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Abstract

In this paper, we deal with two families of conditional sequences. The
first family consists of generalizations of the Fibonacci sequence. We
show that the Gelin-Cesàro identity is satisfied. Also, we define a family
of conditional sequences {un} by the recurrence relation un = aun−1 +
bun−2 if n is even, un = cun−1+dun−2 if n is odd, with initial conditions
u0 = 0 and u1 = 1, where a, b, c and d are non-zero numbers. Many
sequences in the literature are special cases of this sequence. We find
the generating function of the sequence and Binet’s formula for odd
and even subscripted sequences. Then we show that the Catalan and
Gelin-Cesàro identities are satisfied by the indices of this generalized
sequence.
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1. Introduction

The sequence Fn of Fibonacci numbers is defined by the recurrence relation Fn =
Fn−1 + Fn−2 with initial conditions F0 = 0 and F1 = 1. This famous sequence ap-
pears in many areas of mathematics. The Fibonacci sequence has been generalized in
many ways. Fibonacci and generalized Fibonacci identities have been studied by many
mathematicians for many years. For example, the Gelin-Cesàro identity [1] states that

F
4
n − Fn−1Fn−2Fn+1Fn+2 = 1.

Also, Melham et. al. and Howard obtained generalizations of the Gelin-Cesàro identity in
[7] and [4] respectively. In this paper, we deal with two families of conditional sequences.
The first family consists of the sequences denoted by {qn} and studied in [2]. We show
that the Gelin-Cesàro identity is satisfied by the sequence {qn}. Also, we define a family
of conditional sequences {un} by the recurrence relation un = aun−1+bun−2 if n is even,
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un = cun−1 + dun−2 if n is odd, with initial conditions u0 = 0 and u1 = 1, where a, b, c

and d are non-zero numbers. Many sequences in the literature are special cases of this
generalized sequence. We find the generating function for the sequence {un} and Binet’s
formula for even indices of {un}. Then we show that Catalan and Gelin-Cesàro identities
are satisfied by even indices of this generalized sequence.

2. The first family of conditional sequences

Recently, the authors introduced in [2] a further generalization of the Fibonacci se-
quence, namely the generalized Fibonacci sequence defined by

q0 = 0, q1 = 1, qn =

{

aqn−1 + qn−2, if n is even,

bqn−1 + qn−2, if n is odd,

for any two non-zero real numbers a and b.

2.1. Theorem. [Catalan Identity for {qn}] For any nonnegative integers n and r, we

have
(

a
µ(n−r)

b
1−µ(n−r)

)

qn−rqn+r −
(

a
µ(n)

b
1−µ(n)

)

q
2
n = a

µ(r)
b
1−µ(r) (−1)n+1−r

q
2
r ,

where µ (m) =

{

0, if m is even,

1, if m is odd.

Proof. See [2]. �

2.2. Theorem. [Gelin-Cesàro Identity] For any non-negative integers n, we have

a
2µ(n)−1

b
1−2µ(n)

q
4
n − qn−2qn−1qn+1qn+2 = (−1)n+1

(

a

b

)µ(n)

q
2
n (ab− 1) + a

2
.

Proof. For r = 1 and r = 2, we get respectively

qn−1qn+1 = a
2µ(n)−1

b
1−2µ(n)

q
2
n + (−1)n

(

a

b

)µ(n)

and

qn−2qn+2 = q
2
n + (−1)n−1

a
2
b

1

aµ(n)b1−µ(n)

by using Theorem 2.1 and the property µ (n) = µ (n− 2). So,

qn−2qn−1qn+1qn+2 =
(

a
2µ(n)−1

b
1−2µ(n)

q
2
n + (−1)n

(a

b

)µ(n))

×
(

q
2
n + (−1)n−1

a
2
b

1

aµ(n)b1−µ(n)

)

= a
2µ(n)−1

b
1−2µ(n)

q
4
n

− (−1)n+1
q
2
n

(

a
1+µ(n)

b
1−µ(n) −

(

a

b

)µ(n)
)

− a
2
.

We define

A =

(

a
1+µ(n)

b
1−µ(n) −

(a

b

)µ(n)
)

.

If n is even then A = ab−1, else A = a2− a
b
= a

b
(ab− 1). So we can rewrite the product

qn−2qn−1qn+1qn+2 as

qn−2qn−1qn+1qn+2 = a
2µ(n)−1

b
1−2µ(n)

q
4
n − (−1)n+1

q
2
n

(

a

b

)µ(n)

(ab− 1) − a
2
.
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As a result,

a
2µ(n)−1

b
1−2µ(n)

q
4
n − qn−2qn−1qn+1qn+2

= (−1)n+1
(a

b

)µ(n)

q
2
n (ab− 1) + a

2
. �

Note that when a = b = 1 the above result reduces to the Gelin-Cesàro identity for
the Fibonacci numbers:

F
4
n − Fn−2Fn−1Fn+1Fn+2 = 1.

