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ABSTRACT

This paper introduces the gene expression messy genetic
algorithm (GEMGA)—a new generation of messy GAs that
directly search for relations among the members of the
search space. The GEMGA is an O(A*(£2 + k)) sam-
ple complexity algorithm for the class of order-k deline-
able problems [6] (problems that can be solved by consid-
ering no higher than order-k relations). The GEMGA is
designed based on an alternate perspective of natural evo-
lution proposed by the SEARCH framework [6] that em-
phasizes the role of gene expression. The GEMGA uses
the transcription operator to search for relations. This pa-
per also presents the test results of the GEMGA for large
multimodal order-k delineable problems.

I. INTRODUCTION

The field of evolutionary computation is deluged with
many algorithms. Introducing yet another evolutionary
algorithm demands a strong justification. The SEARCH
(Search Envisioned As Relation and Class Hierarchizing)
framework, introduced elsewhere [6] offered an alternate
perspective of blackbox optimization (BBO) in terms of
relations, classes and partial ordering. SEARCH is pri-
marily motivated by the observation that searching for op-
timal solution in a BBO is essentially an inductive process
[8] and in absence of any relation among the members of
the search space, induction is no better than enumeration
[9]. SEARCH decomposed BBO into three spaces: (1) re-
lation, (2) class, and (3) sample spaces. SEARCH also
identified the importance of searching for appropriate re-
lations in BBO. No BBO algorithm can efficiently solve a
reasonably general class of problems unless it searches for
relations. Kargupta [6] also showed that the class of order-k
delineable (problems that can be solved by considering no
higher than order-k relations) problems can be solved in
SEARCH with sample complexity polynomial in problem
size, desired quality and reliability of the solution.

Unfortunately, most of the existing evolutionary algo-
rithms do not pay careful attention to the fundamental
components of BBO. For example, the search for relations
is often inadequate; the decision makings in relation and
class spaces often interfere with each other. This paper
introduces a new BBO algorithm called gene expression
messy GA (GEMGA) that tries to transcend these bot-
tlenecks. The GEMGA is a product of the development
of the SEARCH framework and the series of efforts made
by Goldberg and his students [3; 5; 4; 6] in designing

BBO algorithms that work for reasonably general class of
BBO problems. The GEMGA is an O(A*(£? + k)) sam-
ple complexity algorithm for order-k delineable problems
in sequence representation of length £.

Section IT describes different aspects of GEMGA. Section
ITT presents the test results for large multi-modal, order-
k delineable problems. Finally, Section IV concludes this

paper.
II. THE GENE EXPRESSION MESSY GA

This section introduces a modified version of the
GEMGA and shows that the overall sample complexity is
subquadratic. Section IT.A discusses the representation in
GEMGA. Section II.B explains the population sizing in
GEMGA. This is followed by Section II.C that describes
the main operators, transcription, selection, and recombi-
nation. Section II.D presents of the overall mechanisms.

A. Representation

The GEMGA uses a sequence representation. Each se-
quence is called a chromosome. Every member of this se-
quence is called a gene. A gene is a data structure, which
contains the locus, value, weight and a dynamic list of in-
tegers, called the linkage set. The locus determines the
position of the member in the sequence. The locus does
not necessarily have to be the same as the physical po-
sition of the gene in the chromosome. For example, the
gene with locus 4, may not be at the i-th position of the
chromosome. When the chromosome is evaluated, however
the gene with locus i gets the i-th slot. This positional
independence in coding was introduced elsewhere [3; 5] to
enforce the proper consideration for all relations defined by
the representation. The GEMGA does not depend on the
particular sequence of coding. For a given /£ bit represen-
tation, the genes can be placed in arbitrary sequence. A
gene also contains the value, which determines the value of
the gene, which could be any member of the alphabet set,
A. The weights associated with every gene take a positive
real number. The weight space over all the genes define
the class space of the GEMGA. The linkage set of a gene
is a list of integers defining the set of genes related with
it. If the genes with loci, {1,5,10,15} are related to each
other then the gene with locus 1 will have the linkage set
{5,10,15}. Similarly, the gene with locus 5 will have the
linkage set {1,10,15}. The linkage set space over all genes
defines the relation space of the GEMGA. No two genes
with the same locus are allowed in the sequence. In other



words, unlike the original messy GA [3; 5] no under or
overspecifictions are allowed. A population in GEMGA is
a collection of such chromosomes.

