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Abstract 37 

Current classifications (WHO-HAEM5 / ICC) define up to 26 molecular B-cell precursor acute 38 

lymphoblastic leukemia (BCP-ALL) disease subtypes, which are defined by genomic driver 39 

aberrations and corresponding gene expression signatures. Identification of driver aberrations 40 

by RNA-Seq is well established, while systematic approaches for gene expression analysis are 41 

less advanced. Therefore, we developed ALLCatchR, a machine learning based classifier using 42 

RNA-Seq expression data to allocate BCP-ALL samples to 21 defined molecular subtypes. 43 

Trained on n=1,869 transcriptome profiles with established subtype definitions (4 cohorts; 44 

55% pediatric / 45% adult), ALLCatchR allowed subtype allocation in 3 independent hold-out 45 

cohorts (n=1,018; 75% pediatric / 25% adult) with 95.7% accuracy (averaged sensitivity across 46 

subtypes: 91.1% / specificity: 99.8%). ‘High confidence predictions’ were achieved in 84.6% of 47 

samples with 99.7% accuracy. Only 1.2% of samples remained ‘unclassified’. ALLCatchR 48 

outperformed existing tools and identified novel candidates in previously unassigned samples. 49 

We established a novel RNA-Seq reference of human B-lymphopoiesis. Implementation in 50 

ALLCatchR enabled projection of BCP-ALL samples to this trajectory, which identified shared 51 

patterns of proximity of BCP-ALL subtypes to normal lymphopoiesis stages. ALLCatchR sustains 52 

RNA-Seq routine application in BCP-ALL diagnostics with systematic gene expression analysis 53 

for accurate subtype allocations and novel insights into underlying developmental 54 

trajectories. 55 
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Introduction 57 

Improved outcomes in B cell precursor acute lymphoblastic leukemia (BCP-ALL) – both, in 58 

pediatric and adult patients – have been achieved by precise risk stratification and target 59 

specific treatments. Molecular BCP-ALL subtypes and immunophenotype are the most 60 

important baseline prognosticators for BCP-ALL beside white blood cell counts and age. They 61 

inform risk-adapted treatments and targeted therapies. Currently, the revised WHO 62 

classification of lymphoid neoplasms, (WHO-HAEM5)1 and the International Consensus 63 

Classification of Myeloid Neoplasms and Acute Leukemia (ICC)2 have acknowledged 11 and 26 64 

molecular defined BCP-ALL subtypes as distinct diagnostic entities, respectively, including 5 65 

provisional entities (ICC classification). A total of 21 of these subtypes have been characterized 66 

by distinct gene expression profiles3–8, while the remaining subtypes2,5 are rare (IGH::IL3) or 67 

were defined by specific sets of underlying genomic drivers (Ph-like: ABL class / JAK-STAT / 68 

NOS) or their absence (KMT2A-/ZNF384-like). This heterogeneity of diagnostic subtypes 69 

exceeds the capabilities of cytogenetic (chromosome banding analysis, FISH) and molecular 70 

genetic methods (breakpoint specific PCR, MLPA, SNP-array / Array-CGH) which have so far 71 

been combined for identification of BCP-ALL subtypes. RNA-Seq enables identification of all 72 

BCP-ALL subtypes with a single method, establishing a new diagnostic standard. Further 73 

implementation as routine clinical diagnostic requires unified analysis methods. Calling of 74 

driver gene fusions9,10 is well established and novel approaches for the identification of 75 

hotspot single nucleotide10 variants and virtual karyoytpes11 exist. Yet only few approaches 76 

for systematic gene expression analysis are currently available. 77 

Gene expression signatures represent the signaling equivalent of heterogeneous genomic 78 

driver alterations and have been used to define BCP-ALL subtypes. Initially, unsupervised 79 

clustering or prediction analysis for microarrays (PAM) were used to define subtype specific 80 

gene sets resulting in considerable heterogeneity regarding gene set definitions and subtype 81 

allocation of individual samples.12 More recent systematic approaches for BCP-ALL subtype 82 

allocations have employed machine learning methods to train classifiers for BCP-ALL subtype 83 

allocation mainly on pediatric ALL datasets.13,14 Yet the optimal method still needs to be 84 

defined – especially for rare and difficult to classify subtypes and subtypes with predominance 85 

in adults. Additionally, correct assignment of samples, which do not fall into established 86 

subtype categories either due to interfering biological conditions (e.g., low blast count, poor 87 

RNA quality) or because these samples represent novel candidate subtypes, remains a 88 
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challenge. In addition to molecular subtype definitions, gene expression profiles might be 89 

informative for clinical baseline parameters such as leukemic blast proportion, 90 

immunophenotype or more detailed analysis of lymphopoiesis trajectories underlying BCP-91 

ALL development. However, systematic approaches and especially RNA-Seq data that link BCP-92 

ALL subtypes to human B lymphopoiesis differentiation stages are lacking. 93 

Here we describe ALLCatchR, a machine learning based classifier pretrained for allocation of 94 

BCP-ALL gene expression profiles to all 21 gene expression defined molecular subtypes of 95 

