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Abstract

Background: Pseudogenes have long been considered as nonfunctional genomic sequences. However, recent
evidence suggests that many of them might have some form of biological activity, and the possibility of
functionality has increased interest in their accurate annotation and integration with functional genomics data.

Results: As part of the GENCODE annotation of the human genome, we present the first genome-wide
pseudogene assignment for protein-coding genes, based on both large-scale manual annotation and in silico

pipelines. A key aspect of this coupled approach is that it allows us to identify pseudogenes in an unbiased
fashion as well as untangle complex events through manual evaluation. We integrate the pseudogene annotations
with the extensive ENCODE functional genomics information. In particular, we determine the expression level,
transcription-factor and RNA polymerase II binding, and chromatin marks associated with each pseudogene. Based
on their distribution, we develop simple statistical models for each type of activity, which we validate with large-
scale RT-PCR-Seq experiments. Finally, we compare our pseudogenes with conservation and variation data from
primate alignments and the 1000 Genomes project, producing lists of pseudogenes potentially under selection.

Conclusions: At one extreme, some pseudogenes possess conventional characteristics of functionality; these may
represent genes that have recently died. On the other hand, we find interesting patterns of partial activity, which
may suggest that dead genes are being resurrected as functioning non-coding RNAs. The activity data of each
pseudogene are stored in an associated resource, psiDR, which will be useful for the initial identification of
potentially functional pseudogenes.

Background
Pseudogenes are defined as defunct genomic loci with

sequence similarity to functional genes but lacking cod-

ing potential due to the presence of disruptive muta-

tions such as frame shifts and premature stop codons

[1–4]. The functional paralogs of pseudogenes are often

referred to as parent genes. Based on the mechanism of

their creation, pseudogenes can be categorized into

three large groups: (1) processed pseudogenes, created

by retrotransposition of mRNA from functional protein-

coding loci back into the genome; (2) duplicated (also

referred to as unprocessed) pseudogenes, derived from

duplication of functional genes; and (3) unitary

pseudogenes, which arise through in situ mutations in

previously functional protein-coding genes [1,4–6].

Different types of pseudogenes exhibit different geno-

mic features. Duplicated pseudogenes have intron-exon-

like genomic structures and may still maintain the

upstream regulatory sequences of their parents. In con-

trast, processed pseudogenes, having lost their introns,

contain only exonic sequence and do not retain the

upstream regulatory regions. Processed pseudogenes

may preserve evidence of their insertion in the form of

polyadenine features at their 3’ end. These features of

processed pseudogenes are shared with other genomic

elements commonly known as retrogenes [7]. However,

retrogenes differ from pseudogenes in that they have

intact coding frames and encode functional proteins [8].

The composition of different types of pseudogenes var-

ies among organisms [9]. In the human genome, pro-

cessed pseudogenes are the most abundant type due to
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a burst of retrotranspositional activity [10] in the ances-

tral primates 40 million years ago [11–13].

Pseudogenes have long been considered as nonfunc-

tional genomic sequences. However, evidence of tran-

scription and conservation of some pseudogenes led to

the speculation that they might be functional [14,15],

and several estimates of the number of transcribed pseu-

dogenes have been published in recent years [14,16,17].

More recently, studies have shown that, in some cases,

expressed pseudogenes can perform crucial regulatory

roles through their RNA products [18–21].

Pseudogenes have been suggested to exhibit different

types of activity. Firstly, they can regulate the expression

of their parent gene by decreasing the mRNA stability

of the functional gene through their over-expression. A

good example is the MYLKP1 pseudogene, which is up-

regulated in cancer cells [22]. The transcription of

MYLKP1 creates a non-coding RNA (ncRNA) that inhi-

bits the mRNA expression of its functional parent,

MYLK. Moreover, studies in Drosophila and mouse have

shown that small interfering RNA (siRNA) derived from

processed pseudogenes can regulate gene expression by

means of the RNA-interference pathway [19,20,23–25],

thus acting as endogenous siRNAs. In addition, it has

also been hypothesized that pseudogenes with high

sequence homology to their parent genes can regulate

their expression through the generation of anti-sense

transcripts. A recent study by Hawkins and Morris [26]

has shown that knocking down a ncRNA antisense to

an Oct4 pseudogene increases the expression of both

Oct4 and its pseudogene. Finally, pseudogenes can com-

pete with their parent genes for microRNA (miRNA)

binding, thereby modulating the repression of the func-

tional gene by its cognate miRNA. For example, the

pseudogene of PTEN, a crucial tumor suppressor, regu-

lates the expression of its parent gene following this

mechanism [19]. The 3’ UTR of the transcript originat-

ing from the pseudogene, PTENP1, acts as a decoy for

the miRNA that represses the parent gene. It has been

suggested that this could be a general mechanism of

regulation in cancer [27].

While the above examples clearly illustrate that some

pseudogenes indeed have a functional role, the extent of

this phenomenon is not clear. The large corpus of func-

tional data from the ENCODE consortium provides us

with an opportunity to study pseudogene transcription

and activity in a systematic and comprehensive manner.

It is of interest to study whether these examples are just

sporadic exceptions, or indeed represent a generic

mechanism for gene regulation.

As a part of the GENCODE project, which aims to

annotate all evidence-based human gene features with

high accuracy [28,29], we carried out a comprehensive

and accurate pseudogene annotation for the entire

human genome. We combined automated pipelines and

manual curation into a production annotation workflow.

This allowed us to precisely annotate pseudogene loci

and create a consensus set of pseudogenes.

We identified potential transcribed pseudogenes from

locus-specific transcription evidence (that is, EST and

mRNA data) and high throughput sequencing data (for

example, RNA-Seq) [30]. Candidate transcribed pseudo-

genes were assessed by large-scale RT-PCR-Seq. The

experimental results can serve as a benchmark for com-

putational models of pseudogene transcription. Finally,

for each tissue tested, a list of transcribed pseudogenes

was obtained. The results indicate that pseudogene tran-

scription is predominantly tissue-specific. Using the

functional genomics data from the ENCODE consor-

tium together with the pseudogene annotation, we

found that the transcribed pseudogenes tend to associate

with a more active chromatin state and maintain more

active promoter regions, compared to their non-tran-

scribed counterparts. Both the transcription and regula-

tion of pseudogenes exhibit tissue specificity.

Alongside ‘fully active’ pseudogenes, we also found

evidence for pseudogenes showing partial activity pat-

terns. One hypothesis is that these pseudogenes are the

result of genomic elements in the process of either los-

ing or gaining function. Thus, we consider pseudogenes

showing partial activity as products of ‘dying’ genes or

undergoing a ‘resurrection’ process. Two well-known

examples of ‘dying’ and ‘resurrected’ pseudogenes are

ACYL3 [31] and XIST [32], respectively. Partially active

pseudogenes form an interesting group of case studies

for the evolution and dynamics of function develop-

ment. There can be different patterns of pseudogene

partial activity. For example, duplicated pseudogenes

that arise from ‘dying’ genes may lack transcriptional

evidence, but retain some of the upstream control ele-

ments from their parents - for example, active transcrip-

tion factor binding sites (TFBSs) and various levels of

chromatin activity. However, these genomic elements

may no longer be evolutionarily constrained. Similarly,

we can envision a scenario where processed pseudo-

genes that do not have their parental upstream regula-

tory sequences might gain functionality when they are

inserted into a region of the genome favorable for tran-

scription. Such pseudogenes may gain upstream regula-

tory sequences and hence transcriptional potential

resulting in novel ncRNAs. The resurrection motif was

previously used by Vinckenbosch et al. [7] and Kaess-

mann et al. [33] to describe the transition of retrogenes

to fully functional genes. The authors suggest that retro-

genes ‘hitch-hike’ on the regulatory apparatus of nearby

genes in order to obtain transcription potential.

All the pseudogene activity data generated by this

study are recorded in a pseudogene annotation resource
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file where each pseudogene is ‘decorated’ with metadata

regarding transcription status, functional genomics

information, and selection pressure derived from corre-

sponding data. The annotation file is available online

[34,35].

Results
Assignment of pseudogenes

Genome-wide pseudogene identification

The annotation of all pseudogenes in the human refer-

ence genome is part of the wider effort by the GEN-

CODE consortium that also aims to identify all protein-

coding, long non-coding RNA (lncRNA) and short RNA

genes [28,29]. Similar to the annotation of other func-

tional classes, the annotation of pseudogenes contains

models that have been created by the Human and Ver-

tebrate Analysis and Annotation (HAVANA) team, an

expert manual annotation team at the Wellcome Trust

Sanger Institute. This is informed by, and checked

against, computational pseudogene predictions by the

PseudoPipe [36] and RetroFinder [37] pipelines (details

in Materials and methods). These computational pseu-

dogene predictions provide hints to manual annotators

during the first-pass of annotation and identify potential

missing features, flagging them for manual re-investiga-

tion (Figure 1).

A ‘level’ index is used to represent the supportive evi-

dence of each pseudogene from the annotation proce-

dure. Level 1 indicates pseudogenes that have been

confirmed by both manual and automatic annotation

pipelines. Level 2 highlights elements that have been

annotated by manual inspection only. We also define

level A as pseudogenes determined by automated anno-

tation. This is represented as PseudoPipe-specific (A-P),

RetroFinder-specific (A-R) and a ‘2-way’ consensus set

derived from predictions of both pipelines (2-way).

Table 1 gives a summary of the pseudogenes used in

GENCODE v7 based on their annotation level.

The pseudogenes are annotated with different biotypes

(for example, processed or duplicated) based on the

mechanism by which they arose and their evolutionary

histories. The pseudogene biotypes are explained in

detail in Table 2.

