The GEM-T2
 Gravitational Model

J.G. Marsh, F. J. Lerch, B.H. Putney, T.L. Felsentreger, B.V. Sanchez, S.M. Klosko, G.B. Patel, J.W. Robbins, R.G. Williamson, T.E. Engelis, W.F. Eddy, N.L. Chandler, D.S. Chinn, S. Kapoor, K.E. Rachlin, L.E. Braatz, and E.C. Pavlis

NASA Technical Memorandum 100746

The GEM-T2
 Gravitational Model

J.G. Marsh, F.J. Lerch, B.H. Putney,
T.L. Felsentreger, B.V. Sanchez
Goddard Space Flight Center
Greenbelt, Maryland

S.M. Klosko, G.B. Patel, J.W. Robbins,
R.G. Williamson, T.E. Engelis, W.F. Eddy,
N.L. Chandler, D.S. Chinn, S. Kapoor,
K.E. Rachlin, L.E. Braatz

ST Systems Corporation
Lanham, Maryland
E. C. Pavlis

University of Maryland
College Park, Maryland

N/SA

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenbelt, MD

Abstract

GEM-T2 is the latest in a series of Goddard Earth Models of the terrestrial gravitational field. It was designed to bring modeling capabilities one step closer towards ultimately determining the TOPEX/Poseidon satellite's radial position to an accuracy of $10-\mathrm{cm}$ RMS. It also improves our models of the long wavelength geoid to support many oceanographic and geophysical applications. GEM-T2 extends the static portion of the field's determination to include more than 600 coefficients above degree 36 (which was the limit for its predecessor, GEM-T1) and provides a dynamically determined model of the major tidal lines which contains 90 terms. Like GEMT1, it was produced entirely from satellite tracking data, but it now uses nearly twice as many satellites (31 vs .17), contains four times the number of observations (2.4 million), and has twice the number of data arcs (1132). GEM-T2 utilizes laser tracking from 11 satellites, Doppler data from four satellites, two- and three-way range-rate data from Landsat-1, satellite-to-satellite tracking data between the geosynchronous ATS-6 and the GEOS-3 satellites, and optical observations on 20 different orbits. This observation set nearly exhausts the inclination distribution available for gravitational field development from our historical database.

Extension of GEM-T2 to even higher degree and order was made possible through the application of a constrained least squares technique which uses the known spectrum of the Earth's gravity field as apriori information. The error calibration of the model is now performed concurrently with the model's generation through the use of an optimal weighting procedure which tests the model against solution subsets. This procedure is used herein for the first time. It iteratively determines the optimal weight for each constituent data set by testing the complete model against a test solution which omits each of the data sets individually. The differences in the solutions isolate the contribution of a given data set and tests the consistency of the magnitude of these differences against their expected values from the respective solution covariances. The process yields optimal data weights and assures a model which is selfconsistent and well calibrated. It is also objective and eliminates heuristic approaches which lack its rigor. GEM-T2 has benefitted by its application as demonstrated through tests using independent altimeter derived gravity anomalies.

Results for the GEM-T2 error calibration indicate significant improvement over previous satellite-only GEM models. The accuracy assessment of the lower degree and order coefficients indicate that GEM-T2 has reduced their uncertainty by 20% as compared to GEM-T1. The error of commission in determining the geoid has been reduced from 155 cm in GEM-T1 to 105 cm for GEM-T2 for the 36×36 portion of the field, and 141 cm for the entire model. The orbital accuracies achieved using GEM-T2 are likewise improved. This is especially true for the Starlette and GEOS-3 orbits where higher order resonance terms are now well-represented in GEM-T2 whereas they were not present in GEM-TI (e.g., terms where $m=42,43$).

Finally, the projected radial error on the TOPEX satellite orbit indicates $9.4-\mathrm{cm}$ RMS for GEM-T2, compared to $24.1-\mathrm{cm}$ for GEM-T1. This improvement in orbit prediction extends across all orbit inclinations. This confirms our conclusion that GEM-T2 is a genuine advance in the state of knowledge of the Earth's gravity field.

PRECEDING PAGE BLAAKK NOT FILMED

SECTION 1. INTRODUCTION

Goddard Earth Model (GEM) -T2 is the latest in a series of improved gravitational models developed at NASA/Goddard Space Flight Center using supercomputer capabilities, modern geodetic constants and reference parameters, and a new optimum data weighting and error calibration technique (Lerch, 1989) for its determination. GSFC has undertaken an effort, requiring both pre- and post-launch activities, to develop force models capable of supporting the orbital positioning and geoid accuracy required for the TOPEX/Poseidon mission. GEM-T2, like its predecessor GEM-T1 (Marsh et al., 1987, 1988), has been determined solely from satellite tracking data. The solution for the Earth's geopotential field, both static and tidally induced, has been extended to higher degree and order in GEM-T2. The static geopotential is complete for many orders to degree 50 to better accommodate zonal, low-order and satellite orbital resonance effects. The gravitational model has increased in size by more than 600 coefficients beyond the 36×36 solution of GEM-T1. The GEM-T2 tidal model includes adjustment for 90 harmonics (as compared to 66 coefficients in GEM-T1) distributed over 12 major tides which are solved in the presence of a comprehensive ocean tidal model containing long wavelength information for 32 major and minor constituents. This ocean tidal model contains over 600 coefficients and was developed to provide a much more complete description of the long wavelength ocean tides to improve the separation of static and temporally varying gravitational effects. Such a model is needed as described in Christodoulidis et al., (1988).

In accordance with the plans described in Marsh et al., (1987), Goddard Space Flight Center has been approaching the gravity modeling problem in progressive stages. Each of the available satellite tracking, surface gravimetric and altimeter observation subsets is being evaluated and qualified for its inclusion within the GEM models. As a prelude to combination models which contain mixed and subtly incompatible types of observations (i.e. mixing large numbers of satellite tracking observations with those provided by surface gravimetry and satellite altimetry which have a different bandwidth of field sensitivity), we find it desirable to develop preliminary models which are largely free of these concerns. These "sàtellite-only" models, like GEM-T1 and now GEM-T2, are then thoroughly evaluated, optimized and calibrated (Lerch et al., 1988) to better understand their accuracies and limitations. Much of the error calibration for GEM-T2 is built into the solution through our application of an iterative optimal data weighting technique. By design, this method yields a well calibrated result.

Satellite tracking data provides the most unambiguous available measure of the long wavelength geopotential. A large historical database spanning all of the major tracking technologles has been developed at GSFC. Altimetry and surface gravimetry are known to have modeling inaccuracies and inadequacies when describing the long wavelength geoid, and these two surface data types are not strictly compatible with the attenuated gravitational signal seen from an evaluation of perturbed orbital behavior within tracking data. Therefore, in our approach, larger comprehensive models using surface gravimetry and altimetry are based on these "satellite-only" fields. A 50×50 combination model called GEM-T3 is under development with a preliminary version, PGS-3337 now available (Marsh et al, 1989a). Altimetry and surface gravimetry will be contained within GEM-T3 and will provide an excellent resource for directly mapping the short wavelength geopotential over regions where these data are available. Furthermore, by progressively developing more complete and complex fields in a systematic way based upon well-calibrated base models, field optimization is more readily attained, data incompatibilities are more easily located and reliable assessments of the solution's uncertainties are obtained.

When beginning our most recent GEM modeling activities in 1984, an improved set of
Earth
constants and reference frame parameters were incorporated. The solutions are based on the state-of-the-art in satellite geodesy in the 1984-5 timeframe. The constants described for use in the MERIT Campaign (Melbourne et al., 1983) provided the starting point for this assessment. The adoption of these values (which will be reviewed in Section 2.) and their uniform application across all tracking technologies, laid the foundation in achieving the higher accuracy found in our most recent GEM-T1 and -T2 solutions. Of equal or greater
importance was the development of the optimal data weighting algorithms, improved solution calibration/testing methods, and the overall extension of the models to higher degree and order.

Extending the model to high degree and order has been a very important development in our latest models. This reduces the errors resulting from spectral leakage coming from the omitted portion of the gravitational field beyond the limits of the recovered model. By necessity, all omitted terms are implicitly assumed to have zero values. The GEM-T2 model has been solved to as high a degree and order as necessary to exhaust the attenuated gravitational signal contained in the tracking data. A constrained least squares solution (Lerch et al., 1979) is used to stabilize the behavior of the solution at high degree and order where correlation and small data sensitivities are a problem. The availability of the Cyber-205 supercomputer greatly increased our capabilities for extending the field size and developing solution optimization techniques.

The major advancements of GEM-T2 over its predecessor, GEM-T1, include:
(a) the near-doubling of the number of distinct orbits sampled to form the model. GEM-T1 used tracking data from 17 satellites. GEM-T2 contains contributions from 31. The major new observation subsets include TRANET Doppler data acquired on the polar NOVA-1 satellite, Unified S-Band average range-rate tracking on Landsat-1, laser data on the Japanese Ajisal satellite, satellite-to-satellite range-rate data taken from the geosynchronous ATS-6 to GEOS-3, nine additional optical satellites and TRANET DOppler data taken on GEOSAT.
(b) the data set for GEM-T2 has also more than doubled. GEM-T1 was determined using 793,900 observations contained within 581 individual orbital arcs whereas GEM-T2 contains 2,386,000 observations from 1130 arcs.
(c) there has been a significant improvement in the laser data set utilized within GEM-T2. Third-generation laser data from the 1980 and 1981 time periods has been included from both GEOS-1 and GEOS-3. This represents a substantial upgrading of the information available from these satellites as compared to the 1975 to 1977 data utilized in GEM-T1. These satellites are similar in inclination to that nominally proposed for TOPEX/Poseidon and will strengthen the model when determining precise TOPEX/Poseidon ephemerides. LAGEOS ranging has been extended by nearly 3 years to include the global data taken during 1984, 1985, 1986 and the first 2 months of 1987. Likewise, ranging on Starlette has been extended to include data taken during 1984 and 1986, and the $1500-\mathrm{km}$ orbit of Ajisai is also included.
(d) there has been a major advance in our solution technique through the introduction of an optimal data weighting and automatic error calibration approach. These products are now an integral part of the estimation procedure.
(e) GEM-T2 is a significant improvement over GEM-T1 both in terms of its geoid representational accuracy and in its satellite orbit modeling uncertainties. This is especially true in terms of its predicted performance on TOPEX/Poseidon's radial accuracy using covariance propagations.

All of these issues, including in particular, a thorough error assessment of GEM-T2, will be described in detail within this report.

SECTION 2. REFERENCE PARAMETERS

A terrestrial gravity field solution must be defined within a well understood reference system. The dynamic satellite orbit computations are connected to ground-based observers through these definitions. The orbital trajectories are integrated in the Conventional Inertial Reference System (CIRS) which needs to be connected in time to the Conventional Terrestrial Reference System (CTRS) which is realized by the global network of Earth-fixed tracking stations. Application of terrestrial gravitational accelerations along the orbit are made using these same transformations.

Since 1979, the tracking data themselves have been sufficiently robust to allow a direct adjustment of the geocentric station locations, the Earth's polar motion and the change in the length of day (using 5 -day averaging intervals) which provides a satellite-based definition of the CTRS. This system is dominated or exclusively based on the satellite laser ranging acquired on the high-altitude LAGEOS satellite. Within GEM-T1 and GEM-T2, we have adjusted the Earth orientation parameters as part of the solution. This was desirable since we have moved our definition of the CTRS to a new terrestrial origin (i.e., we are using a "zero-mean" definition for polar motion based on LAGEOS and have transformed the historical Bureau International de l'Heure (BIH) series which is referred to CIO into this new system; see Marsh et al., 1987, 1988). There is a near-singularity when simultaneously defining the satellite's right ascension of the ascending node and UT1 using laser data given the weak sensitivity of the orbit to short wavelength longitudinal gravity signals. The orbit can be rotated in longitude by $30-100 \mathrm{~m}$ with little change in field performance. A change in UT1 of the same magnitude has the same effect. Thereby, the BIH definition of UT1 is adopted at the epoch of each 30-day LAGEOS orbit. The laser data then yields a well resolved measure of the change in length of day based on this BIH origin. The adopted tidal variations in the Earth rotation (UT1) series are those of Yoder et al., (1981).

The laser station coordinates which are utilized are from the GSFC LAGEOS SL6 (Christodoulidis et al., 1986) and SL7.1 (Smith et al., 1989 in press) solutions. The laser coordinate network is rotated through a fixed angle (defined by the offset of CIO with respect to our new terrestrial origin) yielding a consistent definition of geodetic latitude for the sites within our new CTRS. We have tied non-laser tracking systems into this definition of CTRS using a series of transformations and analyses as described in Marsh et al., (1987; Chapter 6).

The J2000 Reference System with its associated DE200/LE200 planetary ephemeris forms the basis for our CIRS definition. This connects the CTRS series in time using the nutation series of the IAU 1980 provided by Wahr (1979) and the IAU 1976 precession series developed by Lieske (1976)

As the accuracy of tracking instruments has evolved, the requirements for accurate reference frame definitions and consistent constants have become much more stringent. Physical models of increasing complexity are required to both exploit and explain these very precise satellite measurements. The advance of satellite geodesy has been oriented towards amplifying the science yield from increasingly more accurate data, and in parallel, developing newer tracking systems which permit more complex natural phenomena to be modelled. For the problem of determining a gravitational model, the solution output is a mathematical model of a physical phenomenon whose empirical coefficients taken individually are not directly observed. Thereby, complex geophysical interpretations of the GEM gravitational models are difficult unless strict attention is paid to these fundamental definitions. Errors in these models or neglected effects cause problems in the definition and interpretation of these fields. For example, this is important in advanced analyses like those in physical oceanography where the GEM geoid is used to isolate non-gravitational signals exhibited by the ocean topography. For this reason we have taken great care in selecting the reference frame definition and constants for the recent GEM solutions.

The following table lists the values adopted for the constants that enter into the models used to create GEM-T2. Only the most important ones have been included. We have also avoided repeating numbers which are implicitly embedded in well-known standard models which are referenced and adopted in the whole (e.g., the constants describing the Wahr nutation model or Lieske's expressions for the precessional matrix).

2.1 Astronomical Constants

Speed of Light
Equatorial radius of the Earth
Flattening of the Earth
Mean spin rate of Earth
Geocentric Gravitational Constant
Moon-Earth mass ratio
Astronomical unit
Sun-Earth mass ratio

2.2 Dynamical Models

Static Geopotential
Solid Earth Tides
Ocean Tides
Radiation pressure at 1 AU o radiation pressure coefficient Atmospheric Drag
o atmospheric drag coefficient
$299792458 \mathrm{~m} / \mathrm{s}$
6378137 m
1/298.257
$0.00007292115 \mathrm{rad} / \mathrm{s}$
$398600.436 \mathrm{~km}^{3} / \mathrm{s}^{2}$
0.012300034

149597870660 m
332946.038

Adjusting, GEM-T1 apriori Wahr (1979)
GEM-T1 apriori with 90 adjusting coefficients $0.0000045783 \mathrm{~kg} / \mathrm{m} / \mathrm{s}^{2}$ adjusted Jacchia (1971) with daily values of F10.7 and Kp flux adjusted; nominally once/day

2.3 Measurement Models

2.3.1 Optical Data

parallactic refraction
annual abberation
diurnal abberation
precession/nutation of images
proper motions
satellite clock corrections
for active satellites
Hotter (1968)
n
Wahr/Lleske
Hotter (1968)
APL provided values

2.3.2 TRANET Doppler Data

Time tag correction from WWV
Tropospheric refraction
Ionospheric refraction

Frequency bias correction

2.3.3 Laser Range Data

Pre- and post-pass range
callbrations
Tropospheric refraction
2.3.4 S-band Average Range-rate
Data

Tropospheric refraction
Ionospheric refraction
Antenna axis offset correction for non-az/el mounts

2.4 Keference System

CIRS
Planetary Ephemeris
Terrestrial time scale
Precession
Nutation
CTRS

O'Toole (1976)
Modified Hopfleld Model of Goad (Martin et al., 1987)
First-order correction obtained from difference of 150 - and $400-\mathrm{MHz}$ freq.
pass-by-pass bias adjustment

Figgatte and Polesco (1982)

Marini and Murray (1973)

Modified Hopfield Model of Goad (Martin et al., 1987) none
Gross (1968)/Martin et al., (1987)

J2000.0
JPL DE200
UTC (USNO)
IAU 1976 (Lieske, 1976)
IAU 1980 (Wahr, 1979)
Lageos global solution
SL6 rotated to
"zero-mean" system

\therefore

SECTION 3. THE GEM-T2 OBSERVATIONS

The tracking observations available for gravitational modeling span 30-years of technology change. These data contain a wide range of data precision and sophistication. The earliest observations were taken at moments of opportunity when satellites or their rocket body fragments were illuminated by the sun, yet visible to a pre-dawn or after-dusk shrouded Earth observer. The satellite was photographed against the star background and positioned within a celestial system yielding a satellite right ascension and declination in the reference system of the FK4 star catalogue. These images were capable of locating the satellite's direction vis-a-vis the observer to a precision of one to two topocentric seconds of arc which for most satellite altitudes translated into positioning of approximately 10 -meters.

Today's tracking technologies have advanced enormously, with active laser ranging systems tracking passive orbiting targets during day or night with single shot precision, which for the best systems, have sub-centimeter noise levels.

However, even for the extensive laser network now deployed to support the NASA/Crustal Dynamics Program and the European Wegener/Medlas activities, the fact remains that these data are obtained primarily for precision orbit determination. They are used for force modeling improvements as they become available and are not part of a cohesive program designed to optimize gravity field recovery. Absent a dedicated gravitational mission, these observations will not significantly improve in global coverage. Furthermore, these tracking data will remain limited in their ability to sense the terrestrial gravity model at shorter wavenumbers. Surface gravity observations and satellite altimetry help this situation in certain regions, but there remain large, geographically dependent gaps in data availability; there is also another problem with surface gravimetry due to the large variation in the global quality of these observations themselves.

Therefore, even the most modern tracking technologies provide insufficient global coverage and adequate sensitivity for resolving the geoid at intermediate and short frequencies. Furthermore, all contemporary geopotential modeling solutions must still rely on older, less precise observation subsets to provide the orbital coverage needed to resolve the fields, even at their present dimensions. Only a dedicated gravitational mission will likely have significant impact on this situation for the foreseeable future.

