Gaussian noise (GN)
model [14]–[16], [22], [24]. A key assumption of the works
is the signal Gaussianity assumption, which is that the signal
can be written as a Gaussian process at the fiber input. As a
result of this assumption, the GN model relies on large accumu-
lated dispersion [20, Section 6] and signals with high cardinality
[19, Section 4], two conditions that are satisfied in most cases
of modern coherent fiber communication.

The popularity of the GN model is undoubtledly due to its
relative simplicity. However, as a result, it fails to predict certain
properties of nonlinear interference (NLI) such as modulation
format dependence [17]–[19], symbol rate dependence [25]–
[29], nonlinear phase noise [19], [30], long temporal correlations
[18], [19] and the dependence on the memory length of the fiber-
optic channel [31]. In order to account for those properties,
significantly more complex models have been proposed [17]–
[21]. Comprehensive overviews can be found in [32], [33].

The impact of these, unaccounted for, properties is usually
small for lumped, dispersion unmanaged, multi-span systems
that use high-order modulation formats and the GN model can
be considered sufficiently accurate. Additionally, modern opti-
cal transmission systems make use of probabilistically shaped
constellations which increases the prediction accuracy [34]. Re-
cently, the conventional GN model was experimentally validated
for the central channel and optical bandwidths of up to 7.3 THz
with a deviation of only 0.4 dB in nonlinear interference power
[6], [35].

An assumption of all above-mentioned works is that every
frequency component experiences the same power evolution
along the link. They are, therefore, inaccurate in the prediction
of ultra-wideband transmission systems where the variation of
the fiber attenuation is not negligible and for bandwidths where
inter-channel stimulated Raman scattering (ISRS) is significant.
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Inter-channel stimulated Raman scattering is a non-
parametric nonlinear process that amplifies low frequency com-
ponents at the expensive of high frequency components within
the same optical signal. In modern optical communications
that use coherent technology in combination with dispersion-
uncompensated fiber links, ISRS effectively introduces a differ-
ent power profile for each frequency component [36]–[38]. For
C band transmission (approximately 5 THz), as defined from the
availability of the erbium doped fiber amplifier (EDFA), ISRS
is not significant and its impact is negligible in most cases.
However, for systems that occupy the entire C + L band (ap-
proximately 10 THz) or beyond, ISRS becomes significant and
it must be taken into account. Beyond C + L band transmis-
sion could be enabled by lumped Raman amplification or the
use of other dopants such as bismuth [39] or quantum dots in
semiconductor amplifiers [40] [41].

The first approach to include ISRS in the GN model was pub-
lished in [42]. The authors approximated the signal power profile
with an exponential decay using an effective attenuation coef-
ficient that matches the (frequency dependent) effective length
in the presence of ISRS. Although enabling initial conclusions
on the impact of ISRS, there are two shortcommings of this
approach. First, when ISRS is significant, the resulting signal
power profile does not resemble an exponential decay, particu-
larly in the beginning of the fiber span, where Kerr nonlinearity
prevails. Second, the work assumes that, during the four-wave
mixing (FWM) process, every participating frequency compo-
nent attenuates in the same manner as the channel of interest. In
other words, for the induced nonlinear perturbation at frequency
f , every frequency component in the triplet ( f, f1, f2) attenu-
ates as f during the nonlinear mixing. Therefore, this approach
overestimates the impact of ISRS on the Kerr nonlinearity and
ISRS is not accurately taken into account.

A more rigorous approach to include ISRS in the GN model
was published in [43]–[45]. In all three works, the channel under
test (i.e., frequency component f ) attenuates precisely accord-
ing to the signal power profile g ( f ) resulting from ISRS (or
any arbitrary profile), lifting the exponential decay assumption
in [42]. However, for an attenuation profile that is linear in fre-
quency (like the one resulting from ISRS), the frequencies in the
triplet ( f, f1, f2) also attenuate according to f during the FWM
process. Therefore, this approach overestimates the impact of
ISRS on the Kerr nonlinearity and the frequency dependent
signal power profile is not accurately taken into account.

In this paper, a Gaussian noise model, accounting for any ar-
bitrary frequency dependent signal power profile, is described.
This enables the modeling of nonlinear interference in ultra-
wideband regimes where ISRS is significant. The model is ref-
ered to as the ISRS GN model throughout this paper. Addition-
ally, the variation in fiber attenuation and hybrid amplification
schemes can be included. In general, the signal power profile is
obtained by numerically solving a set of coupled ordinary dif-
ferential equations (ODE). This yields a semi-analytical ISRS
GN model which relies on a numerical ODE solver.