B. Population sizing

The GEMGA requires at least one instance of the opti-
mal order-k class in the population. For a sequence rep-
resentation with alphabet A, a randomly generated pop-
ulation of size A* is expected to contain one instance of
an optimal order-k class. The population size in GEMGA
is therefore, n = cA¥, where c is a constant. When the
signal from the relation space is clear, a small value for ¢
should be sufficient. However, if the relation comparison
statistic produces a noisy signal, this constant should sta-
tistically take care the sampling noise from the classes de-
fined by any order-k relation. Since the proposed version of
GEMGA uses sequence representation, the relation space
contains total 2¢ relations. However, GEMGA processes
only those relations with order bounded by a constant, k.
In practice, the order of delineability [6] is often unknown.
Therefore, the choice of population size in turn determines
what order of relations will be processed. For a popula-
tion size of n, the order of relations processed by GEMGA
is, k = log(n/c)/log|A|. If the problem is order-k deline-
able [6] with respect to the chosen representation and class
comparison statistics then GEMGA will solve the problem
otherwise not. If GEMGA cannot solve the problem for a
given population size, a higher population size should be
used to address possible higher order delineability.

C. Operators

GEMGA has four primary operators, namely: (1) tran-
scription, (2) class selection, (3) string selection, and (4)
recombination. Each of them is described in the following.

A. Transcription

As mentioned before, the weight space of the proposed
version of the GEMGA chromosomes represents the class
space. On the other hand the relation space is defined
by the linkage set associated with every gene. The tran-
scription operator detects the appropriate order-krelations.
The transcription phase I operator determines the in-
stances of genes contributing to the locally optimal classes.
The transcription phase II operator determines the clus-
ters of genes precisely defining the relations among those
instances of genes. Comparing relations requires a relation
comparison statistics. The GEMGA does not process the
relations in a centralized fashion; instead it evaluates rela-
tions locally in a distributed manner. Every chromosome
tries to determine whether or not it has an instance of a
good class belonging to some relation. The transcription
phase I operator considers one gene at a time. The value
of the gene is randomly flipped to note the change in fit-
ness. For a minimization problem, if that change cause an
improvement in the fitness (i.e. fitness decreases) then the
original instance of the gene certainly do not belong to the
instance of the best class of a relation, since fitness can

// pick is the currently considered gene

TranscriptionPhaseI (CHROMOSOME chrom,
int pick)

{

double phi, delta;
int dummy;
double dwt;

dwt = chrom[pick].Weight();
phi = chrom.Fitness();
dummy = chrom[pick].Value();
// Change the value randomly
chrom[pick] .PerturbValue();
// Compute new fitness
chrom[pick] .EvaluateFitness();
// Compute the change in fitness
delta = chrom[pick].Fitness() - phi;
// For minimization problem
if (delta < 0.0)
delta = 0.0;
// Set the weight
if (dwt < delta OR delta == 0.0)
chrom[pick].SetWeight(delta);
// Set the value to the original value
chrom[pick] .SetValue(dummy) ;
// Set the original fitness
chrom[pick] .SetFitness(phi);

Fig. 1. Transcription Phase I operator for minimization problem. For
maximization problem, if delta< 0 absolute value of delta is taken and
otherwise delta is set to 0.