While the foregoing limitations will be dramatically improved when future missions planned for the 1990 s (e.g. Aristoteles) reach orbit, significant progress has been made in exploiting the historical observations to improve our knowledge of the long wavelength geopotential field. GEM-T1 and GEM-T2 heavily rely on the precise range measurements acquired by a global network of satellite laser ranging systems. Many more laser observations are now included in GEM-T2 than were used in GEM-T1.

Table 3.1 gives the orbital characteristics of the satellites which provided tracking data within the GEM-T2 model. Figure 3.1 graphically displays these orbits and presents a comparison of the inclination and altitude distribution of the satellites for both GEM-T1 and GEM-T2. Many of the satellites selected for GEM-T2, especially the additional optical satellites, were used to improve the distribution of orbital inclinations within the model, giving improved resolution of especially the zonal harmonics.

Table 3.2 compares the number of orbital arcs in GEM-T1 with the data set which is now used in GEM-T2. There have been major new observation sets added to the gravitational field models with GEM-T2. Nearly all of the satellites previously used in models like GEM-9 (Lerch et al., 1979) and GEM-L2 (Lerch et al., 1982b) are now included within this most recent model. This section will briefly review these additional observation subsets. Marsh et al., (1987) contains a detailed discussion of the GEM-T1 observations and the data reduction process. Herein, we

Table 3.1
Satellite Orbital Characteristics for GEM-T2 Ordered by Inclination

Satellite Name	Semi-major Axis (Km)	Eccentricity	Inclination (Degrees)	Data* Type
ATS-6	41867.	. 001	0.9	SST
Peole	7006.	. 016	15.0	L,O
Courier 1B	7469.	. 016	28.3	0
Vanguard 2	8298.	. 164	32.9	0
Vanguard 2RB	8496.	. 183	32.9	0
D1-D	7622.	. 085	39.5	L, O
D1-C	7341.	. 053	40.0	L,O
BE-C	7507.	. 026	41.2	L,O
Telestar-1	9669.	. 243	44.8	0
Echo-1RB	7966.	. 012	47.2	0
Starlette	7331.	. 020	49.8	L
Ajisai	7870.	. 001	50.0	L
Anna-1B	7501.	. 008	50.1	0
GEOS-1	8075.	. 072	59.4	L,O
Transit-4A	7322.	. 008	66.8	0
Injun-1	7316.	. 008	66.8	0
Secor-5	8151.	. 079	69.2	0
BE-B	7354.	. 014	79.7	0
OGO-2	7341.	. 075	87.4	0
OSCAR-7	7440.	. 002	89.2	0
OSCAR-14	7448.	. 004	89.2	D
5BN-2	7462.	. 006	90.0	0
NOVA	7559.	. 001	90.0	D
Midas-4	9995.	. 011	95.8	0
Landsat-1	7286.	. 001	99.1	S
GEOS-2	7711.	. 033	105.8	L, O
Seasat	7171.	. 001	108.0	L,D
Geosat	7169.	. 001	108.0	D
Lageos	12273.	. 001	109.9	L
GEOS-3	7226.	. 001	114.9	L
OV1-2	8317.	. 018	144.3	0

* SST - Satellite-to-Satellite Tracking Range Rate

L - Laser
O - Optical
D - TRANET/OPNET Doppler
S - S-Band Average Range Rate

Figure 3.1a Orbital Characteristics of the Satellites Used in Determining the GEM-T1 Gravity Model

Radial distance from geocenter (x 1000 km)

Figure 3.1b Orbital Characteristics of the Satellites Used in Determining the GEM-T2 Gravity Model
wish to augment this overview with the GEM-T2 complement of additional observations.

3.1 Laser Observations Added to GEM-T2

The major laser observation subsets which were added to GEM-T1 in forming GEM-T2 include:

O Lageos monthly arcs from the end of the MERIT Campaign in September of 1984 through February of 1987. This is a major addition to the Lageos data complement providing improved global coverage.

O Starlette 5-day arcs for 1984 and 1986 were reduced, nearly quadrupling the number of Starlette arcs being used. Again, these data benefitted from improved global coverage.

O 30 -day arcs of GEOS-1 laser data acquired during 1980 were added to the solution. These data were of a much higher quality than the data previously used from the 1977 to 1978 timeframe. These earlier data were dominantly acquired by high noise Smithsonian Astrophysical Observatory (SAO) laser systems. The SAO systems were upgraded in 1979 with the installation of a pulse chopper and improved optical sensitivity. These improvements brought these systems from the $50-\mathrm{cm}$ to the $10-\mathrm{cm}$ level of tracking precision. Additionally, the NASA mobile systems operating at the few-cm level were first deployed in the fall of 1979. These new data were very important for improving the prediction of the GEM-T2 model at these middle inclinations in support of TOPEX/Poseidon.

O 50 5-day arcs of GEOS-3 laser observations acquired during 1980 were also added to the solution. Like GEOS-3 discussed above, these data were found to be much improved over earlier GEOS-3 subsets for the same reason. These GEOS-3 data provided the single most important contribution when assessing GEM-T2's improvement over GEMT1 for predicting TOPEX/Poseidon radial orbit performance. GEOS-3 is very close to the nominal inclination proposed for TOPEX/Poseidon.

O The Japanese launched the Ajisal satellite in the summer of 1986 to support geodynamics using both laser and optical systems. The satellite was quite large (approximately $1-\mathrm{m}$ radius), permitting both laser and optical tracking. However, the satellite was placed into a high $1500-\mathrm{km}$ orbit, so atmospheric drag effects were small. An excellent laser ranging data set has been acquired on Ajisai, and 365 -day arcs have been utilized in GEM-T2. This satellite is important since it orbits at an altitude similar to that proposed for TOPEX/Poseidon. Table 3.3 summarizes these Ajisal orbital arcs.

3.2 Doppler Data in GEM-T2

There have been two additional TRANET data sets used in GEM-T2 which were unavailable for use with GEM-T1. The first was an extensive set of GEOSAT TRANET observations. These data provide a complement to the unfortunately short SEASAT data set in an essentially comparable orbit. The U.S. Navy's GEOSAT satellite was launched on March 12, 1985. GEOSAT is equipped with a radar altimeter and its orbit is tracked exclusively by the TRANET dual frequency Doppler systems which have data precision at the $0.4-$ to $0.6-\mathrm{cm} / \mathrm{s}$ levels. On November 8, 1986, the satellite completed its maneuvers placing it into a 17 -day Exact Repeat Mission (ERM) where its groundtrack repeated that of SEASAT when it was deployed in a similar groundtrack repeat interval. GEOSAT's groundtracks overfly those of SEASAT within 1 km at the equator. GEOSAT is supplying altimeter data in a later time period and these data far surpass those which were taken on SEASAT. SEASAT suffered a critical power failure 3 months into its mission, whereas the ERM data on GEOSAT have now been obtained for nearly 20 months as of

GEM-T2 TRACKING DATA SUMMARY

SAT.MAME $\frac{\text { INCLINATION }}{\text { (DEG) }}$ DATATYPE \quad GEM-TI ARCS GEM-T2

ATS-6/GEOS-3	0/115.0	SST	-	26
PEOLE	15.0	L, 0	6	6
COURIER-1B	28.3	0	10	10
YANGUARD-2	32.9	0	10	10
YANGUARD-2RB	32.9	0	10	10
D 1-D	39.5	L, 0	15	15
D 1-C	40.0	L,0	14	14
BEC	41.2	L, 0	89	89
TELESTAR-1	44.8	0	30	30
ECHO-1 RB	47.2	0	O	32
STARLETTE	49.8	L	46	157
AJISAI	50.0	L	6	36
ANMA-1B	50.1	0	30	30
GEOS-1	59.3	L, 0	91	121
I RANSIT-4A	66.8	0	-	50
I MJUN-1	66.8	0	-	44
SECOR-5	69.2	0	-	13
BE-B	79.7	0	20	20
OGO-2	87.4	0	-	16
OSCAR	89.2	D	13	13
OSCAR-7	89.7	0	-	4
5BN-2	90.0	0	-	17
NOYA	90.0	D	-	16
MIDAS-4	95.8	0	-	50
LANDSAT-1	98.5	S-BAND	-	10
GEOS-2	105.8	L, $\mathbf{0}$	74	74
SEASAT	108.0	D, L	29	29
GEOSAT	108.0	D	-	13
LAGE0S	109.9	L	58	85
GEOS-3	114.9	L	36	86
OYI-2	144.3	0	-	4
TOTAL			581	1130
*SST Satellite-to-Satellite Tracking				
L Laser ranging				
0 Optical				
D Dopple				
S-Band Unified	average r			

this writing. Altimeter data from GEOS-3, SEASAT and GEOSAT will be included in future combination gravity models with GEOSAT playing a dominant role in the contributions from this type of data.

In total, we received 80 days worth of data from a global tracking network of 45 sites. These data were reduced in the same approach as described in Marsh et al., (1987) for the SEASAT TRANET data (also see Anderle, 1983). Orbit computations for the GEOSAT ERM data were performed using the GEM-T1 gravity and tide models. Overall, 136 -day arcs of GEOSAT TRANET data encompassing the time period of November 8, 1986 to January 25, 1987 were included in GEM-T2. Because of orbital maneuvers which were needed to maintain the rigid repeating groundtrack geometry, some arcs which were analyzed departed slightly from the nominal 6 -day length.

An overall average RMS of fit obtained apriori from these data was $1.28 \mathrm{~cm} / \mathrm{s}$. Our assessment of data noise was $0.98 \mathrm{~cm} / \mathrm{s}$. This somewhat degraded result is attributable to other effects in the data like third-order ionospheric refraction errors which caused the performance of these systems to degrade, especially at times of high solar activity. However, these data are quite dense when 45 stations supported the GEOSAT Mission, so these data remain quite useful for gravitational modeling attempts. Within a 6-day time span, we found from 460 to nearly 900 passes of data to be available after editing low elevation passes.

The second source of TRANET data was provided by the NOVA-1 satellite. This U.S. Navy navigation satellite was placed in a circular polar orbit at 1180 km altitude. In addition, NOVA1 was equipped with a DISCOS single-axis dragg compensation system which serves to correct the satellite trajectory along track for non-conservative force model effects such as atmospheric drag and solar radiation pressure. This satellite was unique in this aspect, for it had much smaller drag perturbations than a typical satellite passively orbiting at the same altitude. On NOVA, one along-track acceleration parameter per day was adjusted to accommodate the along-track radiation pressure from our radiative pressure model and any systematic bias in the drag compensation system. However, for a non-drag compensated satellite at this altitude, the drag effects would be much larger. Non-conservative force model parameters are empirically adjusted along with the orbital state within GEM-T2 and can be confused with gravity coefficients having long period orbital effects like satellite resonance terms when they are adjusted within a given arc. NOVA observations provide a good sensing of the gravitational field and by being polar in inclination, the entire Earth was mapped by these data. Our NOVA data analysis efforts benefitted substantially from the work on the same satellite by Tepper (1987).

The NOVA- 1 data used in our analysis was taken as part of the MERIT Campaign in a Doppler supported effort called MERITDOC. The data spanned 95 days from March 30 to July 2, 1984. Sixteen globally distributed stations contributed tracking data to this campaign although data was not available from each for the entire campaign interval. In total, 166 -day NOVA- 1 arcs were orbitally reduced and included in the GEM-T2 solution. These orbital arcs are summarized in Table 3.4.

3.3 Satellite-to-Satellite Tracking Range-Rate Measurements

A satellite-to-satellite tracking experiment was conducted to enhance the normal tracking data sensitivity associated with localized geopotential mapping. This technique entailed the intersatellite Doppler measurement between a high orbiting geosynchronous spacecraft ATS-6 and the lower orbiting GEOS-3. An earlier experiment, where a manned Apollo spacecraft served as the lower satellite, yielded very localized gravity anomaly recovery (see Kahn et al., 1982). This Satellite-to-Satellite Tracking (SST) geometry is often referred to as the high/low configuration. The enhancement in sensitivity to geopotential signal is a result of the availability of a spaceborne Doppler system having high precision levels $(.03 \mathrm{~cm} / \mathrm{s}$ and $.01 \mathrm{~cm} / \mathrm{s}$ for the destruct and nondestruct data respectively) and an inter-satellite visibility of over one-half of the lower satellite's revolution.

As elaborated upon in VonBun et al., (1980) the basic SST range-rate measurement is constructed from the link between a ground station, a geosynchronous satellite and a near-Earth

Table 3.4

Epoch YYMMDD	No. Obs.	$\begin{aligned} & \text { RMS } \\ & (\mathrm{cm} / \mathrm{s}) \end{aligned}$
840330	2854	0.459
840405	4218	0.438
840411	4528	0.456
840417	5402	0.437
840423	5528	0.453
840429	6036	0.459
840505	6240	0.484
840511	6402	0.517
840517	5178	0.515
840523	5030	0.485
840529	3930	0.488
840604	3909	0.515
840610	3317	0.476
840616	4239	0.504
840622	4069	0.464
840628	2359	0.477
TOTALS	73239	0.469

Table 3.3
Ajisal Orbital Arc Summary

Epoch (YYMMDD)	No. Obs.	RMS (cm)	No. Stations
860818	5859	31.2	10
823	3416	29.4	12
828	2197	18.8	10
901	5305	34.4	12
906	3803	22.8	12
911	3281	22.6	12
860916	3471	21.2	11
921	3663	27.7	9
926	3003	24.9	9
1001	3053	26.2	9
1006	5480	21.6	10
1011	3543	21.6	10
861016	3503	29.7	13
1021	3514	23.5	10
1026	3039	24.4	10
1101	3280	26.4	11
1106	3584	22.4	11
1111	4306	21.0	12
861116	2538	18.7	11
1121	4319	22.4	11
1126	5425	23.1	11
1201	5605	25.5	11
1206	2854	24.0	9
1211	1678	21.8	6
861216	2876	24.4	8
1221	1208	23.9	7
1226	898	13.8	5
870106	6495	20.8	7
111	7059	18.2	7
116	4743	10.4	7
870121	4831	20.0	9
126	9173	23.5	11
201	7522	18.7	7
206	6414	15.5	10
211	2705	10.4	8
216	12558	17.8	9

Table 3.5

ARC TIME		NO. PASSES	AL ARC	$\begin{gathered} \text { SST } \\ \text { Rng-Rate } \end{gathered}$		Laser Range	
START YYMM	$\begin{aligned} & \text { STOP } \\ & \text { SDHHMMSS } \end{aligned}$	SST	Laser	RMS (cm/s)	NOBS	RMS (m)	NOBS
750425000000	750430000000	14	13	0.140	3007	0.441	445
750507000000	750508112320	3	5	0.134	590	0.228	129
750510000000	750514000000	9	13	0.104	1612	0.545	261
750518000000	750520194010	8	9	0.108	1549	0.727	298
750522000000	750526182500	16	10	0.202	3069	0.311	219
750527000000	750531153850	15	13	0.174	3078	0.312	431
750617000000	750621000000	13	13	0.233	2116	0.452	444
761219000000	761224033934	10	18	0.251	2579	0.354	519
761226000000	761229164804	6	8	0.151	1474	0.420	363
770626000000	770630000000	2	19	0.073	223	0.644	772
770712000000	770716000000	2	8	0.077	173	0.423	378
770727000000	770731000000	5	17	0.177	568	0.658	795
770803000000	770807000000	6	18	0.116	534	0.961	783
770808000000	770812000000	5	25	0.137	691	0.745	1122
770813000000	770817000000	3	19	0.106	397	0.557	688
770818000000	770821000000	2	6	0.057	311	0.231	194
780921000000	780925000000	2	14	0.092	399	0.602	540
780926000000	781001170654	4	28	0.211	803	0.688	1287
781004000000	781008170424	4	21	0.168	882	0.660	802
781010000000	781014185044	2	37	0.050	382	0.700	1446
781018000000	781022000000	2	23	0.061	370	0.603	936
781025000000	781029215134	4	20	0.157	757	0.799	805
781107000000	781112214700	4	22	0.200	734	0.696	732
790109000000	790116000000	2	23	0.049	409	1.551	955
790117000000	790121181500	3	18	0.047	353	1.626	863
790212000000	790216183454	2	17	0.050	338	0.650	820

satellite. The dominant portion of the range-rate signal is the inter-satellite range-rate between the geosynchronous satellite and the low orbiting satellite. The-ground-to-ATS-6 link in the measurement is made at S -Band frequencies while the inter-satellite link is made at C-Band. Fortunately, this later link takes place above the atmosphere and only at the extremes involving horizon tracking, does the inter-satellite signal penetrate the ionosphere. In such circumstances (i.e., if the inter-satellite vector passes within 300 km of the Earth's surface) these data were edited.

The SST data available from GEOS-3/ATS-6 is presented in Figure 3.2. ATS-6 was at $140^{\circ} \mathrm{W}$ longitude for most of the observations taken over the Pacific Ocean. The satellite was moved to a position over Africa for the acquisition of the eastern hemisphere data. While ATS6 was in its drift phase between these locations, passes over South America and the Atlantic Ocean were observed. Nearly two-thirds of these data -- 148 out of a possible 226 passes .- were used (the others lacked suitable ground tracking support) for the 265 -day arcs of SST utilized in GEM-T2. This is the first time any of these data have been utilized within the GEM model development. Table 3.5 summarizes these arcs and the initial observation statistics obtained in forming the normal equations. GEM-T1 was used as the apriori model for these computations.

3.4 Landsat-1 S-Band Radar Two-way and Three-way Average Range-Rate Observations

Landsat-1 is an Earth imaging satellite placed into a circular sun-synchronous orbit at an altitude of approximately 900 km . Being Earth imaging, Landsat required active attitude maintenance throughout its entire mission. However, when the satellite was deactivated in 1974, two months of thrust-free data were acquired on this satellite to support geodetic modeling efforts. Landsat-1 observations are very important for geopotential field recovery for many satellites are placed into orbit at this inclination for sun-synchronous mission requirements. SPOT-2, EOS and ERS-1 are future missions requiring precise orbits, and which are to be placed into orbits having very similar characteristics. Landsat-1 is also very interesting from a satellite geodesy standpoint given its very large, shallow resonance perturbations with the 14th, 28th and 42nd order terms in the gravity spherical harmonic expansion. These resonance effects are given in Table 3.6 and represent some of the largest such effects seen within GEM-T2.