The GENCODE protein-coding and pseudogene anno-

tation is completely integrated. Each potential pseudo-

gene locus is investigated for protein-coding potential

(and vice versa) and all loci are strictly described as

either protein-coding or pseudogenic, but never both

(Figure S0 in Additional file 1). Protein-coding loci

derived via retrotransposition may be misidentified as

processed pseudogenes due to the structural differences

when compared to their parent loci (reviewed by Kaess-

mann et al. [33]). However, we distinguish retrogenes

from processed pseudogenes by careful manual

annotation (Table S0 in Additional file 1). For example,

the retrotransposed protein-coding loci USP26, KLF14

and PGK2 are all protein-coding biotypes in the GEN-

CODE geneset.

In this study, we focused on a pseudogene set com-

posed of manually annotated pseudogenes (a union of

levels 1 and 2). Polymorphic pseudogenes, which are

coding genes that are pseudogenic due to the presence

of a polymorphic premature stop codon in the reference

genome (GRCh37), were excluded from our study in

order to avoid the likelihood that they may have coding

potential in the cell lines and tissues studied by other

ENCODE groups. We call these 11,216 pseudogenes the

‘surveyed set’. The set contains 138 unitary pseudogenes.

For the purpose of this paper, only the processed and

duplicated pseudogenes will be discussed in detail.

The workflow used to identify the pseudogenes in this

dataset is described in Figure 1. In addition to the

11,216 pseudogenes, the ‘2-way’ consensus set derived

from the automated pipeline annotations includes an

additional 1,910 pseudogenes (including 3 level 1 poly-

morphic pseudogenes). As manual annotation is done in

a chromosome-by-chromosome fashion, it is not biased

relative to any particular genomic feature. Thus, we feel

that our ‘surveyed set’ is the best representative of the

total pseudogene complement in the genome.

Pseudogene statistics

The number of manually annotated pseudogenes in the

human genome has grown along with the development

of the GENCODE project. Figure 2 follows the variation

of the total number of pseudogenes in the human gen-

ome with the development of GENCODE annotation

from v1 to v7. Over all the GENCODE releases, the

total number of pseudogenes follows a linear growth

rate. Extrapolating from this tendency, we estimate that

the entire human genome contains approximately

12,683 protein pseudogenes. Alternatively, using the cur-

rent manually annotated pseudogenes as a benchmark,

we can estimate the accuracy of the automated pipe-

lines, and then extrapolate it to the whole genome.

With this approach, we estimated that the number of

pseudogenes in the human genome is 14,112 (Figure 2).

Details of both approaches are described in Materials

and methods.

The estimated number of pseudogenes in this study is

smaller than that predicted from the pilot study, where

we identified 201 pseudogenes in 1% of the human gen-

ome. One reason is that the pilot study included biased

genomic regions - there was a single region containing a

large cluster of olfactory receptor pseudogenes - and is

not representative of the entire human genome [16].

These estimates are smaller than previous computa-

tional analyses reported by Torrents et al. [11] and

Zhang et al. [38] that predicted the presence of 19,724
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Figure 1 Pseudogene annotation flowchart. A flowchart to describe the GENCODE pseudogene annotation procedure and the incorporation
of functional genomics data from the 1000 Genomes (1000G) project and ENCODE. This is an integrated procedure including manual
annotation done by the HAVANA team and two automated prediction pipelines: PseudoPipe and RetroFinder. The loci that are annotated by
both PseudoPipe and RetroFinder are collected in a subset labeled as ‘2-way consensus’, which is further intersected with the manually
annotated HAVANA pseudogenes. The intersection results in three subsets of pseudogenes. Level 1 pseudogenes are loci that have been
identified by all three methods (PseudoPipe, RetroFinder and HAVANA). Level 2 pseudogenes are loci that have been discovered through
manual curation and were not found by either automated pipeline. Delta 2-way contains pseudogenes that have been identified only by
computational pipelines and were not validated by manual annotation. As a quality control exercise to determine completeness of pseudogene
annotation in chromosomes that have been manually annotated, 2-way consensus pseudogenes are analyzed by the HAVANA team to establish
their validity and are included in the manually annotated pseudogene set if appropriate. The final set of pseudogenes is compared with
functional genomics data from ENCODE and genomic variation data from the 1000 Genomes project.
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and 19,293 pseudogenes, respectively. This is due to

improvement in the genome assembly and the gene

annotation datasets. The number of genes annotated in

the genome has steadily dropped with the improvement

in annotation [39]. Consequently, the total number of

pseudogenes decreased due to a smaller and more accu-

rate number of parent proteins. Thus, spurious pseudo-

gene annotations due to erroneous gene models are no

longer present in the current pseudogene dataset.

Difficulties in pseudogene annotation

The hybrid approach of pseudogene identification com-

bining manual and automated annotation allows us to

take advantage of the strengths of both methods. Auto-

mated pipelines for the detection of pseudogenes have

significant strengths, such as fast speed, comprehensive

coverage and ability to detect weak homologies revealing

highly degraded or truncated pseudogenes. In addition,

the pipelines can be combined with comparative analysis

to highlight the evolutionary origin of pseudogenes (for

example, to determine whether a single exon pseudo-

gene has arisen due to duplication or a de novo retro-

transposition event). However, automated methods are

likely to introduce or propagate errors due to either

mis-annotation of parent loci or lack of a genome-wide

high-quality annotation of protein-coding genes. The

latter fact probably accounts for the large number of

pseudogenes in the initial pipeline surveys.

One difficult case for pseudogene annotation is the

identification of partially spliced pseudogenes, derived

via the retrotransposition of a transcript that retains at

least one intron for the parent locus. We have identified

a total of eight such partially processed pseudogenes

through computational analysis followed by careful

manual examination (Table S3 in Additional file 1).

Manual intervention allows the assessment of the

validity of a protein-coding locus used as a parent by an

automated pseudogene prediction method. It is also

essential in both identifying and elucidating those

instances where pseudogenes intersect with other tran-

script biotypes, that is, protein-coding loci and lncRNAs,

such as in the case of resurrected pseudogenes. These

pseudogenes often require only relatively small changes

in structure, like a single exon skip or shifted splice

junction, to restore coding potential and thus are chal-

lenging to detect computationally. Several cases where

pseudogenes intersect with functional loci are discussed

below.

Pseudogene sequences used by other functional loci

Pseudogenes can contribute sequences to other loci,

including coding exons, 5’ UTR, 3’ UTR and polyade-

nine signals, via their insertion in either the sense or

antisense orientation. Such loci range in complexity

from simple cases where a single pseudogene is over-

lapped by one transcript to instances of greater com-

plexity where multiple pseudogenes are overlapped by

multiple transcripts, and transcriptional read-through

from proximal protein-coding and lncRNA loci (Figure

3). For example, MST1P9 (Figure S1 in Additional file

1), whose translation is supported by mass spectrometry

data, is a potential ‘resurrected’ pseudogene that has

gained a novel function and therefore has been re-anno-

tated as a new protein-coding locus [29]. Another exam-

ple is the PTEN pseudogene [19], which has been

resurrected as a functioning lncRNA that regulates its

parent locus via an intermediate pathway involving

shared miRNAs. In all these cases, good annotation

highlights the evolutionary history of pseudogene-

Table 1 Pseudogenes used in GENCODE v7

Level Pseudogenes

Level 1a,b 7,186

Level 2a,b 4,054

Polymorphicb 24

Level A-P 18,046

Level A-R 13,644

Havanaa 11,240

’2-way’ consensusa 9,093

∆-’2-way’ consensus 1,907

aIncluding polymorphic pseudogenes. bExcluding ENSEMBL annotated

pseudogenes.

Table 2 Pseudogene biotypes

Biotype Definition

Processed
pseudogene

Pseudogene created via retrotransposition of the mRNA of a functional protein-coding parent gene followed by
accumulation of disabling mutations

Duplicated
pseudogene

Pseudogene created via genomic duplication of a functional protein-coding parent gene followed by accumulation of
disabling mutations

Unitary pseudogene Pseudogene for which the ortholog in a reference species (mouse) is coding but the human locus has accumulated fixed
disabling mutations

Polymorphic
pseudogene

Locus known to be coding in some individuals but with disabling mutations in the reference genome

IG pseudogene Immunoglobulin gene segment with disabling mutations

TR pseudogene T-cell receptor gene segment with disabling mutations
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derived loci, which may give insight into any potentially

new function.

We manually examined 131 pseudogene models over-

lapping protein-coding genes. Within this set, 80 pseu-

dogenes are annotated on the same strand as the

protein-coding gene, of which 52 are duplicated and 28

are processed pseudogenes. Pseudogenes overlapping

annotations on different strands comprise 20 duplicated

and 31 processed pseudogenes. All the pseudogenes

overlapping protein-coding genes fell into one of the fol-

lowing categories (Figures S2 and S3 in Additional file

1): (1) part of the pseudogene sequence is used to create

a new alternatively spliced internal exon in the protein-

coding gene (Figure S2a in Additional file 1); (2) the

pseudogene sequence contributes the 5’ terminal exon

of the protein-coding gene (Figure S2b in Additional file

1); (3) the pseudogene sequence contributes the 3’ term-

inal exon of the protein-coding gene (Figure S2c in

Additional file 1).

The role of processed pseudogenes in the evolution of

protein-coding genes has already been described [37].

Here we have found the same to be true for duplicated

pseudogenes. Further analysis is required to determine

whether the translation of the acquired exon is in the

same or different frame to the coding sequence of the

pseudogene’s parent and to determine whether splice

sites are shared between the overlapping genes.

Pseudogene Decoration Resource (psiDR)

There is a large amount of information related to

pseudogene annotation that goes considerably beyond

simple genomic coordinates. To facilitate the study of

pseudogene activity, we have created a resource to

‘decorate’ the pseudogene annotation with additional

information - the Pseudogene Decoration Resource

(psiDR). To create this resource, we consistently col-

lected and organized a large variety of genomic infor-

mation relating to each pseudogene in a consistent

manner, such as transcriptional activity, chromatin fea-

tures, functional genomics and evolutionary constraint.