be further improved. Transcription sets the corresponding
weight of the gene to zero. On the other hand if the fit-
ness worsens (i.e. fitness increases) then the original gene
may belong to a good class; at least that observation does
not say it otherwise. The corresponding weight of the gene
is set to the absolute value of the change in fitness. Fi-
nally, the value of that gene is set to the original value
and the fitness of the chromosome is set to the original fit-
ness. In other words, ultimately transcription phase I does
not change anything in a chromosome except the weights.
For a maximization problem the conditions for the weight
change are just reversed. The same process is continued
deterministically for all the £ genes in every chromosome
of the population. Figure 1 shows the Transcripton phase
I operator. Transcription phase II identifies the exact re-
lations among the genes and constructs the linkage set of
every gene in a choromosme. This operator performs pair-
wise consideration of genes. The objective is to identify the
set of genes that are related with any given gene from the
chromosome. Among the (§) possible pair of choices only
those pairs are considered in which both the genes have
non-zero weights. In other words if a gene is identified as
a possible contributor to an instance of locally optimal set
of genes then its dependencies on other such genes in that
chromosome are tested using the transcription phase IT op-



// pickl, pick2 are the indices of a pair of genes

TranscriptionPhaseII(CHROMOSOME chrom,
int pickl, int pick2)

{

double phi, delta;
int dummyl, dummy2;

if (chrom[pick1] .Weight() > 0) {
dummyl = chrom[pick1].Value();
phi = chrom.Fitness();
chrom[pick1] .PerturbValue();
chrom.EvaluateFitness();
if (chrom[pick2].Weight() > 0.0) {
chrom[pick?2] .PerturbValue();
dummy2 = chrom[pick2].Value();
chrom[pick2] .PerturbValue();
chrom.EvaluateFitness();
delta = chrom.Fitness() - phi;
// For minimization problem
if (delta < 0.0)
delta = 0.0;
if (delta !'= chrom[pick2].Weight()) {
chrom[pick1].AddLinkageSet (pick2);
chrom[pick2] .AddLinkageSet (pickl);

}

chrom[pick2] .SetValue(dummy2) ;
}
chrom[pick1] .SetWeight(1.0);
// Set the value to the original value
chrom[pick1] .SetValue (dummyl) ;
// Set the original fitness
chrom.SetFitness(phi);

Fig. 2. Transcription Phase II operator for minimization problem.

erator. For every gene with non-zero weight the linkage set
is constructed and the real weights are replaced by boolean
weights. Figure 2 shows the pseudo-code for this operator,
where pickl and pick?2 define the loci of the pair of genes.

For genes with higher cardinality alphabet set (A) this
process is repeated for some constant C' < |A| times. The
following section describes the two kinds of selection oper-
ators used in GEMGA, which correspond to the selective
pressures in protein and DNA spaces of natural evolution
described elsewhere [7].

B. Selection

Once the relations are identified, selection operator is ap-
plied to make more instances of better classes. GEMGA
uses two kinds of selections—(1) class selection and (2)
string selection. Each of them is described in the follow-
ing:

e Class Selection: The class selection operator is re-
sponsible for selecting individual classes from the chro-

ClassSelection(chroml, chrom?2)
CHROMOSOME chroml, chrom?2;

{

int i;

for(i=0; i<Problem_length; i++) {
if (Rnd()<0.5 AND chroml[i].Weight()>0) {
if (chrom1[i] .LinkageSet.Length() >
chrom2[i] .LinkageSet.Length()) {
// Collect linkage sets of chosen genes
SelectSet.Collect[LinkageSet[il]; }
}
}
for(i=0; i<SelectSet.Length(); i++)
chrom2[SelectSet[i]]=chromil[SelectSet[i]];
}

Fig. 3. Class selection operator in GEMGA. A consistent coding (where
chroml1[i] and chrom?2[i] has common locus) is used in place of messy
coding for the sake of illustration. Rnd() generates a random number in
between 0 and 1.

mosomes. Better classes detected by the transcription
operator are explicitly chosen and given more copies
at the expense of bad classes in other chromosomes.
Figure 3 describes the operator. Two chromosomes are
randomly picked; A set of genes with non-zero weights
are chosen from one of them, chrom1; those genes with
cardinality of their LinkageSet strictly greater than
those of their counterparts in the other participating
chromosome are collected in a list called SelectSet.
Then the genes of the chromosome chrom1 correspond-
ing to SelectSet are copied on the corresponding
genes of chrom?.

¢ String Selection: This selection operator gives more
copies of the chromosomes. A standard binary tour-
nament selection operator [2; 5] is used. Binary tour-
nament selection randomly picks up two chromosomes
from the population, compares their objective function
values, and gives one additional copy of the winner to
the population at the expense of the looser chromo-
some.