The Landsat data were acquired by the Unified S-Band Tracking Network which was the operational network supporting NASA missions throughout the 1970's. Two-way (i.e., station to satellite to station) average range-rate data were acquired by sites located at GSFC, Madrid (Spain), Guam, Goldstone (California), Ascension Island, Bermuda and Hawaii. Three-way data were also acquired between several antennas located at GSFC and Goldstone where one station transmitted while two widely separated stations received the satellite return signal. Unfortunately, these data lacked any correction for ionospheric refraction effects which for daytime passes during high solar activity could produce measurement errors of 1 to $2 \mathrm{~cm} / \mathrm{s}$ which is at the level of fit we find for these observations. However, the data residuals were scrutinized and an elevation angle cutoff of 10 degrees was used (whereas these systems typically tracked to the horizon) to reduce problems resulting from this error source.

3.5 New Optical Data in GEM-T2

Table 3.7 summarizes the additional optical satellites which were added to GEM-T1 in forming GEM-T2. Briefly stated therein is the reason these data were selected for the GEM-T2 solution. Figure 3.3 shows the SAO Baker-Nunn camera locations which provided the tracking for these satellites whereas Table 3.8 shows the number of observations from each station included in the field. The geographic distribution of the stations is good and all sites acquired significant numbers of observations. Table 3.9 summarizes the number of 7 -day arcs and the number of observations utilized in GEM-T2. It also compares the current processing of these observations for inclusion in GEM-T2 versus that for GEM-7 in 1976 which was the last time these data were reduced to form normal equations. Improved processing and apriori information is evident. In total, 9 new optical data sets were added to GEM-T1 giving more than twice the number of these observations within the GEM-T2. Surprisingly, these data are important for the definition of the field, especially in the determination of the zonal and resonance orders in the gravity model.

Table 3.6
Landsat-1 Satellite Resonance Perturbations

m	MAIN RESONANCES	
14th Order	Beat Period (Days)	Along-Track Perturbation (meters)
28th Order	18.17	6400
42nd Order	9.09	76
13th Order	4.51	10
15th Order	1.06	11
16th Order	0.94	24
17th Order	0.48	7

Table 3.7
NEW OPTICAL DATA FOR GEM-T2

No.	SATELLITE	INCLINATION DEGREE	MEAN MOTION REV/DAY	REASON FOR SELECTION
1	OVI-2	144.27	11.45	Fill in inclination gap.
2	ECHO-1RB	47.21	12.21	Fill in inclination gap.
3	SECOR-5	69.22	11.79	Inclination near TOPEX.
4	INJUN	66.82	11.79	Inclination near TOPEX.
5	TRANSIT-4A	66.82	13.85	Inclination near TOPEX.
6	5BN-2	89.95	13.46	Resonance close to TOPEX.
7	OGO-2	87.37	13.79	Resonance close to TOPEX.
8	OSCAR-7	89.70	13.60	Resonance close to TOPEX.
9	MIDAS-4	95.83	8.69	Unique resonance and inclination.

Table 3.8
DISTRIBUTION OF OBSERVATIONS FROM BAKER-NUNN STATIONS

SATELLITE	SAO BAKER-NUNN STATIONS											
	9001	9002	9003	9004	9005	9006	9007	9008	9009	9010	9011	9012
OVI-2	114	71	138	70.	30	134	90	112	48	96	4	66
ECHO-1RB	428	558	686	404	226		224	362	162	489	549	394
SECOR-5	48	123	165	32	6	42	34	32	36	30	134	44
INJUN-1	499	427	522	120	262	108	167	104	186	169	322	428
TRANSIT-4A	595	546	787	246	267	54	134	116	146	196	310	435
$5 \mathrm{BN}-2$	150	74	58	44	16	104	20	62	54	76	58	104
OGO-2	135	154	115	98	36	87	102	54	32	81	86	156
OSCAR-7	63	118	246	80		380	194	102	94	34	186	365
MIDAS-4	4056	843	766	2722	1306	2929	2550	2658	3146	2174	2243	2839
TOTAL	6088	2914	3483	3816	2149	3838	3515	3602	3904	3345	3892	4831

Figure 3.3 SAO BAKER-NUNN Camera Stations

әяяе！еле едер шпи！хеш＊

$\varepsilon 9 \varepsilon^{\circ} \mathrm{L}$	068＇L	L668t	6LLEZ	0¢乙	S8	$7 \forall 10$	
906.0	696.0	6LLLE	628D1	09	02		
690 ！	S97＇1	2981	08L			－SVOIW	6
ESE＇乙			0821	＊ 7	†	L－y甘Jso	8
	079 ع	20Z1	196	91	L	て－090	L
SEでし	$8 て \downarrow^{\circ}$ ¢	078	SSE	＊ 21	9	己－NG9	9
608＇L	08でし	乙\＆8\＆	9181	09	－		
988＇	606°	OLEE	891		V	$\forall \nabla^{-1 I S N} \forall 81$	S
ちてでし			892	\square	6	L－NกCNI	\downarrow
	6181	922	062	＊EL	\downarrow	s－80JヨS	ε
6しでし	ZSS＇1	28tt	02ヵて	乙\＆	81	8メ1－OHJヨ	乙
2S9＇1	ES6．	عL6	016	＊\downarrow	\％	2－1＾0	
golwヨo	ヶWヨO					て－1ヘ0	1
		＇s90		SJy			
て1－WヨS	27－Wヨ9	21－Wヨ				コャ17コロー	ON
	年いコ	て1Wココ	27Wココ	21－Wヨコ	て7－Wヨ૭	NI $\forall \perp \forall 0$	

RUVWWNS

ZL－WヨO צOヨ $\forall \perp \forall O ~ 7 \forall O I \perp d O M \exists N$

$6 . \varepsilon$ गqед

SECTION 4. SOLUTION DESIGN: ESTIMATION WITH OPTIMUM DATA WEIGHTING

Our general method of weighted least squares with apriori signal constraints was implemented for the estimation of the Goddard Earth Models in the late 1970's (Lerch et al., 1979). This method has been modifled in GEM-T2 to include a new optimum data weighting technique which automatically calibrates the errors for the estimated gravity field (Lerch, 1989). Some review is made herein of our general solution methodology. Our constrained least squares method is analogous to least squares collocation (Moritz,1980) and has permitted us to extend the size of the adjusting model. The extension of the size of the solution to higher degree and order allows us to more thoroughly exhaust the gravitational signal sensed by ever more precise tracking technologies. Stable solutions extending beyond 16×16 were possible using this method whereas correlation among high degree coefficients caused unreliable coefficient adjustments when models were made lacking these constraints. As computer capabilities improved, satellite-only models were extended to degree and order 36 (as in GEM-T1) and increased significantly to the present size of GEM-T2. This earlier method (which now has been extended to provide optimal data weighting) is discussed in detail within Marsh et al., (1988) where it was shown to be analogous to the work of Moritz (1980).

In our general estimation process of the GEM solutions the new weighting technique has been integrated into the solution design. The method determines the weights for the data subsets across the different satellite tracking systems on different orbits in order to automatically obtain an optimum least squares solution and an error calibration of the adjusted parameters. The weighting system is designed to produce realistic error estimates. The data receive optimal weight in the solution according to their contribution to the model's accuracy. The method employs data subset solutions in comparison with the complete solution and uses an algorithm to adjust the data weights by requiring that the differences of the parameters between solutions agree with their corresponding error estimates. With the adjusted weights, the process provides for an automatic calibration of the solution's error estimates. The data weights which are obtained are generally much smaller than the weights associated with the accuracies of the observations (noise-only) themselves.

This algorithm is now an integral part of our general estimation technique. The weighting algorithm has been applied to the least squares process of minimizing the weighted observation residuals with apriori constraints on the size of the signal obtained from the known power spectrum of the terrestrial gravity field. The main purpose of the apriori signal constraints is to provide stability for the high degree terms, allowing the signal to be exhausted by the model.

The data weighting previously used in GEM-T1 and other earlier GEM models was based on a series of tests using selected arcs of tracking data, independent gravity anomaly data, and orbital deep resonance predictions to test the characteristics, performance and sensitivity of candidate fields. Models which were found to give better performance on these tests were studied, and data weights were further refined until an optimal model was developed based upon these criteria. The new weighting system is an outgrowth of the process undertaken to evaluate in great detail, the accuracy of GEM-T1 (Lerch et al., 1989) and the overall means for calibrating model uncertainties. The data weights selected for GEM-T1 have been specifically confirmed in these studies. However, when the complete data set for GEM-T2 is assembled, even the weights for GEM-T1's original data show some variation because of the increased data coverage in GEM-T2.

There are two major concerns in the proper weighting of least squares normal equations:
(a) weighting the individual observations corresponding to the expected accuracy of the observations within an aposteriori context. Ideally, these are the so-called "noise-only" statistics; and
(b) accounting for the effects of unmodelled blases and forces on the solution by reweighting the normal equations to balance the solution for the non-uniform presence of these effects.

The normal least squares solution accounts for (a) but not for the effects of (b) without some special analysis and selection of an optimal data weighting algorithm.

Within a least squares solution in the ideal case, the observation residuals approximate their noise-only distribution so that:

$$
\begin{equation*}
\left(\left(\sum \mathrm{r}^{2} / \sigma^{2}\right) / \mathrm{num}\right) \approx 1 \tag{4.1}
\end{equation*}
$$

where r is the observation residual, num is the number of observations and σ corresponds to its noise-only observational uncertainty. This behavior is common in theory where observations are unblased, uncorrelated and where data noise is the dominant error source. However, the observations avallable for gravitational field recovery and the ancillary force and measurement models which are required to isolate this gravitational signal depart markedly from this ideal case. Our solution suffers from a great many sources of systematic error, imperfect environmental and measurement models, neglected small force modeling effects and a host of other problems which need to be addressed if an optimal gravitational modeling solution is to result. Our understanding of these problems is presently limited to approximate estimates of the error magnitudes in our models, and we unfortunately lack the observations and the resources to improve everything which is part of our solution environment. The net result is that our solution aposteriori can only fit our most precise data sets, such as the observations provided by advanced laser systems, to a factor of 3 to 10 worse than their noise-only expectation of system performance. These problems cause optimization of data weighting and field calibration to be major undertakings if an improved solution with well understood and reliable error estimates is to result. Unfortunately, data noise has only a modest impact on the final data weights which are obtained.

Satellite orbital characteristics, area-to-mass ratios and the number/deployment of components comprising the satellite bus etc. are highly variable, which causes some satellites to experience much larger and more difficult to model non-conservative force model effects. Atmospheric drag for lower altitude satellites presents a serious modeling problem with present state-of-the-art atmospheric density models yielding errors of 20 to 30% for satellites at geodetically useful orbits of 800 to 1200 km altitude (Hedin, 1988). Adjustment of empirical coefficients scales the effective atmospheric density given by the drag models through a scaling of the drag acceleration over some temporal interval in an averaged sense. However, these coefficients do little to ameliorate problems associated with the nature and detailed structure of the fluctuations in density which exist but are presently unmodeled by contemporary density models within these averaging intervals. Drag is by no means unique in its imperfect representation.

The aposteriori RMS of fit to the observations gives some measure for determining the effective data weights by reflecting, in a relative sense, these force model difficulties especially when common tracking systems are used to acquire data on different orbits. Obviously, this relative comparison cannot be applied uniformly since few satellites are tracked by more than one tracking technology, and the tracking systems evolve over time. Nevertheless, the relative RMS of fit achieved from the solution is still used. However, assessment made across data sets can only be approximated and is based on some broad characterization of system noise-only characteristics when determining relative data weights.

However, when these systematic errors are present, they do not manifest themselves as random data residuals. This non-randomness (strongly seen within a pass of observation residuals) must also be accommodated through data reweighting. Furthermore, this requires taking into account the number of points in a typical pass of data so affected. This reweighting W_{j}, must be optimized across all data subsets j , which are used in combination to form the
combined solution normal-equations whose inversion yields the gravitational solution. W_{j} as
derived in Lerch, (1989) can be shown to approximate: derived in Lerch, (1989) can be shown to approximate:

$$
\begin{align*}
\mathrm{W}_{\mathrm{j}} & =1 / \hat{\sigma}_{\mathrm{j}}^{2} \\
& \approx \frac{1}{\left(\text { Nobs }_{\mathrm{j}}\right)\left(\mathrm{RMS}_{\mathrm{j}}\right)^{2}} \tag{4.2}
\end{align*}
$$

where: (Since the assigned apriori data noise uncertainty should represent the true noise in the data although this is seldom the case, an additional adjustment to the data weights is commonly needed.) RMS, is the aposteriori rms of fit to the observation subset j, and Nobs ${ }_{j}$ is a value corresponding to a typical number of points in a pass of tracking data. In practice, the RMS is scaled by a factor which changes with differing tracking technologies. Hence ∂, indicates the error showing the true value of a single observation of type j on the solution (see Tables 4.1 and 4.2).

The method for the solution requires the minimization of the sum 8 which is a combination of signal and noise as follows:

$$
\begin{equation*}
\mathcal{Q}=\Sigma \frac{\mathrm{C}_{1, \mathrm{~m}}^{2}+\mathbf{S}_{1, \mathrm{~m}}^{2}}{\sigma_{1}^{2}}+\Sigma \mathrm{W}_{\mathrm{j}} \mathrm{r}_{\mathrm{j}}^{2} \tag{4.3}
\end{equation*}
$$

where the signal is given by
$\mathrm{C}_{1, \mathrm{~m}}$ and $\mathrm{S}_{1, \mathrm{~m}}:$ which are the spherical harmonics composing the solution coeflicients;
$\sigma_{1} \quad:$ is a modified version of Kaula's rule which is the known power of the terrestrial gravitational field.

The noise is given by:
$r_{j} \quad:$ which are the observation residuals of the respective tracking system; and
$\mathrm{W}_{\mathrm{J}} \quad:$ which is the optimal weighting factor which compensates for unmodeled error effects (which should ideally equal the reciprocal variance of the noise of the respective tracking system).

When minimizing Q using the least squares method, the normal metric equation and error covariance is obtained as follows:

$$
W_{j} N_{j} x=W_{j} R_{j} \quad \begin{aligned}
& \text { are the original normal equations for the } j \text { th data subset (see } \\
& \text { Lerch, 1989). }
\end{aligned}
$$

The solution is formed after summing each of the satellite data normal matrices N_{J} over the entire range of data subsets giving a combined normal matrix for the solution by:

$$
\begin{equation*}
N=K^{-1}+\Sigma W_{j} N_{j} \tag{4.4}
\end{equation*}
$$

The:

$$
\begin{equation*}
K=\Sigma \frac{\mathbf{C}^{2}{ }_{1 m}+\mathbf{S}^{2}{ }_{1 m}}{\sigma_{1}^{2}} \tag{4.5}
\end{equation*}
$$

matrix is the diagonal signal matrix which is introduced to achieve improved stability for the gravitational model adjustment. This modified least squares method stabilizes the solution through the minimization of the size of the adjusting gravitational terms above a certain degree cutoff.

Letting $\mathrm{j}=\mathbf{0}$ denote the least squares subset normals for the apriori signal constraints for the coefficients, K (as in 4.5), then the complete normals for minimizing Q in (4.3) is given by:

$$
\begin{equation*}
\mathbf{N x}=\mathbf{R} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& N=\sum_{j=0} W_{j} N_{j} \\
& R=\sum_{j=0} W_{j} R_{j}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{V}_{\mathbf{x x}}=\mathrm{N}^{-1} \quad \begin{array}{l}
\text { is the approximate form for the error covariance matrix } \\
\text { which should yield reliable parameter uncertainties if proper } \\
\text { weighting factors }\left(W_{j}\right) \text { are used. }
\end{array}
\end{aligned}
$$

The weight W_{0} signifies the scale for the apriori signal constraints on the static gravity parameters. It is held fixed at unity since the power spectrum of the gravity field is well known. On the other hand, the optimal weights W_{j} for the satellite tracking data are quite variable as shown in Tables 4.1 and 4.2, and can depart from the nominal noise-only values by up to two orders of magnitude. Clearly, it is these weights which must be determined and optimized. We view the automation of this process as a considerable advancement.

4.1 The Optimal Weighting Algorithm

The automatic data weighting algorithm as developed by Lerch (1989) is given by the following procedure:

Let the normals for data set t be defined as ($\mathrm{w} \equiv \mathrm{W}$):

$$
\begin{equation*}
w_{t} N_{t}=w_{t} R_{t} \tag{4.7}
\end{equation*}
$$

where N is the normal matrix for data set t, R is the normal matrix of observation residuals, and w_{t} is the weight in the iterative solution. The complete solution containing all data sets is given as:

$$
\begin{equation*}
x=\left(\sum_{j} w_{j} N_{j}\right)^{-1}\left(\sum w_{j} R_{j}\right) \tag{4.8}
\end{equation*}
$$

A subset solution which lacks data set t is given as:

$$
\begin{equation*}
x_{t}=\left(\sum_{j \neq t} w_{j} N_{j}\right)^{-1} \underset{j \neq t}{\left(\sum_{j} w_{j} R_{j}\right)} \tag{4.9}
\end{equation*}
$$

The covariances for solution x and x_{t} are respectively:

$$
\begin{equation*}
V(x)=\left(\sum_{j} w_{j} N_{j}\right)^{-1} \text { and } V\left(x_{t}\right)=\left(\sum_{j \neq t} w_{j} N_{j}\right)^{-1} \tag{4.10}
\end{equation*}
$$

The normal residuals for these solutions are:

$$
\begin{equation*}
R(x)=\left(\sum_{j} w_{j} R_{j}\right) \text { and } R\left(x_{t}\right)=\left(\sum_{j \neq t} w_{j} R_{j}\right) \tag{4.11}
\end{equation*}
$$

The difference between the subset and full solutions can be predicted by their respective covariances. This is the principle behind this calibration and determination of optimal data weighting technique. The difference between the two fields reflects the unmodeled errors in data set t, since the error effects to first order, subtract out for the data sets common to both solutions. The difference is simply:

$$
\begin{equation*}
x_{t}-x=V\left(x_{t}\right) R\left(x_{t}\right)-V(x) R(x) \tag{4.12}
\end{equation*}
$$

If \mathbf{E} is used to express the expected value, then the differences in these models are predicted by the error covariances of the solution differences given by:

$$
\begin{align*}
E\left(x_{t}-x\right)\left(x_{t}-x\right)^{T} & =V\left(x_{t}\right)-V(x) \\
& =V\left(x_{t}-x\right) \tag{4.13}
\end{align*}
$$

We can now introduce the calibration factor k_{t} for the t data subset which is being computed. If the trace of a matrix is denoted as TR and we restrict the analysis to only the gravity coefficients, then k_{t} is given as:

$$
\begin{equation*}
\left(x_{t}-x\right)^{T}\left(x_{t}-x\right)=k_{t} T R\left[V\left(x_{t}-x\right)\right] \tag{4.14}
\end{equation*}
$$

and the adjusted weight as:

$$
\begin{equation*}
w_{t}^{*}=w_{t} / k_{t} \tag{4.15}
\end{equation*}
$$

Since the subset and complete solution alike change when the weight on a subset data set is altered, these weights require iteration. Several successive solutions are produced using improved weights until the calibration factor, k_{t}, equals 1 for each data subset. Guite remarkably, the weights converge in only a few iterations, as shown later in Table 6.1. Moreover, these calibrated weights largely follow the estimate based on the aposteriori RMS of fit and number of points in a typical pass as shown in equation (4.2).