However, for lumped amplification and negligible variation in
fiber attenuation, a fully analytically model is derived based on
a linear approximation on the ISRS gain function. This reduces

model as well as computational complexity. The analytical ISRS
GN model holds for bandwidths up to approximately 14 THz
after which the Raman gain function cannot be considered linear
anymore.

This paper is organized as follows. In Section II, the ISRS GN
model is presented and its key derivation steps are briefly out-
lined. The detailed derivation can be found in the Appendix A.
The model is extensively validated by split-step simulations in
Section III and applied to a C + L band transmission system
based on standard single mode fiber (SMF) spans in Section IV.
In Sections III and IV, the results in [42]–[45] are benchmarked
against the ISRS GN model.

II. THE ISRS GN MODEL

In order to maximize the information throughput of an opti-
cal communication system, it is vital to evaluate and maximize
the performance of each individual channel that is transmitted.
After coherent detection and electronic dispersion compensa-
tion, the channel dependent signal-to-noise ratio (SNR) can be
calculated as

SNRi ≈ Pi

PASE + ηn P3
i

, (1)

where Pi is the launch power of channel i , PASE is the accu-
mulated amplified spontaneous emission (ASE) noise power at
the receiver and ηn is the nonlinear interference coefficient af-
ter n spans. The SNR is a function of the spectral location of
the channel within the optical signal as PASE and ηn are fre-
quency dependent quantities. When the channel bandwidth Bch

is small compared to the total optical bandwidth B and the
spectral gaps between adjacent channels are sufficiently small,
the power spectral density (PSD) of the NLI can be considered
locally flat and ηn can be approximated as

ηn ( fi ) =
∫ Bch

2

− Bch
2

G (ν + fi )

P3
i

dν ≈ Bch

P3
i

G ( fi ) , (2)

where fi is the center frequency of channel i and G ( f ) is the
PSD of the nonlinear interference. For later use, we further
define the total optical launch power as

Ptot =
∫

GTx(ν)dν =
∑
∀i

Pi , (3)

where GTx is the input PSD of the entire optical signal. The
aim of the next sections is to find an analytical expression for
the nonlinear interference PSD G ( f ), in order to compute the
channel dependent SNR or similar performance metrics.

A. The Nonlinear Interference Power

Various models have been proposed in the past in order to
calculate the NLI power, where it is generally assumed that all
frequency components attenuate in the same manner along a
fiber span [12]–[24]. However, this assumption is no longer sat-
isfied when transmission systems operate at large optical band-
widths (C + L band and beyond). This is because each frequency
component undergoes a different power evolution during propa-
gation as a result of ISRS and a frequency dependent attenuation
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coefficient. In addition, frequency dependent signal power pro-
files are present in hybrid amplification schemes, where part of
the spectrum is amplified using distributed Raman amplifiers in
order to reduce the ASE noise power for longer wavelengths or
to extend the amplification window beyond conventional EDFAs
[46]–[48].

For a frequency dependent power evolution, the PSD of the
NLI after one span is derived in Appendix A and it is found
to be

G( f ) = 16

27
γ 2

∫
d f1

∫
d f2 GTx( f1)GTx( f2)GTx( f1 + f2− f )

·
∣∣∣∣∣
∫ L

0
dζ

√
ρ(ζ, f1)ρ(ζ, f2)ρ(ζ, f1 + f2 − f )

ρ(ζ, f )
e jφ( f1, f2, f,ζ )

∣∣∣∣∣
2

,

(4)

where φ = −4π2( f1 − f )( f2 − f ) [β2 + πβ3( f1 + f2)] ζ , β2

is the group velocity dispersion (GVD) parameter, β3 is the
linear slope of the GVD parameter, γ is the nonlinearity coef-
ficient and ρ(z, f ) is the normalized signal power profile. For
example, the normalized signal power profile of a passive fiber
with constant attenuation coefficient α is ρ(z, f ) = e−αz . For
multi-span systems, where each span has identical fiber param-
eters and signal power profiles, the phased-array term

χ ( f1, f2, f ) =
∣∣∣∣∣
sin

[
1
2 nφ ( f1, f2, f, L)

]
sin

[
1
2φ ( f1, f2, f, L)

]
∣∣∣∣∣
2

(5)

must be inserted into the integral in (4). For multi-span sys-
tems with non-identical signal power profiles for each span
(e.g., when non-ideal gain flattening filters are considered), the
phased-array term cannot be used. This is particularly impor-
tant for hybrid amplification schemes where multiple pumps are
used which are usually optimized to deliver uniform gains across
the optical spectrum [49]. In order to account for non-identical
multi-span systems, (4) must be used, where L must be reinter-
preted as the link length and ρ(z, f ) as the signal power profile
for the entire link. For simplicity, identical spans are considered
for the remainder of this work.