The following section describes the recombination operator
in GEMGA.

C. Recombination

Figure 4 shows the mechanism of the recombination op-
erator in GEMGA. It randomly picks up two chromo-
somes from the population and considers all the genes
in the chromosomes for possible swapping. It randomly
marks one among them. Just like the ClassSelection
operator Recombination selects a set of genes called the
ExchangeSet. Genes of chroml and chrom2 corresponding
to the members of ExchangeSet are exchanged.

The following section describes the overall mechanism of
the algorithm.



Recombination(chroml, chrom2)
CHROMOSOME chroml, chrom2;

{

int i;

GENE dummy;

for(i=0; i<Problem length; i++) {
if (Rnd()<0.5 AND chroml[i].Weight ()>0) {
if (chroml[i] .LinkageSet.Length() >
chrom2[i].LinkageSet.Length()) {
// Collect linkage sets of chosen genes
ExchangeSet.Collect [LinkageSet[i]]; }

}
}

for(i=0; i<ExchangeSet.Length(); i++) {
dummy=chroml [ExchangeSet [i]];
chroml [ExchangeSet [i]]=chrom2[ExchangeSet [i]];
chrom2 [ExchangeSet [i] ]=dummy ;

}
)

Fig. 4. Recombination operator in GEMGA. A consistent coding (where
chromi[i] and chrom2[i] has common locus) is used in place of messy
coding for the sake of illustration. Rnd() generates a random number in
between 0 and 1.

D. The algorithm

GEMGA has two distinct phases: (1) primordial stage
and (2) juxtapositional stage. The primordial stage first
applies the transcription phase I operator for ¢ genera-
tions, deterministically considering every gene in each gen-
eration. This is followed by the application of the tran-
scription phase IT operator for each pair of genes with non-
zero weights. During this stage the population of chromo-
somes remains unchanged, except that the weights of the
genes change and the linkage sets get constructed. This is
followed by the juxtapositional stage, in which the string
selection, class selection, and recombination operators are
applied iteratively. Figure 5 shows the overall algorithm.
The length of the transcription phase I application is £.
The length of the application of the transcription phase II
application is £2 — £ in the worst case. The length of the
juxtapositional stage can be roughly estimated as follows.
If t be the total number of generations in juxtapositional
stage, then for binary tournament selection, every chromo-
some of the population will converge to same instance of
classes when 2t = n, i.e. t = logn/log2. Substituting
n = c|AlF, we get,t = Wﬂil;gw. A constant factor of
t is recommended for actual practice. Clearly the number
of generations in juxtapositional stage is O(k). Let us now
compute the overall sample complexity of GEMGA. Since
the population size is O(|A|*) and the primordial stage
continues for C¢ = O({) generations, the overall sample
complexity,

SC = O(A*(U+ 02 —1+k)
O(IA[*(£2 + k)

Il

void GEMGAQ) {
POPULATION Pop;
int i, j, k, C, komax;

// Initialize the population at random
Initialize(Pop);
i = 0;
// Primordial stage
While(i < C) { // Cis a constant
j=0;
Repeat {
// Identify better relations
TranscriptionPhaseI(Pop, j);
// Increment generation counter
i=i+y
} Until(j
i+ 1;

Problem length)
is=
}
TranscriptionPhaseII(Pop);
k = 0;
// Juztapositional stage
Repeat {
// Select better strings
Selection(Pop);
// Select better classes
ClassSelection(Pop);
// Produce offspring
Recombination(Pop) ;
Evaluate(Pop); // Evaluate fitness
// Increment generation counter
k=k + 1;
// k-maz is of O(log(Problem_length))
} Until ( k > komax )

}

Fig. 5. Pseudo-code of GEMGA. The constant C j |A|, where |A]| is the
cardinality of the alphabet set.

Note that the transcription phase I operator is applied on
those pair of genes that have non-zero weights. Therefore,
the complexity of this operation is quadratic only in the
worst case when all the genes in a chromosome have non-
zero weights.