As described in the following sections, various models

and filters were applied to the corresponding data to

characterize biological features of pseudogenes. We

characterized the transcriptional state of pseudogenes

using the integration of three pipelines. Furthermore,

we used simple statistical models to partition the pseu-

dogenes based on various genomic features. The distri-

bution of functional genomics and selection signals

was compared between transcribed and non-tran-

scribed pseudogenes. Finally, quantifiers were assigned

to each pseudogene according to the output of the

model, such as whether it has an active chromatin

state, associates with active promoter regions, and so

on. Tissue/cell line-specific information was recorded

wherever applicable.

Overall, psiDR provides a variety of activity informa-

tion for all the surveyed pseudogenes. It is a valuable

resource for pseudogene activity studies that can provide

potential targets for further experimental follow-up.

Table 3 contains a detailed description of the pseudo-

gene information featured in psiDR. In the following

sections, we describe each component in detail.

Parents of pseudogenes

Identification of pseudogene parents

We refer to the functional paralog with the greatest

sequence similarity to a pseudogene as its parent gene.

Identifying pseudogene parents is critical for the study

of a pseudogene’s evolutionary history and its potential

regulatory functions. Currently, we have successfully

Figure 2 Growth of pseudogene annotation. The numbers of pseudogenes present in the GENCODE dataset from version 1 to version 7 are
plotted. The three colors - purple, green and yellow - represent processed, duplicated and other types of pseudogenes, respectively. The
pseudogenes were annotated manually and/or using the automated pipelines PseudoPipe and RetroFinder. The gray bar indicates the estimated
number of pseudogenes (± standard deviation present in the human genome.
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identified parents for 9,368 pseudogenes, whereas the

parents for the remaining 1,848 pseudogenes are still

ambiguous and may require further manual annotation.

It is important to note, however, that it is not always

possible to identify the true parent of a pseudogene with

certainty. For example, when a pseudogene is highly

degraded and is derived from a parent gene with highly

similar paralogs, or when the parent contains a com-

monly found functional domain.

The total number of parent genes for all the pseudo-

genes is 3,391. While most parents (2,071) have just one

pseudogene, some of them are associated with a large

number of pseudogenes, among which are ribosomal

protein L21 (RPL21; 143 pseudogenes) and

Figure 3 Complexity of transcribed pseudogenes. Screenshots of pseudogene annotation are taken from the Zmap annotation interface. The
pseudogenes are represented as open green boxes and indicated by dark green arrowheads, exons of associated transcript models are
represented as filled red boxes and connections are shown by red lines. The coding exons of protein-coding models are represented by dark
green boxes and UTR exons as filled red boxes; protein-coding models are also indicated by red arrowheads. (a-c) Single pseudogene models
intersecting with single transcript models. (a) The processed pseudogene High mobility group box 1 pseudogene (HMGB1P; HAVANA gene ID:
OTTHUMG00000172132 and its associated unspliced (that is, single exon) transcript. (b) The processed pseudogene Myotubularin related protein
12 pseudogene (MTMR12P; HAVANA gene ID: OTTHUMG00000167532) and a spliced transcript model with three exons. (c) A duplicated
pseudogene PDZ domain containing 1 pseudogene 1 (PDZK1P1; HAVANA gene ID: OTTHUMG00000013746) and a spliced transcript model with
nine exons. (d,e) Single pseudogene models intersecting with multiple transcripts. (d) The processed pseudogene Ribosomal protein, large, P0
pseudogene 1 (RPLP0P1; HAVANA gene ID: OTTHUMG00000158396) and five spliced transcripts. (e) The duplicated pseudogene Family with
sequence similarity 86, member A pseudogene (FAM86AP; HAVANA gene ID: OTTHUMG00000159782) and four spliced transcripts. (f,g) Groups of
multiple pseudogenes that are connected by overlapping transcripts. (f) Three pseudogenes with single connecting transcripts: 1 is the
duplicated pseudogene von Willebrand factor pseudogene 1 (VWFP1; HAVANA gene ID: OTTHUMG00000143725); 2 is a duplicated pseudogene
ankyrin repeat domain 62 pseudogene 1 (ANKRD62P1; HAVANA gene ID: OTTHUMG00000149993); 3 is the duplicated pseudogene poly (ADP-
ribose) polymerase family, member 4 pseudogene 3 (PARP4P3; HAVANA gene ID: OTTHUMG00000142831). Pseudogene 1 and 2 are connected
by a seven exon transcript, pseudogenes 2 and 3 are connected by a nine exon transcript and there is a third transcript that shares two of its
four exons with pseudogene 2. (g) Two pseudogenes with multiple connecting transcripts: 1 is the processed pseudogene vitamin K epoxide
reductase complex, subunit 1-like 1 pseudogene (VKORC1L1P; HAVANA gene ID: OTTHUMG00000156633); 2 is the duplicated pseudogene
chaperonin containing TCP1, subunit 6 (zeta) pseudogene 3 (CCT6P3; HAVANA gene ID: OTTHUMG00000156630). The two pseudogenes are
connected by two transcripts that initiate at the upstream pseudogene and utilize a splice donor site within the single exon, which is also a
splice donor site in the pseudogene’s parent locus. Interestingly, the downstream locus hosts two small nucleolar RNAs (snoRNAs) that are
present in the parent locus and another paralog. (h) A very complex case where multiple pseudogenes, connected by multiple transcripts, read
through into an adjacent protein-coding locus: 1 is the duplicated pseudogene suppressor of G2 allele of SKP1 (S. cerevisiae) pseudogene (SGT1P;
HAVANA gene ID: OTTHUMG00000020323); 2 is a novel duplicated pseudogene (OTTHUMG00000167000); and the protein-coding gene is
C9orf174, chromosome 9 open reading frame 174 (OTTHUMG00000167001). (i) A similarly complex case where multiple pseudogenes, connected
by multiple transcripts, read through into an adjacent protein-coding locus: 1 is a duplicated pseudogene stromal antigen 3 pseudogene
(STAGP3; HAVANA gene ID: OTTHUMG00000156884); 2 is a duplicated pseudogene poliovirus receptor related immunoglobulin domain
containing pseudogene (PVRIGP; HAVANA gene ID: OTTHUMG00000156886); and the protein-coding gene is PILRB, paired immunoglobin-like
type 2 receptor beta (OTTHUMG00000155363). sRNA, small RNA.
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 68

pseudogenes). These results are consistent with previous

studies showing that housekeeping genes tend to have

more pseudogenes [13,40,41].

Sequence identity to parent genes

Recent studies have shown that some pseudogenes can

regulate their parent genes’ activity at the transcript

level [19,20,23–25]. For example, the pseudogene tran-

script sequence homologous to the parent may either

hybridize with the parent mRNA to generate endogen-

ous siRNAs or act as a decoy to buffer the binding of a

miRNA to parent gene transcripts. Pseudogenes with

such functionalities are expected to exhibit high

sequence identity to their parent genes’ coding exons

and/or 3’ UTR sequences. Therefore, for each pseudo-

gene, it is of interest to examine the sequence identity

to its parent in these particular regions.

We calculated sequence identity between pseudogenes

and their parents by examining the alignment of their

exon sequences (see Materials and methods). Processed

and duplicated pseudogenes were shown, on average, to

have similar sequence identity to their parents’ coding

sequences (CDSs), with mean identities of 80.3%

(±13.2%) and 76.9% (±13.9%), respectively. However, the

two classes of pseudogenes exhibit different sequence

identity distribution patterns. Processed pseudogenes

have a unimodal distribution, with a specific group

showing high sequence identity to their parents (around

90%). Duplicated pseudogenes, in contrast, show a more

uniform distribution of sequence identities to their

parents’ CDSs (Figure 4a). These results are in accor-

dance with previous data showing a burst of retrotran-

sposition events in the recent evolutionary history of the

human genome that generated a large number of young

processed pseudogenes [13,42,43]. The relatively higher

number of duplicated pseudogenes with low sequence

identity (approximately 65%) to their parents can be an

indication of a minor burst in the creation of duplicated

pseudogenes in ancient time. Both duplicated and pro-

cessed pseudogenes show no significant difference in

sequence identity to the 3’ UTR of their parent genes.

The mean sequence identity is 68.4% (±24.9%) for pro-

cessed pseudogenes and 61.0% (±24.2%) for duplicated

pseudogenes. Both processed and duplicated pseudo-

genes exhibit a bimodal distribution for the 3’ UTR

sequence identity (Figure 4b), implying that the CDS

and 3’ UTR of pseudogenes may be under different evo-

lutionary constraints.

We next compared the CDS and 3’ UTR sequence

identity of each pseudogene to its parent. While most

pseudogenes have comparable sequence identities to the

two genomic regions, there are pseudogenes that exhibit

high sequence identity to the 3’ UTR but poor identity

to CDS, or vice versa (Figure 4c). This inconsistency

implies that mutations were rejected by natural selection

non-randomly. Certain regions in the sequence may be

under higher evolutionary constraint than the others.