WHO-HAEM5 and ICC classifications. High accuracies in independent validation cohorts are 96 

achieved by integrating machine learning and gene set based nearest neighbor models into a 97 

compound classifier. ALLCatchR infers clinical baseline variables such as blast proportion and 98 

patient’s sex from RNA-Seq data and provides a putative differentiation stage of origin based 99 

on our newly established reference of human B lymphopoiesis. ALLCatchR sustains routine 100 

diagnostic application of RNA-Seq with systematic gene expression analysis providing subtype 101 

allocations and insights into underlying biology for further exploratory analysis. 102 

Material/Subjects and Methods 103 

Aggregation of a 3,532 sample BCP-ALL transcriptome reference data set. 104 

To establish a classifier for BCP-ALL molecular subtype allocation, we aggregated RNA-Seq 105 

count data from n= 3,532 BCP-ALL patients including 64.5% pediatric5–7,13 and 35.5% adult3–106 

5,8,13 cases combined from 6 independent datasets (Figure 1A; Supplementary Table S1). 107 

Excluded were samples with multiple subtype assignments (n=116), multiple representations 108 

of the same patient (n=44), subtypes which are not part of WHO-HAEM5 / ICC classification 109 

(Low hyperdiploid, IDH1/2; n=55) or which are mainly defined by absence of a genomic driver 110 

(KMT2A-like, ZNF384-like; n=9). Molecular BCP-ALL subtype allocations were performed for 111 

n=2,887 samples in the original studies based on genomic drivers and corresponding gene 112 

expression signatures. Subtype-defining genomic events were identified in >90% of cases 113 

either by RNA-Seq (gene fusions, hotspot single nucleotide variants, virtual karyotypes) or by 114 

genomic profiling (whole genome- / whole exome- / gene panel sequencing, SNP-arrays, 115 

array-CGH). A total of n=421 samples where defined ‘unassigned’ or ‘B-other’ in the original 116 

studies. All BCP-ALL molecular subtypes from current WHO-HAEM5 or ICC classifications which 117 

were characterized by distinct gene expression signatures in their original description (n=21) 118 
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were represented in the data set (not included: IGH::IL3, KMT2A-like, ZNF384-like. Ph-like was 119 

considered one subtype without sub-division. CEBP/ZEB2 subtype lacks final definitions so far 120 

and was defined here as ‘CEBP' by presence of IGH::CEBPA/CEBPE/CEBPD fusions and absence 121 

of other drivers.) (Supplementary Table S2). Raw read counts for 15,728 protein-coding genes 122 

represented in all cohorts were used including heterogenous sequencing approaches (poly-A 123 

selection / depletion of ribosomal RNAs), sequencing depths and different read count 124 

quantification methods before normalization (log10(count + 1), followed by z-transformation 125 

and scaling between 0-1).The data set was split into a data set used for training of the classifier 126 

(n=1,869) and 3 hold-out studies (n=1,018) for independent validation both representing all 127 

analyzed BCP-ALL subtypes (Figure 1A, Supplementary Figure S1).  128 

Integration of machine learning and gene set based nearest-neighbor models for BCP-ALL 129 

subtype allocation  130 

To perform molecular subtype allocation based exclusively on gene expression data, we 131 

developed ALLCatchR, a classifier which integrates linear support vector machine (SMV) and 132 

nearest-neighbor association models for BCP-ALL subtypes derived from the training data 133 

(Supplementary Figure S1) Feature selection (LASSO)15 using the glmnet package16 was used 134 

to extract BCP-ALL subtype defining gene sets, resulting in 2,802 genes with high 135 

discriminative power for 21 molecular subtypes (Supplementary Figure S2, Supplementary 136 

Table S3). First, we used this gene set to train five different machine learning classifiers using 137 

two feature selection methods15,17 of which linear SVM18 performed best independent of the 138 

feature selection method used (Supplementary Figure S3). This resulted in a high accuracy 139 

(0.963) of subtype prediction in the training data. However, linear SVM is restricted to 140 

predefined classes and does not compute probabilities for individual subtype predictions, 141 

which prevents it from correctly handling cases which are unassigned or ambiguous due to 142 

multiple drivers or which represent novel candidates. To achieve a probabilistic compound 143 

model, we incorporated single sample gene set enrichment analyses (ssGSEA) using 144 

singscore19 of the same subtype-defining LASSO gene sets. By this approach, batch effects 145 

between cohorts were removed (Supplementary Figure S4) Euclidean distance of each test 146 

sample to each training sample was computed and the 10 nearest neighbors were considered 147 

for subtype allocations of each test sample (accuracy for subtype prediction based on highest 148 

enrichment for each sample: 0.912). Both models - SVM linear predictions and sample-to-149 

samples-distances in subtype-defining gene sets – were integrated into our newly established 150 
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compound classifier, ALLCatchR, which provides dynamic ranges of subtype-specific 151 

probability scores (Figure 1A). To achieve a better separation between highly similar high 152 

hyperdiploid and near haploid ALL, both subtypes where first represented as one class in the 153 

overall classifier (NH/HeH) and then separated by a second 2-class compound classifier with a 154 

similar design as the overall classifier. 155 

Development of an RNA-Seq reference of human B-lymphopoiesis 156 

Bone marrow samples from healthy adult donors (n=4, M:F=1:3, age: 27-39 years, study 157 

registration DRKS00023583, ethical approval of ethics committee, Kiel University: D 583/20) 158 

were subjected to immunodensity cell separation (RosetteSep, STEMCELL Technologies; Inc., 159 