Tables 4.1a and 4.1b present the major data subsets comprising GEM-T2. Also shown is the aposteriori RMS of fit (approximate) of the observations and the final weights computed. The computation of the weights and the automatic error calibration which results is discussed thoroughly in Section 6.

Table 4. 1 a

SATELLITE DATA IN GEM-T1

SATELLITE	SEMI MAJOR AXIS (km.)	ECC	INCL DEG	DATA TYPE	$\begin{aligned} & \text { OF } \\ & \text { ARCS } \end{aligned}$	$\begin{aligned} & \text { OF } \\ & \text { OBS } \end{aligned}$	$\begin{aligned} & \text { RMS } \\ & \text { RESID. } \\ & \sigma_{t} \end{aligned}$	$\begin{aligned} & \text { SIGMA* } \\ & \text { WEIGHTS } \\ & \hat{\sigma}_{t} \end{aligned}$
1 LAGEOS	12273.	. 0038	109.85	LASER	57	144527	10 cm .	182 cm.
2 STARLETTE	7331.	. 0204	49.80	LASER	46	57356	20 cm .	224 cm .
3 GEOS-3	7226.	. 0008	114.98	LASER	36	42407	70 cm .	816 cm .
4 PEOLE	7006.	. 0164	15.01	LASER	6	4113	90 cm .	816 cm .
5 BE-C	7507.	. 0257	41.19	LASER	39	64240	50 cm .	577 cm .
				CAMERA	50	7501	2 arcsec	5.6 arcsec
6 GEOS-1	8075.	. 0719	59.39	LASER	48	71287	70 cm .	667 cm .
				CAMERA	43	60750	1 arcsec	8.9 arcsec
7 GEOS-2	7711.	. 0330	105.79	LASER	28	26613	80 cm .	816 cm .
				CAMERA	46	61403	1 arcsec	8.9 arcsec
8 DI-C	7341.	. 0532	39.97	LASER	4	7455	150 cm .	816 cm .
				CAMERA	10	2712	2 arcsec	7.3 arcsec
9 DI-D	7622.	. 0848	39.46	LASER	6	11487	100 cm .	816 cm .
				CAMERA	9	6111	$2 \operatorname{arcsec}$	8.9 arcsec
10 SEASAT	7170.	.0021	108.02	LASER	14	14923	70 cm .	707 cm .
				DOPPLER	14	138042	$.5 \mathrm{~cm} / \mathrm{sec}$	7cm/sec
11 OSCAR-14	7440.	. 0029	89.27	DOPPLER	13	63098	1cm/sec	$8 \mathrm{~cm} / \mathrm{sec}$
12 ANNA-1B	7501.	. 0082	50.12	CAMERA	30	4463	2 arcsec	4.5 arcsec
13 BE-B	7354.	. 0135	79.69	CAMERA	20	1739	2 arcsec	4.5 arcsec
14 COURIER-18	7469.	. 0161	28.31	CAMERA	10	2476	$2 \operatorname{racsec}$	4.5 arcsec
15 TELSTAR-1	9669.	. 2429	44.79	CAMERA	30	3962	2 arcsec	4.5 arcsec
16 VANGUARD-2RE	8496.	. 1832	32.92	CAMERA	10	686	$2 \operatorname{arcsec}$	4.5 arcsec
17 VANGUARD-2	8298.	. 1641	32.89	CAMERA	10	1299	$2 \operatorname{arcsec}$	4.5 arcsec

*SIGMA $(\hat{\sigma})=\left(\frac{1}{w}\right)^{\frac{1}{2}}$

Table 4.1B

SATELLITE	SEMIMAJOR AXIS_(km)	ECC	INCL DEG	DATA IYPE	$\begin{aligned} & \text { \#OF } \\ & \text { ABCS } \end{aligned}$	$\begin{aligned} & \text { \#OF } \\ & \text { OBS. } \end{aligned}$	$\begin{aligned} & \text { PMS } \\ & \text { BESID. } \end{aligned}$	$\begin{gathered} \text { SIGMA } \\ \text { WEIGHTS } \end{gathered}$
$\begin{gathered} \text { LAGEOS } \\ \cdot 84,85,86,87 \end{gathered}$	12273	. 0038	109.85	LASER	29	134093	$\begin{gathered} \sigma t \\ 10 \mathrm{tm} . \end{gathered}$	$\begin{gathered} \hat{\sigma}_{\mathrm{t}} \\ 112 \mathrm{~cm} . \end{gathered}$
starlette '83.'84	7331	. 024	49.80	LASER	38	40041	20 cm .	224 cm .
STARLETTE				LASER	73	411102	20 cm .	500 cm
AJISAI	7870	. 0006	50.0	LASER	36	156021	16 cm .	316 cm .
GEOS-1 ${ }^{180}$	8075	. 0719	59.39	LASER	30	54129	32 cm .	258 cm .
GEOS-3 80	7226	. 0008	114.98	LASER	50	54526	25 cm .	224 cm .
GEOS-3				LASER	26	17027	70 cm .	816 cm .
$\begin{aligned} & \text { GEOS-3:ATS } \\ & \cdot 75.76 \end{aligned}$	41867	. 001	0.9	SST	9	19074	. $4 \mathrm{~cm} / \mathrm{sec}$	$7.1 \mathrm{~cm} / \mathrm{sec}$
$\begin{gathered} \text { GEOS-3:ATS } \\ \cdot 77,78,779 \end{gathered}$				SST	17	8326	. $2 \mathrm{~cm} / \mathrm{sec}$	$3.2 \mathrm{~cm} / \mathrm{sec}$
NOVA	7559	. 0011	89.96	DOPPLER	16	73238	. $4 \mathrm{~cm} / \mathrm{sec}$	$2.6 \mathrm{~cm} / \mathrm{sec}$
LANDSAT-1	7286	. 0012	99.12	DOPPLER	10	26426	$1.5 \mathrm{~cm} / \mathrm{sec}$	$10.5 \mathrm{~cm} / \mathrm{se}$
GEOSAT	7169	. 0008	08.0	DOPPLER	13	549141	$1.3 \mathrm{~cm} / \mathrm{sec}$	$4.5 \mathrm{~cm} / \mathrm{sec}$
OVI-2	8317	. 0184	44.27	CAMERA	4	973	2 arcsec	5.8 arcsec
ECHO-1RB	7966	. 0118	47.21	CAMERA	32	4482	2 arcsec	8.2 arcsec
SECOR-5	8151	. 0793	69.22	CAMERA	13	726	2 arcsec	5.8 arcsec
INJUN-1	7316	. 0079	66.82	CAMERA	44	3310	2 arcsec	8.2 arcsec
TRANSIT-4A	7322	. 0076	66.82	CAMERA	50	3832	2 arcsec	8.2 arcsec
5BN-2	7462	. 0058	89.95	CAMERA	17	820	2 arcsec	8.2 arcsec
OGO-2	7341	. 0752	87.37	CAMERA	16	1207	2 arcsec	8.2 arcsec
OSCAR-7	7411	. 0224	89.70	CAMERA	4	1862	2 arcsec	5.8 arcsec
MIDAS-4	9995.	. 0112	95.83	CAMERA	50	31779	2 arcsec	8.2 arcsec

SECTION 5. THE GEM-T2 GRAVITATIONAL MODELING SOLUTION RESULTS

This section discusses the major products of the GEM-T2 solution which include:
0 the static gravitational model,
O an expanded model for selected long wavelength ocean tidal terms,
O station coordinates for the 45 TRANET sites tracking GEOSAT, and
0 the Earth polar motion and orientation series.
Where applicable, these models and their uncertainty estimates will be compared with other solutions to provide a qualitative understanding of the accuracy of these results.

5.1 The GEM-T2 Gravitational Solution

Table 5.1 presents the normalized spherical harmonic coefficients for GEM-T2. These coefficients describe the static geopotential in classical spherical harmonic form given by:

$$
\left.\begin{array}{rl}
U=\frac{G M}{r} & \left\{1+\sum_{1=2}^{\operatorname{lmax}} \sum_{m=0}^{1}\left(a_{e} / r\right)^{1} P_{1, m}(\sin \phi)\right.
\end{array}\right\}
$$

where:

G	is the gravitational constant,
M	is the mass of the Earth,
ϕ	is the satellite geocentric latitude,
λ	is the satellite east longitude,
$\mathrm{P}_{\operatorname{lm}}$	is the normalized associated Legendre function of the first kind; and
$\mathrm{C}_{\mathrm{lm}}, \mathrm{S}_{\mathrm{Im}}$	are the normalized geopotential coefficients.

The geopotential forces are computed as the gradient of the potential U. The calibration of the model uncertainties are discussed in Section 6.

5.2 The GEM-T2 Ocean Tidal Solution

The GEM-T2 solution solves for temporal changes in the external gravitational attraction of the Earth sensed by near-Earth orbiting objects at the major astronomical frequencies. These tidal terms are not exactly equivalent with those measured on the ocean surface although they can be similar in magnitude and of a comparable physical origin. Even when tides themselves are being sensed, a satellite experiences an attenuated signal from the solid Earth/oceans/atmosphere which is a combined effect. An artificial satellite senses the mass redistribution associated with the tides, but the tracking data taken on these objects has no way of discriminating between the tidal effects caused by deformation within the solid Earth apart from the oceans. We choose to solve for terms in the space of ocean tides using a classical spherical harmonic representation as described in Christodoulidis et al., (1988), but this is merely a matter of convenience and not one of necessity. This approach is chosen since we believe that contemporary models of the frequency-dependent solid Earth tidal response (Wahr, 1981) are better known at the

Table 5.1

GEM-T2 NORMALIZED COEFFICIENTS

Table 5.1

GEM-T2 NORMALIZED COEFFICIENTS (continued)

Table 5.1

GEM-T2 NORMALIZED COEFFICIENTS (continued)

Table 5.1
GEM-T2 NORMALIZED COEFFICIENTS (continued)

Table 5.1

GEM-T2 NORMALIZED COEFFICIENTS (continued)

Table 5.1

GEM-T2 NORMALIZED COEFFICIENTS (continued)

Table 5.1
GEM-T2 NORMALIZED COEFFICIENTS (continued)

SECTORIALS AND TESSERALS

| INDEX | |
| ---: | ---: | ---: |
| N | M |
| 30 | 1 |
| 30 | 4 |
| 30 | 7 |
| 30 | 10 |
| 30 | 13 |
| 30 | 16 |
| 30 | 19 |
| 30 | 22 |
| 30 | 25 |
| 30 | 28 |
| 31 | 1 |
| 31 | 4 |
| 31 | 7 |
| 31 | 10 |
| 31 | 13 |
| 31 | 16 |
| 31 | 19 |
| 31 | 22 |
| 31 | 25 |
| 31 | 28 |
| 31 | 31 |
| 32 | 1 |
| 32 | 4 |
| 32 | 7 |
| 32 | 10 |
| 32 | 13 |
| 32 | 16 |
| 32 | 19 |
| 32 | 22 |
| 32 | 25 |
| 32 | 28 |
| 32 | 31 |

VALUE		INDEX	
C	S	N	M
-0.0028920	-0.0012918	30	2
-0.0015860	-0.0038591	30	5
0.0007888	0.0042382	30	8
0.0050687	-0.0023911	30	11
0.0139154	0.0021559	30	14
-0.0010943	0.0017714	30	17
-0.0056279	-0.0021906	30	20
-0.0033343	-0.0028411	30	23
0.0054745	-0.0048253	30	26
-0.0012153	-0.0015664	30	29
0.0016404	-0.0018644	31	2
-0.0027794	-0.0008999	31	5
-0.0013591	-0.009187	31	8
0.0036988	-0.0048314	31	11
0.0088911	0.0028272	31	14
-0.0038187	0.001522	31	17
0.0025791	0.0021631	31	20
-0.0072540	-0.0079895	31	23
-0.0120197	-0.031623	31	26
0.0056474	0.0034777	31	29
-0.0033367	-0.0027473		
-0.0090314	-0.0012789	32	2
0.0024110	-0.0040056	32	5
-0.0025447	0.0043308	32	8
0.0010293	-0.031557	32	11
0.0094405	0.0023561	32	14
0.0046018	0.0036467	32	17
0.0051995	-0.0033663	32	20
-0.0032033	-0.0021634	32	23
-0.0151375	0.0049203	32	26
0.0061368	0.013247	32	29
-0.0007472	0.0006465	32	32

UNITS OF 10^{-6}
en e e e e

value		INDEX		Value	
C	S		M	C	s
-0.0099354	-0.0027621	30	3	0.0002142	-0.0008170
0.0022161	-0.0016302	30	6	-0.0044003	0.0072634
0.0043515	0.0003917	30	9	-0.0007850	-0.0052641
-0.0064772	0.0046730	30	12	-0.0009621	-0.0025128
0.0023111	-0.0014279	30	15	0.0015724	-0.0094384
0.0010171	0.0005329	30	18	-0.0007191	-0.0007617
-0.0041997	0.0055677	30	21	-0.0117710	-0.0059539
-0.0032034	-0.0012062	30	24	-0.0039237	-0.0004978
-0.0035853	0.0091820	30	27	-0.0060251	0.0112707
0.0010564	0.0055391	30	30	0.0013675	0.0004697
0.0048821	0.0017028	31	3	0.0026006	-0.0030161
-0.0029227	-0.0020585	31	6	-0.0002222	-0.0004138
-0.0018443	-0.0023340	31	9	0.0014198	-0.0018380
0.0002831	0.0084056	31	12	0.0002142	0.0023222
-0.0115379	0.0025878	31	15	-0.0004972	-0.0036711
-0.0082264	0.0061006	31	18	0.0005808	-0.0010290
-0.0002625	0.0026803	31	21	-0.0027361	0.0055945
0.0096422	0.0094387	31	24	-0.0038312	0.0014093
-0.0137464	-0.0039037	31	27	-0.0016461	0.0066680
-0.0027890	-0.0044736	31	30	0.0022103	0.0035575
-0.0029573	0.0040291	32	3	0.0004785	0.0023346
-0.0003123	-0.0031440	32	6	-0.0045793	0.0013563
0.0013932	0.0028456	32	9	-0.0009975	0.0000644
-0.0046493	-0.0024290	32	12	-0.0043837	0.0061778
0.0043713	0.0094320	32	15	0.0050396	-0.0040359
-0.0104291	0.0039702	32	18	0.0048077	-0.0018535
0.0007365	-0.0003261	32	21	-0.0017672	0.0087413
0.0017026	-0.0002988	32	24	-0.0038090	0.0014151
-0.0011721	-0.0024842	32	27	-0.0034562	-0.0045753
-0.0005561	0.0048120	32	30	0.0044686	-0.0009518
0.0008406	-0.0009347				

Table 5.1
GEM-T2 NORMALIZED COEFFICIENTS (continued) UNITS OF 10^{-6}

| INDEX | |
| ---: | ---: | ---: |
| N | M |
| 33 | 1 |
| 33 | 4 |
| 33 | 7 |
| 33 | 10 |
| 33 | 13 |
| 33 | 16 |
| 33 | 19 |
| 33 | 22 |
| 33 | 25 |
| 33 | 28 |
| 33 | 31 |
| 34 | 1 |
| 34 | 4 |
| 34 | 7 |
| 34 | 10 |
| 34 | 13 |
| 34 | 16 |
| 34 | 19 |
| 34 | 22 |
| 34 | 25 |
| 34 | 28 |
| 34 | 31 |
| 35 | 1 |
| 35 | 4 |
| 35 | 7 |
| 35 | 10 |
| 35 | 13 |
| 35 | 16 |
| 35 | 19 |
| 35 | 22 |
| 35 | 25 |
| 35 | 28 |
| 35 | 31 |
| 35 | 34 |

Table 5.1
GEM-T2 NORMALIZED COEFFIĊIENTS (continued)

Table 5.1

GEM-T2 NORMALIZED COEFFICIENTS (continued)

SECTORIALS AND TESSERALS						UNITS OF 10^{-6}				VALUE	
INDEX		value		INDEX		VALUE		INDEX			
	M	C	S	N	M						
40	1	0.0003977	0.0011647	40	2	-0.0003638					
40	12	0.0002103	0.0002648	40	13	-0.0023484	-0.0033431	40	14	0.0006976	-0.0006294
40	15	0.0001404	0.0025006	40	23	0.0011245	-0.0014907	40	14	0.0000423	0.0010452
40	25	-0.0007236	-0.0024068	40	26	0.0050145	-0.0015346	40	24 27	0.0004783 -0.0009711	0.0018836
40	28	0.0017698	0.0040420	40	29	0.0010936	0.0002024	40	27 35	-0.0009711 0.0009078	-0.0002623
40	36	0.0013914	0.0029042	40	37	-0.0016385	0.0016023	40	35 38	$\begin{array}{r} 0.0009078 \\ -0.0002456 \end{array}$	-0.0027760
40	39	0.0004278	-0.0008566	40	40	-0.0007832	0.0004286		38	-0.0002456	0.0009014
41	1	-0.0012735	-0.0002474	41	2	-0.0003915	-0.0001628				
41	12	0.0027148	0.0011758	41	13	0.0016950	0.0037141	$\begin{aligned} & 41 \\ & 44 \end{aligned}$	14	0.0001253	0.0008125
41	15	0.0001752	-0.0021864	41	23	0.0001894	0.0006816	41	24	0.0017087	0.0033150 -0.0000413
41	25	-0.0018848	0.0011051	41	26	0.0047837	-0.0080686	41	27	-0.0011405	-0.0000413 0.0014509
41	28	-0.0042768	-0.0009932	41	29	0.0002297	0.0023047	41	35	-0.0011405 0.0005460	0.0014509 0.0004614
41	36	-0.0011322	-0.0010519	41	37	0.0005529	-0.0017954	41	38	-0.0000004	0.0004614 0.0010341
41	39	-0.0003088	-0.0005950	41	40	0.0004386	-0.0004779	41	41.	-0.0003718	$\begin{aligned} & 0.0010341 \\ & 0.0000932 \end{aligned}$
42	1	0.0005314	-0.0005602	42	2	0.0006463	-0.0005361	42			
42	12	0.0014837	-0.0010948	42	13	-0.0001945	-0.0001583	42	11 14	0.0012176 -0.0004083	-0.0003672
42	15	-0.0014494	0.0009136	42	23	0.0003650	-0.0014766	42	14 24	-0.0004083 0.0011082	-0.0016310
42	25	0.0007718	0.0029789	42	26	-0.0043012	-0.0032607	42	27	0.0026574	-0.0002960
42	28	-0.0001477	0.0038958	42	29	-0.0038343	0.0007940	42	35	-0.0011902	-0.0013152
42	36 39	0.0020302	0.0001011	42	37	0.0000419	-0.0010701	42	38	0.0008246	-0.0013107
42	39 42	-0.0004072 -0.0003950	0.0018459	42	40	0.0014332	-0.0007298	42	41	-0.0007583	0.0011773
43	1	-0.0000801	0.0006980	43	2						
43	12	0.0006744	-0.0008274	43	13	-0.0009052	0.0002684	43	11	-0.0012732	-0.0003219
43	15	-0.0011884	0.0003396	43	23	0.0021243	0.0006238 -0.0001977	43	14	-0.0015029	0.0027864
43	25	-0.0000106	-0.0000279	43	26	-0.0038657	-0.0002359	43	24	0.0009323	0.0010513
43	28	-0.0009041	0.0088787	43	29	-0.0030416	-0.0001038	43	27 35	0.0064481 -0.0014784	0.0040941
43	36	0.0009173	-0.0010471	43	37	0.0004137	0.0004758	43	35	-0.0014784	-0.0008165
43	39	0.0000636	0.0009355	43	40.	0.0006770	-0.0018402	43	41	0.0005844	-0.0007628
43	42	-0.0000040	0.0014679	43	43	0.0005206	-0.0003446	43	41	0.0003727	0.0006843