We identified 998 pseudogenes showing a high (>80%)

sequence identity to parent CDS and simultaneously

poor (<60%) sequence identity to the 3’ UTR, and 36

Table 3 Fields for pseudogene features in the psiDR annotation file

Field Explanation psiDR value

Transcript ID Pseudogene ID from GENCODE annotation. Used for cross-referencing

Parent Protein ID, Gene ID, chromosome, start, end and strand. Detailed in section ’Parents of
pseudogenes’

Sequence
similarity

The percentage of pseudogene sequence preserved from parent

Transcription Evidence for pseudogene transcription and validation results. May be tagged as EST, BodyMap,
RT-PCR or None, which represent pseudogene expression evidence from corresponding data
sources. Multiple tags are separated by commas. Detailed in section ’Transcription of
pseudogenes’

1, transcription; 0, otherwise

DNaseI
hypersensitivity

A categorical result indicating whether the pseudogene has easily accessible chromatin,
predicted by a model integrating DNaseI hypersensitivity values within 4 kb genomic regions
upstream and downstream of the 5’ end of pseudogenes. Detailed in section ’Chromatin
signatures of pseudogenes’

1, has Dnase hypersensitivity in
upstream; 0, otherwise

Chromatin
state

Whether a pseudogene maintains an active chromatin state, as predicted by a model using
Segway segmentation. Detailed in section ’Chromatin signatures of pseudogenes’

1, active chromatin; 0, otherwise

Active Pol2*
binding

Whether Pol2 binds to the upstream region of a pseudegene. Detailed in section ’Upstream
regulatory elements’

1, active binding site; 0, otherwise

Active
promoter
region

Whether there are active promoter regions in the upstream of pseudogenes. Detailed in
section ’Upstream regulatory elements’

1, active binding site; 0, otherwise

Conservation Conservation of pseudogenes is derived from the divergence between human, chimp and
mouse DNA sequences. Detailed in section ’Evolutionary constraint on pseudogenes’

1, conserved; 0, otherwise

*Pol2, RNA polymerase II.
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pseudogenes with high (>80%) sequence identity to the

parent 3’ UTR and small (<60%) sequence identity to

CDS. These thresholds were selected to separate the

two modes of the sequence identity distributions (Figure

4a,b). Using this simple approach, we partitioned the

pseudogenes into nine groups based on sequence

Figure 4 Sequence identity between pseudogenes and their parents. (a) Distribution of pseudogene sequence identity to coding exons
(CDS) of parent genes. (b) Distribution of pseudogene sequence identity to 3’ UTR of parent genes. (c) Scatter plot of sequence identity of all
the pseudogenes to the CDS and UTR regions of their parents.
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identity between the pseudogenes and the parent genes

at CDS and 3’ UTR levels. Each pseudogene has a label

corresponding to one of the nine classes, which is

recorded in psiDR.

Transcription of pseudogenes

We identified pseudogene transcription on a genome-

wide scale by combining computational pipelines (Figure

5a) and high-throughput wet-lab experiments. Tran-

scribed pseudogenes were identified with computational

models, from which a selected group was then evaluated

experimentally via RT-PCR-Seq techniques (Figure 5b).

Pseudogene transcription identified by a sequence of

computational pipelines

Three computational pipelines were combined to iden-

tify transcribed pseudogenes using various data sources;

a pseudogene was considered transcribed and its status

was recorded in psiDR if it passed the selection criteria

of at least one of the three (Figure 5a). Thus, 876 tran-

scribed pseudogenes were identified that include 531

processed and 345 duplicated ones. We consider this to

be a conservative estimate of the total number of tran-

scribed pseudogenes, since each of the pipelines had

fairly stringent selection parameters. The three pipelines

are described as follows.

The first pipeline examined manually annotated pseu-

dogenes with locus-specific transcription evidence

derived from databases of ESTs and mRNAs [30]. The

locus-specific transcription evidence consists of a best-

in-genome alignment in the pseudogene locus and clear

differences when compared to the parent locus. Using

this approach, 422 pseudogenes were classified as

transcribed.

The second pipeline focused on the total RNA-Seq

data, which is available for only two ENCODE cell lines:

GM12878 and K562. One advantage of using a total

Figure 5 Transcription of pseudogenes. (a) Pipeline for computational identification of transcribed pseudogenes (Pgenes). The ‘OR’ gate
(binary operator) indicates the acceptance criteria for a candidate to enter the transcribed pseudogene pool. Expressed pseudogene candidates
showing transcription evidence in ESTs/mRNAs, total RNA-Seq data, and BodyMap data were sent for wet-lab validation by RT-PCR or RT-PCR-
Seq. (b) Process flow of experimental evaluation of pseudogene transcription. (c) User interface of PseudoSeq for identifying transcribed
pseudogenes with BodyMap data. (d) Transcribed pseudogenes identified using Human BodyMap data. (e) Experimental validation results
showing the transcription of pseudogenes in different tissues.
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RNA sample lies in its comprehensive inclusion of tran-

scription products such as both mRNAs and small

RNAs. In this method, we considered a pseudogene as

transcribed if one of the following two criteria was ful-

filled: (1) there were reads mapped to the pseudogene

sequence and no reads mapped to the parent; or (2)

both the pseudogene and the parent were covered by

reads but they had a low sequence similarity (<90%).

Using this conservative approach, we identified 110

transcribed pseudogenes.

The third pipeline was targeted at pseudogenes show-

ing some transcriptional evidence but not fulfilling the

requirements of the second selection pipeline. In this

approach we used the PseudoSeq pipeline to analyze the

data from the Illumina Human BodyMap 2.0 project.

PseudoSeq analyzed the expression patterns of a pseu-

dogene and its parent gene using RNA-Seq data across

multiple tissues (Figure 5c). Pseudogenes with discor-

dant expression patterns from those of the parent genes

were considered as transcribed. The potential of a map-

ping artifact was ruled out by the difference in their

expression patterns. Using this approach, we identified

344 pseudogenes with transcription evidence (Figure

5d).

Experimental validation

We have experimentally tested the transcription evi-

dence of 469 transcribed pseudogenes predicted by

computational approaches (see Materials and methods).

We used RT-PCR-Seq, a method that combines RT-

PCR amplification with a highly multiplexed sequencing

readout, that reaches sensitivities of 92% and 79% for

known coding and non-coding transcripts, respectively

[44].

Targeted pseudogenes can be divided into three

classes: (1) multiexonic models in which we assessed an

exon-exon junction between exons less than 90% identi-

cal to the parent (and other duplicated pseudogene

copies); (2) monoexonic models where pseudogene-spe-

cific primers could be designed (that is, primers are

unable to amplify the parent gene because they map to

regions possessing a large number of substitutions

between parent and pseudogene); and (3) monoexonic

models, where it was not feasible to design specific pri-

mers. Therefore, the resulting amplification of both par-

ent and pseudogene transcripts must be discriminated

by substitutions present in the amplicon. As monoexo-

nic models are sensitive to genomic DNA contamina-

tion, they were assessed by amplification of cDNA in

which a dNTP analog was incorporated as described in

[45]. Each of these three categories was considered

experimentally validated using different criteria (see

Materials and methods) [44]. The criteria were adjusted

to take advantage of the pseudogene-specific substitu-

tions, as well as to consider the possibility that

sequencing reads mapping to the pseudogenes could

result from co-amplified expressed parental genes. We

validated 7 out of 10 monoexonic pseudogenes targeted

with specific primers, and 333 out of 418 regular mono-

exonic pseudogenes (Figure 5e). The validation did not

reach 100%, probably due to fact that some pseudogenes

were not being transcribed in the eight tissues tested.

Among the 82 multiexonic pseudogenes, only 18 were

experimentally confirmed (41 pseudogenes were also

tested with the monoexonic model). This lower valida-

tion rate is explained by the fact that the transcribed

pseudogenes probably function as lncRNAs rather than

being translated into proteins. Thus, it is probable that

multiexon pseudogenes will not be spliced in identical

fashion to their parent proteins. This is consistent with

the results that among the 41 pseudogenes that were

tested by both the multiexonic model and the monoexo-

nic model, 4 were validated by both models, 35 were

validated by the monoexonic model only, and 2 were

not validated by either model.

The testis transcriptome showed the highest complex-

ity (highest percentage of validated expressed pseudo-

gene models at 64% from all three classes combined),

which is consistent with the high level of transcription

reported in this tissue [44,46]. The expression patterns

determined by RT-PCR-Seq are highly correlated with

the expression reported by RNA-Seq. For example, the

expression patterns of all the monoexonic pseudogenes,

validated with specific primers, are fully replicated by

RT-PCR-Seq.

Evolutionary constraint on pseudogenes

Beyond transcription, we next focused on the evolution-

ary constraint of human pseudogenes. Constraint on

genomic sequences has also been regarded as an indica-

tor of biological function [15]. The availability of whole

genome sequencing data and personal genome sequen-

cing data allowed us to carry out an evolutionary con-

straint study on human pseudogenes at a genome-wide

scale from both divergence and diversity perspectives.

Firstly, we analyzed the sequence preservation between

human pseudogenes and their orthologs in 15 different

organisms ranging from chimpanzee to lizard, where the

orthologs were derived from the multiple sequence

alignments available from the University of California at

Santa Cruz (UCSC) genome browser. Figure 6 shows for

each species the preservation rates of protein-coding

sequences, duplicated pseudogenes and processed pseu-

dogenes. While the preservation of duplicated pseudo-

genes decreases gradually with the increase of

evolutionary distance of the species from human, the

preservation of processed pseudogenes exhibits an

abrupt decrease from macaque to mouse and remains

low within the species more divergent than mouse.
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These results are in agreement with previous findings

showing that most processed pseudogenes in humans

and mice are lineage-specific, arising from distinct retro-

transposition bursts happening in the two organisms

after they diverged [13,41].

Secondly, we studied the evolutionary selection on

human pseudogenes by integrating the annotation with

the variation data from the 1000 Genomes pilot project

[47]. We computed the densities of SNPs, indels and

structural variations in pseudogene sequences and their

respective derived allele frequencies. The densities sug-

gested a weak signal for differential selection on tran-

scribed versus non-transcribed pseudogenes (Figure S6

in Additional file 1). However, no significant differences

were found in the derived allele frequency spectra

(DAF) (Figure 7), and it is possible that the difference in

the densities may be due to confounding factors such as

variation in mutation rates in the genome. Thus, we

cannot make a strong statement about selection in the

human population on transcribed pseudogenes.

Next we analyzed the pseudogenes’ divergence using

sequence identity to orthologs in the chimpanzee gen-

ome, where higher sequence identity implies lower

divergence and negative selection. The distribution of

pseudogenes’ divergence was calculated and the results

indicate that a fraction of the pseudogenes exhibiting

lower divergence are under evolutionary constraint (Fig-

ure S5 in Additional file 1).