We note that (4) is different than the result derived in [43,
Eq. (16)], [44, Eq. (18)] and [45, Eq. (1)], where ρ(ζ, f1 +
f2 − f ) and ρ(ζ, f ) are swapped.1 However, in Section III, it is
shown by split-step simulations that (4) is the correct formula.

Eq. (4) can be used to model any arbitrary frequency depen-
dent signal power profile and it is therefore suitable to evaluate
the impact of ISRS on the optical Kerr nonlinearity.

1As a consequence of the different result, the f1 and f2 dependence vanishes,
for power profiles of the form ρ(z, f ) = ea(z)· f +b(z) (as the one resulting from
ISRS). This means that in the nonlinear process all three frequencies in the
triplet ( f , f1, f2) attenuate according to frequency f which overestimates the
impact of ISRS. In contrast, in (4) each frequency ( f1, f2, f ) correctly attenuates
with ist respective power profile.

During the peer-review process of this manuscript, two papers have appeared,
namely an update of [44] and [50] as well as an erratum [51]. The update of
[44] was a direct response to the arXiv e-print version of this manuscript [52],
correcting [44, Eq. (1)] with the correct expression (4), first published in [52].
Erratum [51] corrected the same error in [43, Eq. (16)] and was also submitted
following the publication of [52].

B. Inter-channel Stimulated Raman Scattering

In the following, the PSD of the NLI in the presence of
ISRS is presented, which is hereafter referred to as the ISRS
GN model. Inter-channel stimulated Raman scattering can be
separated into two effects, namely an average ISRS gain com-
ponent and a time dependent cross talk component. This time
dependent cross talk is responsible for gain fluctuations and
relative-intensity-noise (RIN) transfer like effects, which are
commonly found in distributed Raman amplifiers. In the con-
text of ISRS and high dispersive links, the gain fluctuations are
significantly reduced and can be typically neglected as they are
averaged between many independently modulated channels as
theoretically shown in [36]–[38]. Recently, the negligibility of
the time dependent cross talk has been experimentally demon-
strated [53], [54]. Similar observations have been made in the
context of distributed Raman amplification [55].

The resulting (average) frequency dependent signal power
profile can be obtained by solving a set of coupled ordinary
differential equations [56, Eq. (3)]

∂ Pi

∂z
=

−
M∑

k=i+1

fk

fi
gr( f )Pk Pi

︸ ︷︷ ︸
ISRSloss

+
i−1∑
k=1

gr( f )Pk Pi

︸ ︷︷ ︸
ISRSgain

−α ( fi ) Pi , (6)

where M is the total number of WDM channels, gr ( f ) is
the polarization averaged, normalized (by the effective core
area Aeff) Raman gain spectrum for a frequency separation
 f = | fi − fk | and α ( f ) is the frequency dependent attenua-
tion coefficient. The index of the channel with the highest center
frequency is i = 1. (6) can be extended to include distributed
Raman amplification using [57, Eq. 1]. (6) has no general an-
alytical solution and must be solved numerically. The obtained
power profile can then (after normalization) be inserted in (4)
to yield a semi-analytical ISRS GN model that accurately ac-
counts for ISRS, a frequency dependent attenuation coefficient
and distributed Raman amplification.

The variation of the attenuation coefficient typically does not
exceed 0.01 dB/km across the C + L band ranging from 1530 nm
to 1625 nm and might be negligible depending on accuracy
and computational complexity requirements [58]. The impact
of a frequency dependent attenuation on the NLI coefficient can
be loosely upper bounded by assuming that every frequency
component attenuates according to the minimum in one case
and according to the maximum attenuation coefficient in an-
other case. The resulting maximum deviation in NLI coefficient
is then

η1 [dB] <

(
αmin

αmax

)
[dB] , (7)

where (·) [dB] means conversion to decibel and αmin and
αmax is the minimum and maximum attenuation coeffi-
cient, respectively. In (7) it was assumed that e−αL � 1,
ln

(
π2 B2|β2|/αmin

) ≈ ln
[
π2 B2|β2|/αmax

]
and [59, Eq. 5] was
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Fig. 1. The gain over 100 km transmission due to ISRS as a function of
channel frequency obtained by solving the set of coupled differential equations
(6) shown in dotted lines and its analytical triangle approximation (8) shown in
solid lines for a variety of total optical launch powers Ptot. The power difference
of the outer channels after transmission is denoted as ρ (L).

used. For an attenuation deviation of 0.01 dB/km over 95 nm,
(7) yields a maximum deviation of only η1 [dB] < 0.2 dB.