				90071000	ع9 20000°	$\varepsilon \downarrow$	$\angle \nabla$	8102000．0－	91910000	で	$\angle \nabla$
102650000	101て100＊0－	$\vdash \downarrow$	$\angle t$	29980000	もてヤて000＊0－	$0 \downarrow$	$L \downarrow$	2L6L0000	L981000\％	6ε	$\angle t$
8991000＇0	$1 \angle 89000^{\circ}$	8ε	$\angle \nabla$	6809000＇0	01690000	$\angle \varepsilon$	$\angle \nabla$	88Lヤ000＊	896t000\％	98	$\angle \nabla$
92880000－	$8 \checkmark G \angle 000^{\circ} 0$	GE	$\angle \nabla$	$87 \angle 10000^{-}$	\＆て1920000	62	$\angle \nabla$	ヵても19000－	くてヤて1000－	82	$\angle \square$
LLOZOOO ${ }^{-}$	カナレト0000	LZ	$\angle \nabla$	LE180000－	6．692000	9 9	$\angle t$	6ヵし50000－	0290000．0	92	$\angle \nabla$
己\＆Lヤ000 0^{-}	S8L2000 ${ }^{\circ}$	\downarrow－	$\angle t$	$\angle \nabla 62000^{\circ} 0$	七9980000－	$\varepsilon 乙$	$\angle \nabla$	28680000－	16660000^{-}	G1	$\angle D$
七टZS1000－	16680000	ャレ	$\angle \nabla$	08670000^{-}	99190000^{-}	$\varepsilon 1$	$\angle \nabla$	6820000°	01900000	てL	$\angle \square$
¢9ヶ0000\％${ }^{-}$	9LELOO0＇0	1.1	$\angle \nabla$	SG900000－	10280000	乙	$\angle t$	291ヵ0000－	8L92000＇0	\downarrow	$\angle \nabla$
$\angle 66 \angle 2000$				SL－ $2<9000$	18667000°	$\varepsilon \downarrow$	$9{ }^{\text {¢ }}$	LLटE00000	98LGE00．0	で	97
26620000	80601000	17	97	G0LZZ00＇0－	SttS	0ヵ	97	$\checkmark 09 \angle 000^{\circ} 0^{-}$	ことけ10000	6ε	97
$89 \nabla \angle 000 \cdot 0$	SL920000	8ε	97	18SS000．0－	レてヤ6000＊0－	$\angle \varepsilon$	97	¢8620000－	8t 220000°	9ε	97
6S160000	L8L0000＇0	$\bigcirc \varepsilon$	97	ع10ヵ000\％${ }^{\circ}$	29621000	62	97	82LIG000－	计1000＊－	82	97
L0801000	6L9 $2200^{\circ} 0^{-}$	L	97	SL061000	06260000	92	97	こち81500\％	ヤEOL000\％	G2	97
87120000	L10t000 ${ }^{\circ}$	\downarrow て	97	89SE000＇0	SS61000．0－	$\varepsilon 乙$	97	9ャ1 20000^{-}	ヤ198000\％－	G1	97
88090000	9087000＇0－	－1	97	L8LZ000＇0－	$18 \angle 1000{ }^{\circ}$	$\varepsilon 1$	97	6591000＊0－	L982000 ${ }^{\circ}$	21	97
เ82E000 0	S619000 ${ }^{\circ}$	$1 \downarrow$	97	09680000	9て己七000＊－	己	97	9288000＊0－	S101000\％	1	$9 \downarrow$
L102Z000－	8692000＊0－	$\downarrow \downarrow$	Gt	$589 \angle 0000$ $16 \angle 10000$	$\downarrow \downarrow$ ¢ャレ000－	$\varepsilon \downarrow$	St	gでてzooo	88080000	で	St
09980000－		8		－	6 L 20000	OV	St	9slこL000－	86ヵ20000－	68	St
$9 \mathrm{GS5000} 0$	－2025000－	8ε	St	916ャ0000	$9 \mathrm{SG6000}{ }^{-}$	LE	St	－10st000	0ヵても000＇0－	9E	$9 t$
てE11E000－	815000	¢	GV	00StL000－	929GL000－	62	St	829sL000	¢عとしゃ000	82	St
186E0000	LSLSE000－	L	St	866t1000	2L9 20000°	92	St	6670000°	SLEE000＇0	G2	St
18680000	LSSt000＊＊	\downarrow－	St	SSLE000＊0－	92910000	$\varepsilon 己$	St	S00t1000	てLヤ0000＊0	G1	St
ट8OLL00．	L6ヤ10000	$\rightarrow 1$	St	9SSS1000－	68L1000＇0－	$\varepsilon \downarrow$	St	てャ99000＊＊＊	$\angle 8980000^{\circ}$	て1	Gt
$0690000 \cdot 0$	こんヤ10000	しト	Gt	6020000\％	$89 \varepsilon \vdash 000 \cdot 0$	Z	St	LEてヤ000\％	S869000 0	\downarrow	St
				9 12118000°	82 8 890000	$\varepsilon \downarrow$	カャ	zt6 21000°	$19 \angle 2000{ }^{\circ}$	で	$\square \downarrow$
Lعヤ¢¢0000－	ことこ800000	\downarrow	$\downarrow \square$	ちS6LZ000		0t	ゅャ	890t000\％	こZL9000＇0	68	カワ
00100000	เع8L000＇0－	8ε	ヤャ	とてもG0000	1ト0ナ1000	$L \varepsilon$	ャワ	\＆と98000\％${ }^{\circ}$	9LStL00＇0－	9ε	カャ
07080000^{-}	こらちヤ0000	$\bigcirc \varepsilon$	ャワ	てZャ01000	10t0100\％	62	カ	عاเ9000＊0	0L09000＇0－	82	\downarrow
61 201000°	己ZLEZ00＇0	$\angle 己$	カヤ	ととトて0000	$\downarrow 690000$	92	$\downarrow \downarrow$	86ヶ¢000\％	08G6000\％	G	カカ
08190000－	L860000 ${ }^{\circ}$	\downarrow ¢	カヤ	SャレE1000	SLLG000\％${ }^{-}$	$\varepsilon 乙$	カも	8002000 $0-$	9002000\％	G1	カ
89971000－	18L00000	ヤレ	ャワ	06をて1000	8SLてZ000	$\varepsilon 1$	ャワ	6089000 0	0LEZ000＇0	てし	カカ
6801000°	$9 \angle 0 \triangleright 000^{\circ} 0^{-}$	トレ	$\downarrow \downarrow$	GZOZ000．0	$\angle Z 880000$	乙	カャ	6L9EL00＇0－	L098000 0	b	カ
S	$\wedge \bigcirc$	$\underset{X \exists C}{W}$									

IG әqеュ

Table 5.1
GEM-T2 NORMALIZED COEFFICIENTS (continued)

wavenumbers of interest for orbital computations than are the ocean tidal terms at the same wavenumbers.

However, one must exercise caution when comparing dynamic satellite solutions for ocean tidal terms with those obtained oceanographically. Firstly, oceanographic measurements are relative to a land or sea-bottom reference while the effects sensed by satellite data are geocentrically referenced. More importantly, the satellite experiences a changing gravitational attraction which results from all mass redistribution within the Earth/ocean/atmospheric system. Within the semi-diurnal and diurnal bands, clearly tidal effects are dominant and a comparison between ocean models and satellite solutions is reasonably straightforward under the assumption that the solid Earth tides have been well modeled. However, at monthly, semi-annual, annual and longer periods, there are important climatological effects (e.g. Gutierrez and Wilson, 1988), changes in the hydrosphere pertaining to ground water retention cycles and the volume of water stored in continental aquifers (e.g. Chao, 1988), in snow cover (e.g. Chao and O'Connor, 1988) and other sources of mass redistribution which are not "tidal" in origin, and certainly not isolated to changes in the ocean surface at these periodicities. We believe that the large value we obtained for the Sa tide at third degree represents north to south hemispheric mass transport effects with an annual cycle which is not of a tidal origin. This coefficient is large, but at the same time, it seems well determined within our analysis. However, radial non-conservative force modeling errors may be accomodated by an adjustment of this term.

Although admitting to these limitations, we have in the past compared our tidal solutions with both ocean models and other satellite solutions. These comparisons are found in Christodoulidis et al., (1988). While these comparisons will not be repeated herein, it is fair to say that GEM-T2 compares equally well with the results given for GEM-T1 within this reference.

Table 5.2 presents the GEM-T2 tidal solution. It has been compared with the solution developed in GEM-T1 (given in Marsh et al., 1988) and overall, the agreement is very good. Principally, in GEM-T2 we were able to extend the solution for the $\mathbf{m}=0$ long period tidal band to include a third degree coefficient for the $\mathrm{Sa}, \mathrm{Ssa}$, Mf and Mm lines. In the diurnal band ($\mathrm{m}=1$), the solution for O1, P1, and K1 has been extended to include the adjustment of terms of degree 5. Further, within the semi-diurnal band, where $\mathrm{m}=2$, a solution containing terms of degree 6 has been performed for K2, S2, M2, N2, and T2 tide lines. In each case, an additional degree above GEM-T1's cutoff was accomplished with 90 adjusting coefficients in the GEM-T2 solution.

Table 5.2
GEM-T2 Dynamic Ocean Tidal Model

Darwinian Name/ Constituent			Values		Uncertainties	
Tide	Degree	Order	Amplitude (cm)	Phase (deg)	Amplitude (cm)	Phase (deg)
-- Long Period Band * --						
Mm	2	0	0.740	256.318	0.317	23.973
Mm	3	0	0.814	16.653	0.673	46.210
Sa	2	0	3.033	28.771	0.404	8.034
Sa	3	0	6.472	320.140	0.574	5.210
Mf	2	0	2.069	237.076	0.312	8.662
Mf	3	0	1.032	354.630	0.827	42.651
Ssa	2	0	1.276	249.472	0.415	17.933
Ssa	3	0	0.866	89.398	0.560	36.494
-- Diurnal Band --						
K1	2	1	2.845	325.513	0.165	3.349
K1	3	1	0.903	14.513	0.109	7.145
K1	4	1	2.487	258.163	0.208	4.895
K1	5	1	2.184	106.526	0.215	5.676
01	2	1	2.717	315.443	0.128	2.688
01	3	1	1.390	83.019	0.151	6.271
O1	4	1	1.904	279.743	0.210	6.197
01	5	1	1.520	118.638	0.210	7.830
P1	2	1	1.105	313.188	0.167	8.650
P1	3	1	0.344	359.467	0.109	18.970
P1	4	1	0.837	262.941	0.212	14.419
P1	5	1	0.442	148.854	0.216	27.769
-- Semi-Diurnal Band --						
K2	2	2	0.319	313.503	0.043	7.775
K2	3	2	0.231	189.952	0.040	7.468
K2	4	2	0.169	112.652	0.043	14.517
K2	5	2	0.079	96.276	0.034	23.516
K2	6	2	0.043	203.524	0.045	59.854
M2	2	2	3.320	321.257	0.047	0.814
M2	3	2	0.304	156.469	0.056	10.574
M2	4	2	0.994	127.174	0.046	2.669
M2	5	2	0.290	8.059	0.036	6.943
M2	6	2	0.403	320.819	0.049	6.946

* symmetries exist in the harmonic expansion of the $m=0$ tides so that the values represent the sums of the C^{+}and C^{-}(prograde and retrograde) terms (see Christodoulidis et al., 1988: Appendix A).
-- Semi-Diurnal Band (continued) --

S2	2	2	0.831	300.412	0.044	3.017
S2	3	2	0.328	221.479	0.034	6.079
S2	4	2	0.333	87.229	0.042	7.639
S2	5	2	0.136	9.561	0.032	15.998
S2	6	2	0.215	284.419	0.044	12.013
N2	2	2	0.678	334.416	0.061	5.171
N2	3	2	0.088	155.802	0.060	39.477
N2	4	2	0.250	139.018	0.049	11.169
N2	5	2	0.094	341.627	0.037	22.892
N2	6	2	0.059	3.215	0.054	52.701
T2	2	2	0.046	273.217	0.044	55.890
T2	3	2	0.005	119.652	0.034	420.136
T2	4	2	0.036	242.628	0.045	72.181
T2	5	2	0.088	70.699	0.033	21.134
T2	6	2	0.042	221.127	0.047	63.835

5.3 Tidal Braking in the Earth/Moon/Sun System Using Dynamic Tide Model of GEM-T2

Abstract

Modern satellite tracking systems allow us to monitor the orbital motion of near-Earth satellites to unprecedented levels of accuracy. The GEM-T2 geopotential is a model which uses these observations to deduce both the static and tidal potential fields. The complete GEM-T2 tidal model containing both the adjusted and unadjusted terms has been used to estimate the effects of the Earth's tides on the Earth/Moon/Sun system. The solid Earth tidal model which is used has no phase angle (Wahr, 1981) so it is free of dissipation, but any residual phase due to anelastic properties of the solid Earth would be compensated for in the adjusting ocean tidal coefficient set of GEM-T2 for the twelve major tidal frequencies which are allowed to adjust. Therefore, this model should accurately reflect the external tidal potential sensed on Earth orbiting satellites and can be used directly to infer the tidal contribution to the exchange of angular momentum within the Earth/Moon and Earth/Sun systems.

Using the development given in Christodoulidis et al., (1988), we have calculated the secular change in the mean motion of the Moon and the tidal braking in the Earth's rotation rate using GEM-T2. Table 5.3 presents a comparison of the GEM-T1 and GEM-T2 tidal constituents when used to compute these two effects. The secular change in the lunar mean motion estimated from GEM-T2 is $-26.6 \pm .5$ arcsec century ${ }^{-2}$ which can be compared with GEMTl's implied value of $-25.3 \pm .6$. The major difference in the models is the change in the second degree value for the Mf tide (both in amplitude and phase) and a small change in second degree M2 which increased slightly in amplitude. These changes combine to move the GEM-T2 value for the calculated secular change in the lunar mean motion further away from the value being obtained from lunar laser ranging which is -24.9 ± 1.0 (Newhall et al., 1986).

The tidal braking of the rate of the Earth's rotation due to conservation of angular momentum in the Earth/Moon/Sun system yields a value of $-6.31 \pm .16 \times 10^{-22} \mathrm{rad} \mathrm{s}^{-2}$. GEMT1 yielded a value of $-5.98 \pm .22$. Taking into account the effect of the secular change in the second degree zonal harmonic as given by Yoder et al., (1983) of 1.29 ± 0.28 when mapped into the braking of the Earth's rotation rate (see Christodoulidis et al., 1988 and Bursa, 1986), artificial satellites give a combined value of 5.02 ± 0.32 and $4.69 \pm 0.36 \times 10^{-22} \mathrm{rad} \mathrm{s}^{-2}$ for GEMT2 and GEM-T1 respectively. These values are consistent with recent astronomic studies (e.g. Stephenson and Morrison, 1984) who find a value of $2.4 \mathrm{~ms} /$ century for eclipse records prior to 1620 and $1.4 \mathrm{~ms} /$ century for telescopic data since 1620. The GEM-T2 and GEM-T1 values correspond to 1.88 and $1.76 \mathrm{~ms} /$ century.

5.4 The GEM-T2 Earth Rotation and Polar Motion Series

The GEM-T2 solution is based on tracking data spanning the period from mid-1960 to mid-1987. The quality of the data is not uniform at all; it has therefore been decided that the reference frame be adjusted only during the years when the data contains robust subsets of high quality laser tracking on such satelites as Lageos, Starlette and Ajisai. This translates to the period from 1980 onward.

The definition of the adopted reference system and its realization has been discussed extensively in Marsh et al., (1988). The most important features which we will need for the present are the fact that the apriori series is based on a combination of BIH and Lageos SL6derived values. The series have been compared over a 6 -year overlapping period and the resulting transformation applied to the BIH segment to put it in the SL6 frame. Finally, the average of the pole coordinates over the 6 years 1979-84 has been subtracted to create the apriori series in a coordinate system with an origin that is nearly coincident with the center of the wobble. This results in a systematic offset of the TOPEX/Poseidon solution reference frame to that of IERS(BIH) or SL7. 1 of some 38 mas in the x component, and 280 mas in the y component.