Divergence and diversity results indicate that although

pseudogenes, as a group, are under low selection pres-

sure, a small subset may exhibit higher evolutionary

constraint. To identify these pseudogenes, we analyzed

the divergence to orthologs in the chimp and the mouse

genome under the assumption that the conserved pseu-

dogenes will show significantly lower divergence than

neutral background (see Materials and methods). There

Figure 6 Preservation of human coding sequences, processed pseudogenes and duplicated pseudogenes. Sequences orthologous to
human genomic regions from different species were studied. The sequence preservation rate was calculated as the percentage of sequences
aligned to human sequence from each species. The calculation was based on a MultiZ multiple genome sequence alignment.

Figure 7 (a) SNP-, (b) indel-, and (c) SV-derived allele frequency spectra are shown for transcribed and non-transcribed pseudogenes.
The distributions of variant DAFs in transcribed and non-transcribed pseudogenes are not statistically different.
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are 1,019 conserved pseudogenes identified in the

human genome. The conserved group is enriched with

transcribed pseudogenes (195 conserved pseudogenes

are transcribed, P-value = 1.19 × 10-35), strongly imply-

ing biological function. Duplicated and processed pseu-

dogenes are differentially conserved; 28.1% of duplicated

pseudogenes and 3.4% of processed pseudogenes are

conserved. This difference is due to the fact that most

processed pseudogenes are lineage-specific, and also that

most of them are dead on arrival. Evolutionary con-

straint information of all the pseudogenes is collected in

the psiDR.

Chromatin signatures of pseudogenes

Following the study of the canonical signatures of tran-

scription and selection of pseudogenes, we focused on

the more elusive indications of ‘partial activity’ - chro-

matin marks and upstream transcription factor binding.

In particular, we intersected the annotated pseudogene

locations in the human genome with the extensive

amount of functional genomics data from the ENCODE

production project. We were able to correlate these

results with the transcription and conservation informa-

tion of pseudogenes discussed previously, to identify

pseudogene cases consistent with partial activity.

In this section, we present the results pertaining to

chromatin state. Chromatin accessibility, histone modifi-

cation and genome-wide segmentation pattern on

ENCODE cell lines were studied and results for the

K562 cell line are described and shown here as an

example.

Chromatin accessibility and histone marks of pseudogenes

We compared the chromatin accessibility around the

transcription start site (TSS) for active coding genes,

transcribed and non-transcribed pseudogenes. DNaseI

hypersensitivity signals along 8 kb regions surrounding

the TSSs were averaged across all the genomic

sequences in each of the three different groups. Tran-

scribed pseudogenes show enhanced DNaseI hypersensi-

tivity compared to non-transcribed pseudogenes on

average, although, as expected, both signal profiles were

lower than that for the coding genes (Figure 8).

A series of histone marks was also analyzed in the

same manner as for the chromatin accessibility (Figure

8). In general, we found that the transcribed pseudo-

genes show more enhanced signals for active histone

marks such as H3K4me1 and H3K4me3 than the non-

transcribed pseudogenes, while they show little differ-

ence between the signals for repressive histone marks,

such as H3K27me3. Our results show that, on average,

the transcribed pseudogenes possess more transcrip-

tional potential than non-transcribed ones, and their

regulation mechanism may be similar to that of protein-

coding genes.

Chromatin state segmentation

There is a large variety of chromatin marks available.

Therefore, we decided to use the chromatin states as a

higher level feature in order to summarize all these

descriptors. The chromatin states were assessed using the

Segway segmentation pattern as defined by [48]. Segway

annotates the genome using 25 different labels (Table S1

in Additional file 1) representing active and repressive

marks. The genome-wide distribution of the segments

shows a higher density of repressive markers compared to

those indicating transcriptional activity. We analyzed the

frequency of Segway markers for transcribed and non-

transcribed pseudogenes, and their respective parent genes

(Figure 9). We note that the non-transcribed pseudogenes

show a depletion of TSS marks compared to transcribed

pseudogenes, but enrichment in repressive marks. These

results are in accordance with the trends noted earlier for

histone modifications and chromatin accessibility.

The pattern of a high frequency of TSSs and gene body

marks exhibited by the parent gene was considered a hall-

mark of active chromatin. Based on this observation, we

developed a model using two selection criteria to pinpoint

pseudogenes with active chromatin states: (1) the fre-

quency of the TSS is three times higher than the frequency

of any repressive markers; (2) the gene body start (GS),

gene body middle (GM) and gene body end (GE) frequen-

cies are two times larger than the frequency of the repres-

sive markers. The selection criteria were chosen to match

the segmentation behavior of the active genes. We identi-

fied 915 pseudogenes with active chromatin (92 using the

first selection criterion and 823 using the second criterion)

in the K562 cell line. Examples of pseudogenes with active

chromatin states are shown in Figure 10. The pseudogenes

selected using the above criteria are indicated in the psiDR

for each cell line analyzed.

Upstream regulatory elements

Given the importance of transcription in understanding

pseudogene function and biological behavior, we focused

our next analysis on the regulatory elements present in

the upstream sequences of pseudogenes. More specifi-

cally, we investigated TFBSs, active RNA polymerase II

(Pol2) binding sites and the active promoters of pseudo-

genes. All the information regarding the upstream regu-

latory elements of each pseudogene is recorded in psiDR.

Identification of transcription factor binding sites

We examined the TFBSs located in the upstream

regions of all pseudogenes. A large fraction of pseudo-

genes contain no TFBSs in their upstream sequences

(that is, 91.0%, 86.7%, 92.0%, 92.7% and 86.7% in

Gm12878, K562, Helas3, H1-hesc and Hepg2 cell lines,

respectively). This is consistent with the previous results

showing most pseudogenes are not transcribed and have

unfavorable chromatin structures.
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Figure 8 Chromatin signatures: DNaseI hypersensitivity and histone modification. Average chromatin accessibility profiles and various
histone modifications surrounding the TSS for coding genes, transcribed pseudogenes, and non-transcribed pseudogenes. The coding gene
histone modification profiles around the TSS follow known patterns - for example, enrichment of H3K4me1 around 1 kb upstream of the TSS
and the H3K4me3 peaks close to the TSS [63]. Transcribed pseudogenes also show stronger H3K4 signals than non-transcribed pseudogenes.
H3K27me3, a marker commonly associated with gene repression [64], showed depletion around the TSS for the coding gene and a distinctive
peak in the same region for the pseudogenes. H3K36me3 also shows a similar pattern as H3K27me3 at TSSs, which may relate to nucleosome
depletion.
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Transcription factors that bind to the upstream

regions of transcribed and non-transcribed pseudogenes

were examined. Compared to the non-transcribed pseu-

dogenes, the transcribed pseudogenes tend to have more

TFBSs in the K562 cell line, although in both groups,

the majority of pseudogenes contain no or very few (one

or two) binding sites in their upstream regions (Figure

11). The difference between the number of TFBSs in the

transcribed and non-transcribed pseudogenes is small

but statistically significant (Wilcoxon rank-sum test, P-

value = 3.8 × 10-3 in K562). Similar results can be seen

in the other four cell lines (Figure S7 in Additional file

1).

Pol2 binding sites

Pseudogenes were also examined in each cell line for

potential Pol2 binding sites in their upstream sequences.

To alleviate the potential mapping artifacts from the

ChIP-Seq analysis, we applied a filter on Pol2 binding

peaks to retain only the strong signals (see Materials

and methods). Three selection criteria were used to

identify pseudogenes with active Pol2 signals: (1) the

width of a Pol2 binding peak is larger than the top 5%

of all Pol2 peak widths across the ENCODE cell lines -

the threshold based on ENCODE 2011 January freeze

data is 519 bp; (2) the signal value of a Pol2 binding

peak is larger than the top 5% of all Pol2 signal values

across all the studied ENCODE cell lines - the threshold

based on ENCODE 2011 January freeze data is 2.38; (3)

at least one of the Pol2 cofactors included in the

ENCODE project (Taf1, Taf7, Tbp, Nelfe, Gtf2f1, Gtf2b

and Ccnt2) also binds to the upstream sequence of the

pseudogene being studied.

A pseudogene that satisfied criteria 1 and 2 or satis-

fied criterion 3 was considered to have active Pol2 bind-

ing sites. In the K562, Gm12878, Helas3, H1hesc and

Hepg2 cell lines, 227, 197, 132, 117 and 115

Figure 9 Segmentation: comparison of chromatin segmentations associated with pseudogenes and parent genes. The transcribed
pseudogenes were selected based on the following criteria: there is transcription evidence from GENCODE, BodyMap or mass spectrometry
studies; there is no known overlap with annotated coding genes; and there are no neighboring protein-coding gene TSSs 4 kb upstream or
downstream of the pseudogene start.
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pseudogenes, respectively, have been shown to have

active Pol2 binding sites. Active Pol2 binding sites were

significantly enriched in the transcribed pseudogenes,

where the P-values were 1.95 × 10-9 (K562), 3.57 × 10-13

(Gm12878), 7.38 × 10-12 (Helas3), 3.24 × 10-10 (H1hesc)

and 1.96 × 10-10 (Hepg2).

Active promoters for pseudogenes

We used the random forest model developed by Yip et

al. [49] to predict active promoter regions for all the

pseudogenes in each cell line. The objective of this

model is to capture general properties of genomic

regions, such as regulatory modules, by integrating

approximately 500 ChIP-Seq experiments for more than

100 transcription and related factors. It calculates the

likelihood of a region being an active promoter based

on the chromatin accessibility data (from both DNase I

hypersensitivity and FAIRE (formaldehyde-assisted

isolation of regulatory elements) experiments), histone

modifications, transcription factor binding, and conser-

vation [49]. By intersecting the resultant set of active

promoters from the model with pseudogene upstream

sequences, we found that 233, 215, 183, 134, and 144

pseudogenes from K562, Gm12878, Helas3, H1hesc, and

Hegp2 cell lines, respectively, possess active promoters.