This contribution may be deemed negligible and the prevail-
ing effect that causes a frequency dependent signal power profile
is inter-channel stimulated Raman scattering.

Eq. (6) can then be solved analytically when the Raman gain
spectrum is assumed to be linear up to approximately 14 THz
(i.e., up to the Stokes shift). The normalized signal power profile
for a spectral component f is then given by [60, Eq. (7)]

ρ(z, f ) = Ptote−αz−PtotCr Leff f∫
GTx(ν)e−PtotCr Leffνdν

, (8)

where Cr is the slope of a linear regression of the normalized
Raman gain spectrum gr ( f ) and Leff = 1−exp(−αz)

α
. The z de-

pendence in Leff is suppressed for notational convenience. The
linear approximation of the Raman gain spectrum is often re-
ferred to as triangular approximation.

The ISRS gain of a 10 THz signal after 100 km propagation,
obtained by numerically solving (6) using the Raman gain spec-
trum as in [61] and its analytical approximation (8) are shown
in Fig. 1. The precise functions that have been used can be
found in [42, Fig. 1]. For a relatively high optical launch power
of 28 dBm, the average deviation between the numerical solu-
tion and its approximation is 0.18 dB which can be considered
negligible. Therefore, the analytical solution (8) is sufficiently
accurate for modeling the nonlinear interference power.

Substituting (8) in (4) yields the reference formula of the
analytical ISRS GN model as

G( f ) = 16

27
γ 2

∫
d f1

∫
d f2 GTx( f1)GTx( f2)GTx( f1 + f2− f )

·
∣∣∣∣
∫ L

0
dζ

Ptote−αζ−PtotCr Leff( f1+ f2− f )∫
GTx(ν)e−PtotCr Leffνdν

e jφ( f1, f2, f,ζ )

∣∣∣∣
2

.

(9)

TABLE I
SYSTEM PARAMETERS

Eq. (9) is a key result of this work which is extensively validated
in Section III and further applied to a C + L band case study
in Section IV. It should be noted that (9) is valid for arbitrary
WDM spectra and is not restricted to the case of continuous
input PSDs.

It is useful to analyze (8) in more detail. After trivial algebraic
manipulations, we obtain that the power transfer between the
outer channels can be computed as [60, Eq. (8)]

ρ (z) [dB] = 4.3 · PtotCrLeff B, (10)

which is independent of the spectral distribution of the input
power.

For modern fiber parameters Leff = 26 km, Cr = 0.008
1/W/km/THz (approximately corresponding to a Corning R©

Vascade R© EX2000 fiber with Aeff = 111 μm) and a launch
power of 2 dBm per 40 GBd channel, which maximizes the
SNR of the central channel as in [6], an ISRS power transfer of
ρ = 1 dB is present at a bandwidth of 5.3 THz and ρ > 4 dB
for bandwidths larger than 10.6 THz.

III. NUMERICAL VALIDATION

In this section, the analytical ISRS GN model (9) is validated
by split-step simulations for an optical fiber communication sys-
tem with parameters listed in Table I(a). Numerically solving
the Manakov equation for the entire C + L band (approxi-
mately 10 THz) is extremely challenging, due to high memory
requirements and the excessive use of very large fast Fourier
transforms.

Therefore, the validation was carried out over bandwidth,
B = 1 THz with an artificially increased Raman gain slope Cr.
Varying the Raman gain slope was necessary to yield signifi-
cant power transfer over 1 THz. The considered power transfer
values ranged from ρ (L) = 0 dB to ρ (L) = 8.2 dB corre-
sponding to the ISRS gain shown in Fig. 1. The power transfer
(8) was integrated into the split-step simulations by introducing
a frequency dependent power profile at each simulation step.
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The transmitted symbols were drawn from a circular-
symmetric, complex Gaussian distribution in order to emulate
the signal Gaussianity assumption of the GN model. Addition-
ally, a small channel bandwidth was chosen such that B � Bch.
The receiver consisted of digital dispersion compensation, ideal
root-raised-cosine (RCC) matched filtering and constellation ro-
tation. The SNR was ideally estimated as the ratio between the
variance of the transmitted symbols E[|X |2] and the variance
of the noise σ 2, where σ 2 = E[|X − Y |2] and Y represents the
received symbols after digital signal processing. The nonlin-
ear interference coefficient was then estimated via (1) and was
compared with the predictions of the ISRS GN model via (2)
and (9).