Table 5.3 Comparison of GEM-T1 and GEM-T2 Dynamic Tide Models for Secular Change in the Mean Motion of the Moon (n) and in the Rotational Velocity of the Earth (Ω)

Tide

056.554 Sa	0.00	0.00	0.00	0.00
057.555 Ssa	-0.00	0.00	-0.00	0.00
058.554	0.00	0.00	0.00	0.00
065.455 Mm	-0.03	0.31	-0.13	0.12
075.555 Mf	-0.56	0.18	-1.18	0.16
075.565	-0.10	0.06	-0.10	0.06
135.655 Q1	-0.18	0.04	-0.18	0.04
145.545 O1f	-0.10	0.02	-0.10	0.02
145.555 O1	-2.92	0.25	-3.12	0.21
155.455 M1f	0.00	0.00	0.00	0.00
155.655 M 1	0.01	0.00	0.01	0.00
$162.556 \pi 1$	-0.00	0.00	-0.00	0.00
163.555 P1	-0.00	0.00	-0.00	0.00
164:556 S 1	0.00	0.00	0.00	0.00
165.545 K1f	----	----	----	----
165.555 K1 moon	----	----	----	----
165.555 K1 sun	----	----	----	----
165.565 Kls	----	----	----	----
$166.554 \Psi 1$	0.00	0.00	0.00	0.00
$167.555 \phi 1$	0.00	0.00	0.00	0.00
175.455 J 1	0.01	0.00	0.01	0.00
185.555 OO1	-0.00	0.00	-0.00	0.00
245.655 N2	-1.43	0.16	-1.39	0.14
255.545 M2s	0.02	0.01	0.02	0.01
255.555 M2	-20.00	0.40	-20.44	0.39
265.455 L2	0.01	0.00	0.01	0.00
271.557	0.00	0.00	0.00	0.00
272.556 T2	-0.00	0.00	-0.00	0.00
273.555 S2	-0.00	0.00	-0.00	0.00
274.554 R2	0.00	0.00	0.00	0.00
275.555 K 2 moon	----	----	----	----
275.555 K 2 sun	--	----	----	----
285.455	0.00	0.00	0.00	0.00
295.555	0.00	0.00	0.00	0.00
total	-25.27	0.61	-26.61	0.51

The estimated Earth Orientation Parameter (EOP) series are displayed in Figures 5.1 through 5.4, their formal (unscaled) accuracies are shown in Figures 5.5, 5.6, and 5.7. The differences of the estimated coordinates of the pole from the apriori values are plotted in Figures 5.8, 5.9 and 5.10. The results are remarkably close, within 0.5 mas, to those obtained with the GEM-T1 solution. The systematic bias of some 17 mas in the y component is now well understood and its source is an erroneous transformation of part of the apriori series. Because the adjustment in the pole is free, the error only affects the display. The RMS about the mean for these corrections to the apriori are 4.2 mas for the x component and 3.5 mas for the y component. These values are nearly identical to those within the GEM-T1 solution.

To further evaluate the solved EOPs we compared the common part of our solution to that of the VLBI-based IRIS series. The overlapping period is 84/01/05 to 87/02/18. Transformation parameters estimated from this comparison are given in Table 5.4. Our origin is very consistent with that of IRIS once we have accounted for all the systematic differences between frames. Of more interest, however is the agreement between the series when the systematics are eliminated. The RMS differences in x and y are 2.2 mas and 2.5 mas respectively, and 0.4 msec and 0.16 msec for Earth rotation (A.1-UTIR) and length of day (LODR) correspondingly. If we assume that the errors between the two series are random and uncorrelated, which is realistic since they come from independent techniques and data sets, then the above RMSs can be multiplied by 0.707 to give the individual series uncertainties. This results in realistic error estimates for polar motion at about 1.5 mas and length of day variations at 0.1 msec .

5.5 GEOSAT TRANET Station Coordinates

In general, the station positions were held fixed in our GEM-T2 solution as was done for GEM-T1. These apriori station coordinates were predominantly based on the ultra-precise geodetic positioning available from LAGEOS laser ranging analyses. Available geodetic survey ties were extensively used enabling older systems to be tied into the laser-described geocentric network. Other methods were required to secure good coordinates for all of the different historical tracking systems; this included using network analyses which were used to relate previous Unified S-Band and TRANET Doppler station solutions into the TOPEX/Poseidon reference system.

For our GEOSAT analyses however, we only had DMA TRANET II positions available for GEM-T2. These stations required positioning within the TOPEX/Poseidon reference frame, but lacked suitable common stations with earlier solutions to effect these ties. This was not a problem encountered with our TRANET analyses performed using SEASAT data because laser tracking was also available on SEASAT and the Doppler positions were derived from the satellite positioning solutions directly. Even though approximately ten of the same geographic locations commonly were occupied between the GEOSAT timeframe and that of SEASAT, the local station eccentricity data linking the electronic centers of the instruments to their corresponding survey markers was not available. Instrument maintenance and system upgrades had occurred at all sites since the SEASAT era which precluded simple transformations to obtain appropriate GEOSAT tracking station coordinates. Consequently, we elected to adjust the GEOSAT TRANET II stations within GEM-T2.

Our 80 -day set of GEOSAT tracking data starting at the beginning of the ERM repeat mission was utilized for this coordinate determination. This data set had representation from the complete TRANET Network of nearly 50 stations. These solved-for coordinates are available from the authors upon request.

Table 5.5 compares our adjusted GEOSAT station coordinates with the WGS-84 positions available from DMA. The RMS of fit in the intercomparison is better than 0.5 m in each coordinate after removal of a seven-parameter Wolf-Bursa transformation. Considering the Doppler coordinates are not likely to be derivable from this type of tracking data to better than about 30 cm in each coordinate, this level of agreement is considered quite good. The

Earth Orlentation Parameters from GEM-T2

TDPEX GRAVITY FIELD GOLUTION : PGE-5498

Figure 5.2

```
Earth Orlentetlon Parameters from GEM-TZ
TOPEX GRAVITY FIELD SOLUTION : PGE-3498
```


Figure 5.2

Earth Orlentation Parameters from GEM-T2 TOPEX GRAVITY FIELD GOLUTION: PGE-3498

Figure 5.4

Earth Orlentation Parameters from GEM-TZ

TOPEX GRAVITY FIELD SOLUTION : PGE-5498

Figure 5.6

Earth Orlentation Parameters from GEM-T2

TOPEX GRAVITY FIELD GOLUTION : PGG-549B

Figure 5.7

Figure 5.8

Table 5.4

```
ORTHOGONALASFFINE
=ニニ======ニ================== ==ニ==
    TRRANS FORMMATION
    ===========================
    R(NGS)8711 ===> PGS-3496
\begin{tabular}{rrlrlr} 
Xmean & -41.35 & RMSx & 41.40 & S．D．Xmn & 2.12 \\
Ymean & -261.06 & RMSy & 261.07 & S．D．Ymn & 2.61 \\
Umean & 0.75 & RMSu & 0.85 & S．D．Umn & 0.40 \\
Lmean & -0.03 & RMSI & 0.17 & S．D．Lmn & 0.17
\end{tabular}
    Transformation Parameters
    =========================
\begin{tabular}{ccc}
\(-B 2\) & \(-A 1\) & \(A 2\) \\
-41.3550 & -0.0297 & -0.4011 \\
-261.0445 & 0.0297 & -0.4011 \\
\hline\(-B 1\) & \(A 1\) & \(A 2\)
\end{tabular}
\begin{tabular}{ll} 
mas & \\
\(X 0=-4.135 E+01\) & \(\mathrm{XI}=2.453 \mathrm{~d}-04\) \\
\(Y 0=-2.611 \mathrm{E}+02\) & \(\mathrm{Y}=-4.887 \mathrm{E}-03\) \\
\(U 0=1.127 \mathrm{E}+01\) & \(\mathrm{UI}=-4.481 \mathrm{E}-03\)
\end{tabular}
\(L 0=-2.570 \mathrm{msec}-02 \quad L 1=-1.251 \mathrm{~m}-04\)
\begin{tabular}{lrrr} 
X Offset（B2） & 41.35503 & \(\pm\) & 0.16 \\
Y Offset（B1） & 261.04448 & \(\pm\) & 0.16 \\
Cosine Term A1 & 0.02971 & \(\pm\) & 0.16 \\
Sine Term A2 & -0.40111 & \(\pm\) & 0.16
\end{tabular}
\begin{tabular}{lr} 
Degrees of Freedom & 454 \\
Unit Weight \(S \pm d . E r r\). & 2.37
\end{tabular}
Correlation - Std. Deviation Matrix
#ニ============ニ====================
    0.1570
\begin{tabular}{rrrl}
-0.0340 & 0.1570 & & \\
-0.0243 & 0.0000 & 0.1570 & \\
0.0000 & -0.0243 & 0.0340 & 0.1570 \\
& & \\
\(\operatorname{RMS}(x)=\) & 2.19 & \(\operatorname{RMS}(y)=\) & 2.53 \\
\(\operatorname{RMS}(u)=\) & 0.39 & \(\operatorname{RMS}(1)=\) & 0.16
\end{tabular}
```

transformation parameters indicated that there is no significant center of mass disagreement between these two modern reference frames; the orientation parameters which were estimated are as expected from the difference in polar motion and UT1 origins between TOPEX/Poseidon "zeromean ${ }^{\text {n }}$ and BIH terrestrial origins. The center of mass offset in both x and y are significantly different from zero, being around 30 cm . It should be noted that the geocentricity of the Doppler Network is not guaranteed to correspond to that of the lasers; the lack of survey ties preclude direct intercomparison. For example, any systematic effect on the network determination due to higher order ionospheric effects could manifest itself in the same way in both WGS-84 and the GEM-T2 adjustments. However, we believe that these discrepancies are probably at the submeter level. Also of note, the earlier problems we have observed with DMA coordinates in the Z direction have greatly diminished with these recent solutions.

Table 5.5

COMPARISON OF GEOSAT GEM-T2 TRANET DOPPLER COORDINATES

 WITH DMA/HTC SMTP WGS-84 COORDINATESRMS OF FIT FOR 47 MATCHING STATIONS

Earth Fixed:

X	46 cm	Geodetic Latitude	$0.014 \operatorname{arcsec}$
Y	42 cm	Longitude	$0.021 \operatorname{arcsec}$
Z	41 cm	Spheroid Height	39 cm

Center of Mass

X $\quad 30 \pm 8 \mathrm{~cm}$
Y $-25 \pm 8 \mathrm{~cm}$

Z $\quad-5 \pm 8 \mathrm{~cm}$

TRANSFORMATION PARAMETERS
Geodetic Coordinates

Rotation about Axis* Scale
X 0.266 ± 0.03 arcsec 0 ± 12 parts per billion

* Expected Rotations from origin differences:
about X 0.280 arcsec
about Y 0.038 arcsec

SECTION 6. THE DETERMINATION OF OPTIMAL DATA WEIGHTS AND THE CALIBRATED ACCURACY OF GEM-T2

Determining optimum data weights and producing a reliable error model are now part of an automated iterative procedure which has been employed in GEM-T2's development for the first time. This approach, as described in Lerch (1989), allows a new ease in the determination of data weights and provides a calibrated error model as an integral part of the method. Prior to the introduction of this approach, optimal data weighting was obtained from experimental solutions which were tested against orbital tracking data and independent gravity anomaly blocks until no further improvement was seen in model tests. The top rated model was adopted and its uncertainty was then calibrated after the fact to assure its reliability. Our experience has shown that these models both performed well and were well calibrated although the method was arduous. Calibration of model errors has historically been a complicated and time consuming undertaking. The techniques which were used to verify the models and calibrate their uncertainties have evolved. The most recent attempts directly laid the foundation for the development of our new automated procedure. In general, they consisted of three types of tests which are reviewed here since method (a) is associated with the development of the optimal weighting algorithm presented in Section 4. The gravitational field calibrations which have been used are:
(a) Calibration tests which compare the differences in the coefficients between two solutions with the expected value of these differences using the solution error covariances. This method has been extensively utilized with GEM-T1 in comparison with versions of this model lacking specific data subsets.
(b) Calibration tests which compare the eigenvectors of these subset solutions in a fashion which parallels that used in method (a) but which is extended to include the off-diagonal contributions in the error covariances.
(c) The oldest method (which has been used for over 15 years) is to compare the harmonic gravitational models with independent gravity information. Since GEM-T1 and GEM-T2 are "satellite-only" models, their results can be compared to the gravitational signal directly measured by surface gravimetry or the gravity anomalies inferred from satellite altimetry. In the past, other tests using satellite deep resonance passages, the longitudinal acceleration of synchronous satellites, and tests on new sets of tracking data have provided the basis for these tests.

In method (a) the calibration test is essentially given in equation (4.14). This method has been refined to separately test the spectral components of the gravitational models by segregating the results into constituents of a given degree, $\mathrm{k}_{\mathrm{t}}(\mathrm{I})$, and order, $\mathrm{k}_{\mathrm{t}}(\mathrm{m})$. Balanced solutions with proper data weights were found to calibrate well in general for any degree or order. Method (b) has not been employed as yet on GEM-T2 although it was found to give comparable results to method (a) for GEM-T1 (Lerch et al., 1988). Results for GEM-T2 are also given later in this section for method (c). Method (c) confirms that the calibrated error estimates of GEM-T2 as obtained from our optimum weighting algorithm are highly reliable as demonstrated with tests against independent altimeter-derived gravity anomaly blocks.

6.1 Computations of Optimum Weights for GEM-T2

Using the weighting algorithm of Section 4.1 we show in Table 6.1 the preliminary subset and complete solution calibrations based on the factors, \mathbf{k}_{v}, and weights ${ }^{1}, \mathrm{~W}_{\mathrm{t}}$ obtained over successive iterations. The subset solutions are obtained by deleting each of the major data sets listed in the first column of this table from the complete solution. The first solution, Preliminary Geopotential Solution (PGS) 3429 used initial data weights which were obtained in two ways. The apriori weights for PGS-3429 were based on the weights obtained in GEM-T1 as shown in Table 4.1a. For the data sets not included in GEM-T1 (Table 4.1b), initial weights were obtained by testing a solution which combined GEM-T1 with each of these new data sets individually against GEM-T1 itself, where in this case, GEM-T1 is the subset solution. We then applied the weighting algorithm from equations (4.14) and (4.15) to converge on a set of weights for all of the data which was previously not part of GEM-T1. This approach produced a set of apriori weights for all of the major data sets of GEM-T2. This is the set of PGS-3429 data weights presented in the third column of Table 6.1.

A set of subset solutions was computed for PGS-3429 where each of the major data sets was individually omitted from this preliminary version of GEM-T2. A set of calibration factors, K_{t}, were obtained which are listed in the second column of Table 6.1. The initial calibration factors indicated that these preliminary weights were quite reasonable. In Table 6.1 the calibration factor (K_{t}) scales the errors of the gravity parameters instead of the variances of these errors as given by k_{t}, hence the values shown are:

$$
K_{t}=k_{t}^{1 / 2}
$$

for the calibration factors in the table. The K_{t} calibration factor is more appropriate for examining the convergence since its stability and sensitivity directly reflect the errors instead of their variances.

The weights on the data were then adjusted using equation (4.15) for the data sets where K_{t} significantly differed from unity (shown as the underlined values) producing the values for the next iteration of GEM-T2 which was PGS-3454. The procedure of computing subset solutions was repeated and a new set of calibration factors was obtained. These are shown in the fifth column of Table 6.1 and they are noticeably closer to unity as compared to the factors obtained with PGS3429. The process was again iterated, where new data weights were again computed and PGS3480 was solved using these values. The process of computing subset solutions was again repeated and new calibration factors were derived. These are shown in the sixth column of Table 6.1. Based on the calibration factors of PGS-3480, a new set of data weights for select data sets was determined which produced the GEM-T2 model. These W_{t} values are shown in the eighth column of this table. Subset solutions for GEM-T2 were computed and yielded the final set of calibration factors presented in the final column of Table 6.1. All of these values are acceptably close to unity and the optimal weighting method has converged. It is desirable that K_{t} converge to values slightly less than one in order to be conservative in the error estimation of the geopotential field. For the case of the GEOS-3/ATS-6 data, the data weight was reduced giving a value of K_{t} which was deliberately held at a conservative value because this data degraded the model's performance when tested against independent data.
${ }^{1}$ The σ 's of unit weight are: 1 meter for range data, $1 \mathrm{~cm} / \mathrm{s}$ for range-rate data and 2 seconds of arc for camera data.

Table 6.1

DATA WEIGHTS AND CALIBRATION OF GEM-T2

SUBSET SOUTION	PGS3429 CALBRATIO	ON PGS3429	PGS3454 C	PGS3454 CALIBRATION	PGS3480 CA	PGS3480 ALIBRATIO		GEM-T2 ${ }^{\text {(2) }}$
DATASEI	EACIOAS	WEGGHIS	WEIGHITS	FACIORS	WEIGHTS	EACTOAS	WEGHIS	ALBRATION EACIORS
AlISAI	1.28	. 4	$2^{(1)}$	1.21	2.	1.29	1.	. 79
LAGEOS	1.29	. 8	. 8	1.00	. 8	1.11	. 8	. 87
STAPLETIE	1.04	.2,.2.. 04	.2,.2,. 04	1.01	.2,.2,. 04	. 96	.2,.2,. 04	. 96
4-LASER*	1.02	. 015	. 015	1.00	. 015	. 96	. 015	1.01
GEOSAT	. 59	. 01	015	. 66	. 035	. 75	05	. 81
GEOS-3:ATS LASERSST	. 68 . 0	.015..1.. 02	.015,.05,.02	2.73	.015.1. 02	. 66	.015..1.. 02	. $66{ }^{(3)}$
NOVA	. 82	. 07	. 075	. 83	1	. 83	$\underline{15}$. 90
LANDSAT	. 90	. 0075	. 0075	. 90	. 009	. 92	. 009	. 92
1980 GEOS-3 LASER	3.86	. 1	. 15	. 91	2.	. 97	. 2	. 96
1980 GEOS-1 LASER	. 87	. 1	15	. 97	. 15	. 99	. 15	1.05
OPTICAL*	. 95	.05,.06	.05,.06	. 95	.05,.06	. 94	.05. 06	. 92
SEASAT		. 02	. 02	1.02	. 02	. 97	. 02	. 94
OSCAR		. 015	. 015	1.47	. 007	. 95	. 007	1.13
3-LASER*		. 015	. 015	. 82	. 015	. 83	02	. 87

1. UNDERLINED WEIGHTS ARE THE ADJUSTED ONES IN THE ITERATED SOLUTIONS
2. CALIBRATION FACTORS ARE CONSERVATIVE BUT SUFFICIENTLY CONVERGED
3. ATS SST WEIGHT DELIBERATELY UNDERWEIGHTED BASED UPON COMPARISON WITH SEASAT ALTIMETER ANOMALIES

4-LASER: Laser data from GEOS-1, GEOS-2, GEOS-3 and BEC satellites
3-LASER: Laser data from DI-C, DI-D and PEOLE satellites
OPTICAL: Camera data from 20 satellites

In general, the weights have converged for GEM-T2. One interesting fact about its subset solutions is their good overall level of performance when tested against surface gravity anomalies and test satellite orbital arcs. Unlike GEM-T1, we find that the subset solutions for GEM-T2 all perform nearly as well as the complete model itself on these independent tests. This is also true for the prediction of TOPEX/Poseidon's radial orbital accuracy. Hence this indicates that no individual data set dominates the GEM-T2 solution which was not found to be the case to the same degree in GEM-T1.