Vancouver, BC, Canada; purging: CD16, CD36, CD66b, CD235a, CD3). Non-depleted cells were 160 

stained with a 9-color antibody panel (Supplementary Table S4) and FACS-sorted (FACSAria™ 161 

fusion; BD Biosciences, Franklin Lakes, NJ, USA) to 7 lymphoid differentiation stages. RNA was 162 

extracted from 5,000-320,000 cells per differentiation stage (AllPrep™ DNA/RNA Micro Kit, 163 

Qiagen, Venlo, Netherlands) and subjected to ultra-low-input RNA sequencing after 164 

generation of stranded sequencing libraries (SMART-Seq® Stranded Kit, Takara Bio Inc., 165 

Kusatsu, Shiga, Japan; NovaSeq 6000, Illumina, San Diego, CA, USA). 166 

Results 167 

ALLCatchR performs BCP-ALL molecular subtype allocation with high accuracy 168 

We used aggregated BCP-ALL gene expression profiles (n=3,532 samples, n=6 cohorts) to 169 

develop ALLCatchR, a pre-trained machine learning classifier which performs BCP-ALL 170 

molecular subtype allocation based on gene expression alone (detailed in ‘Methods’). 171 

ALLCatchR provides probability scores for each sample and all gene expression defined BCP-172 

ALL subtypes (Figure 1A). Unsupervised clustering of ALLCatchR scores groups samples 173 

according to subtype across cohorts and age groups. For final subtype allocation, we defined 174 

subtype-specific cutoffs based on the comparison of probability scores from samples 175 

belonging to the corresponding subtype and all remaining samples of the cohort (Figure 1B). 176 

This resulted in 1.) high-confidence predictions, 2.) candidate predictions and 3.) low-177 

confidence predictions i.e., unclassified samples. Cutoffs for ‘high-confidence’ predictions 178 

were defined to include >90% of correct predictions. Cutoffs for candidate predictions were 179 
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defined to exclude all samples from other subtypes but allowed unassigned/B-other samples 180 

(n=111; Figure 1B). In the training data, 84.6% of samples achieved high confidence 181 

predictions with an accuracy of 0.997, while 13.7% achieved candidate predictions with an 182 

accuracy of 0.797 to guide further validation based on genomic drivers in well pre-specified 183 

directions (Figure 1C). Only 1.7% of samples achieved low-confidence predictions and were 184 

considered ‘unclassified’. To validate ALLCatchR performance, we used independent 185 

validation data from 3 hold-out cohorts (n=1018; Supplementary Figure S1A), not previously 186 

seen by the classifier. A total of n=1006 (98.8%) samples was allocated to one of 21 subtypes 187 

(high-confidence and candidate predictions) with an accuracy of 0.957, demonstrating the 188 

feasibility of highly accurate subtype allocations based on gene expression alone. ‘High-189 

confidence’ and ‘candidate’ predictions were achieved in 83.7% and 15.1% of samples with 190 

accuracies of 0.989 and 0.851 respectively. A total of n=32 samples (3.1%) were assigned to 191 

the wrong subtype or received no subtype allocation (n=12; 1.2%). Most prominent 192 

misclassifications affected Ph-like- to Ph-pos predictions or vice versa (n=8) or subtype 193 

allocations of aneuploid subtypes (n=20), Figure 1D). The majority of misclassified samples 194 

(n=23/33; 67.6%) had received candidate predictions, supporting the need to validate these 195 

predictions based on genomic drivers. 196 

ALLCatchR provides subtype allocations for previously ‘unassigned / B-other’ samples 197 

In addition to the n=1018 hold-out samples with assigned subtype, n=111 samples had been 198 

defined as ‘unassigned / B-other’ (n=107) or were identified as ‘non-Ph-like CRLF2-rearranged’ 199 

(n=4) in the original studies (Figure 1C, D). ALLCatchR concordantly identified n=20 (18.0%) of 200 

these as ‘unclassified’ (Figure 1D, Supplementary Figure S5). However, n=43 (38.7 %) and 201 

n=48 (43.2 %) cases received ‘high-confidence’ or ‘candidate’ predictions respectively (Figure 202 

1D). Analysis of available RNA-Seq gene fusion calls or cytogenetic profiles and/or virtual 203 

karyotyping (WGS / SNP-arrays) identified driver candidates supporting the corresponding 204 

subtype allocations in n=31 (72.1%) of ‘high-confidence’ and n=13 (27.1%) of ‘candidate’ 205 

predictions (Supplementary Table S5; Supplementary Figure S5). These newly suggested 206 

subtype allocations consisted of PAX5alt predictions (n=25) which had not shown a clear 207 