Ideal, noiseless amplifiers were considered to ease the NLI
computation and the launch power was fixed to −1 dBm per
channel. Additionally, a spectrally uniform launch power was
assumed yielding

GTx( f ) = Ptot

B
�

(
f

B

)
, (11)

for the model calculations, where � (x) denotes the rectangular
function. A step size of 5 m was found to be sufficiently accurate
for the given parameter. A further reduction of the step size
resulted in a negligible change in SNR (< 0.01 dB).

The results for the nonlinear interference coefficient after one
span as a function of the channel frequency fi is shown in
Fig. 2(a) and as a function of total launch power in Fig. 2(b).
The accuracy of the ISRS GN model is remarkable with a max-
imum deviation of < 0.1 dB. The deviation is slightly higher
at the exact spectral edges. At the exact spectral edges the NLI
PSD varies over the channel bandwidth and the NLI PSD can-
not be considered locally flat as in (2). This is not an inherit
approximation of the ISRS GN model and it can be lifted by
properly integrating over the NLI PSD. As expected, the ISRS
GN model converges to the conventional GN model for negli-
gible power transfer values. For stronger ISRS, the nonlinear
interference PSD begins to tilt. The NLI is decreased for chan-
nels that experience net ISRS loss and increased for channels
that experience net ISRS gain. Moreover, as shown in Fig. 2(b),
the NLI coefficient depends exponentially on the ISRS power
transfer. Fig. 2(b) indicates further that the ISRS dependence
of the NLI coefficient is stronger for an increasing number of
spans.

For Gaussian modulation, the NLI accumulation in decibels
as a function of fiber spans can be written as [14, Section IX]

(ηn) [dB] − (η1) [dB] = (1 + ε) · (n) [dB] , (12)

where (·) [dB] denotes conversion to decibel scale and ε is the
coherence factor that is a measure for coherent accumulation of
the NLI. As the coherence factor depends on the signal power
profile (cf. [14, Fig. 10] and [11, Fig. 3]), it is affected by ISRS.
The accumulation of NLI together with the resulting coher-
ence factor obtained from the ISRS GN model and simulation
results are shown in Fig. 3. Indeed, ISRS introduces a power
dependent tilt on the coherent accumulation. This corresponds

to the increasing power dependence of the NLI coefficient with
increasing span number.

To benchmark our results against previous works, the results
obtained using [43, Eq. (16)], [44, Eq. (18)] and [45, Eq. (1)]
are shown in dashed in Fig. 2(a) using the same frequency
dependent power profile (8). The difference originates due to
the reason described in Section II-A, effectively assuming that
all frequencies in the nonlinear process attenuate as the one that
is evaluated (i.e., fi ). The deviation therefore increases with
increasing ISRS gain towards outer channels.

The results obtained using the model in [42] is shown by dot-
ted lines. The model implements the conventional GN model,
where an effective attenuation coefficient is used, that matches
the effective length of the evaluated channel fi . Consequently,
the frequency dependent attenuation within the nonlinear pro-
cess is not properly accounted for, mainly resulting in an under-
estimation of the ISRS impact.

Based on the numerical validation carried out in this section, it
is concluded that the ISRS GN model (9) accurately predicts the
nonlinear interference resulting from inter-channel stimulated
Raman scattering.

IV. C + L BAND TRANSMISSION

In this section, the ISRS GN model is used to evaluate the
impact of ISRS on a C + L band transmission system covering
10 THz of optical bandwidth with parameters listed in Table I(b).
The considered uniform launch powers ranged from −13 dBm
per channel (Ptot = 10 dBm) to 5 dBm per channel (Ptot =
28 dBm). Launch powers as high as 28 dBm were considered
to quantify the impact of ISRS beyond typical power levels.
There is strong evidence that this is still within the validity of
the first-order perturbation approach. In the highly nonlinear
regime, where the impact of ASE noise can be neglected, the
SNR changes by at most −2 dB per 1 dBm increase in launch
power, according to (1) and in the absence of ISRS. This is
in agreement with experimental results for launch powers of
at least up to 7 dBm per 40 GBd channel (4.1 THz optical
bandwidth) [6, Fig. 4] and numerical results for launch powers
of at least up to 4 dBm per 49 GBd channel (5 THz optical
bandwidth) [23, Fig. 10].