In all the cell lines, active promoters were significantly

enriched in the transcribed pseudogenes, where the P-

values were 1.19 × 10-5 (K562), 1.95 × 10-12 (Gm12878),

4.45 × 10-10 (Helas3), 1.22 × 10-11 (H1hesc) and 7.20 ×

10-12 (Hepg2).

Data integration in psiDR

As shown in the previous sections, pseudogenes main-

tain diversified and complicated activity patterns, and

the same pseudogene may exhibit different activities

Figure 10 Examples of pseudogenes with active chromatin states. (a) Processed pseudogenes (Ensembl gene ID: ENST00000495909;
genomic location chr5: 90650295-90650751). This pseudogene shows marks of activity based on segmentation-activity selection criterion 2. (b)
Transcribed duplicated pseudogene (Ensembl gene ID: ENST00000412397.1; genomic location chr1: 998456-1004735). This pseudogene shows
marks of activity based on segmentation-activity selection criterion 1.
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across different tissues. In this section, we will inte-

grate the data in psiDR across a variety of partial

activities.

Tissue specificity of pseudogene activities

First, we investigated the tissue specificity patterns

observed for pseudogene transcription (Figure 5d).

Figure 11 Transcription factor binding sites upstream of pseudogenes. (a) Distribution of pseudogenes with different numbers of TFBSs in
their upstream sequences. Profiles from transcribed pseudogenes and non-transcribed pseudogenes are compared. Data are from the K562 cell
line. (b) Number of pseudogenes with active promoters, active Pol2 binding sites or both in different cell lines.
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Among the 344 transcribed pseudogenes from the Illu-

mina Human BodyMap data, 10 were transcribed in all

the 16 tissues, while 190 were transcribed in one tissue

only. Testis contained the largest number of transcribed

pseudogenes (127 out of 344), and skeletal muscle con-

tained the least (16 out of 344).

The pseudogenes with upstream regulatory regions -

that is, active promoters and active Pol2 binding sites -

also exhibit tissue specificity. We measured the similar-

ity between any two active pseudogene sets from differ-

ent cell lines with the Jaccard index, which is defined as

the ratio of the size of the intersection divided by the

size of the union of the two sets. The similarities of

active pseudogenes between each pair of cell lines are

summarized in Table 4. The values range from 0.22 to

0.39. The low similarity values between different cell

lines indicate that these cells have distinct active

pseudogenes.

We also examined the transcription factors whose

binding sites were enriched in the transcribed pseudo-

genes compared to the non-transcribed pseudogenes.

Some general-purpose factors such as Pol2 were

enriched in transcribed pseudogenes of all the cell lines,

while each cell line also had some unique transcription

factors (Table S2 in Additional file 1). In some cases,

the transcription factors unique to a cell line were

found to be associated with the biological roles of that

cell. For example, Hnf4a, which is a nuclear transcrip-

tion factor with a role in liver development, was only

enriched in active pseudogenes in the liver cell line

Hepg2, while Pou2f2, which activates immunoglobulin

gene expression, was only enriched in active pseudo-

genes in the B-lymphocyte cell line Gm12878.

Overall degree of partial activity

A graphical overview of pseudogene activity data

included in psiDR for cell line K562 is plotted in Figure

12a. Additional activity of pseudogenes (beyond tran-

scription) was obtained from one or more of the statisti-

cal models for chromatin state, chromatin accessibility,

Pol2 binding and upstream promoter regions, as dis-

cussed in the previous sections. It can be seen that

pseudogenes form a diversified group, where there are

very few pseudogenes showing consistently active signals

across all the biological features and many showing little

or no activity.

It is interesting to note that there are pseudogenes

showing all kinds of partial activity (examples in Figure

12b-e). Comparing the pseudogene features indicative of

genomic activity with their parent gene counterparts, we

noticed a number of interesting cases.

There are 13 non-transcribed pseudogenes in K562

cell with active chromatin that have retained the

upstream regulatory regions of the parent gene and are

under strong negative selection. Collectively, these fea-

tures suggest that these pseudogenes are representative

of ‘dying’ genes, which may have recently lost their tran-

scription activity and are in the process of losing func-

tionality. The UGT1A2P duplicated pseudogene is

representative of this class (E1 in Figure 12e). It is still

under selective constraint and appears to be well posi-

tioned for transcription and the production of a full-

length transcript, lying proximal to active paralogs; how-

ever, it does not exhibit any transcriptional evidence.

This apparent loss of features (transcription, splice

donor) appears to support the hypothesis that this

duplicated pseudogene is losing its function.

Conversely, there are examples of transcribed pseudo-

genes showing signals of active chromatin, DNaseI hyper-

sensitivity, active promoter, and Pol2 binding sites, which

appear to be gaining new functionality. A good example is

FAM86EP (E2 in Figure 12e). The locus has gained five

splice junctions (one acceptor and four donors), which

suggest the possibility of new functionality being explored.

There are other examples of transcribed pseudogenes with

active chromatin but without retention of any of the par-

ent gene’s upstream elements. Changes in the sequences

and the upstream regulatory elements can give rise to new

transcript structures, resulting in a locus now encoding a

ncRNA rather than a translated protein product. We

hypothesize that these may be dead protein genes being

‘resurrected’ as ncRNAs. Two genes supporting this

hypothesis are shown in Figure 12e (E5 and E6). E5 in Fig-

ure 12e shows pseudogene EGLN1, which has gained

chromatin activity and active promoter signals via its

insertion into a transcribed duplicated pseudogene locus

(SCAND2). The combined locus is transcribed and its

transcripts are subject to alternative splicing, with some

transcripts incorporating sequence from both pseudogenes

and having seven novel splice features (four acceptors and

three donors). The novel pseudogene shown in E6 in Fig-

ure 12e appears to have gained transcriptional signals via

its insertion proximal to a CpG island, which also supports

the transcription of a lncRNA on the opposite strand.

In light of these examples, we believe that the partial

activity patterns are reflective of the pseudogene evolu-

tionary process, where a pseudogene may be in the pro-

cess of either resurrection as a ncRNA or gradually

Table 4 Similarity between pseudogenes with active

promoters (upper right cells) and Pol2 binding sites

(lower left cells)

Cell line K562 Gm12878 Helas3 H1hesc Hepg2

K562 - 0.30 0.29 0.22 0.27

Gm12878 0.33 - 0.33 0.27 0.32

Helas3 0.31 0.31 - 0.30 0.39

H1hesc 0.24 0.27 0.29 - 0.27

Hepg2 0.26 0.32 0.33 0.33 -
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losing its functionality. Understanding why pseudogenes

show partial activity may shed light on pseudogene evo-

lution and function.

Discussion
Pseudogene annotation

In this study, we describe a set of human pseudogenes

at the genome-wide scale. The pseudogene dataset is

created by manual annotation with the assistance of

computational pipelines. The surveyed set of 11,216

consensus pseudogenes is the first comprehensive effort

of manual annotation of human pseudogenes at the

whole genome level.

Pseudogenes and their parents

We combined manual annotation and sequence identity

data to identify parent genes for approximately 86% of

pseudogenes (9,636 out of 11,216). The numbers of

Figure 12 Summary of pseudogene annotation and case studies. (a) A heatmap showing the annotation for transcribed pseudogenes
including active chromatin segmentation, DNaseI hypersensitivity, active promoter, active Pol2, and conserved sequences. Raw data were from
the K562 cell line. (b) A transcribed duplicated pseudogene (Ensembl gene ID: ENST00000434500.1; genomic location, chr7: 65216129-65228323)
showing consistent active chromatin accessibility, histone marks, and TFBSs in its upstream sequences. (c) A transcribed processed pseudogene
(Ensembl gene ID: ENST00000355920.3; genomic location, chr7: 72333321-72339656) with no active chromatin features or conserved sequences.
(d) A non-transcribed duplicated pseudogene showing partial activity patterns (Ensembl gene ID: ENST00000429752.2; genomic location, chr1:
109646053-109647388). (e) Examples of partially active pseudogenes. E1 and E2 are examples of duplicated pseudogenes. E1 shows UGT1A2P
(Ensembl gene ID: ENST00000454886), indicated by the green arrowhead. UTG1A2P is a non-transcribed pseudogene with active chromatin and
it is under negative selection. Coding exons of protein-coding paralogous loci are represented by dark green boxes and UTR exons by filled red
boxes. E2 shows FAM86EP (Ensembl gene ID: ENST00000510506) as open green boxes, which is a transcribed pseudogene with active chromatin
and upstream TFBSs and Pol2 binding sites. The transcript models associated with the locus are displayed as filled red boxes. Black arrowheads
indicate features novel to the pseudogene locus. E3 and E4 show two unitary pseudogenes. E3 shows DOC2GP (Ensembl gene ID:
ENST00000514950) as open green boxes, and transcript models associated with the locus are shown as filled red boxes. E4 shows SLC22A20
(Ensembl gene ID: ENST00000530038). Again, the pseudogene model is represented as open green boxes, transcript models associated with the
locus as filled red boxes, and black arrowheads indicate features novel to the pseudogene locus. E5 and E6 show two processed pseudogenes.
E5 shows pseudogene EGLN1 (Ensembl gene ID: ENST00000531623) inserted into duplicated pseudogene SCAND2 (Ensembl gene ID:
ENST00000541103), which is a transcribed pseudogene showing active chromatin but no upstream regulatory regions as seen in the parent
gene. The pseudogene models are represented as open green boxes, transcript models associated with the locus are displayed as filled red
boxes, and black arrowheads indicate features novel to the pseudogene locus. E6 shows a processed pseudogene RP11-409K20 (Ensembl gene
ID: ENST00000417984; filled green box), which has been inserted into a CpG island, indicated by an orange arrowhead. sRNA, small RNA.
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protein-coding genes associated with pseudogenes is not

evenly distributed: some housekeeping genes, such as

those encoding ribosomal proteins and GAPDH, are

among the parents having the most pseudogenes.