PAX5alt gene expression profile in the original cohort (n=1), or which were contributed from 208 

the CLIP cohort where this subtype had not been annotated previously. Next, n=11 CRLF2-209 

rearranged cases from CLIP and St Jude cohorts without Ph-like gene expression profile in the 210 

original cohorts received ALLCatchR Ph-like predictions. Among the remaining n=7 samples, 211 
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one case with an ALLCatchR high-confidence KMT2A prediction was found to harbor a KMT2A 212 

partial tandem duplication by WGS (Supplementary Figure S5). To the best of our knowledge, 213 

this is the first identification in BCP-ALL of this aberration which is recurrently observed in 214 

acute myeloid leukemia. In a second of these n=7 cases, an IGH::MYC gene fusion was 215 

identified in support of a BCL2/MYC ALLCatchR prediction. Further ALLCatchR high-confidence 216 

predictions for ‘unassigned / B-other samples’ without corresponding drivers included PAX5alt 217 

(n=9) and Ph-like (n=3) predictions, which generally are defined in a proportion of samples by 218 

gene expression alone. Thus, ALLCatchR suggested molecular subtype allocations in previously 219 

‘unassigned’ cases with atypical and less well-defined gene expression signatures and 220 

supported the identification of novel driver candidates. 221 

High accuracy of ALLCatchR predictions is observed across cohorts and molecular subtypes 222 

The accuracy of predictions was consistently high in the training and hold-out data, with 0.952 223 

and 0.957, respectively. Almost congruent predictions were achieved in St Jude and CLIP 224 

cohorts with accuracies of 0.978 and 0.965, respectively. In the MLL hold out set the accuracy 225 

was slightly lower with 0.914 (Figure 2A). Of note, the MLL cohort includes real-world adult 226 

BCP-ALL data from a diagnostic laboratory with more permissive pre-selection cutoffs (e.g., 227 

blast counts) indicating that ALLCatchR achieves reliable predictions also in less pre-selected 228 

samples. Despite the overall high accuracies, classification performance varied between 229 

molecular subtypes (Figure 2B). ALLCatchR achieved specificities >0.99 for all 21 subtypes, 230 

both in training and testing data sets. The average sensitivity across subtypes was 0.919±0.145 231 

and 0.911±0.167 in the training and hold-out data, respectively. For n=17/21 subtypes, 232 

sensitivities were ≥0.85 both on training and hold-out data, together including n=2,781 233 

patients (96.3%; Figure 2B). Only 4 remaining subtypes (n=106 samples, 3.7% of entire cohort) 234 

achieved sensitivities below 0.85 (NUTM1, CEBP, iAMP21 and Near haploid) which was mainly 235 

related to the small number of samples representing these subtypes, limiting both. 236 

ALLCatchR subtype allocation outperforms current tools 237 

Recently, two tools - ALLSorts13 and Allspice14 - were independently developed for BCP-ALL 238 

subtype allocation based on gene expression profiles. In comparison to these, ALLCatchR 239 

provides comprehensive subtype-allocation to all gene expression defined WHO / ICC 240 

subtypes (n=21), including CEBP and CDX2/UBTF, which are missed by both tools. For 241 

performance comparison, n=2,887 samples with established subtype definitions (ALLCatchR 242 
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training and validation data sets) were predicted with ALLSorts and Allspice (Supplementary 243 

Figure S6). ALLSorts performed well with an accuracy of 0.913 but left more samples 244 

‘unclassified’ (n=145), compared to ALLCatchR (n=44). The largest difference was observed in 245 

the MLL holdout data, where ALLSorts achieved an accuracy of 0.771 compared to 0.914 246 

accuracy for ALLCatchR (Supplementary Figure S6). An inferior performance in ALLSorts was 247 

mainly related to missed sample classifications (ALLSorts ‘unassigned’: n=43 (16.17%); 248 

ALLCatchR ‘unassigned’: n=8 (3.01%)). The MLL data set represents real-world data from a 249 

diagnostic laboratory with less stringent pre-selection of samples and thus represent a bona 250 

fide challenge for the tools. Allspice leaves more samples of the same cohort (n=2,887) 251 

unclassified resulting in accuracies of 0.629 in the training and 0.719 in the hold-out studies. 252 

However, for samples that could be assigned to a subtype by Allspice, prediction 253 

performances were comparable to ALLCatchR (Supplementary Figure S6). In summary, 254 

ALLCatchR achieves a higher accuracy for molecular subtype predictions, assigning more 255 

samples to the correct subtype including all gene expression defined subtypes. 256 