The NLI coefficient as a function of channel frequency is
shown in Fig. 4(a). For a particular launch power, the corre-
sponding ISRS gains can be found in Fig. 1.

The tilt in NLI coefficient in the absence of ISRS is due to the
dispersion slope S (or β3), where lower frequencies experience
a higher amount of dispersion and therefore experience reduced
NLI. As the launch power is increased, the effect of ISRS starts
to balance the effect of the dispersion slope in terms of NLI. At
a launch power of 22 dBm, the NLI PSD is almost flat showing
that ISRS and the dispersion slope are somewhat complementing
each other in flattening the NLI spectrum. Assuming an EDFA
noise figure of 5 dB, the uniform launch power that maximizes
the SNR of the central channel is approximately 1 dBm (Ptot =
24 dBm) in the absence of ISRS. It should be noted that a
uniform total launch power of 24 dBm does not maximize the
overall system performance. The value of 24 dBm only serves as
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Fig. 2. The nonlinear interference coefficient after 1 span as a function of channel frequency is shown in (a) and the NLI change due to ISRS induced power
transfer ρ (L) is shown in (b). Solid lines represent the analytical ISRS GN model (9) and markers represent results obtained by split-step simulations. For
comparison, the model in [42] is shown with a dotted line and the model in [43–45] is shown with a dashed line for an ISRS power transfer of ρ = 8.2 dB in (a).
The power difference of the outer channels after transmission is denoted as ρ (L).

Fig. 3. The accumulation of NLI as a function of span number for the outer channels of the signal with and without ISRS. Lines represent the analytical ISRS
GN model (9) and markers represent split-step simulations. The inset (a) shows the coherence factor after 10 spans and the inset (b) shows a magnified area of the
figure.

Fig. 4. The nonlinear interference coefficient after 1 span as a function of channel frequency for different total launch powers is shown in (a) and the NLI as a
function of total launch power is shown in (b) obtained by the analytical ISRS GN model (9). The uniform launch power that maximizes the SNR for the central
channel is 24 dBm, assuming a 5 dB EDFA noise figure.
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Fig. 5. The coherence factor as a function of channel frequency for a variety
of total launch powers obtained by the analytical ISRS GN model (9).

an approximate indicator for the expected ISRS power transfer
of the studied system. At 24 dBm, the resulting ISRS power
gain ranges from −3.7 dB to 2.9 dB while the resulting NLI
deviation ranges from −1.7 dB to 2 dB over the transmitted
spectrum.

The deviation of the NLI coefficient as a function of total
launch power is shown in Fig. 4(b). The NLI PSD depends
exponentially on the total launch power like the ISRS gain itself
as already discussed in Section III. The deviation of the outer
channels is 0.5 dB at 18 dBm launch power. In Section III it was
shown that the coherence factor is changed as a result of ISRS.
The same effect is seen in Fig. 4(b), where the deviation of the
NLI is stronger for an increased number of spans.

The coherence factor as a function of channel frequency
is shown in Fig. 5. The coherence factor is relatively small
(ε < 0.07) due to the large bandwidth. In the absence of ISRS
the average coherence factor is 0.027. Using (12) the average
coherent NLI accumulation ε · (n) [dB] is 0.3 dB and 0.5 dB af-
ter 10 and 50 spans, respectively. For 24 dBm launch power, the
maximum deviation in coherence factor is found to be 0.013 at
the outer channels. This corresponds to a deviation in coherent
NLI accumulation of 0.1 dB and 0.2 dB after 10 and 50 spans,
respectively. The change in coherence factor due to ISRS might
be deemed negligible depending on the accuracy requirements
of the application.

To relate our work to previously published results, the NLI
coefficient after one span obtained by the ISRS GN model is
compared to the works [42] and [43]–[45]. The signal power
profile as in (8) was used for all comparisons. The deviation
of the NLI coefficient between the ISRS GN model and that of
[42] is shown in Fig. 6. For 24 dBm launch power, the deviation
stays below 0.19 dB. Even for high ISRS gains at 28 dBm launch
power, the maximum deviation is 0.8 dB.

The deviation of the NLI coefficient between the ISRS GN
model and [43, Eq. (13) and (16)], [44, Eq. (18)], [45, Eq. (1)] is
shown in Fig. 7. The maximum deviation is 0.56 dB and 2.1 dB
for 24 dBm and for 28 dBm launch power, respectively. The
reader is referred to Sections II-A and III for the origin of the
discrepancy.