The sequence identity between pseudogenes and their

parents is of interest for studies of pseudogene evolution

and regulatory function. We found a unimodal distribu-

tion of sequence similarity between processed pseudo-

genes and parents, which reflects a recent burst of

processed pseudogenes in human evolutionary history

(Figure 4). In contrast, the uniform distribution of

sequence similarity between duplicated pseudogenes and

parents indicates that the duplication process is random

and happens at a stable rate during genome evolution.

Pseudogene transcription and tissue specificity

Several recent studies have highlighted the fact that pseu-

dogenes can play active roles through their RNA products

[50]. Using a large variety of biological data and statistical

models, we predict that at least 9% of the pseudogenes

present in the human genome are actively transcribed. We

observed that although there are more processed pseudo-

genes than duplicated pseudogenes (8248 versus 2,127) in

the human genome, the ratio between them is not main-

tained in the transcribed ones (520 versus 343). The dupli-

cated pseudogenes are significantly enriched in the

transcribed list (P-value close to 0). This is expected since

the duplicated pseudogenes may retain the promoter

regions of their parents when duplicated, unlike the pro-

cessed pseudogenes that insert randomly into the genome

and therefore require the presence of potential regulatory

sequences in the neighboring genomic locations.

Pseudogene conservation

High sequence identity between pseudogenes and their

parents does not necessarily imply selection pressure on

the former since it can be due to recent pseudogenization

events where a pseudogene has yet to accumulate muta-

tions from neutral drift. Therefore, to better understand

selection pressure on pseudogenes, we compared the

pseudogene CDS and 3’ UTR sequence identity to their

corresponding parent regions. Sequence analysis highlights

a group of pseudogenes showing differential evolutionary

pressure on the two regions. Furthermore, analysis of

human polymorphism data and pseudogene conservation

shows a potential weak signal for selection on transcribed

pseudogenes. Overall, we identify a number of pseudo-

genes under evolutionary constraint. Combined with tran-

scription data, this list contains pseudogenes with

potential biological function and may act as a good refer-

ence for additional experimental analysis.

Partial activity of pseudogenes

We have integrated a large amount of genome-wide

functional genomics data, together with expression and

conservation data, to create a pseudogene annotation

resource, psiDR. This allows us to comprehensively

examine pseudogene activity from different perspectives,

such as transcription, regulation and evolution. We

found a number of pseudogenes showing activity and,

more interestingly, a group of pseudogenes exhibiting

various ranges of partial activity. Partially active pseudo-

genes were defined by a series of simple models based

on transcription evidence, chromatin state, DNaseI

hypersensitivity, upstream regulatory elements, and

selection pressure. Different combinations of those fea-

tures led to the characterization of pseudogenes as

being partially active. One can speculate that partial

activity may correspond to the process of resurrection

of a pseudogene as a ncRNA or that it is in the process

of dying and losing function. We believe that the various

partially active pseudogenes provide a rich informative

resource to aid understanding of pseudogene function

and evolution.

One of the key aspects in defining the partially active

pseudogenes is their upstream regulatory region. The

presence or absence of regulatory elements is essential

to understanding the evolutionary stage of the partially

active pseudogenes. For example, a pseudogene showing

active promoters and TFBSs but lacking transcription

evidence is believed to be a ‘dying’ gene, while a pseudo-

gene with markedly different upstream elements com-

pared to its parent gene but showing evidence of

transcription is regarded as being potentially ‘resur-

rected’. In the present paper we define the partially

active pseudogenes based on several genomic features:

TFBSs, histone marks, DNA accessibility, and so on.

However, we expect that future functional genomics

datasets will complete the activity profiles of pseudo-

genes. In particular, integration of DNA methylation,

nucleosome positioning, chromatin interaction analysis

by paired-end tag sequencing (ChIA-PET), and high-

throughput sequencing of RNA isolated by crosslinking

immunoprecipitation (HITS-CLIP) datasets will provide

a useful addition to the ENCODE pseudogene resource.

In conclusion, by integrating GENCODE pseudogene

annotation, extensive functional genomics data from

ENCODE and the variation data from the 1000 Genome

project, we provide a comprehensive resource for pseu-

dogene annotation and activity in the human genome.

This resource has allowed us to classify pseudogenes

with various attributes, which will enable interested

researchers to identify expressed pseudogenes with

potential function. Recent studies have shown the var-

ious ways by which pseudogenes regulate the expression

of protein-coding genes and underscored the impor-

tance of identifying functional pseudogenes. We believe

this resource provides data that can be used to further

research in this direction. In particular, it is useful for
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understanding the regulatory role of pseudogenes, espe-

cially in cancer and other developmental processes. The

comprehensive annotation of human pseudogenes also

allows their comparison with pseudogenes from other

model organisms, such as mouse, worm, fly, and cress,

which can provide valuable information on genome

evolution.

Materials and methods
Manual annotation

The manual annotation is based on protein data from

the UniProt database, which is aligned to the individual

bacterial artificial chromosome (BAC) clones that make

up the reference genome sequence using BLAST [51].

Gene models are manually extrapolated from the align-

ments by annotators using the ZMAP annotation inter-

face and the otterlace annotation system [52].

Alignments were navigated using the Blixem alignment

viewer [53]. Visual inspection of the dot-plot output

from the Dotter tool [53] is used to resolve any align-

ment with the genomic sequence that is unclear in, or

absent from, Blixem. A model is defined as a pseudo-

gene if it possesses one or more of the following charac-

teristics unless there is evidence (transcriptional,

functional, publication) showing that the locus repre-

sents a protein-coding gene with structural/functional

divergence from its parent (paralog): (1) a premature

stop codon relative to parent CDS - can be introduced

by nonsense or frame-shift mutation; (2) a frame-shift in

a functional domain - even where the length of the

resulting CDS is similar to that of the parent CDS; (3) a

truncation of the 5’ or 3’ end of the CDS relative to the

parent CDS; (4) a deletion of an internal portion of the

CDS relative to the parent CDS. Processed pseudogene

loci lacking disabling mutations are annotated as ‘pseu-

dogene’ when they lack locus-specific transcriptional

evidence

PseudoPipe

PseudoPipe identifies pseudogenes by searching for

homology to all known protein sequences in the genome

(defined in Ensembl) using a six-frame translational

BLAST, followed by removal of redundancies and mer-

ging of the overlapping and continuous BLAST hits.

Functional paralogs (parents) of the resulting pseudo-

genes are determined by sequence similarity, and the

disablements in pseudogenes are identified through

alignment to the parent genes. A non-redundant set of

18,046 pseudogenes was obtained using the human

reference genome (GRch37, ENSEMBL gene release 60).

Pseudogenes are categorized into different classes as

processed, duplicated or ambiguous based on their

genomic structures. While duplicated pseudogenes have

intron-exon like structures, processed pseudogenes

contain only continuous exon sequences with no introns

and have traces of polyadenine tails at the 3’ end.

Ambiguous pseudogenes indicate processed pseudo-

genes with decayed sequences.

RetroFinder

RetroFinder is unique among pseudogene prediction

methods for using mRNA alignments to identify retro-

genes, including processed pseudogenes [37]. Human

mRNA and RefSeq sequences are aligned using the

Lastz [54] alignment program (based on Blastz [55]),

which is very sensitive, allowing alignment down to

the level of 65% identity, whereas BLAT [56] works

better for sequences where identity is greater than

95%. If one of these transcripts aligns more than once,

and one of the alignments is to a known gene locus,

then the additional alignments are scored on a number

of features indicative of retrotransposition: multiple

contiguous exons with the parent gene introns

removed; negatively scored introns that are distin-

guished from repeat insertions (SVA elements, long

interspersed nucleotide elements (LINEs), short inter-

spersed nucleotide elements (SINEs), Alu elements);

lack of conserved splice sites; break in synteny with

mouse and dog genomes using the syntenic net align-

ments [57] from the UCSC Genome Browser [58];

polyadenine tail insertion.

Parents based on immunoglobulin and zinc finger

genes are filtered out since these large gene families

cause false positives. The score threshold is set at 550

based on training with VEGA [59] processed pseudo-

genes. Note that for human, VEGA genes are included

in the manually annotated genes of GENCODE. Further

details of the method can be found in [37].

Consensus of manual and automated annotation

To obtain a consensus set of pseudogenes, we verified

each pseudogene locus from manual annotation against

those predicted by either of the two automated pipelines

(PseudoPipe and RetroFinder), using a 50 bp overlap cri-

terion. A pseudogene passing these overlapping tests is

classified as: a ‘level 1’ pseudogene if it passes tests of

manual annotation against both automated pipelines; or

a ‘2-way consensus’ pseudogene if it only passes the test

between the two automated pipelines.

As a quality control exercise to determine complete-

ness of pseudogene annotation in chromosomes that

have been manually annotated, 2-way consensus pseudo-

genes are re-checked to establish their validity and added

to the manually annotated pseudogene set as appropriate.

Pseudogene extrapolation

We estimated the total number of pseudogenes in the

genome using the knowledge from PseudoPipe and
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manual annotation. Using manual annotation from the

chromosomes that were completely annotated as a gold

standard, we estimated the number of false positives

and false negatives in PseudoPipe predictions. We used

this information to extrapolate to the entire human gen-

ome to obtain an estimate of the number of pseudo-

genes in the reference genome.