Gene expression-based modelling predicts clinical baseline variables. 257 

Blast count proportions impact accuracy of gene expression based molecular subtype 258 

allocation, as sequencing reads from non-leukemic compartments contribute to bulk 259 

transcriptome profiles. To infer sample blast proportions, we trained two machine learning 260 

regression models on data sets of our combined cohort with available blast counts obtained 261 

by manual counting or flow cytometry (GMALL, MLL) and used these as well as the RCH/PM 262 

cohort for validation. Blast count predictions from single cohorts achieved good accuracies 263 

when applied to each other (Figure 3A-B) with a high concordance between USKH and MLL 264 

training sets (Figure 3B) which were therefore combined for the final classifier. Only 1.85% of 265 

samples with high confidence subtype predictions had blast count predictions <50% while 266 

these were observed in 9.83% of candidate predictions and in 17.95% of unclassified samples 267 

of the entire cohort (Supplementary Figure S7). Thus, ALLCatchR can identify a subset of 268 

samples with worse performance for subtype allocation due to lower blast infiltration. Gene 269 

expression profiles were also informative for patient’s sex and disease immunophenotype. To 270 

enable gene expression based cross-validation of these important clinical baseline 271 

characteristics, we implemented sub-classifiers to the samples immunophenotype (pro-B vs. 272 

common-/pre-B ALL; accuracy of 0.871 in the validation data) and patient’s sex (accuracy: 273 
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0.991 in validation data set, Figure 3C). ALLCatchR thus provides a cross-validation of clinical 274 

baseline variables and allows imputation of missing values. 275 

Shared gene expression patterns suggest distinct cells of origin for BCP-ALL subtypes 276 

The cell of origin for BCP-ALL cases remains to be defined, with immunophenotyping according 277 

to EGIL criteria20 representing a framework for orientation. An improved understanding of 278 

underlying lymphopoiesis trajectories is especially warranted regarding current 279 

immunotherapies which rely on differentiation-stage- and lineage-specific markers as 280 

therapeutic targets. To map BCP-ALL subtypes to underlying B lymphopoiesis trajectories, we 281 

established a reference of normal human B lymphopoiesis for 7 differentiation stages from 282 

hematopoietic stem cells to mature bone marrow B cell subsets (Figure 4A), based on 283 

established definitions21. Expression profiles were obtained from ultra-low input RNA-Seq of 284 

FACS sorted bone marrow samples of healthy adult donors (n=4). Unsupervised analysis of 285 

variable expressed genes grouped samples according to the developmental course (Figure 286 

4B). Stage specific gene sets were obtained by multi-comparison ANOVA on normalized counts 287 

(vst), yielding well discriminative definitions (Figure 4C; Supplementary Table S6). Analysis of 288 

immunoglobulin rearrangements using droplet PCR indicated initiation of DH-JH 289 

rearrangements in sorted pro-B cells while VH-(D)JH rearrangements were first observed in pre-290 

B II Large cells and class switch recombination occurred exclusively in the most mature B cells, 291 

providing an immunogenomic differentiation trajectory22 which independently confirms our 292 

sorting strategy (Supplementary Figure S8). We implemented this newly established model 293 

of human B lymphopoiesis in ALLCatchR using ssGSEA to define the proximity of each BCP-ALL 294 

sample to all 7 lymphopoiesis stages (Figure 4D; Supplementary Figure S9). Medians of theses 295 

enrichment scores across samples revealed distinct patterns of enrichments suggesting 296 

shared stages of origin for BCP-ALL subtypes (pro-B / pre-B I / pre-B I to pre-B II Large transition 297 

/ pre-B II Large; Supplementary Figure S9) with similar patterns in pediatric and adult data 298 

sets (Supplementary Figure S10). Most BCP-ALL subtypes and the majority of all cases showed 299 

highest similarity to the pre-B I stage (Figure 4D). KMT2A-rearranged and PAX5 P80R ALL 300 

showed a clearly distinct enrichment pattern favoring an earlier pro-B differentiation stage of 301 

origin (Figure 4E). In contrast, CEBP, HLF, IKZFN1 N159Y, MEF2D, NUTM1 and TCF3::PBX1 were 302 

grouped in a cluster with highest enrichment in transition of pre-B-I to pre-B-II large stage and 303 

BCL2/MYC showed the highest degree of similarity exclusively to pre-B II Large differentiation 304 

stage (Figure 4D). These observations confirm expectations for the extremes of this trajectory 305 
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(KMT2A and BCL2/MYC).23,24 A recently reported mouse model of PAX5 P80R ALL25 established 306 

a pro-B differentiation arrest as initial event in PAX5 P80R homozygous models, supporting a 307 

pro-B origin of this leukemia subtype or at least an altered PAX5 function inducing a pro-B like 308 

phenotype in P80R mutated cases (Figure 4E). Thus, specific enrichment patterns of normal 309 

lymphopoiesis are shared between molecular subtypes, suggesting distinct stages of 310 

transition from normal to leukemic lymphopoiesis. We have included this model in ALLCatchR. 311 

Comparison of EGIL immunophenotypes to gene-expression-defined stages of origin indicated 312 

expected enrichments (pro-B stage in pro-B immunophenotype / pre-B II Large in pre-B 313 

immunophenotypes; (Figure 4F) but nearly all gene-expression-based differentiation stages 314 

were represented in each immunophenotype. BCP-ALL subtypes were more closely related to 315 

gene-expression-based differentiation stages as to EGIL immunophenotypes, suggesting that 316 

ALLCatchR identifies developmental underpinnings of BCP-ALL drivers at higher resolution. 317 