3. The second family of conditional sequences

There exists a generalization of the sequence {qn} in the literature (see [8]). Here, we
define a new generalization of this sequence. Let us denote this sequence by {un} which
is defined recursively by

u0 = 0, u1 = 1, un =

{

aun−1 + bun−2, if n is even,

cun−1 + dun−2, if n is odd,

where a, b, c and d are indeterminates. For example, the first six terms of the sequence
are

{0, 1, a, ac+ d, a
2
c+ ad+ ab, a

2
c
2 + 2acd+ abc+ d

2}.
For a = b = c = d = 1, we get the ordinary Fibonacci sequence, when a = c = 2,
b = d = 1, we have the Pell sequence, when a = c = k, b = d = 1, we obtain a k-
Fibonacci sequence, etc. Also, when b = d = 1, we get the sequence which is defined in
[2].

In this study, first we obtain the generating function and then Binet’s formula for the
even indices of the sequence {un}. Finally, we show some properties, for example, the
Catalan identity, divisibility and the gcd property, etc. are satisfied by the even indices
of the sequence.

Generating functions are very useful as a means of counting, but they can also be used
in proofs. To find the generating function of the sequence {un}, we need some properties
of this sequence. We give these properties in the following lemma.

3.1. Lemma. For the sequence {un}, the following properties are satisfied

(i) u2n+1 = (ac+ b+ d)u2n−1 − (bd)u2n−3,

(ii) u2n = (ac+ b+ d)u2n−2 − (bd)u2n−4.

Proof. (i) Since 2n+ 1 is odd, we get

u2n+1 = cu2n + du2n−1

by the definition of the sequence. Since u2n = au2n−1 + bu2n−2 (2n is even), we get

u2n+1 = c(au2n−1 + bu2n−2) + du2n−1

= (ac+ d)u2n−1 + bcu2n−2.

Substituting cu2n−2 = u2n−1 − du2n−3 (by the definition of the sequence) in above
equality, we obtain the desired result as follows:

u2n+1 = (ac+ d)u2n−1 + b(u2n−1 − du2n−3)

= (ac+ b+ d)u2n−1 − bdu2n−3.

(ii) The proof is similar to (i). �
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Indeed, Lemma 3.1 reduces the odd and even subscripted sequences to the kind of
generalized Fibonacci number studied in [3], [5] and [6].

Now, we can give the generating function of the sequence.

3.2. Theorem. [Generating function] The generating function for the sequence {un} is

F (x) =
x
(

1 + ax− bx2
)

1− (ac+ b+ d)x2 + bdx4
.

Proof. Let

F (x) = u0 + u1x+ u2x
2 + · · ·+ ukx

k + · · · =
∞
∑

m=0

umx
m
,

which is the formal power series of the generating function for un. We know that
∞
∑

m=0

umx
m =

∞
∑

m=0

u2mx
2m +

∞
∑

m=0

u2m+1x
2m+1

.

Now let us define

f1 (x) =

∞
∑

m=0

u2mx
2m and f2 (x) =

∞
∑

m=0

u2m+1x
2m+1

.

So, if we can find f1(x) and f2 (x), we get the desired generating function F (x).

Note that,

f1 (x) =
∞
∑

m=0

u2mx
2m = u0x

0 + u2x
2 +

∞
∑

m=2

u2mx
2m

,

(ac+ b+ d)x2
f1 (x) =

∞
∑

m=1

(ac+ b+ d)u2m−2x
2m

= (ac+ b+ d)u0x
2 +

∞
∑

m=2

(ac+ b+ d)u2m−2x
2m

, and

bdx
4
f1 (x) =

∞
∑

m=2

bdu2m−4x
2m

.

So,
(

1− (ac+ b+ d)x2 + bdx
4
)

f1 (x)

= ax
2 +

∞
∑

m=2

(u2m − (ac+ b+ d)u2m−2 + bdu2m−4) x
2m

.

we have u2n − (ac+ b+ d)u2n−2 + (bd)u2n−4 = 0 by lemma 3.1, so we get

f1 (x) =
ax2

1− (ac+ b+ d) x2 + bdx4
.

Similarly, we can get

f2 (x) =
x− bx3

1− (ac+ b+ d) x2 + bdx4
.

As a result, we can obtain the generating function as follows

F (x) = f1(x) + f2 (x)

=
x
(

1 + ax− bx2
)

1− (ac+ b+ d)x2 + bdx4
. �
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In fact, we can give Binet’s formula for even indices of the sequence as follows.