Fig. 6. Deviation of the NLI coefficient after one span between the analytical
ISRS GN model (9) and [42]. The validity of the ISRS GN model is shown in
Section III.

Fig. 7. Deviation of the NLI coefficient after one span between the analytical
ISRS GN model (9) and [43]–[45]. The validity of the ISRS GN model is shown
in Section III.

Based on this analysis, it is concluded that the impact of ISRS
on the Kerr nonlinearity is significant in C + L band systems.
This is strongly dependent on launch power and the Raman gain
slope due its exponential relationship to the nonlinear interfer-
ence power. It should be noted that idealized gain flattening
filters (GFF) were considered in this work to compensate the
ISRS power transfer at the end of each span. When realistic
GFF’s are considered, the ISRS gain accumulates over distance
and the impact on the nonlinear interference power is more
significant than as shown in this section.

V. CONCLUSION

The ISRS GN model which analytically models the impact
of inter-channel stimulated Raman scattering on the nonlin-
ear perturbation caused by Kerr nonlinearity was proposed and
analyzed in detail. Its accuracy was compared to split-step sim-
ulations and a maximum deviation of 0.1 dB in nonlinear in-
terference power was found. The model can further account for
the frequency dependent fiber attenuation, optical bandwidths
beyond the Stokes shift (approximately 14 THz) and hybrid-
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amplified transmission systems at the expense of greater com-
putational complexity using a semi-analytical approach.

It was shown that ISRS changes the nonlinear interference
power by up to 2 dB at optimum launch power for the studied
C + L band transmission system. For such optical bandwidths
and beyond, ISRS must be addressed in order to maximize
system performance. Possible solutions in the physical layer in-
clude the use of gain flattening filters, optimized launch power
distributions or tailored fiber designs, all of which can be mod-
eled and analyzed using the results in this paper.

The derived ISRS GN model is, therefore, a powerful tool
for efficient design, optimization, capacity calculations and
physical-layer abstractions of ultra-wideband transmission sys-
tems that operate over the entire C + L band and beyond.

APPENDIX A
DERIVATION OF THE ISRS GN MODEL

In this section, (4) is derived for one span based on the non-
linear Schrödinger equation (NLSE) and a first-order regular
perturbation approach. The result for one span can then be ex-
tended to multiple spans using the phased-array term (5) or
reinterpreting a span as the entire link length with an according
signal power profile. Instead of a constant attenuation coefficient
α, a generic frequency and distance dependent gain coefficient
g (z, f ) is used to model the effect of inter-channel stimulated
Raman scattering. For the sake of brevity, only the key derivation
steps are outlined.

We begin with the NLSE in the frequency domain which is
given by [62, Ch. 2]

∂

∂z
E(z, f ) =

�̃(z, f )E(z, f ) + jγ E(z, f ) ∗ E∗(z,− f ) ∗ E(z, f ), (13)

with �̃(z, f ) = g(z, f )
2 + j2π2β2 f 2 + j 4

3π3β3 f 3 and u(x) ∗
v(x) denoting the convolution operation. The complex envelope
of the electric field E(z, f ) is expanded in a regular perturbation
series with respect to the nonlinearity coefficient γ . The series
is then truncated to first-order and we have

E(z, f ) = E (0)(z, f ) + γ E (1)(z, f ). (14)

Inserting (14) in (13), we obtain

E (0)(z, f ) = E(0, f ) · e�(z, f ), (15)

with � (z, f ) = ∫ z
0 �̃ (ζ, f ) dζ as the solution for the zeroth-

order terms and a linear ordinary differential equation for the
first-order terms as

∂

∂z
E (1)(z, f ) = �̃(z, f )E (1)(z, f ) + Q(z, f ), (16)

with Q(z, f ) = j E (0)(z, f ) ∗ E (0)∗(z,− f ) ∗ E (0)(z, f ). The
initial condition for the first-order solution is E (1)(0, f ) = 0
and we obtain

E (1)(z, f ) = e�(z, f )
∫ z

0

Q(ζ, f )

e�(ζ, f )
dζ, (17)

as the solution of (16).