BCP-ALL subtype-defining gene sets indicate shared signaling trajectories 318 

Definitions of BCP-ALL subtype specific gene expression signatures depend on the size and 319 

composition of the remaining cohort used as comparator. We made use of the aggregated 320 

transcriptome profiles of 21 BCP-ALL subtypes to define subtype specific gene expression 321 

profiles based on the largest data set (n=3,532) available till date, representing different age 322 

groups, cohorts, and sequencing methods. UMAP clustering of all samples according to LASSO 323 

selected subtype specific gene sets indicated a clear separation of molecular subtypes 324 

independently of the contributing cohorts (Figure 5A). To characterize subtype specific gene 325 

expression profiles beyond top discriminative features, we performed differential gene 326 

expression analysis for each subtype compared to the remaining cohort. A median of 673 327 

differentially expressed genes per subtype were identified (range: 144– 1465; fold change: 328 

<1.5-log2-fold, FDR: <0.001; Figure 5B). Overlap between these gene sets was very low 329 

(Supplementary Figure S11) indicating that subtype-specific differences are represented in 330 

broad gene regulatory programs. Subtype specific gene expression profiles were provided as 331 

a resource in Supplementary Tables S7-28. To explore the potential of this dataset to reveal 332 

underlying biological functions, we performed ssGSEA for canonical signaling pathways 333 

(MSigDB Hallmark / KEGG gene sets). Analysis of pathways top differentially enriched in BCP-334 

ALL subtypes (one-way ANOVA) indicated previously unrecognized clusters of subtypes with 335 

enrichment in cytokine receptor / JAK-STAT signaling (Ph-pos, Ph-like, ZNF384, Hyperdiploid, 336 

iAMP21) or WNT-/beta catenin/ hedgehog signaling (ETV6::RUNX1 and -like, CDX2/UBTF), 337 
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which together represented the majority of subtypes with a putative pre-B-I cell of origin 338 

(Figure 5C). For the remaining subtypes an enrichment in MYC-/MTOR signaling was observed 339 

in subtypes of both, a more and less mature differentiation stage of origin (pro-B: KMT2A, PAX 340 

P80R / pre-B I to pre-B II large: BCL2/MYC, IKZF1 N159Y, MEF2D; Figure 5C). Thus, enrichment 341 

analysis for canonical signaling pathways independently grouped together BCP-ALL subtypes 342 

form similar underlying B lymphopoiesis differentiation stages. ALLCatchR not only provides a 343 

systematic gene expression analysis for accurate identification of molecular BCP-ALL subtypes 344 

but also enables insights into underlying disease biology which is closely interconnected with 345 

subtype nosology. 346 

Discussion 347 

Risk stratification based on molecular disease subtypes has contributed to the remarkable 348 

improvement in outcomes of patients with BCP-ALL in the last decades and has provided 349 

guidance for target specific treatments. Current nosology of BCP-ALL includes up to 26 specific 350 

subtypes (WHO-HAEM5/ICC)1,2, exceeding the capability of cytogenetic and molecular genetic 351 

techniques which have so far been combined for molecular subtype allocation. Transcriptome 352 

sequencing provides informative gene expression profiles and allows identification of 353 

underlying driver gene fusions and more recently also driver single nucleotide variants and 354 

karyotypes. Analysis of gene expression profiles for molecular subtype allocation is still not 355 

standardized, despite its potential for validating genomic driver calls and for subtype 356 

allocation of samples with missed genomic drivers.4  357 

We have developed ALLCatchR, a pre-trained machine learning classifier which allows 358 

molecular subtype allocation in independent hold-out data with >95% accuracy. ALLCatchR is 359 

the only tool which systematically provides allocation to all gene expression defined subtypes 360 

of the ICC classification, including novel CDX2/UBTF ALL4,26–28 and CEBP/ZEB229–31. Comparable 361 

published approaches (ALLSorts, ALLspice) also achieved accurate predictions. However, 362 

ALLCatchR achieved superior performance through enabling more correct subtype allocations 363 

especially in a real-world adult BCP-ALL data set from a diagnostic laboratory (MLL)8, probably 364 

due to incorporation of similar data from an independent adult cohort in the training set 365 

(GMALL)3,4. Immunophenotyping is a routine diagnostic in BCP-ALL and provides putative 366 

differentiation stages of origin with ‘pro-B’ immunophenotype used as high-risk marker in 367 

some treatment stratification systems. EGIL definitions20 were derived from murine B 368 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.01.526553doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526553
http://creativecommons.org/licenses/by-nc-nd/4.0/


Beder T et al.  

 

12 

lymphopoiesis. Projecting BCP-ALL samples to our newly established reference of normal 369 

lymphopoiesis yielded novel insights into differentiation stages of origin shared between BCP-370 