3.3. Theorem. [Binet’s formula for the even indices of the sequence] For the even indices

of the sequence un, we have

u2n = a
αn − βn

α− β
,

where α and β are roots of the polynomial x2 − (ac+ b+ d) x+ bd, that is,

α =
ac+ b+ d+

√
a2c2 + b2 + d2 + 2abc+ 2acd− 2bd

2

and

β =
ac+ b+ d−

√
a2c2 + b2 + d2 + 2abc+ 2acd− 2bd

2
.

Proof. We shall prove Binet’s formula by induction, making use of the above form. First
we need to show that the formula holds for n = 0 and n = 1.

u0 = a
α0 − β0

α− β

= 0

and

u2 = a
α1 − β1

α− β

= a

Then for any k > 1, assume that the formula holds for all n 6 k, in particular for n = k

and n = k − 1. So,

u2k = a
αk − βk

α− β

and

u2(k−1) = a
αk−1 − βk−1

α− β
.

By Lemma 3.1, we can write

u2(k+1) = (ac+ b+ d)u2k − bdu2(k−1)

= (ac+ b+ d)a
αk − βk

α− β
− bda

αk−1 − βk−1

α− β
.

Now, we use the fact that α and β are roots of x2 − (ac+ b+ d) x + bd, which gives
(ac+ b+ d) = α+ β and bd = αβ. Hence

u2(k+1) =
a (α+ β)

(

αk − βk
)

(α− β)
− aαβ

(

αk−1 − βk−1
)

(α− β)

= a

(

αk+1 − βk+1

α− β

)

,

which is Binet’s expression for n = k + 1. This completes the inductive step and so
Binet’s formula holds for n ∈ N. �

Similarly, if α and β are the roots of x2 − (ac+ b+ d) x+ bd, we can prove

u2n+1 =
αn+1 − βn+1

α− β
− b

αn − βn

α− β
.

Note that the formula for u2n+1 gives au2n+1 = u2n+2 − bu2n.
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3.4. Theorem. [Catalan’s identity for {un}] For any two nonnegative even integers m

and s, with m > s, we have

u
2
m − um−sum+s = (bd)

m−s

2 u
2
s.

Proof. Let m = 2n and s = 2r for nonnegative integers r and s. Using Binet’s formula
for the sequence u2n, we get

u
2
m − um−sum+s = u

2
2n − u2(n−r)u2(n+r)

=

(

a
αn − βn

α− β

)2

− a
αn−r − βn−r

α− β
a
αn+r − βn+r

α− β

= a
2α

2n − 2αnβn + β2n

(α− β)2

− a
2α

2n − αn−rβn+r − αn+rβn−r + β2n

(α− β)2

= a
2α

n−rβn−r
(

α2r + β2r − 2αrβr
)

(α− β)2
.

Since αβ = bd, we obtain the desired result as follows:

u
2
m − um−sum+s = a

2 (bd)
n−r (αr − βr)2

(α− β)2

= (bd)n−r
u
2
r

= (bd)
m−s

2 u
2
s. �

The results obtained in [5] can be applied to {u2n} and {u2n+1} due to Lemma 3.1.
For example, [5, Corollary 3.3] will give Catalan’s identity (with wn = u2n). Similarly, if
we use [5, Corollary 3.3] with wn = u2n+1, for any two nonnegative odd integers m and
s, with m > s, we obtain

u
2
m − (bd)

m−s

2 u
2
s = vm−s

2

((ac+ d)um+s−1 − (bd)um+s−3) ,

where {vn} is defined by

v0 = 0, v1 = 1 and vn = (ac+ b+ d) vn−1 − (bd) vn−2 for n > 2.

3.5. Theorem. [Gelin-Cesàro Identity] For any non-negative even integer m > 4, we

have

u
4
m − um−4um−2um+2um+4 = au

2
m

(

a (bd)
m−2

2 + (ac+ b+ d) (bd)
m−2

4

)

− a
3 (bd)

3m−6

4 (ac+ b+ d) .

Proof. For s = 2 and s = 4 we get

um−2um+2 = q
2
m − a

2 (bd)
m−1

2

and

um−4um+4 = u
2
m − a (bd)

m−2

4 (ac+ b+ d)

respectively, by Theorem 3.4. So we can find

um−4um−2um+2um+4 = u
4
m − au

2
m

(

a (bd)
m−2

2 + (ac+ b+ d) (bd)
m−2

4

)

+ a
3 (bd)

3m−6

4 (ac+ b+ d)
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with the aid of Maple. As a result, we get the desired result

u
4
m − um−4um−2um+2um+4 = au

2
m

(

a (bd)
m−2

2 + (ac+ b+ d) (bd)
m−2

4

)

− a
3 (bd)

3m−6

4 (ac+ b+ d) .

�
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