This method assures a self-consistent set of data weights. This means that the model changes predictably based on the solution error covariances given these weights when data is removed from the solution. If this is so, then we are properly characterizing the data contribution to the solution's accuracy and the resulting error covariance should be calibrated and contain a realistic estimate of solution uncertainty. This is tested in the next section where GEM-T2 is calibrated with the independent global gravity information provided by altimeter-derived gravity anomaly blocks.

In practice, the gravitational models are also subjected to other tests using independent data (method (c)). Weights on certain data sets may again be adjusted if a specific data set seems to produce results which conflict with independent data. In such a case, a data set may be down weighted. As noted above, this was found to be the case and was used to downweight the contribution of the ATS-6/GEOS-3 SST observations in GEM-T2. These observations were found to degrade the testing of the model against independently measured altimeter-deduced gravity anomalies. This calibration is discussed in the next subsection.

6.3 Calibration of GEM-T2 with $5^{\circ} \times 5^{\circ}$ Mean Gravity Anomalies from Altimetry

Altimeter-derived gravity anomalies were also used to calibrate GEM-T2. Since the previous methods indirectly test a field by comparing it internally to its data contributions, a possible concern is that both the full and subset solutions share a common systematic error which would be untested using this method. The direct calibration of the model with independent and globally distributed altimeter gravity anomalies was undertaken to avoid this problem.

Mean $5^{\circ} \times 5^{\circ}$ gravity anomalies are somewhat commensurate in field resolution with the harmonic model of GEM-T2. The values we are using here were computed from the $1^{\circ} \times 1^{\circ}$ values developed from the SEASAT and GEOS -3 Missions which were kindly provided to us by Rapp (1986). The gravity anomaly calibration was performed using the method given in Lerch et al., (1988) for GEM-T1. Herein, we also corrected the altimeter anomalies using the high degree and order gravitational field of Rapp and Cruz (1986) to remove contributions to the $\Delta \mathrm{g}$ values for all terms extending to degree 300 which are neglected from the GEM-T2 solution. The calibration factor obtained from this comparison is given as:

$$
\begin{equation*}
k=\left(\frac{\sum k_{1}^{2}}{1066}\right)^{1 / 2} \tag{6.1}
\end{equation*}
$$

where k_{1} is an individual calibration factor computed for each of the 10665° blocks as:

$$
\begin{equation*}
\mathbf{k}_{1}=\frac{\left|\Delta \mathrm{g}-\Delta \mathrm{g}_{\mathrm{c}}\right|_{1}}{\left[\sigma^{2}(\Delta \mathrm{~g})+\sigma^{2}\left(\Delta \mathrm{~g}_{\mathrm{c}}\right)\right]^{1 / 2}} \tag{6.2}
\end{equation*}
$$

and $\Delta \mathrm{g}$ and $\Delta \mathrm{g}_{\mathrm{c}}$ are the observed and GEM-T2 -computed gravity anomalies. When computing the gravity anomalies from GEM-T2 we used the spectral smoothing operator of Pellinen (Jekeli and Rapp, 1980). The gravity anomaly uncertainties are obtained from the altimeter analysis of Rapp (1986) and GEM-T2 models respectively. The typical accuracy estimate for a 5° block predicted from GEM-T2 is 3.5 mg gals whereas those obtained from altimetry have accuracies in the 0.5 to 1 mgal range. Therefore, one can (in the extreme) assume that the altimeter anomalies are perfect, with little resulting change in the computed calibration factor for the tested gravity field. As a consequence, this test is especially strong for it is insensitive to the accuracy assessment for the independent data so long as $\sigma(\Delta \mathrm{g}) \ll \sigma\left(\Delta \mathrm{g}_{\mathrm{c}}\right)$. The global calibration factor obtained for GEM-T2 from this analysis is:

$$
k=0.98
$$

which indicated a high level of calibration consistency and gives an independent demonstration of the values of the semiautomated calibration/data weighting approach.

Table 6.2 summarizes the GEM-T2 calibrations and demonstrates the performance of the subset solutions when tested against these altimeter anomalies. Therein, one sees the RMS $\Delta \mathrm{g}$ residual between the gravitational field and the altimeter anomalies. Also shown is the covariance prediction of global geoid error and the final calibration factors for the data subsets in GEM-T2. Guite encouragingly, each data subset made a positive contribution towards better resolving the geoid through a statistical prediction (which is expected) as well as improving the agreement of the model when tested against altimetry.

Table 6.2

Summary of Calibration Factors for GEM-T2 Using Subset Solutions and Other Measures of Subset Field Performance
\(\left.$$
\begin{array}{lcll}\begin{array}{l}\text { Data Subset } \\
\text { Omitted from } \\
\text { GEM-T2 }\end{array} & \begin{array}{c}\mathrm{K}_{\mathrm{t}} \\
\text { (Overall Calib.) } \\
\text { Factor }\end{array} & \begin{array}{l}\text { Estimated } \\
\text { Geoid Ht. } \\
\text { Error (m) }\end{array} & \begin{array}{l}\text { Comparison } \\
\text { with Altim } \\
\text { Grav. Anom. }\end{array}
$$

(mgals**2)\end{array}\right]\)| none |
| :--- |
| Ajisai |

6.4 The Calibrated Accuracy of GEM-T2

Based on the calibrations described in the previous subsections, Figure 6.1 presents the estimated uncertainty in the coefficients for GEM-T2. This figure is also useful as a means for seeing which orders within the model were solved out to degree 50. For comparison purposes, PGS-3218 was a test model which used the GEM-T1 observation set but was solved to the complete size of GEM-T2 (recall GEM-T1 as published was truncated beyond degree 36). Figure 6.2 shows the RMS coefficient uncertainty by degree for GEM-T2 and PGS-3218, and compares both to the expected power in the gravity fleld as deduced from a well-known scaled version of "Kaula's rule". Our use of a least squares constraint method has permitted us to recover a model which at highest degree and order is nearly 100% in error. Without the use of this constraint, a model so recovered would be more than an order of magnitude less certain at high degree and order. Our methodology causes the errors to be bound by 100% while at the same time giving near zero for the adjusted values of coefficients which approach this level of uncertainty. This is sensible, for a zero value of a coefficient is no more than 100% in error, while a free adjustment would produce erroneously large coefficients which could be orders of magnitude in error.

The geoid commission uncertainty for GEM-T2 is estimated to be 141 cm . For the part of the model complete to degree and order 36, the commission error in GEM-T2 is estimated to be 105 cm globally which can be compared with the GEM-T1 estimate of 155 cm . Taking the GEM-T2 covariance, the 36×36 portion of the model has a geographical geoid error distribution as indicated in Figure 6.3. The dearth of low inclination satellites in GEM-T2 is evident by examining Figure 6.3, where there is a clear bulge in the geoid uncertainty in the equatorial region. However, this model remains a major improvement over the gravity modeling accuracy achieved within GEM-T1.

Figure 6.4 shows a comparison between the satellite-only GEM-T1 and GEM-T2 fields at different levels of model truncation in their ability to predict the values of the $5^{\circ} \times 5^{\circ}$ gravity anomaly blocks obtained from SEASAT/GEOS-3 altimetry. Again, GEM-T2 outperforms GEM-T1. However, we are concerned that the portion of the model (albeit incomplete) above degree 36 seems to degrade the comparison. When investigating this problem, we believe that the complete model should have been adjusted to $C, S(50,43)$ as opposed to the selected orders solved for in GEM-T2. However, we do not have these additional parameters available within our existing satellite tracking normal equations, but will provide for them when the GEM-T2 model is iterated prior to the launch of TOPEX/Poseidon.

Figure 6.2 RMS of Coefficient Errors Per Degree

Figure 6.4 Gravity Model Comparison with $10715^{\circ} \times 5^{\circ}$ SEASAT Altimeter Gravity Anomalies*

SECTION 7. ORBIT ACCURACIES FOR GEM-T2

One of the principal demands made of terrestrial gravitational models is to accurately represent the conservative forces acting on Earth-orbiting satellites. The requirements for precise orbit modeling are an important element in the success of many geodetic missions. This includes satellites designed to monitor the Earth's tectonic motions like LAGEOS and those requiring accurate radial positioning of an altimeter bearing satellite to locate the ocean surface in a geocentric reference frame like SEASAT and TOPEX/Poseidon. GEM-T2 has been tested with satellite tracking data acquired on a number of missions to assess its overall performance and to compare it with other contemporary models.

7.1 Gravity Model Tests Using Tracking Observations

Table 7.1 displays a series of test orbital arcs spanning all of the satellites available for our analysis which have modern precise laser and Doppler tracking. Compared therein, is the RMS of fit obtained on these test orbits for all of the recent "satellite-only" Goddard Earth Models produced over the last decade. Two important points are evident in these results. First, there has been enormous progress in the accuracy by which we are able to model the conservative forces arising from the static and tidal geopotential acting on near-Earth satellites, with GEM-T2 continuing this tradition. Second, there remains a significant gap in the accuracy by which we are able to compute and thereby reconstruct an orbital history as compared to the inherent accuracy of the data themselves. These test arcs were 5 to 6 days in length containing globally distributed observations for all satellites with the exception of LAGEOS, where 30-day orbital are lengths were used.

Very significant improvement is seen in the modeling performance of Starlette and GEOS3 with GEM-T2. There are two factors which have contributed to these results. By extending the GEM-T2 model to include coefficients of 41 st , 42 nd and 43 rd orders, GEM-T2 now models higher order resonance effects which are especially significant on these two satellites. The general overall improvement obtained with GEM-T2 is an additional contributing factor which is seen in the overall orbit modeling improvement across these tests.

7.2 Radial Orbit Accuracy on SEASAT

The altimeter data taken by SEASAT enables us to isolate the radial modeling performance of different gravitational fields on its orbit. This is possible by evaluating the difference in the altimeter measured sea surface height at groundtrack crossover locations. Since the sea surface height is approximately static given its conformance to the geoid (with small effects due to mesoscale sea surface variability and mis-modeled tides being present), the value of the sea surface height can be considered time-invariant. When the height of the sea surface above the reference ellipsoid at the same geographical point on the Earth's surface is measured by crossing altimeter passes, the difference in the heights is a reasonably strong measure of the nongeographically correlated radial orbit error. This assessment of the radial error is not complete, for part of the gravity error contribution is geographically dependent yet it subtracts when forming the crossover difference. Nevertheless, there remains the time-dependent radial error which is well sensed by this method, although other errors can contribute to this difference at the 5- to $20-\mathrm{cm}$ level (i.e., mismodelled tidal and atmospheric refraction corrections, and mesoscale oceanographic effects).

Table 7.2 shows a comparison on six test SEASAT arcs, three of which were taken when SEASAT was in a 17 -day repeating groundtrack conflguration, the others when SEASAT was in a 3-day repeat. TRANET Doppler data from a global network of stations was the only data used in the orbit adjustment process. These orbits were then passed through the independent altimetry and an assessment of the crossover misclosure was obtained. Four fields are compared within Table 7.2:

Table 7.1

Orbit Accuracy Assessments of Satellite Fields Using Test Arcs (rms of fit)

Gravity Field	$\underset{(\mathrm{m})}{\mathrm{LAGEOS}}$	$\underset{(\mathrm{m})}{\mathrm{AJIS}}$	$\underset{(\mathrm{m})}{\mathrm{STRLT}}$	$\underset{(\mathrm{m})}{\mathrm{BE}-\mathrm{C}}$	$\underset{(\mathrm{m})}{\mathrm{GEOS}}$	$\underset{(\mathrm{m})}{\mathrm{GEOS}}$	$\underset{(\mathrm{m})}{\mathrm{GEOS}}$	NOVA (cm/s)
GEM-9 (1979)	. 333	. 951	1.16	. 873	1.26	1.18	1.72	0.95
GEM-L2 (1981)	. 199	. 797	1.00	. 893	1.07	1.09	1.87	0.79
GEM-T1 (1987)	. 069	. 181	. 172	. 396	. 387	. 655	. 693	0.44
GEM-T2 (1989)	. 066	.151*	. 102	. 334	. 316	. 667	. 249	0.37*
NOISE								
FLOOR	. 038	. 038	. 040	. 102	. 206	. 343	. 101	. 335

* Satellite now in model
(a) PGS-S4 (Lerch et al., 1982a) was a "tailored" gravity model which used SEASAT laser, S-Band range-rate and altimeter data which for its time, was the state-of-the-art for SEASAT precise orbit determination. This gravity field was used for the Geophysical Data Records to produce the orbital information for the distributed data. By using SEASAT altimetry, this model would be expected to perform quite well on SEASAT, and did reduce the radial modeling inaccuracies on this trajectory from the $\mathbf{2 - 4}$ meter level to that of $\pm 75-\mathrm{cm}$.
(b) GEM-T1 (Marsh et al., 1988) was a "satellite-only" model which utilized SEASAT TRANET and laser observations. It contained no altimetry, but does contain the considerable improvement which was accrued in our efforts to improve the models for TOPEX/Poseidon.
(c) GEM-T2 is the new GSFC "satellite-only" model described in this report which contained the same SEASAT observation set as that of GEM-T1. Any improvement in the SEASAT performance is therefore, a direct result of improving the general gravitational field.
(d) PGS-3337 (Marsh et al., 1989) is a preliminary combination model complete to degree and order 50 which utilizes GEM-T1's tracking data with surface gravimetry and SEASAT altimetry. Unlike PGS-S4, this model now simultaneously solves for a harmonic model of the dynamic sea surface height which causes the sea surface to depart from the geoid at the $60-70$ cm level.

Table 7.2 shows excellent results for GEM-T2 which exceed those found in GEM-T1 by a considerable amount. These models are certainly superior to that achieved with PGS-S4 although this latter model used the SEASAT altimeter data directly. As a point of interest, the GEM-T2 error covariance matrix predicts 19 cm for the radial accuracy one should obtain from this fleld. The prediction for GEM-T1 is 44 cm .

7.3 Projected Orbit Errors Due to Static Gravitational Modeling Uncertainties

The error covariance matrix can be used to project the gravitational modeling error onto any orbital configuration. This projection uses the first-order analytical perturbation theory developed by Kaula (1966) and gives a harmonic estimate of modeling error. This estimate does not take into account the distribution of tracking data nor does it consider the additional error arising from the erroneous estimation of the orbital state (epoch) position which propagates with the well-known "once-per-revolution" orbit errors commonly seen in data analyses. However, with the distribution of modern tracking networks and the typical performance of these tracking systems in their support of numerous missions, we have found through comparisons with numerical tests and data simulations, that these first-order projections are quite reliable in mapping a given gravity error into orbit error overall.

For these projections, we have developed an additional preliminary gravitational field. PGS-3520 (Marsh et al., 1989) is a combination model which is similar in design to that of PGS3337. It is a model complete to degree and order 50 which utilizes tracking observations, surface gravimetry and SEASAT altimetry. Unlike PGS-3337 which relied on the tracking data used in forming GEM-T1, PGS-3520 is based on GEM-T2. Unlike GEM-T1 and GEM-T2, this combination model has not been extensively calibrated, and it is only introduced herein to give some indication of what a GEM-T3 model is likely to do in gravity modeling performance. GEM-T3 will use nearly all of the data available for gravity modeling improvement, and therefore PGS-3520 can give at least a preliminary estimate of what the total yield from historical data is likely to be.

Table 7.3 presents the projected orbit uncertainties in the radial, along-track and crosstrack (normal) ballistic components for many existing and to-be-launched satellites. It compares the projected performance of GEM-T1, GEM-T2 and PGS-3520. For the TOPEX/Poseidon orbit in specific, these estimates indicate that we are approaching the level of modeling required to support this mission's radial error budget. Figure 7.1 presents a radial orbit uncertainty projection for a satellite at the nominal altitude of TOPEX/Poseidon (1341 km) using the GEMT2 covariances for different orbital inclinations. For comparison purposes, also shown are the

Table 7.2
SEASAT Altimeter Crossover Results for 6-Day Arcs TRANET Range-Rate Observations Only

RMS of Crossovers (m)

Epoch	Number of	PGS-S4 ${ }^{1}$	GEM-T1	GEM-T2	PGS-3337 ${ }^{2}$
		17 Day Repeating Grouundtrack			
7/27/78	1234	0.623	0.933	0.683	0.691
8/02/78	1299	0.868	0.688	0.510	0.439
8/08/78	1407	1.316	0.695	0.620	0.422
		3 Day Repeating Groundtrack			
9/17/78	1472	1.249	0.632	0.534	0.368
9/23/78	1539	1.215	0.675	0.579	0.399
9/29/78	1498	0.922	0.710	0.651	0.536
average/($(2)^{1 / 2}$	0.72	0.51	0.42	0.34

1 PGS-S4 was a SEASAT "tailored" model developed by Lerch et al., (1982a).
2 PGS-3337 is a combination model combining GEM-T1 with surface gravimetry and SEASAT altimetry. It was solved complete to degree and order 50 (Marsh et al., 1989).