The following section presents the test results.

III. TEST RESULTS

Designing a test set up requires careful consideration. An
ideal set up should contain problems with different dimen-
sions of problem difficulty, such as multi-modality, bounded
inappropriateness of relation space, problem size, noisy ob-
jective function. In this paper, we present the performance
of GEMGA for problems with varying degree of difficulties
along the first three dimensions. The following sections
describe the test functions and present the experimental
results.
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A. Experimental design

A test function is constructed by concatenating multi-
ple numbers of order-5 trap functions [1]. Each of these
subfunctions is an order-5 trap function. The particular
version of the deceptive trap function used can be defined
as follows:

flz) = ¢ if u=¢
= [f—1—u otherwise,

where u is the number of 1-s in the string z and £ is the
string length. If we carefully observe this trap function, we
shall note that it has two peaks. One of them corresponds
to the string with all 1-s and the other is the string with
all 0-s. For £ = 200, the overall function contains 40 sub-
functions; therefore, an order-5 bounded 200-bit problem
has 240 local optima, and among them, only one is globally
optimal. As the problem length increases the number of
local optima exponentially increases. This class of prob-
lems is order-5 delineable with respect to the class average
comparison statistics (i.e. when classes are compared with
respect to the distribution means). This problem in order-
5 deceptive representation has only /5 proper relations
among the (§) order-5 relations. Therefore, searching for
the appropriate relations is not a trivial job in this class of
problems. This is the primary reason behind the failure of
most of the existing blackbox optimization algorithms for
such problems. Clearly this class of problems are massively
multimodal and has bounded inappropriateness of the re-
lation space, defined by the representation. The following
section presents the test results.

B. Results

The GEMGA is tested against order-5 deceptive prob-
lems of different sizes. Figure 6 shows the average number
of sample evaluations from six independent runs needed
to find the globally optimal solution for different problem
sizes. The population size is 500, chosen as described ear-
lier in this paper. As we see, the sample complexity linearly
depends on the problem size.

Figure 7 show the gradual detection of the relations dur-
ing the primordial and juxtapositional stages for a 30-bit
order-5 deceptive problem. Each figure represent the rela-
tion space of the whole population at a certain generation.

The x-axis denotes the weights in the genes, ordered on the
basis of the locus of the gene. In other words the values
along the x-axis correspond to the actual value of the locus
of a gene in a chromosome. The y-axis corresponds to the
different members in the population. The z-axis, perpen-
dicular to the page denotes the weights of the correspond-
ing gene in the corresponding chromosome. Since the test
function is comprised of order-5 trap functions, for any par-
ticular gene in a chromosome, there are only 4 other genes
that are related with it. The complete relation space has
a cardinality of 2%, Among (2°) order-5 relations there
are only 6 relations that correctly correspond to the ac-
tual dependencies defined by the problem. GEMGA needs
to detect the relations that relate genes with loci ranging
from 0 to 4 together, from 5 to 9 together and so on. These
relations are gradually detected in different chromosomes
that contain good classes from those relations. More in-
stances of good classes are produced by selection and they
are exchanged among different strings to create higher or-
der relations that finally lead to the optimal solution.

IV. CONCLUSION

This paper presents a brief introduction of GEMGA and
the test results for large problems with millions of local
optima and bounded inappropriateness of the representa-
tion. GEMGA eliminates many problems of the previous
versions of messy GAs. The main improvements are (1) ex-
plicit processing of relations and classes, (2) eliminating the
need for a template solution, (3) reducing the population
size from O(A¥f) to O(AF) for order-k delineable problems
in sequence representation of length ¢, (4) introducing high
degree of parallelism (even more than simple GA), and (5)
reducing the running time by a large factor. Experimental
results clearly showed that GEMGA can detect appropri-
ate relations efficiently for a large class of problems. Unlike
natural evolution, GEMGA does not construct new repre-
sentation. That is the immediate future possibility. Cur-
rently GEMGA is designed for problems that are order-k
delineable in the chosen representation. GEMGA has been
tested for different class of problems producing very en-
couraging results. Those results are not included in this
paper because of the restricted space.
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