Chromosomes 1 to 11, 20, 21, 22, X, Y and the p arm

of 12 are fully annotated in GENCODE v7. On these

chromosomes, there are 9,776 and 12,501 pseudogenes

predicted by manual inspection and by PseudoPipe,

respectively. PseudoPipe assigned 18,046 pseudogenes in

the entire genome. Based on this, the number of manu-

ally identified pseudogenes in the genome will be (9,776

× 18,046)/12,501 ≈ 14,112.

Alternatively, we used a simple linear extrapolation to

correlate the number of pseudogenes with the size of

chromosomes on which the pseudogenes are annotated.

With this method, the number of nucleotides from the

fully annotated regions is 2,383,814,825, while the total

number of nucleotides in the genome is 3,092,688,347.

Therefore, the predicted number of pseudogenes for the

entire human genome is (9,776 × 3,092,688,347)/

2,383,814,825 ≈ 12,683.

Identification of the parents of pseudogenes and

sequence similarity to the parent

We derived parents of pseudogenes from the correspon-

dence between pseudogenes and query sequences used

by different pipelines (that is, UniProt proteins for man-

ual annotation and Ensembl peptides for PseudoPipe),

together with the sequence alignments of pseudogenes

against the whole human genome. The procedure was

carried out using the following steps: first, use corre-

spondence between parents and pseudogenes derived by

the manual annotation; second, one-to-one sequence

alignment between pseudogenes and coding regions in

the human genome by BLAT (sequence similarity >

90%); third, use parent gene information provided by

PseudoPipe.

When the parent identity for a pseudogene is incon-

sistent across different data resources, we assign the par-

ent based on the highest ranked data in the following

order: manual annotation, BLAT alignment, and auto-

mated curation.

Parents of 9,368 pseudogenes were unambiguously

identified, while it is difficult to uniquely identify the

parent genes for 1,848 pseudogenes. The two most sig-

nificant factors that confound our ability to confidently

identify a pseudogene parent are the degree of degrada-

tion of the pseudogene and the number of closely

related paralogs to the true parent gene. Therefore, for

gene families with many closely related members, even a

relatively small number of mutations can render

accurate identification of the true parent difficult; while

for more degraded pseudogenes from large families with

common functional domains (for example, zinc fingers),

the number and similarity of the potential parents make

prediction impossible.

To calculate the sequence identity between pseudo-

genes and their parents, each pseudogene sequence was

extended by 2 kb at its 3’ end for a higher coverage of

3’ UTR of its parent and then aligned to its parent

sequence. Only exons of parent and pseudogene

sequences were used. The alignment was carried out

using ClustalW2, with default parameters. To adapt to

the large size of 3’ UTR and much smaller size of small

RNA targets in that region, a sliding window of 100 bp

was used for sequence identity for a more accurate local

identity. The window with the highest sequence identity

was taken as representative of the 3’ UTR and used in

the following tests.

Pseudogene transcription evidence from RNA-Seq data

The pseudogenes in GENCODE v7 were tested for tran-

scription evidence using the following workflow. First, we

extracted the genomic coordinates of the processed and

duplicated pseudogenes from GENCODE v7 (gene_type

= ‘pseudogene’ AND transcript_type = ‘processed_pseu-

dogene’ OR transcript_type = ‘unprocessed_pseudogene’).

From this step we obtained 8,107 processed and 1,860

duplicated pseudogenes. Second, we obtained the under-

lying genomic sequence for each pseudogene by concate-

nating the sequences of their pseudoexons. Third, we

aligned each pseudogene sequence to the human refer-

ence genome using BLAT [56] (with default parameters)

to find all similar regions in the genome. Fourth, we

assigned each pseudogene alignment to one of four cate-

gories: pseudogenes with no similar regions in the gen-

ome (presumably these pseudogenes are more ancient

and have accumulated many mutations, and therefore

they have a low sequence similarity compared to the par-

ent gene); pseudogenes giving rise to one alignment pair

(most likely the parent gene); pseudogenes with two to

five alignments; pseudogenes giving rise to more than

five sequence alignments.

For the 9,967 pseudogenes analyzed, we obtained the

following counts: 3,198 pseudogenes with zero align-

ments, 1,907 pseudogenes with one alignment, 2,150

pseudogenes with two to five alignments and 2,712

pseudogenes with more than five alignments.

In order to check for evidence of pseudogene tran-

scription, we examined the expression pattern of each

pseudogene and its similar regions using the Illumina

Human BodyMap RNA-Seq data set consisting of 16 tis-

sues. First, we aligned the reads for each tissue to the

human genome reference sequence in conjunction with

a splice junction library using Bowtie [60] and
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RSEQtools [61]. There was no preference given for a

genome match over other matches. Second, we gener-

ated a signal track of the mapped reads for each tissue.

Third, for a given pseudogene and its similar regions in

the human genome, we extracted the signal track of

mapped reads from all 16 tissues as shown in Figure 5c.

After a number of filtering steps we obtained a list of

potentially transcribed pseudogenes. For example, the

set of 3,198 pseudogenes with no similar regions in the

genome was reduced to 344 pseudogenes by requiring

that each pseudogene is covered by at least two reads

across half of its length in at least one tissue.

Transcribed pseudogenes subject to experimental

validation

Out of the 469 pseudogenes subjected to experimental

validation, 94 pseudogenes were randomly selected from

the manual pipeline output (pipeline 1 in section ‘Pseu-

dogene Transcription Identified by Sequence of Computa-

tional Pipelines’); 271 pseudogenes were selected at

random from the PseudoSeq pipeline output (pipeline 3

in the same section as above), and 97 pseudogenes were

selected at random from the TotalRNA pipeline output

(pipeline 2 in the same section as above). The remaining

seven pseudogenes (containing seven loci to be vali-

dated), were manually chosen by examining the expres-

sion patterns of pseudogenes and their parents using

BodyMap data and PseudoSeq (Figure 5c). At the time

of writing, the remainder of transcribed pseudogenes are

undergoing experimental validation and the results will

be constantly updated in the psiDR.

Multiple sequence alignment, pseudogene preservation

and polymorphisms in the human population

Sequence alignment

Genomic sequence alignments of 16 species, including

primates, mammals, and vertebrates, were extracted

from the original 46-way vertebrate sequence alignments

obtained from the UCSC genome browser. Genomes

from all the species were aligned using BlastZ with a

synteny filter followed by the MultiZ method.

Assembled sequences for the 2X mammal data are

excluded from the current study due to their low quality

and possible false positive alignment to pseudogenes

from the high-quality assemblies.

Selection pressure

Genomic variation data consisting of SNPs, indels, and

structural variations were from 60 individuals in the

CEU population (Utah residents with ancestry from

northern and western Europe) from the 1000 Genomes

project pilot data release [47].

Pseudogene conservation

Chimp orthologs to human pseudogenes were derived

from whole genome sequence alignments. Only

pseudoexons were used in the ortholog identification

and the following analyses. The divergence is calculated

as the ratio of mutated nucleotides in the chimp gen-

ome to the length of human pseudogenes. We assume

the occurrence of substitution follows a Poisson distri-

bution and the background substitution rate (null

hypothesis mean) was set at 1.5%. The P-value for pseu-

dogene conservation was derived as the probability of

that pseudogene having equal or fewer nucleotide muta-

tions than it really has under the null hypothesis. We

adjusted P-values for multiple hypotheses testing using

the Benjamini and Hochberg approach [62]. All the

pseudogenes were ranked by their P-values from the

most significant to the least significant. Pseudogenes

with P-values less than (False discovery rate × Rank/

COUNT) were taken as significant, where false discov-

ery rate is set to 0.05 and COUNT is the total number

of pseudogenes tested. Conserved pseudogenes from

mouse orthologs were calculated in the same manner,

except the background substitution rate was set to 5%.

Chromatin segmentation using segway

Segway segmentation labels the genome using 25 differ-

ent markers. Half of them are indicative of genomic

activity (for example, transcription factor activity, gene

body, enhancers), while the other half are repressive (for

example, CTCF). We calculated the frequency of each

marker in the pseudogenes and parent genes in a gen-

ome-wide fashion. All the frequencies were normalized

with respect to the total segment distribution across the

entire genome. Two different trends were observed

globally for the parent genes: (a) TSS mark frequency is

at least one order of magnitude larger than the fre-

quency of the repressive marks; and (b) the frequency of

the GE, GM and GS marks is, on average, five times lar-

ger than the frequency of the repressive marks. The seg-

ment distribution of the parent genes indicated

enrichment in TSS, GS, e/GM (enhancer/gene body

middle) and GE marks and was considered as a standard

indicator for active chromatin.

Transcription factor binding sites in the upstream regions

TFBSs were studied using data from ENCODE ChIP-

Seq experiments. In this study, we used the transcription

factor occupancy data from the ENCODE 2011 January

data freeze. The binding peaks of all the transcription

factors were called by PeakSeq, with optimal settings to

reduce the false negative results due to weak/poor biolo-

gical replicates. A pseudogene was considered to have a

TFBS if the majority of a peak for that transcription fac-

tor is located within the genomic region 2 kb upstream

of the pseudogene.

ENCODE tier 1 and tier 2 cell lines (Gm12878, K562,

Helas3, H1-hesc and Hepg2) with ChIP-Seq data for at
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least 40 transcription factors were included in this ana-

lysis. To avoid confusion with the transcription factor

binding signals from neighboring genomic loci, 693

pseudogenes whose 5’ ends are less than 4 kb away

from the TSS of protein-coding genes were excluded. In

the end, this study focused on 10,523 pseudogenes,

where 876 are transcribed pseudogenes.

One confounding factor in the analysis is the different

number of transcription factors studied in each cell line.

However, we argue that the numbers here reflect the

true tendency of TFBSs for pseudogenes since fairly

comprehensive lists of transcription factors have been

studied (74, 114, 53, 40 and 61 transcription factors in

Gm12878, K562, Helas3, H1-hesc and Hepg2, respec-

tively) and the results are consistent across all the differ-

ent cell lines.

Additional material

Additional file 1: Supplementary tables and figures.
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