ALL subtypes. Interestingly, KMT2A and PAX5 P80R ALL, showed a strong proximity to normal 371 

pro-B cells, the most immature B lymphoid stage analyzed. These observations are in line with 372 

very recent single cell analyses suggesting a pro-B or even pre-pro-B origin of KMT2A ALL24,32 373 

and murine models of PAX5 P80R ALL showing that homozygous PAX5 P80R induces a pro-B 374 

differentiation arrest in lymphopoiesis before full transformation through acquisition of 375 

additional driver events.25 Here, ALLCatchR analysis based on our large aggregated reference 376 

cohort confirmed these observations of smaller cohorts24,32, preclinical models25 and previous 377 

assumptions on red-directed PAX5 functionality in PAX5 P80R ALL3,5. Gene-expression-based 378 

definitions of developmental stages in BCP-ALL were more closely related to BCP-ALL subtypes 379 

than immunophenotypes, suggesting that selection for leukemogenic drivers occurs in a 380 

differentiation-stage specific manner.  381 

ALLCatchR is based on the largest cohort of BCP-ALL gene expression profiles across age 382 

groups and molecular subtypes available till date. We make use of this aggregated data to 383 

provide subtype defining gene sets for normal and leukemic B lymphopoiesis as an 384 

independent research resource. Although only a small minority of samples remain 385 

‘unassigned’, novel subtype candidates are being discussed (e.g.; IDH1/2 mutated ALL, Low 386 

hyperdiploid ALL)5,26. ALLCatchR is a freely available open-source tool providing a conceptual 387 

and technical framework which can easily be extended for incorporation of novel subtypes 388 

and additional predictive models. When combined with already establishes approaches for 389 

calling of genomic drivers (e.g., gene fusions), ALLCatchR will complement the essential 390 

prerequisites for the transition of RNA-Seq from research to routine application in clinical 391 

diagnostics. 392 
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Figure 1. ALLCatchR predicts molecular BCP-ALL subtypes based on gene expression count 515 

data with high accuracy. (A) Heatmap showing the prediction scores for 21 gene expression 516 

defined BCP-molecular subtypes (WHO-HAEM5 / ICC) in n=3,308 samples of the entire BCP-517 

ALL cohort (after removal of duplicate samples and samples with two primary subtype 518 

allocations; n=217) samples. Molecular subtypes had been defined in the six original studies 519 

(GMALL, St Jude, CLIP, MLL, MHH and RCH/PM) based on genomic driver aberrations and 520 

corresponding gene expression signatures in n=2,887 cases (ground truth). Remaining cases 521 

were deemed ‘unassigned’ or ‘B-other’. ALLCatchR scores are shown for the combined data 522 

set of training and hold-out cohorts.  (B) Cutoffs were defined for each BCP-ALL subtype based 523 

on distribution of all ALLCatchR scores in every subtype. Cutoffs for ‘high confidence 524 

predictions’ were defined to include >90% of all samples allocated to these subtypes in the 525 

original data set, resulting in 0.989 accuracy of these predictions in independent hold-out data 526 

set. Cutoffs for ‘Candidate predictions’ were defined to reliably exclude samples from other 527 

subtypes, providing a reliable orientation for further validation of subtype assignment based 528 

on genomic drivers (accuracy: 0.851). ‘Low-confidence’ predictions indicate samples from 529 

different subtypes or samples where subtype allocation cannot be performed. These were 530 

considered ‘unclassified’ for further analysis. (C) The proportions of confidence categories for 531 

true and false predictions in the training and hold-out data sets are shown. A prediction was 532 

considered ‘true’ if the sample received the same subtype allocation as in the original study. 533 

‘False’ predictions represent allocations to other subtypes than the subtype assigned in the 534 

original study. For comparison, ‘unassigned’ / ‘B-other’ samples from the holdout data sets 535 

are shown. (D) Confusion matrices relate ALLCatchR predictions to the ground truth in training 536 

samples (left) and holdout cohorts (right). By design, the training cohort did not contain 537 

‘unassigned’ / ‘B-other’ samples. In the hold-out data, n=111 samples had been defined as 538 

‘unassigned’ / ‘B-other’ and predictions for these are also shown. Supplementary Figure S5A 539 

and Supplementary Table S5 indicate how ALLCatchR predictions in ‘unassigned / B-other’ 540 

samples are supported by corresponding genomic drivers in 72.1% of ‘high confidence’ and 541 

27.1% of ‘candidate’ predictions. 542 

 543 

Figure 2. ALLCatchR accuracy for subtype allocation is consistently high across cohorts and 544 

BCP-ALL subtypes. (A) Sankey diagrams indicate ALLCatchR subtype allocations and 545 

corresponding subtype validated ground truth in the training cohort and the individual 546 
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holdout data sets. ‘Acc.’ Indicated accuracy in the corresponding data set. (B) Bar charts 547 

indicated sensitivity and specificity for the individual subtypes in the training and hold-out 548 

data. Validated ground truth was used to define true positive cases, i.e. belonging to this 549 

subtype and true negative cases, i.e. not belonging to this subtype. Values were obtained as 550 

fraction of true positive cases from all cases defined by ALLCatchR as belonging to this subtype 551 