In order to compute Q(z, f ), we assume that the input signal
can be modeled as a periodic Gaussian process, a key assumption
of the GN model, which is [24, Eq. 13]

E(0, f ) =
√

f0GTx( f )
∞∑

n=−∞
ξnδ ( f − n f0) , (18)

where GTx( f ) is the power spectral density of the input signal,
ξn is a complex circular Gaussian distributed random variable,
T0 = f −1

0 is the period of the signal and δ(x) denotes the Dirac
delta function. For notational convenience, we write n f0 as fn

and
∑∞

n=∞ as
∑

∀n for the remainder of this derivation. Using
(18), Q(z, f ) can be written as

Q(z, f ) = j f
3
2

0

∑
∀m

∑
∀n

∑
∀k

√
GTx( fm)GTx( fn)GTx( fk)

ξmξ ∗
n ξkδ ( f − fm + fn − fk) e�(z, fm )+�∗(z, fn )+�(z, fk ). (19)

To first order, it can be shown that only non-degenerate fre-
quency triplets in (19) contribute to the nonlinear interference
power. Degenerate frequency triplets merely introduce a con-
stant phase shift of the first-order solution E (1)(z, f ), which
cancels out when the PSD of E (1)(z, f ) is computed. For more
details, the reader is referred to [63, Ch. IV.B and IV.D]. There-
fore, we neglect degenerate frequency triplets in order to keep
the derivation concise. Similar to [63], we define the triplets of
non-degenerate frequency components as

Ai = {(m, n, k) : [m − n + k] = i and [m 	= n or k 	= n]} ,

(20)
and rewrite (19) as

Q(z, f ) = j f
3
2

0

∑
∀i

δ ( f − fi )
∑

∀(m,n,k)∈Ai

ξmξ ∗
n ξk

√
GTx( fm)GTx( fn)GTx( fk)e�(z, fm )+�∗(z, fn )+�(z, fk ). (21)

Inserting (21) in (17) yields the first-order solution as

E (1)(z, f ) = j f
3
2

0 e�(z, f )
∑
∀i

δ ( f − fi )

∑
∀(m,n,k)∈Ai

ξmξ ∗
n ξk

√
GTx( fm)GTx( fn)GTx( fk)

∫ z

0
dζ e�(ζ, fm )+�∗(ζ, fn )+�(ζ, fk )−�(ζ, fm− fn+ fk ). (22)

In order to obtain the nonlinear interference power, we compute
the average PSD of the first-order solution γ E (1)(z, f ). Similar
to [63, Ch. IV.D], the average PSD of (22) multiplied by γ is

GNLI(z, f ) = 2γ 2 f 3
0 e2Re[�(z, f )]

∑
∀i

δ ( f − fi )

∑
∀(m,n,k)∈Ai

GTx( fm)GTx( fn)GTx( fk)

∣∣∣∣
∫ z

0
dζ e�(ζ, fm )+�∗(ζ, fn )+�(ζ, fk )−�(ζ, fm− fn+ fk )

∣∣∣∣
2

. (23)

In the following, we transform the inner summation appearing
in (23) into a summation over two independent variables. For
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the non-degenerate set Ai , we have that fm − fn + fk = fi and
for a given frequency triplet ( fi , fm, fk) it follows that fn =
fm + fk − fi . Therefore, (23) can be written as

G(z, f ) = 2γ 2 f 3
0 e2Re[�(z, f )]

∑
∀i

δ ( f − fi )

∑
∀m

∑
∀k

GTx( fm)GTx( fk)GTx( fm + fk − f )

∣∣∣∣
∫ z

0
dζ e�(ζ, fm )+�∗(ζ, fm+ fk− f )+�(ζ, fk )−�(ζ, f )

∣∣∣∣
2

. (24)

Finally, we define the normalized signal power profile of a fre-
quency component as ρ(z, f ) = e

∫ z
0 g(ζ, f )dζ and rewrite (24) as

an integral expression by letting f0 → 0

G(z, f ) = 2γ 2ρ(z, f )
∫

d f1

∫
d f2

GTx( f1)GTx( f2)GTx( f1 + f2 − f )
∣∣∣∣∣
∫ z

0
dζ

√
ρ(ζ, f1)ρ(ζ, f2)ρ(ζ, f1 + f2 − f )

ρ(ζ, f )
e jφ( f1, f2, f,ζ )

∣∣∣∣∣
2

.

(25)

As (25) was derived for single polarization, 2γ 2 must be re-
placed by 16

27γ 2 to obtain the nonlinear interference power for
dual polarization. Furthermore, the term ρ(z, f ) outside of the
integral can be removed when each frequency is amplified cor-
responding to its respective loss at the receiver. In practice, this
can be realized with the use of adaptive gain flattening filters.
The result is (4).
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