Table 7.3
Projected Orbit Errors Due to Commission Errors in the Static Gravitational Field
-- Errors in cm for a 10-Day Arc --

Satellite	-------- Radial			-------- Along Track -------		
				GEM-T1	GEM-T	PGS-3520
SPOT	268	120	65	3590	1940	1120
AJISAI	14	6	4	66	27	21
GEOSAT	44	20	10	272	98	73
LAGEOS	1	1	1	5	3	3
STARLETTE	27	12	8	83	37	24
GEOS-3	66	22	13	488	146	116
PEOLE	494	447	107	1670	1510	390
BE-C	33	25	14	160	136	101
GEOS-1	15	6	4	187	101	84
GEOS-2	28	17	11	438	286	229
DI-D	50	42	21	189	185	102
DI-D	36	29	15	213	196	149
SEASAT	44	19	10	263	94	71
OSCAR	72	41	24	294	149	96
NOVA	68	29	18	1380	570	453
TOPEX	24	9	6	187	91	71
	Cross Track --------			Total ----------		
Satellite	GEM-T1 GEM-T2 PGS-3520			GEM-T1	GEM-T2 PGS-3520	
SPOT	218	130	68	3610	1950	1120
AJIISAI	18	8	5	70	29	22
GEOSAT	75	43	29	286	109	79
LAGEOS	2	1	1	6	3	3
STARLETTE	36	18	10	94	43	27
GEOS-3	65	27	16	497	150	117
PEOLE	560	512	118	1827	1654	421
BE-C	41	31	16	169	142	103
GEOS-1	18	8	6	189	102	85
GEOS-2	36	20	14	441	288	230
DI-D	61	50	23	205	196	107
DI-D	38	31	16	220	201	150
SEASAT	74	36	23	277	103	75
OSCAR	108	60	34	322	166	104
NOVA	117	57	34	1384	574	454
TOPEX	29	13	9	191	93	72

projections for GEM-T1 and PGS-3520. The large improvement seen at 65.5° inclination between GEM-T1 and GEM-T2 is largely a result of the additional high-precision GEOS-3 observations added to GEM-T2 which are at this inclination. The satellite-only solutions are highly dependent on the inclination distribution of the data which is used to compute the model. Weak low inclination data sets result in poor projected field performance for a satellite orbiting at an inclination of less than 35° (or greater than 145°) when either GEM-T1 or GEM-T2 are used. The sensitivity of the model uncertainties to orbital inclination are significantly reduced with the introduction of altimeter and surface gravimetry into combination models. PGS-3520 shows significantly flatter uncertainties than elther of the satellite models. Figures 7.2 and 7.3 show the gravitational modeling uncertainty of GEM-T1 and GEM-T2 projected on the radial component of the TOPEX/Poseidon orbit for terms grouped by degree and order respectively. Both of these figures indicate a broad general improvement in GEM-T2 which is found across the perturbation spectrum of TOPEX/Poseidon's orbit. Of special interest is the improved modeling of the resonance and $m=1$ orders found with GEM-T2.

7.4 Discussion of the SEASAT Altimeter Crossover Results

An explanation is warranted to reconcile our prediction of GEM-T2's SEASAT radial orbit error shown in Table 7.3 and the $59-\mathrm{cm}\left(=42 \times 2^{1 / 2}\right)$ RMS altimeter misclosure error shown in Table 7.2. The first topic to address is the relationship of the $19-\mathrm{cm}$ estimate to the crossover measurement. It is well known that altimeter crossover tests only detect part of the radial orbit error--that part which is time varying and not the geographically correlated error. The $19-\mathrm{cm}$ estimate in Table 7.3 is a combined value containing the total radial error. It has also been found that the error is approximately equally distributed between the geographically correlated error and the time varying error globally. Therefore, one would expect only 14 cm coming from the contribution of each arc to the crossover discrepancy. We have performed a numerical simulation on SEASAT using GEM-T2 and a gravitational field ("clone") which is one standard deviation away from GEM-T2. This experiment showed a 19.4 cm RMS radial orbit difference (which agrees very well with our analytical prediction of 19 cm) in the orbits predicted by the two models; moreover it was found that 14 cm was the time varying error which would be sensed in the crossover results, with the geographically correlated error contributing 14 cm . Rosborough (1986) has shown that the time varying radial error maps by a factor of 2 into the crossover residuals given the changing sign of the geopotential error propagation into the ascending vs. descending track. Therefore, one would expect a 28 cm contribution from GEM-T2's errors in the crossover misclosure. There are numerous other errors which enter into the crossover computation which are described in Table 7.4. The total contribution from these errors accounts for an additional 24 cm in the crossover RMS. What remains to explain the $59-\mathrm{cm}$ value obtained experimentally from the real data are other sources of orbit error including the modeling of atmospheric drag, solar pressure, Earth albedo and the contribution of data systematics arising from the TRANET II tracking systems used to compute these orbits. Our analyses show that drag and solar radiation pressure errors on SEASAT are typically 15 cm over a 6 -day arc. Therefore, solving the following equation and ignoring the small contribution from Earth albedo, we get:

$$
59^{2}=28^{2}+24^{2}+\left(15 \times 2^{1 / 2}\right)^{2}+x^{2}
$$

where $\mathrm{X}=41 \mathrm{~cm}$ and it represents the error in the orbit due to TRANET II being the only tracking data used in the orbit's determination. The question which remains: Is this value reasonable? Confirmation of this estimate can be found in Marsh et al., (1989a; Table 9) where the crossover RMS for PGS-3337 using Doppler data alone was 47 cm and 31 cm when altimetry treated as tracking data was added to the solution. $\left(47^{2}-31^{2}\right)^{1 / 2}=35 \mathrm{~cm}$ which shows the improvement obtained with the introduction of altimeter data. It is also clear to us that the use of altimetry has not eliminated all of the systematic errors (e.g., neglect of third-order ionospheric refraction modeling, oscillator errors, station position errors, etc.) introduced in the orbit computation from the TRANET data, for these data are still being used. Also, the introduction of altimetry has its own error sources. Furthermore, from Table 4.1 it is shown that the "true" value of the TRANET II observations in the gravitational field determination is represented by a noise estimate of $7 \mathrm{~cm} / \mathrm{s}$ as obtained in our optimal data weighting method. If one were to take the noise-only uncertainty for the SEASAT orbit's radial component assuming $7 \mathrm{~cm} / \mathrm{s}$ Doppler data

Figure 7.1 Predicted Radial Error From Gravity Covariances 1341 Km . Altitude
¥ヨ\＆Э口

Figure 7.3 TOPEX Projected Radial Error
noise, the noise contribution would exceed 45 cm for each of the tested arcs.
Nevertheless, the original estimate for GEM-T2's performance on SEASAT shown in Table 7.3 assumed perfect orbit tracking information in all components; in this experiment with PGS3337, a $35-\mathrm{cm}$ improvement is obtained through the introduction of restricted high-quality orbital radial information over the oceans. Our estimate of 35 to 40 cm is a realistic assessment of the radial orbit error contribution coming from the exclusive use of Doppler tracking to produce the results in Table 7.2. Therefore, we conclude that our overall error estimate for the gravitational field's contribution to SEASAT shown in Table 7.3 is confirmed to be realistic and consistent with other contributing error sources.

Table 7.4
Error Sources Contributing to Altimeter Crossover Misclosures on SEASAT

Error Source	Approximate Magnitude (cm)
Ocean/solid Earth tides	10
EM Bias	5
Data Noise (altimeter)	10
Media	5
Spatial Interpolation	2
Altimeter pointing/timing	16
Root Sum of Squares:	24^{1}
TOTAL: Two observations involved	
in crossover computation	

[^0]
SECTION 8.

High precision ground based tracking of artificial satellites has provided an observational data set which has formed the basis for improving existing models of the long-wavelength gravitational fleld. These data have been used at GSFC to produce a new "satellite-only" model. GEM-T2 is an improved gravitational field which has a twofold increase in the amount of data previously analyzed to form GEM-T1 (Marsh et al., 1987; 1988). Data acquired on 31 different satellites are now utilized. The model is based on modern geodetic reference parameters, supercomputer capabilities and a new technique of optimum data weighting with automatic error calibration. The GEM-T2 solution is the largest exclusively-satellite model ever published by GSFC. It contains more than 600 coefficients above degree and order 36 , which was the truncation limit of GEM-T1. These additional coefficients enable GEM-T2 to better define the satellite zonal, low-order, and resonance effects needed in the precision computation of nearEarth satellite motion. The solution, like GEM-T1, simultaneously estimates a model of the temporal changes in the geopotential at the major astronomic frequencies to provide improved modeling of the dynamic tides sensed by satellite motion. GEM-T2 extends this adjustment to include 90 parameters distributed over 12 major tidal lines.
.GEM-T2 is an advancement in the geoid modeling obtainable from an analysis of satellite tracking observations. The commission error for the 36×36 (complete) portion of the field has been reduced to $102-\mathrm{cm}$ global RMS uncertainty. GEM-T2 has directly benefitted from an optimum data weighting technique with automatic error calibration (Lerch, 1989). This procedure, used for the first time in the development of a GEM model, has produced a well-calibrated solution. The calibration has been verified using independent satellite altimeter-derived gravity anomalies.

This model has also increased our ability to accurately model the gravitational accelerations experienced by near-Earth satellites. For TOPEX/Poseidon applications, which are of direct importance in this model undertaking, projections indicate that we are close to meeting the project's specified requirement of reducing the gravitational modeling errors to be no more than $10-\mathrm{cm}$ RMS. Harmonic analyses using the error covariance of the GEM-T2 model which has been extensively calibrated, indicates that we are on the threshold of achieving these goals.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the TOPEX/Poseidon Project at JPL for its support of our gravity modeling improvement activity. We also are thankful for the support this work is receiving from NASA's Geodynamics Program.

Many individuals have provided valuable information and help in the development of GEM-T2. Richard Rapp and Nick Pavlis of Ohio State University are to be thanked for their analysis and evaluation of the surface gravimetry. George Born and George Rosborough of the University of Colorado have assisted us in improving our methods for calibrating the model. The University of Texas' Center for Space Research under the direction of Byron Tapley has also played an important role as a sounding board for our activities.

REFERENCES

Anderle, R.J., "Doppler Satellite Data Characteristics," Naval Surface Weapons Center Document TR 83-353, October 1983.

Bursa, M., "Geodynamcis Due to the Varying Second Zonal Geopotential Harmonic," paper presented at the 26th COSPAR Conference, Toulouse, France, 1986.

Chao, B.F., W.P. O'Connor, A.T. Chang, D.K. Hall, and J.L. Foster, "Snow Load Effect on the Earth's Rotation and Gravitational Field, 1979-1985," J. Geophys. Res., 92, B9, pp. 94159422, 1987.

Chao, B.F. and W.P. O'Connor, "Global Surface-Water-Induced Seasonal Variations in the Earth's Rotation and Gravitational Field," Geophys. J., 94, pp. 263-270, 1988.

Chao, B.F., "Excitation of the Earth's Polar Motion due to Mass Variations in Major Hydrological Reservoirs," J. Geophys. Res., 93, B11, pp. 13811-13819, 1988.

Christodoulidis, D.C., R.G. Williamson, D. Chinn, and R. Estes, " On the Prediction of Ocean Tides for Minor Constituents," Proceedings of the 10th International Symposium on Earth Tides, edited by R. Vieira, pp. 659-678, Conseja Superior de Investigaciones, Madrid, Spain, 1986.

Christodoulidis, D.C., D.E. Smith, R.G. Williamson, and S.M. Klosko, "Observed Tidal Braking in the Earth/Moon/Sun System," J. Geophys. Res., 93, B6, pp. 6216-6236, 1988.
Figgatte, C. and A. Polesco, "Laser Preprocessor Program User's Guide," Contract Report 524300, Task 769, Computer Science Corporation, June, 1982.

Goad, C., "A Modified Hopfield Tropospheric Refraction Correction Model," paper presented at the Fall Meeting of the American Geophysical Union, December 1974.

Gross, J.E., "Preprocessing Electronic Satellite Observations," Ohio State Contractor's Report, NASA CR 1183, November 1968.

Gutierrez, R. and C.R. Wilson, "Seasonal Air and Water Mass Redistribution Effects on LAGEOS and Starlette," paper in press, 1988.
Hedin, A.E., "High Altitude Atmospheric Modeling," NASA Tech. Memo. 100707, Greenbelt, MD,
October 1988.
Hotter, F., "Preprocessing Optical Satellite Observations," Ohio State Report 82, Columbus, OH, May 1968.

Jacchia, L.G., "Revised Static Model of the Thermosphere and Exosphere with Empirical Temperature Profiles," Special Report 332, Smithsonian Astrophysical Observ., Cambridge, MA, 1971.

Jekeli, C. and R.H. Rapp, "Accuracy of the Determination of Mean Anomalies and Mean Geoid Undulations from a Satellite Gravity Field Mapping Mission," Report No. 307, Department of Geodetic Science, Ohio State University, Columbus, Ohio, August, 1980.

Kahn, W.D., S.M. Klosko, W.T. Wells, "Mean Gravity Anomalies from a Combination of Apollo/ATS 6 and GEOS-3/ATS 6 SST Tracking Campaigns," J. Geophys. Res., 87, B4, pp. 2904-2918,
1982.

Kaula, W.M., Theory of Satellite Geodesy, Blaisdell, Waltham, MA, 1966.

Lerch, F.J., S.M. Klosko, R.E. Laubscher, C.A. Wagner, "Gravity Model Improvement Using GEOS3 (GEM-9 and 10)," J. Geophys. Res., 84, 3897-3915, 1979.

Lerch, F.J., J.G. Marsh, S.M. Klosko, and R.G. Williamson, "Gravity Model Improvement for SEASAT," J. Geophys. Res., 87, C5, pp. 3281-3296, 1982 a.

Lerch, F.J., S.M. Klosko, G.B. Patel, "Gravity Model Development from LAGEOS," Geophys. Res. Letters, 9, pp. 1263-1266, 1982 b.

Lerch, F.J., "Error Spectrum of Goddard Satellite Models for the Gravity Field," Geodynamics Branch Annual Report-1984, NASA Tech. Memo. 86223, Greenbelt, MD, August 1985.

Lerch, F.J., J.G. Marsh, S.M. Klosko, E.C. Pavlis, G.B. Patel, D.S. Chinn, and C.A. Wagner, "An Improved Error Assessment for the GEM-T1 Gravitational Model," NASA Tech. Memo 100713, Greenbelt, MD, November 1988.

Lerch, F.J., "Optimum Data Weighting and Error Calibration for Estimation of Gravitational Parameters," to be published in Manuscpt. Geodetica, 1989.

Lieske, J.H., "Precessional Matrix Based on IAU(1976) System of Astronomical Constants, Astron. Astrophys., 73, 282, 1976.

Marini, J.W. and C.W. Murray, "Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations Above 10 Degrees," GSFC Report X-591-73-351, Greenbelt, MD, November 1973.

Marsh, J.G., F.J. Lerch, B.H. Putney, D.C. Christodoulidis, D.E. Smith, T.L. Felsentreger, B.V. Sanchez, S. M. Klosko, E.C. Pavlis, T.V. Martin, J.W. Robbins, R.G. Williamson, O.L. Colombo, D.D. Rowlands, W.F. Eddy, N.L. Chandler, K.E. Rachlin, G.B. Patel, S. Bhati, and D.S. Chinn, "An Improved Model of the Earth's Gravitational Field," NASA Tech. Memo. 4019, Greenbelt, MD, July 1987.

Marsh, J.G., F.J. Lerch, B.H. Putney, D.C. Christodoulidis, D.E. Smith, T.L. Felsentreger, B.V. Sanchez, S. M. Klosko, E.C. Pavlis, T.V. Martin, J.W. Robbins, R.G. Williamson, O.L. Colombo, D.D. Rowlands, W.F. Eddy, N.L. Chandler, K.E. Rachlin, G.B. Patel, S. Bhati, and D.S. Chinn, "A New Gravitational Model for the Earth from Satellite Tracking Data: GEM-T1," J. Geophys. Res., 93, B6, pp. 6169-6215, 1988.

Marsh, J.G., F.J. Lerch, C.J. Koblinsky, S.M. Klosko, J.W. Robbins, R.G. Williamson, G.B. Patel, "Dynamic Sea Surface Topography, Gravity, and Improved Orbit Accuracies from the Direct Evaluation of SEASAT Altimeter Data," NASA TM in press, Greenbelt, Md, 1989.

Marsh, J.G., F.J. Lerch and the GSFC Gravity Modeling Team, "Earth Gravity Model Computation at Goddard Space Flight Center," paper presented at the Spring Meeting of the American Geophysical Union, Baltimore, MD, 1989.

Martin, T.V., W.F. Eddy, D.D. Rowlands, and D.E. Pavlis, "GEODYN II System Description," Vol. 1 through 5, EG\&G Contractor Report, Lanham, MD, 1987.

Melbourne, W. et al., "Project MERIT Standards," Circ. 167, U.S. Naval Observatory, Washington, D.C., 1983.

Moritz, H., Advanced Physical Geodesy, Abacus, Tunbridge Wells Kent, Kent, England, 1980.
Newhall, X.X., J.G. Williams, and J.O. Dickey, "Earth Rotation From Lunar Laser Ranging," JPL Geod. Geophys. Preprint 153, Jet. Prolpul. Lab., Dec. 1986.

O'Toole, J., "CELEST Computer Program for Computing Satellite Orbits," Naval Surface Weapons Center/DL TR-3565, October 1976.

Rapp, R.H. and J.Y. Cruz, "Spherical Harmonic Expansion of the Earth's Gravitational Potential to Degree 360 Using 30° Mean Anomalies," The Ohio State University Department of Geodetic Science Report No. 376, Columbus, OH, 1986.

Rapp, R.H., "Gravity Anomalies and Sea Surface Heights Derived from a Combined GEOS-3/SEASAT Altimeter Data Set," J. Geophys. Res., 91, E5, pp. 4867-4876, 1986.

Rosborough, G.W., "Satellite Orbit Perturbations Due to the Geopotential," University of Texas, Center for Space Research Report CSR-86-1, January, 1986.

Stephenson, F.R. and L.V. Morrison, "Long-Term Changes in the Rotation of the Earth: 700 B.C. to A.D. 1980," Philos. Trans. R. Soc. London, Ser. A., 313, 47, 1984.

Tepper, W.D., "Orbit Analysis of a Drag Compensated Satellite Using Doppler Data," Center for Space Research Report TM-87-02, Univ. of Texas, Austin, TX, October, 1987.

Yoder, C.F., J.G. Williams, M.E. Parke, "Tidal Variations of Earth Rotation," J. Geophys. Res., 86, B2, pp. 881-891, 1981.

Yoder, C.F. et al., "Secular Variation of the Earth's Gravitational Harmonic J2 Coefficient from LAGEOS and Nontidal Acceleration of the Earth Rotation," Nature, 303, p. 757, 1983.

VonBun, F.O., W.D. Kahn, W.T. Wells, and T.D. Conrad, "Determination of 5×5 Degree Gravity Anomalies Using Satellite-to-Satellite Tracking Between ATS-6 and Apollo," Geophys. J. R. Astron. Soc., 61, pp. 645-658, 1980.

Wahr, J.M., "The Tidal Motions of a Rotating, Elliptical, Elastic and Oceanless Earth," PhD Thesis, Univ. Of Colorado, Boulder, 1979.

Wahr, J.M., "Body Tides on an Elliptical Rotating, Elastic and Oceanless Earth," Geophys. J. R. Astron. Soc., 64,677, 1981.

[^0]: 1 Obtained by: $16 \times 2^{1 / 2}$