(sensitivity) and as fraction of true negative cases from all cases defined by ALLCatchR as not 552 

belonging to this subtype (specificity). 553 

 554 

Figure 3. ALLCatchR predicts sample blast counts, patient’s sex and immunophenotype 555 

based on gene expression data. (A) For GMALL (n=302), MLL (n=282) and RCH/PM (n=77) 556 

sample blast counts obtained by cytology or flow cytometry were available. GMALL and MLL 557 

cohorts were separately used for training two classifiers in a 10-fold cross-validation scheme 558 

with the same machine learning algorithms used for subtype prediction. GMALL and MLL 559 

classifiers were validated on each other, and both were validated on the RCH/PM data. Best 560 

performing methods in terms of the Root Mean Squared Error (RSME) on the training data are 561 

shown. Training two classifiers on independent data sets allowed for the validation on each 562 

other and both were combined for final predictions. Blast count predictions had a good 563 

correlation to measured counts i.e., rho=0.590 in GMALL and rho=0.771 in MLL. Moreover, 564 

predicting MLL samples with the classifier trained on GMALL achieved a similar performance 565 

as the classifier trained on MLL samples and vice versa. (B) Since both, GMALL and MLL 566 

classifiers had a good performance and were generalizable, predictions from both are 567 

combined in ALLCatchR. (C) Sub-classifiers for immunophenotype and patient’s sex were 568 

developed using SVMlinear and ranger machine learning models respectively. An 569 

immunophenotype classifier was trained on GMALL samples (n=413 common-B / pre-B and 570 

n=66 pro-B) and validated on MLL data (n=168 common-B / pre-B and n=64 pro-B) with 571 

available EGIL immunophenotypes. A patient sex classifier was trained on n=357 GMALL 572 

samples (female=165, male=192) analogous to the subtype classifier. For validation n=1892 573 

St Jude samples with known sex (female=850, male=1042) were used. Corresponding 574 

accuracies, sensitivities and specificities are shown for these sub-classifiers. 575 

 576 

Figure 4. ALLCatchR identifies B cell developmental trajectories underlying BCP-ALL 577 

subtypes. (A) To establish a reference map of human B lymphopoiesis, we obtained bone 578 

marrow samples from healthy adult donors (n=4) and used a 9-color antibody panel for FACS 579 
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sorting of 7 B lymphopoiesis stages following described definitions21 after pre-enrichment of 580 

wanted populations. Lin- selection included CD3, CD33, CD56, CD14, CD66c, CD138. 581 

Antibodies used are shown in Supplementary Table S4. Supplementary Figure S8 shows 582 

immunogenomic profiling of immune gene rearrangements in support of the applied sorting 583 

strategy. (B) Ultra-low input RNA-Seq was performed for total RNA to obtain stage-specific 584 

gene expression. Uniform manifold approximation plot (UMAP) shows clustering of human B 585 

lymphopoiesis stages based on 400 most variable expressed genes. (C) Multi comparison 586 

ANOVA on normalized (vst) count data was performed to obtain differentiation-stage specific 587 

gene sets. Heatmap depicts single sample gene set enrichment analyses (singscore)19 of B 588 

lymphopoiesis subsets (columns) to stage defining gene sets (rows). (D) BCP-ALL samples with 589 

known subtype allocation (n=2,887) were used for single sample gene set enrichment analysis 590 

with B lymphopoiesis-specific gene sets obtained from (C). Supplementary Figure S9 shows 591 

enrichment patterns of individual samples from all BCP-ALL subtypes for all differentiation 592 

stages. Heatmap depicts averaged enrichment scores for all BCP-ALL subtypes and all B 593 

lymphopoiesis stages grouped by unsupervised clustering. Normal progenitors with closest 594 

proximity to BCP-ALL subtypes representing putative cells-of-origin are annotated on top. 595 

Supplementary Figure S10 provides separate analyses for pediatric and adult patients 596 

indicating a high degree of similarity. (E) KMT2A rearranged and PAX5 P80R ALL had both the 597 

highest enrichment towards pro-B supporting a shared developmental origin (also depicted in 598 

Supplementary Figure S9). (F) Comparison of gene expression defined differentiation stages 599 

and EGIL immunophenotypes are shown for n=711 samples with available gene expression 600 

data.  601 

 602 

Figure 5. The gene expression landscape in BCP-ALL. (A) UMAP plot showing all n=3,308 603 

samples used in this study. Count data from the six data sets was batch corrected using the 604 

sva package33 and TPM values calculated. The plot is based on 2,802 genes selected by LASSO 605 

for training of ALLCatchR. Cohorts are highlighted as shape. (B). ALLCatchR predictions were 606 

used to define samples which best represented their respective molecular subtype. A total of 607 

n=20 top ranking samples per subtype (exceptions with lesser samples available: HLF n=14, 608 

CEBP n=16, NUTM1 n=17, IKZF1 N159Y n=18) were used to obtain a homogenous data set 609 

representing all 21 BCP-ALL subtypes (n=405). Differential gene expression analyses for each 610 

subtype versus the remaining cohort using DESeq234 revealed 5,110 differentially expressed 611 
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genes (cutoff: 1.5-log2-fold change, FDR: 0.001) used for unsupervised clustering. Color legend 612 

for BCP-ALL subtypes is the same as in (A). Supplementary Figure S11 and Supplementary 613 

Tables S7-S28 provide detailed information on the derived gene sets. (C) Canonical signaling 614 

pathways (KEGG, HALLMARK gene sets; MSigDB) were used for single sample gene set 615 

enrichment analysis using the BCP-ALL subcohort from (B) for balanced representation of all 616 

subtypes. Enrichment scores for top variable enriched pathways are shown.  617 
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